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Abstract

We consider the classical Inverse Function Theorem of Nash and
Moser from the angle of some recent development by Ekeland and the
authors.

Geometrisation of tame estimates coupled with certain ideas com-
ing from Variational Analysis when applied to a directionally differ-
entiable function, produce very general surjectivity result and, if in-
jectivity can be ensured, Inverse Function Theorem with the expected
Lipschitz-like continuity of the inverse.

We also present a brief application to differential equations.
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1 Introduction

Theorem of Nash and Moser is a powerful tool for studying nonlinear prob-
lems with infinitely smooth data. Since the spaces of infinitely smooth
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functions are not Banach, the usual Inverse Theorems do not work. Good
overview of the subject is the monograph [1].

The Inverse Function Theorem of Nash and Moser is tough to be proved
as it can be seen from the notorious survey [2]. Its proof relies on Newton
method and in order for it to work the function should be smooth and the
spaces tame.

Ekeland [3] has proved surjectivity result for functions which are only
Gâteaux differentiable. The results of [3] were extended to the case of non-
autonomous tameness estimates in [4]. Since the method of [3] does not
require second derivatives, it can be extended to multi-valued maps, see [5].
We further this development by proving surjectivity result for multi-valued
maps with estimates of all seminorms in [6]. A simple and different proof
in the case of merely directionally differentiable function in Fréchet-Montel
spaces is given in [7]. Recently Inverse Function Theorem in Fréchet-Montel
spaces was proved in [8].

Here we combine ideas from [6] and [7] to prove an Inverse Function
Theorem.

This theorem is weaker than Nash-Moser Theorem, see [2], because the
tameness estimates do not depend on the variable. On the other hand,
however, the regularity condition we impose on the image Fréchet space is
very mild.

Theorem 1.1 Let (X, ‖ · ‖n) be a Fréchet space and (Y, ‖ · ‖n) be a non-
exotic Fréchet space and let f : X → Y be a continuous function. Let U
be a nonempty open subset of X such that f is injective and directionally
differentiable on U ; and there are d ∈ N and cn > 0 such that for any x ∈ U
and any v ∈ Y ,

∃h ∈ X : f ′(x, h) = v and ‖h‖n ≤ cn‖v‖n+d, ∀n ≥ 0. (1)

Then for each x ∈ U there exists an open V ∋ x such that f is invertible on
V and

‖f−1(u)− f−1(v)‖n ≤ cn‖u− v‖n+d, ∀u, v ∈ f(V ), ∀n ≥ 0. (2)

Let us note that the presented here results do not follow from the results
for multi-valued maps in [6] and are more general than the results in [7].

The paper is organized as follows. In Section 2 we recall the necessary
definitions and prove some auxiliary results. In Section 3 we prove very gen-
eral surjectivity result. However, in this setting the estimates corresponding
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to (2) hold only if closure is taken. In Section 4 we prove our main result –
Theorem 1.1. In Section 5 we give some conditions in the spirit of [2] ensur-
ing injectivity, but more research is this direction is required even in Banach
spaces case.

We do not consider here the natural further question of global invertibility.
In Section 6 we follow the standard route of deriving Implicit Map The-

orem from uniform surjectivity and then, in the final Section 7, we apply it
to generalise an application found in [5], to a Cauchy problem.

2 Preliminaries

Generally speaking, a Fréchet space is a complete locally convex topologi-
cal vector space whose topology can be generated by a translation-invariant
metric. Then taking Minkowski functions of a countable local base of convex
symmetric neighbourhoods of zero, we obtain countable family of seminorms,
which also define the topology, see for details [9, pp.110-114].

In the context of Nash-Moser-Ekeland theory, however, a set of seminorms
is given in advance and the estimates are in terms of the given seminorms.
Therefore, when the seminorms are fixed, we simply say that Fréchet space
(X, ‖ · ‖n) is a linear space X with a collection of seminorms ‖ · ‖n, n =
0, . . . ,∞, which is separating, that is, ‖x‖n = 0, ∀n, if and only if x = 0;
and, moreover, equipped with the metric

ρ(X,‖·‖n)(x, y) := max
n≥0

2−n‖x− y‖n
1 + ‖x− y‖n

(3)

(X, ρ(X,‖·‖n)) is complete metric space.
The closed ball centered at x with radius r in (X, ρ(X,‖·‖n)) is denoted by

B(x, r) :=
{

y ∈ X : ρ(X,‖·‖n)(x, y) ≤ r
}

,

and B◦(x, r) is the open ball.

Definition 2.1 The Fréchet space (X, ‖ · ‖n) is called non-exotic if dropping
finitely many seminorm does not change the topology. In other words, for
any N ∈ N the metric ρ(X,‖·‖n), see (3), and the metric

ρN(X,‖·‖n)(x, y) = max
n≥N

2−n‖x− y‖n
1 + ‖x− y‖n

produce the same convergence.
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It is clear that the examples of Fréchet space which do not satisfy Def-
inition 2.1 would be very exotic. The above definition does not in any way
exclude Banach spaces, since in that case all seminorms can be taken equal to
the original norm, so dropping few of them changes nothing. Also, in many
applications some monotonicity of the seminorms (like, e.g. ‖ · ‖n ≤ ‖ · ‖n+1

for all n) is assumed, and such so called graded spaces are clearly non-exotic.
In short, we need this condition only for accommodating the so called loss of
derivatives, and it is not that restrictive.

