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Abstract

We are concerned with the tensor equations whose coeflicient tensor is an M-tensor. We first
propose a Newton method for solving the equation with a positive constant term and establish its global
and quadratic convergence. Then we extend the method to solve the equation with a nonnegative
constant term and establish its convergence. At last, we do numerical experiments to test the proposed
methods. The results show that the proposed method is quite efficient.
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1 Introduction

Newton’s method is a famous iterative method for solving nonlinear equations. An attractive property of
the method is its superlinear/quadratic convergence if the Jacobian of the residual function is nonsingular
at the solution. However, when the Jacobian of the function is singular, the method may loss its fast

convergence property or even fail to work. As an example, we consider the following system of nonlinear

equations
n
Fix)= Y ap!™ =b;=0, i=12,...n. (1.1)
j=1
When matrix A = (a;;) is nonsingular and b = (by,.. .,b)T > 0, the equation has solutions satisfying
X; = (A‘lb)l.l/(m_l), i=1,2,...,n. If there is some X; = 0, then the Jacobian F’(X) is singular. As a result,

the Newton method may loss its superlinear/quadratic convergence or even be failure.
The last equation (I.I) is a special tensor equation. In this paper, we will consider the following
general tensor equation
F(x)=Ax""' = b =0, (1.2)
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where x, b € R" and A is an mth-order n-dimensional tensor consists of n™ elements:
A= (ailiz...im)a Ajiiy...iy € R5 1 < ila i25 ) lm <n,

and Ax"~! € R” with elements

n

(ﬂxm_l)i = Z Ajis iy Xin * Xy i= 1,2, N (N

We will pay particular attention to the M-tensor equation (I.2)) in which A is an M-tensor. To give the
definition of M-tensor, we first introduce some concepts. We refer two recent books [23], 24]] for details.
We denote the set of all mth-order n-dimensional tensors by 7 (m, n) and [n] = {1,2,...,n}.

A tensor A = (aj,i,..i,) € 7 (m,n) is called non-negative tensor, denoted by A > 0, if all its elements

are non-negative, i.e., a;,;, ., > 0, Vii,...,i, € [n]. A is called the identity tensor, denoted by 7, if
its diagonal elements are all ones and other elements are zeros, i.e., all a;;, ;, = 0 except a;; ; = 1,
Yi,i1,... iy € [n].

If a real number A and a nonzero real vector x € IR” satisfy
A = axlm=,

then A is called an H-eigenvalue of A and x is an H-eigenvector of A associated with A. Here, for a real
scalar a, x19 = (x‘f, x‘2’ , ..., X¥) whenever it is meaningful.

A tensor A = (aj,,..i,) € T (m,n) is symmetric if its elements a; ;, ;, are invariant under any permu-
tation of their indices. The set of all mth-order n-dimensional symmetric tensors is denoted by ST (m, n).
A is called semi-symmetric if for any i € [n], the sub-tensor A; := (aii,. i, )1<iy....i,<n 1S Symmetric. In the
case A € 8T (m, n), we have

V(AX™) = mAX"".

In the case A € T (m, n) is semi-symmetric, we have
V(A" = (m - DA,

The definition of M-tensor is introduced in [6 24| 30].

Definition 1.1. A tensor A € T (m, n) is called an M-tensor, if it can be written as
A=sI-B, B=0, 5s>pB), (1.3)
where p(B) is the spectral radius of tensor B, that is
p(B) = max {|4]| : A is an eigenvalue of B} .

If s > p(B), then A is called a strong or nonsingular M-tensor.



For x,y € R", we use x o y to denote their Hadamard product defined by
— T
X0y = (X1y1," "5 XnYn)" -
We use R} and R’} to denote the sets of all nonnegative vectors and positive vectors in IR". That is,
R} ={xeR"|x>0} and R}, ={xeR"|x>0}

Tensor equation is also called multi-linear equation. It appears in many practical fields including data
mining and numerical partial equations [4][7, [, O] 27.

The study in the numerical methods for solving tensor equation has begun only a few years ago. Most
of them focus on solving the M-tensor equation (abbreviated as M-Teq). The existing methods for solving
M-Teq focus on finding a positive solution under the restriction b > 0. Such as Jacobian and Gauss-
Seidal methods [7], the homotopy method [L1], tensor splitting method [20], Newton-type method [12],
continuous time neural network method [23]].

Recently, Bai, He, Ling and Zhou [2]] proposed a nonnegativity preserving algorithm to solve M-Teq
with b > 0. Li, Guan and Wang proposed a monotone iterative method to solve the M-Teq with
arbitrary b. Li, Guan and Xu [14] proposed an inexact Newton method with b > 0 and extended the
method to solving the M-Teq with b > 0.

There are few methods to solve the tensor equation with other structure tensors or more general ten-
sors. Li, Xie and Xu extended the classic splitting methods for solving system of linear equations to
solving tensor equations with symmetric tensor. Li, Dai and Gao proposed a alternating projection
method for solving tensor equations with a special 3-order tensor. Other related works can also be found
in [3L 415,10, 16l 191 211 221 261 27, 28] 229].