Perhaps, the most used example of non-exotic (and non-Banach) Fréchet
space is X = C∞(Ω), where Ω is a compact domain in R

n.
Denote (as somewhat standard)

R
∞
+ := {(sn)

∞
n=0 : sn ≥ 0},

that is, R∞
+ is the cone of all positive sequences indexed from 0 on.

For s ∈ R
∞
+ set

supp s := {n ≥ 0 : sn > 0},

|s| := max
n≥0

2−nsn
1 + sn

.

For a Fréchet space (X, ‖ · ‖n) and a given s ∈ R
∞
+ also define

Πs(X) := {x ∈ X : ‖x‖n ≤ sn, ∀n ≥ 0}, (4)

and
Xs :=

⋃

t≥0

tΠs(X), (5)

see [6, Definition 3.1].
We will now discuss some properties of the while ago introduced structure

Πs(X) that will be used in the sequel.
It is easy to check that Πs(X) is closed in X because of

lim
k→∞

ρ(X,‖·‖n)(xk, x) = 0 ⇔ lim
k→∞

‖xk − x‖n = 0, ∀n ∈ N.

What is obvious is that, if x ∈ X and s = (‖x‖n)
∞
n=0, then

|s| = ρ(X,‖·‖n)(0, x),

where ρ(X,‖·‖n) is defined by (3).
The following is one of the key relations in the approach we present.
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Lemma 2.2 If (X, ‖ · ‖n) is Fréchet space and ρ(X,‖·‖n) is defined as in (3),
then

cΠs(X) ⊂ B(0, c|s|)

for any s ∈ R
∞
+ and any c ≥ 1.

For a proof, see [6, Lemma 3.2].
Let (X, ‖ · ‖n) be a Fréchet space, let s ∈ R

∞
+ be such that supp s 6= ∅

and let Xs be defined by (5). For x ∈ Xs define

‖x‖s := sup

{

‖x‖n
sn

: n ∈ supp s

}

.

Then, Πs(X) is the unit ball of the norm ‖ · ‖s and (Xs, ‖ · ‖s) is a Banach
space, see [6, Lemma 3.4].

Proposition 2.3 Let (X, ‖ · ‖n) and (Y, ‖ · ‖n) be Fréchet spaces and let
U ⊂ X be nonempty and open.

Let the function f : X → Y be continuous and such that

cl f(x+Πs(X)) ⊃ f(x) + Πs(Y ), ∀x : x+Πs(X) ⊂ U (6)

Then

f(B(x, r)) ⊃ B◦(f(x), r), ∀x ∈ U, ∀r : 0 < r < mU(x),

where
mU(x) := dist(x,X \ U).

Proof. We refer to the proof of Theorem 2.2 from [6].
There V = Y and the graph of f is indeed closed, because f is continuous.

The condition (6) means that, in terms of [6], f is weakly Π-surjective with
κ = 1.

Fix x ∈ U and r > 0 such that r < mU (x).
The proof of [6, Theorem 2.2] says that for each α ∈ (0, 1)

cl f(B(x, r)) ⊃ B(f(x), αr).

Then [6, Lemma 3.5], or [10, Theorem 2.55], gives that

f(B(x, r)) ⊃ B(f(x), βr), ∀β ∈ (0, α).
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But, since α ∈ (0, 1) was arbitrary, the latter in effect means that f(B(x, r))
contains B(f(x), βr) for all β ∈ (0, 1), or in other words,

f(B(x, r)) ⊃ B◦(f(x), r).

�

Definition 2.4 Let (X, ρX), (Y, ρY ), be linear metric spaces, U ⊂ X be an
open set, and

f : X → Y

be a function. The derivative of f at the point x ∈ U in the direction h ∈ X
is defined by

f ′(x, h) := ρY− lim
t↓0

f(x+ th)− f(x)

t
.

We say that f is directionally differentiable at x ∈ U if the directional deriva-
tive of f at x exists in any direction, and that f is directionally differentiable
on U if it is directionally differentiable at any x ∈ U .

If f is directionally differentiable on U and the derivative f ′(x, h) is con-
tinuous jointly in (x, h) ∈ U ×X, then f is said to be smooth on U , denoted
by f ∈ C1(U).

If f ∈ C1(U) then necessarily f ′(x, h) is linear in h, denoted by f ′(x, h) =
f ′(x)(h), see [2, Theorem 3.2.5].

In [11] we have established the so called Long Orbit or Empty Value
(LOEV) Principle and we have used it there for getting surjectivity results
in Banach spaces, and in [6] in Fréchet spaces. Here we will recall it and use
it as well.

Let (M, ρ) be a complete metric space.
Let S : M ⇒ M be a multi-valued map. We say that S satisfies the

condition (∗) if x /∈ S(x), ∀x ∈ M , and whenever y ∈ S(x) and limn xn = x,
there are infinitely many xn’s such that y ∈ S(xn).

Informally, LOEV Principle says that under (∗) there exist long S-orbits
or points where S is empty-valued, thus the name. We will use the LOEV
Principle here in the following form

Proposition 2.5 (Corollary 3, [11]) Let S : M ⇒ M satisfy (∗) and let
x0 ∈ M and K > 0 be arbitrary.

Then at least one of the two conditions below is true:
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(a) There are xi ∈ M , i = 1, 2, . . . , n+ 1, such that

xi+1 ∈ S(xi), i = 0, 1, . . . , n,

and
n

∑

i=0

ρ(xi, xi+1) > K;

(b) There is x ∈ M such that ρ(x0, x̄) ≤ K and

S(x) = ∅.

We finish this section of miscellaneous auxiliary results by a well-known
mean value inequality for upper Dini derivative.

Lemma 2.6 Let g : [0, 1] → R be a continuous function such that g(0) = 0
and

g+(λ) := lim sup
t↓0

f(λ+ t)− f(λ)

t
≤ 1, ∀λ ∈ (0, 1).

Then, g(1) ≤ 1.

Proof. Let a > 1 be arbitrary and let

I := {x ∈ [0, 1] : g(s) ≤ as, ∀s ∈ [0, x]}.

Because g is continuous, I is a closed interval, say [0, b]. If b < 1 then for any
t > 0 small enough b + t < 1 and for any such t > 0 there exists t′ ∈ (0, t)
such that g(b + t′) > a(b + t′). So g(b + t′) − g(b) > a(b + t′) − ab = at′.
Therefore, g+(b) ≥ a, contradiction. Hence, b = 1 and g(1) ≤ a. �

3 Local surjectivity

Here we prove a general surjectivity result. It is established through combin-
ing ideas from [6] and [7].

If (X, ‖ · ‖n) is a Fréchet space, define

| · |k := max
0≤i≤k

‖ · ‖i. (7)

7



Then (X, | · |k) is a graded Fréchet space. We will also use

ρk(X,‖·‖n)(x, y) := max
0≤n≤k

2−n‖x− y‖n
1 + ‖x− y‖n

. (8)

It is clear that ρk(X,‖·‖n)
tends uniformly to ρ(X,‖·‖n), see (3), in the sense that

for any ε > 0 there is N ∈ N such that

∣

∣ρk(X,‖·‖n)(x, y)− ρ(X,‖·‖n)(x, y)
∣

∣ < ε, ∀k > N, ∀x, y ∈ X.

Lemma 3.1 Let (X, ‖·‖n) be a Fréchet space, and let A ⊂ X be a non-empty
set. Let x ∈ X be such that

∀ε > 0, ∀k ≥ 0, ∃a ∈ A : |x− a|k < ε. (9)

Then x ∈ clA.

Proof. Fix ε > 0. Fix k ≥ 0 so large that
∣

∣

∣
ρk(X,‖·‖n)

− ρ(X,‖·‖n)

∣

∣

∣
< ε

uniformly. Take a ∈ A such that |x − a|k < ε. It is clear from (7) and (8)
that ρk(X,‖·‖n)

(x, a) ≤ |x− a|k. So, ρ(X,‖·‖n)(x, a) < ρk(X,‖·‖n)
(x, a) + ε < 2ε.

Since ε > 0 was arbitrary, x is at zero distance from A, or which is the
same, x is in its closure. �

It is easy to check that the “only if” direction is also true, but we are not
going to use it.

In a Banach space (X, ‖ · ‖) we denote the closed unit ball by

BX := {x ∈ X : ‖x‖ ≤ 1}.

Proposition 3.2 Let (X, ‖ · ‖) be a Banach space and let (Y, ‖ · ‖n) be a
Fréchet space. Let g : X → Y be a continuous function which is directionally
differentiable and such that g(0) = 0.

If for some y ∈ Y there exist σ > 0 and an open set U ⊃ σBX such that

y ∈ {g′(x, h) : h ∈ σBX}, ∀x ∈ U,

then
y ∈ cl g(σBX).
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Proof. Obviously, we may assume that y 6= 0.
We will apply Lemma 3.1 to the set g(σBX) in Y . We consider Y with

the graded seminorms | · |k as defined in (7) and equip it by the metric ρ(Y,|·|k)
defined as in (3) by using these seminorms.

Fix arbitrary ε1 > 0.
Let k0 be such that |y|k0 6= 0. Fix arbitrary k ≥ k0, k ∈ N.
Take ε ∈ (0, |y|k) such that

ε(1 + |y|k) < ε1.

Fix µ such that
µ > σ > (1− ε)µ. (10)

We intend to apply Proposition 2.5 to clU , which is complete in the
metric induced by ‖ · ‖, with x0 = 0 and K = σ for the map S : clU ⇒ U
defined for x ∈ U by

S(x) := {u ∈ U : ∃t ∈ (µ−1‖u− x‖, ε) : |g(u)− g(x)− ty|k < εt}, (11)

and S(x) := ∅ for x 6∈ U .
We have to show that S satisfies (∗). Indeed, if u = x in (11) then

t|y|k < εt, contradiction with the choice of ε. Thus, x 6∈ S(x), ∀x ∈ clU .
The other requirement of (∗) follows by continuity: if u ∈ S(x) and

xn → x then for t corresponding to u in the definition of S(x), see (11), we
will have t ∈ (µ−1‖u−xn‖, ε) and |g(u)−g(xn)−ty|k < εt for n large enough.
Thus S satisfies (∗).

Moreover,
S(x) 6= ∅, ∀x ∈ U. (12)

Indeed, fix x ∈ U . By assumption, there is h ∈ X with ‖h‖ ≤ σ such
that g′(x, h) = y. That is,

lim
s↓0

ρY

(

g(x+ sh)− g(x)

s
, y

)

= 0,

hence

lim
s↓0

∣

∣

∣

∣

g(x+ sh)− g(x)

s
− y

∣

∣

∣

∣

k

= 0.

So, for small s, we have that s ∈ (0, ε), x+ sh ∈ U and

|g(x+ sh)− g(x)− sy|k < sε.

9



For u := x+ sh we have that

‖u− x‖

µ
=

s‖h‖

µ
≤

sσ

µ
< s,

and
|g(u)− g(x)− sy|k < εs.

Hence, u ∈ S(x) and (12) is verified.
Since σBX ⊂ U , (12) means that (b) from Proposition 2.5 is not an

option, and, therefore, there is an S-orbit x0 = 0, x1, . . . , xn+1, xi+1 ∈ S(xi),
for i = 0, 1, . . . , n, such that

n
∑

i=0

‖xi+1 − xi‖ > σ. (13)

Denote by ti some t from the definition of xi+1 ∈ S(xi), see (11), so

‖xi+1 − xi‖ < µti, |g(xi+1)− g(xi)− tiy|k < εti. (14)

For each i = 0, 1, . . . n set for brevity

pi :=
i

∑

j=0

tj .

From (14) we get

|g(xi+1)− piy|k =

∣

∣

∣

∣

∣

i
∑

j=0

(g(xj+1)− g(xj))−

i
∑

j=0

tjy

∣

∣

∣

∣

∣

k

≤

i
∑

j=0

|g(xj+1)− g(xj)− tjy|k

<
i

∑

j=0

εtj = εpi.

So,
|g(xi+1)− piy|k < εpi, ∀i = 0, 1, . . . , n. (15)

On the other hand, from (13) and (14) we get µpn =
∑n

0 µti >
∑n

0 ‖xi+1−
xi‖ > σ, that is, pn > σ/µ > 1− ε from (10).

10



Since pi+1 − pi = ti < ε, there is m ∈ {0, . . . , n} such that

1− ε < pm < 1.

Using (14) and the triangle inequality we can estimate ‖xm+1‖ ≤
∑m

i=0 ‖xi+1−
xi‖ < µpm < σ. That is,

xm+1 ∈ σBX . (16)

On the other hand, (15) for i = m gives

|g(xm+1)− y|k ≤ |g(xm+1)− pmy|k + |pmy − y|k

< εpm + (1− pm)|y|k

< ε+ ε|y|k.

Recalling the choice of ε, we get

|g(xm+1)− y|k < ε1.

This and (16) mean that there exists x ∈ σBX such that |g(x)− y|k < ε1.
Since ε1 > 0 and k ≥ k0 were arbitrary, we have that

∀ε1 > 0, ∀k ≥ k0, ∃x ∈ σBX : |g(x)− y|k < ε1.

Having in mind that | · |k seminorms are graded, the latter implies that

∀ε1 > 0, ∀k ≥ 0, ∃x ∈ σBX : |g(x)− y|k < ε1.

Lemma 3.1 completes the proof. �

Theorem 3.3 Let (X, ‖ · ‖n) and (Y, ‖ · ‖n) be Fréchet spaces and let

f : X → Y

be a continuous function.
Let f be directionally differentiable on the open set V ⊂ X.
Assume that for some s ∈ R

∞
+ and some non-empty set C ⊂ Y we have

f ′(x,Πs(X)) ⊃ C, ∀x ∈ V. (17)

Then for any x such that x+Πs(X) ⊂ V , it holds that

cl f(x+Πs(X)) ⊃ f(x) + C. (18)

11



Proof. Fix x0 ∈ V such that x0 +Πs(X)⊂V .
Obviously, it is enough to prove that

f(x0) + y ∈ cl f(x0 +Πs(X)) (19)

for each fixed y ∈ C.
We will apply Proposition 3.2 to the Banach space (Xs, ‖·‖s), the Fréchet

space (Y, ‖ · ‖n) and the function g : Xs → Y defined by

g(x) := f(x0 + x)− f(x0), ∀x ∈ Xs

while y will play the same role.
To this end we will check the other assumptions of Proposition 3.2. In our

case σ will be equal to 1 and the set U will be U := (V −x0)∩Xs. It is clear
that U is open in Xs (since ‖ · ‖s-topology is stronger than ρ(X,‖·‖)-topology).
Since x0 +Πs(X) ⊂ V , we also have U ⊃ Πs(X) = BXs

.
Since BXs

= Πs(X), we have by definition

g′(x,BXs
) = f ′(x0 + x,Πs(X)), ∀x ∈ Xs.

If x ∈ U then x0+x ∈ V and we have by (17) that f ′(x0+x,Πs(X)) ⊃ C.
Since y ∈ C we have, therefore,

y ∈ g′(x,BXs
), ∀x ∈ U.

Proposition 3.2 implies that

y ∈ cl g(BXs
) = cl f(x0 +Πs(X))− f(x0),

which is (19) and the proof is completed. �
At this point we have all we need in order to get the promised surjectivity

result.

Theorem 3.4 (Local surjectivity) Let (X, ‖·‖n) and (Y, ‖·‖n) be Fréchet
spaces and let U ⊂ X be nonempty and open.

Let the function f : X → Y be continuous, directionally differentiable on
U , and such that

f ′(x,Πs(X)) ⊃ Πs(Y ) (20)

for all x ∈ U , and all s ∈ R
∞
+ . Then

f(B(x, r)) ⊃ B◦(f(x), r), ∀x ∈ U, ∀r : 0 < r < mU(x), (21)

where mU(x) := dist(x,X \ U).
In particular, f is open at linear rate and locally surjective on U .

12



Proof. If we fix s ∈ R
∞
+ and set C := Πs(X), from Theorem 3.3 we will

get that for any x such that x+Πs(X) ⊂ U ,

cl f(x+Πs(X)) ⊃ f(x) + Πs(Y ),

which is (6) and the claim follows from Proposition 2.3. �
We complete this section by rewriting the previous result in more analyt-

ical terms.

Corollary 3.5 Let (X, ‖ · ‖n) be a Fréchet space and let (Y, ‖ · ‖n) be a non-
exotic Fréchet space and let

f : X → Y

be a continuous function. Let U ⊂ X be open and let f be directionally
differentiable on U . Assume that there are d ∈ N∪ {0} and cn > 0 such that
for any x ∈ U and any v ∈ Y ,

∃h ∈ X : f ′(x, h) = v and ‖h‖n ≤ cn‖v‖n+d, ∀n ∈ N ∪ {0}. (22)

Then f is locally surjective on U .
More precisely, if ρ(Y,cn‖·‖n+d) is the metric on Y given by (3) for the

equivalent system of seminorms (cn‖ · ‖n+d)n≥0, then (21) holds.

Proof. In Y define the seminorms

||| · |||n := cn‖ · ‖n+d, n ≥ 0.

Since Y is non-exotic, the metric ρ(Y,‖·‖n) is equivalent to the metric
ρ(Y,|||·‖||n).

For (X, ‖ · ‖n) and (Y, ||| · |||n) condition (22) can be rewritten as

f ′(x,Πs(X, ‖ · ‖n)) ⊃ Πs(Y, ||| · |||n), ∀x ∈ U, ∀s ∈ R
∞
+ .

Indeed, if v ∈ Πs(Y ) then |||v|||n ≤ sn.
From (22) it follows that there is h ∈ X such that f ′(x, h) = v and

‖h‖n ≤ cn‖v‖n+d. But cn‖v‖n+d = |||v|||n, hence ‖h‖n ≤ |||v|||n ≤ sn.
The conditions of Theorem 3.4 hold and this completes the proof. �
Let us note that in the above corollary the assumption on Y to be non-

exotic is linked only with the loss of derivatives, i.e. in the case d = 0 this
assumption is redundant.
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4 Proof of the main result

Here we prove Theorem 1.1. We will derive it from the following partial case.

Proposition 4.1 Let (X, ‖ · ‖n) and (Y, ‖ · ‖n) be Fréchet spaces and let
f : X → Y be a continuous function such that f(0) = 0. Let U ∋ 0
be a nonempty open subset of X such that f is injective and directionally
differentiable on U ; and such that for any x ∈ U and any v ∈ Y ,

∃h ∈ X : f ′(x, h) = v and ‖h‖n ≤ ‖v‖n, ∀n ≥ 0. (23)

Then there exists an open V ∋ 0 such that f is invertible on V and

‖f−1(v)− f−1(u)‖n ≤ ‖v − u‖n, ∀u, v ∈ f(V ), ∀n ≥ 0. (24)

Proof. Obviously (23) implies that

f ′(x,Πs(X)) ⊃ Πs(Y ), ∀x ∈ U, ∀s ∈ R
∞
+ .

Then we know from Theorem 3.4 that f on U is an open mapping (that
is, f(U1) is open for each open U1 ⊂ U) and it is locally surjective on U .
Hence, there exists a neighbourhood V1 ⊂ U of 0 such that f is surjective
and, therefore, invertible, on V1. The set f(V1) is open and f−1 is continuous
on f(V1). Let W be open convex set such that f(0) ∈ W and W ⊂ f(V1).
Set V := f−1(W ). Obviously V is open, V ⊂ U and f(V ) ≡ W .

Applying Theorem 3.3 with C = Πs(Y ) we get that

cl f(x+Πs(X)) ⊃ f(x) + Πs(Y ), ∀x : x+Πs(X) ⊂ V. (25)

It is clear that if x+Πs(X) ⊂ V , then f(x+Πs(X)) ⊂ f(V ).
We will prove the following

Claim. If s′ ∈ R
∞
+ is such that x+Πs

′(X) ⊂ V and cl f(x+Πs
′(X)) ⊂ f(V ),

then
cl f(x+Πs

′(X)) = f(x+Πs
′(X)).

Take y ∈ cl f(x + Πs
′(X)) and let y = lim yn with yn = f(xn), xn ∈

x+Πs
′(X).

By the presumed inclusion, there exists z ∈ V such that y = f(z).
Since f−1 is continuous on f(V ), and in particular at y,

xn = f−1(yn) → f−1(y) = z.
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Since xn ∈ x + Πs
′(X), and the latter set is closed, we get that z ∈

x+Πs
′(X). That is, y ∈ f(x+Πs

′(X)) and the claim follows.

Now let x + Πs(X) ⊂ V . Because f is continuous at x, for any ε > 0
there exists γ = γ(x) > 0 such that B(x, γ) ⊂ V and

f (B(x, γ)) ⊂ B(f(x), ε). (26)

We claim that there exists δ = δ(x, s, ε) > 0 such that for t ∈ (0, δ),

x+ tΠs(X) ⊂ B(x, γ).

Indeed, ρ(X,‖·‖n)(x, x + tΠs(X)) = ρ(X,‖·‖n)(0, tΠs(X)) by the shift invari-
ance of the metric ρ(X,‖·‖n) and lim sup

t↓0
ρ(X,‖·‖n)(0, tΠs(X)) = 0 as it is shown

in [6, Lemma 3.3].
So, we fix ε > 0 such that B(f(x), ε) ⊂ f(V ). Then by (26) we get

cl f(x+ tΠs(X)) ⊂ cl f(B(x, γ)) ⊂ B(f(x), ε) ⊂ f(V ),

for all t ∈ (0, δ).
Having in mind that tΠs(X) = Πts(X) for all t ≥ 0 and all s ∈ R

∞
+ , we

apply the claim for x and s′ = ts to obtain that

cl f(x+ tΠs(X)) = f(x+ tΠs(X)), ∀t ∈ (0, δ).

From (25) we get

f(x+ tΠs(X)) ⊃ f(x) + tΠs(Y ), ∀t ∈ (0, δ).

From surjectivity of f , for any y ∈ f(V ) there exists x ∈ V such that
f(x) = y. We have actually proved that for any s ∈ R

∞
+ there exists δ =

δ(x(y), s, ε) > 0 such that

f(x+ tΠs(X)) ⊃ y + tΠs(Y ), ∀t ∈ (0, δ),

or, equivalently,

f−1(y + tΠs(Y )) ⊂ f−1(y) + tΠs(X), ∀t ∈ (0, δ). (27)

We will now derive from the latter the Lipschitz-like inequalities of the type
we want, but apparently weaker.

15



Take any y ∈ f(V ) and any z ∈ Y , z 6= 0. Let s := (‖z‖n)
∞
n=0. We invoke

(27) with this s. For t ∈ (0, δ), immediately tz ∈ tΠs(Y ) and, therefore,

f−1(y + tz)− f−1(y) ⊂ tΠs(X).

Hence,

‖f−1(y + tz)− f−1(y)‖n ≤ t‖z‖n, ∀n ≥ 0, ∀t ∈ (0, δ). (28)

Now, fix n ≥ 0 and u, v ∈ f(V ), u 6= v. Set z := v − u. Define for
λ ∈ [0, 1] the function

g(λ) := ‖f−1((1− λ)u+ λv)− f−1(u)‖n.

For each fixed λ ∈ (0, 1) the estimate (28) applied at y := (1−λ)u+λv ∈ f(V )
(since f(V ) is a convex set) gives for all t ∈ (0, δ) that

g(λ+ t)− g(t) = ‖f−1(y + tz)− f−1(u)‖n − ‖f−1(y)− f−1(u)‖n

≤ ‖f−1(y + tz)− f−1(y)‖n

≤ t‖z‖n.

So,
g+(λ) ≤ ‖z‖n.

Lemma 2.6 ensures that g(1) ≤ ‖z‖n and we are done. �
We now have all we need to proof our main result.
Proof of Theorem 1.1. Fix x ∈ U . By considering instead of f the

function f(· − x) − f(x) we may assume that x = 0 and f(0) = 0, as this
will simplify the considerations.

Since (Y, ‖ · ‖n) is non-exotic, we may consider Y with the seminorms

||| · |||n := cn‖ · ‖n+d, n ≥ 0,

as we already did in the proof of Corollary 3.5.
Obviously (1) is equivalent to (23) for the seminorms |||·|||n and, therefore,

Proposition 4.1 gives (24) for ||| · |||n which in its turn is equivalent to (2). �
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5 Local injectivity

Here we give sufficient conditions for injectivity in the spirit of [2]. If we were
to assume tameness of the space, we could derive these from seemingly more
natural conditions, like in [2], but we would rather leave this to the readers
who are specifically interested in the context set by [2].

We would be more interested in general sufficient conditions for injectivity
in therms of directional derivatives in a Banach space, as a first step towards
the general Fréchet case; but this might be a topic of further research.

Theorem 5.1 (Local injectivity) Let (X, ‖ · ‖n) and Y (‖ · ‖n) be Fréchet
spaces, f : U ⊂ X → Y be a continuous function such that f ∈ C1(U), and
U be an open and convex set.

If there exist some constants cn > 0 such that

‖h‖n ≤ cn‖f
′(x)(h)‖n, ∀n ≥ 0, ∀x ∈ U, ∀h ∈ X, (29)

and there exist some constants c′n > 0 such that

‖f ′(x)(h)− f ′(z)(h)‖n ≤ c′n[‖x− z‖r‖h‖n + ‖x− z‖n‖h‖r],

∀n ≥ 0, ∀x, z ∈ U, ∀h ∈ X, and some r ≥ 0,
(30)

then f is locally injective on U .

Proof. Fix x ∈ U . Let U ′ be a neighbourhood of x contained in U .
For x0, x1 ∈ U ′, from Taylor’s theorem with integral reminder,

f(x1) = f(x0) +

∫ 1

0

f ′(x0 + t(x1 − x0))(x1 − x0) dt.

Adding and subtracting f ′(x0)(x1 − x0) we get

f(x1) = f(x0)+f ′(x0)(x1−x0)+

∫ 1

0

[f ′(x0+ t(x1−x0))−f ′(x0)](x1−x0) dt.

Let x0, x1 ∈ U ′. Then,

f ′(x0)(x0−x1) = f(x0)−f(x1)+

∫ 1

0

[f ′(x0+ t(x1−x0))−f ′(x0)](x1−x0) dt,
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and for any n ≥ 0,

‖f ′(x0)(x1−x0)‖n=

∥

∥

∥

∥

f(x0)−f(x1)+

∫ 1

0

[f ′(x0+t(x1−x0))−f ′(x0)](x1−x0) dt

∥

∥

∥

∥

n

.

Hence, using (29),

1

cn
‖x0 − x1‖n ≤ ‖f ′(x0)(x1 − x0)‖n

≤ ‖f(x0)− f(x1)‖n+
∫ 1

0

‖[f ′(x0 + t(x1 − x0))− f ′(x0)](x1 − x0)‖n dt

≤ ‖f(x0)− f(x1)‖n+
∫ 1

0

2c′nt‖x1 − x0‖r‖x1 − x0‖n dt

≤ ‖f(x0)− f(x1)‖n + c′n‖x1 − x0‖r‖x1 − x0‖n.

(31)

Let U ′′ := U ′∩{x : ‖x−x‖r < δ}, where δ <
1

2crc′r
. For x0, x1 ∈ U ′′ from

(31) taken for n = r we get

1

cr
‖x0 − x1‖r ≤ ‖f(x0)− f(x1)‖r + c′r‖x1 − x0‖

2
r

≤ ‖f(x0)− f(x1)‖r + c′r[‖x1 − x‖r + ‖x0 − x‖r]‖x1 − x0‖r

≤ ‖f(x0)− f(x1)‖r + 2c′rδ‖x1 − x0‖r,

or
(

1

cr
− 2δc′r

)

‖x0 − x1‖r ≤ ‖f(x0)− f(x1)‖r.

By the choice of δ, for some positive c > 0,

‖x0 − x1‖r ≤ c‖f(x0)− f(x1)‖r. (32)

Finally, using the estimate (32) in (31) we obtain that

‖x0 − x1‖n ≤ cn‖f(x0)− f(x1)‖n + cnc
′
nc‖f(x0)− f(x1)‖r‖x1 − x0‖n.

The latter yields that if f(x0) = f(x1) then x1 = x0, hence f is injective
on U ′′. �
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6 Implicit Map Theorem

As well known, Inverse and Implicit Function type theorems are closely re-
lated. Here we follow the method of [5] to derive from Corollary 3.5 an
Implicit Function Theorem or, more precisely, Implicit Map Theorem, be-
cause we do not get an unique solution in general. Of course, our result is
slightly different than that of [5], because the Inverse Function Theorem we
use as a base is different.

Theorem 6.1 Let (X, ‖ · ‖n) and (Y, ‖ · ‖n) be Fréchet spaces such that Y is
non-exotic, and let P be a topological space. Consider a function

f : X × P → Y, such that f(x̄, p̄) = 0,

where (x̄, p̄) ∈ X × P is fixed.
Assume that there is a neighourhood U of x̄ in X such that for any fixed

parameter p ∈ P the function f(·, p) : X → Y is continuous and directionally
differentiable on U . Denote the directional derivative of this function at
x ∈ U in the direction h ∈ X by f ′((x, p), h).

Assume also that:
(ı) f is continuous at (x̄, p̄), and
(ıı) there are cn > 0 and d ≥ 0 such that for all x ∈ U , p ∈ P and v ∈ Y ,

there is h ∈ X such that

f ′((x, p), h) = v and ‖h‖n ≤ cn‖v‖n+d, ∀n ≥ 0. (33)

Then there are a neighbourhood U ′ of x̄ in X and a neighbourhood O of p in
P such that

dρ(X,‖·‖n)
(x, S(p)) ≤ ρ(Y,cn‖·‖n+d)(0, f(x, p)), ∀(x, p) ∈ U ′ ×O, (34)

where
S(p) := {x ∈ X : f(x, p) = 0},

and ρ(Y,cn‖·‖n+d) is the metric on Y given by (3) for the equivalent system of
seminorms (cn‖ · ‖n+d)n≥0.

In particular, S(p) is not empty for p ∈ O.

Proof. Let ε > 0 be such that

B(x̄, 2ε) ⊂ U.
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Since f is equal to zero and continuous at (x̄, p̄), there are δ ∈ (0, ε) and an
open neighbourhood O of p̄ such that

f(B(x̄, δ), O) ⊂ B◦(0, ε).

Set
U ′ := B◦(x̄, δ).

Fix arbitrary x ∈ U ′, and p ∈ O. Since ρ(Y,cn‖·‖n+d)(0, f(x, p)) < ε, there is
r > 0 such that

ρ(Y,cn‖·‖n+d)(0, f(x, p)) < r < ε. (35)

Since B(x, r) ⊂ B(x, ε) ⊂ B(x, 2ε) ⊂ U , Corollary 3.5 and (35) give that
(21) is satisfied for f(·, p), that is,

f(B(x, r), p) ⊃ B◦(f(x, p), r).

From (35) it follows that 0 ∈ B◦(f(x, p), r), so 0 ∈ f(B(x, r), p), that is,

dρ(X,‖·‖n)
(x, S(p)) ≤ r

and (34) follows. �

7 Application to differential equations

Here we generalise Theorem 8 from [5] by dropping the assumption that the
spaces should be standard. In essence we just put Theorem 6.1 in the place
of the Implicit Function Theorem used in [5], so we do not need to write the
proof in much detail.

If (X, ‖·‖n) is a Fréchet space then the space of continuous functions from
[−1, 1] into X , denoted by C([−1, 1], X), is also Fréchet with the seminorms

‖u(·)‖n = sup
t∈[−1,1]

‖u(t)‖n.

C1 is defined in a similar fashion. Obviously, ifX is graded, so are C([−1, 1], X)
and C1([−1, 1], X).

Where needed for clarity, we will indicate the space to which certain
seminorm belongs by superscript, for example

‖u(·)‖C
1([−1,1],X)

n = sup
t∈[−1,1]

max{‖u(t)‖n, ‖u
′(t)‖n}.
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Theorem 7.1 Let U be an open subset of the graded Fréchet space (X, ‖·‖n)
and let f : R× U → X be continuous on [−r0, r0]× U .

Assume that for all t ∈ [−r0, r0] the function f(t, ·) is Gâteaux differen-
tiable on U with derivative Dxf(t, ·) and for some cn ≥ 0

‖Dxf(t, x)(h)‖n ≤ cn‖h‖n, ∀|t| ≤ r0, x ∈ U, h ∈ X, n ≥ 0. (36)

Then there is r ∈ (0, r0] such that the Cauchy problem

{

x′(t) = f(t, x(t)), |t| ≤ r,

x(0) = x0.
(37)

has a solution x(·) ∈ C1([−r, r], X).

Proof. By changing the variable x(t) → (x(t) − x0) we can assume
without loss of generality that x0 = 0 and we will do so for the sake of
simplicity. Further, using t = rs and z(s) = x(rs), |s| ≤ 1 we rewrite (37) as

{

z′(s) = rf(rs, z(s)), |s| ≤ 1,

z(0) = 0.
(38)

Let W be the open subset of the graded Fréchet space C1([−1, 1], X)×R

defined by

W := {(z, r) : |r| < |r0|, z(s) ∈ U, ∀s ∈ [−1, 1]}.

Let F : W → C([−1, 1], X)×X be

F (z, r) := (z′(s)− rf(rs, z(s)), z(0)).

Obviously, F (0, 0) = (0, 0). Moreover, z ∈ C1([−1, 1], X) is a solution of
(38) for some r ∈ (0, r0) exactly when F (z, r) = (0, 0).

We will apply Theorem 6.1 to show that F (z, r) = 0 has solutions for
small enough |r|.

For each fixed (z, r) ∈ W the function F (·, r) is Gâteaux differentiable at
z with derivative

DzF (z, r)(u) = (u′(s)− rDxf(rs, z(s))u(s), u(0)), |s| ≤ 1,

where u ∈ C1([−1, 1], X).
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So, for any fixed right hand side (v, v0) ∈ C([−1, 1], X)×X , the equation

DzF (z, r)(u) = (v, v0) (39)

is linear ODE with respect to u with continuous linear operator thanks to
(36), so from [12, Proposition 3.4] it follows that it has unique solution u ∈
C1([−1, 1], X).

Then Gronwall Lemma together with (36) is used as in the proof of The-
orem 8 of [5] to show that

‖u‖C
1([−1,1],X)

n ≤ (1 + (1 + r0cn)e
r0cn)‖(v, v0)‖

C([−1,1],X)×X
n , ∀n ≥ 0.

This means that (33) is fulfilled with d = 0 and we can apply Theorem 6.1
to complete the proof. �
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[4] Ekeland, I., Séré, E.: An Implicit Function Theorem for Non-smooth
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