In this paper, we further study numerical methods for solving M-Teq (I.2). Our purpose is to find a
nonnegative solution of the equation with » > 0. As we know in [14]], finding a nonnegative solution of the
M-tensor equation can be done by finding a positive solution of a lower dimensional M-tensor equation
with nonnegative constant term. It is noting that the constant term of that lower dimensional equation is
still not guaranteed to be positive. So most of the existing methods are not able to be applied. We will
propose a Newton method to get a positive solution of the equation and prove its global convergence and
quadratic convergence. Our numerical results show that the proposed Newton method is very efficient.

In the next section, we propose a Newton method to find the unique positive solution to a M-tensor
equation with positive constant term. We will also establish its global and quadratic convergence in Sec-
tion 2. In section 3, we extend the idea of the method proposed in Section 2 to get a nonnegative solution of
an M-tensor equation with nonnegative constant term and establish its convergence. It should be pointed
out that such an extension is not trivial because the M-tensor equation with positive and nonnegative con-
stant terms are quite different. At last, in Section 4, we do numerical experiments to test the proposed

methods.



2 A Newton Method for M-Tensor Equation (1.2) with » > 0

In this section, we propose a Newton method to find the unique positive solution to (L2) with b > 0.

Throughout this section, without specification, we always suppose that the following assumption holds.
Assumption 2.1. Tensor A in (L2) is a semi-symmetric and strong M-tensor, and b > 0.

Since our purpose is to get a positive solution of the M-Teq (L2), we restrict x € R”,. Making a

variable transformation y = x""~!1| we formulate the M-Teq (I.2) as

fo=F (y[ﬁ]) = ﬂ(y[ﬁ])m_1 ~b=0. 2.1)
A direct computation gives
79 = A" diag (1),

It follows that
1

foy = ﬂ(y[ﬁ])m_z diag (y[m_ll)y = a”‘l(y[ﬁ])m_1 = f() +b.
For € € (0,1) and 8 > 0, define

m—1
Fo. = {x eR" : AxX" ! > eb} = {y eR}: ﬂ(y[ﬁ]) > eb}

‘ﬂ (y[ﬁl)m_1 “b < /3} .

It is easy to see that for any € € (0, 1], the positive solution of the equation (I.2) is contained in € F¢. In

and
0= [re R : ! b s/&’}:{ye]R":

addition, the Jacobian matrices F’(x) and f’(y) are nonsingular M-matrices for any x,y € ¥-.
Lemma 2.2. The following statements are true.

(i) If A = (ai,.,;,) is a Z-tensor and b > 0, then for any € > 0, the set F¢ is bounded away from zero.

That is, there is a constant 6 > 0 such that
x>d8e, VYxedF,
wheree = (1,1,...,1)T.

(ii) If A is a strong M-tensor, then for any B € R, the level set Qg is bounded.

Proof. We prove the lemma by contradiction.
(i) Suppose conclusion (i) is not true. Then, there is a sequence {x;} C F and an index i € [n] such
that {(xz);} — 0. Since x; € F, it holds that

(€= Db <ai i)™+ > @i i, (0 - (00, — bi < @ i) = b
(125eeesln ) # (U 0)



Taking limits in both sides of the last inequality, we get eb; < 0. It is a contradiction. Consequently, the
set 7 is bounded away from zero.
(ii) Suppose that for some S € R, the level set €23 is not bounded. Then there is a sequence {x;} C Qg

satisfying ||xz|| — oo, as k — co. However, we obviously have

B A bl Joa(- )m—IH_ Ib]
[l Vel N 2 e

Suppose that the subsequence {x;/ ||xx||}x converges to some iz # 0. Taking limits as k — co with k € K
in both sides of the last inequality, we get Ai”~' = 0. Since A is a strong M-tensor, from Theorem 2.3 in

[14]), we get a contradiction. O

The idea to develop Newton’s method is described as follows. Starting from some yy = xg"_” satisfy-

ing xg € ¥ with some given small € € (0, 1), the method generates a sequence of iterates {x;} C F¢ by a
damped Newton iteration such that the residual sequence {||f(y¢)||} is decreasing.

We first show the following lemma.

Lemma 2.3. Suppose that A is a strong M-tensor and b > 0. Let d be the Newton direction that is the

unique solution of the system of linear equations

f'»d+ f(y) =0.

Then there is a constant L > 0 such that the inequality
) ! 2
ﬂ[(y + ad)'n-1 ] >eb+al(l —eb - §L01||d|| e|], VYa>0,YyeF.NQ,

wheree = (1,1,...,DT.

Proof. 1t follows from Lemma [Z.2] that the set D = ¥, N Qg has positive lower and upper bounds. It is
also clear that function f(y) is twice continuously differentiable on 9. Denote by L the bound of || f” (y)||

on P. By the use of the mean-value theorem, we obtain for any y € D and « > 0,

Al +ad)lm™ = fy+ad)+b
1
fO) +af (y)d + aj; [f'&+atd) - f'(y)]d-dr+b

1
>  (I-a)f(y) +b- ELa2||d||2e
[L] m—1 1 5 5
= (1-a)A [(y) = ] +ab— ELa/ l\d||>e
1
> (l-a)eb+ab- ELazlldllze

eb + a/((l -€e)b - %Lalldllze) . (2.2)



The proof is complete. O
&zmin{m s [n]}.

Denote

Ljidll*

It follows from the last lemma that if y € D, then it holds that
11yl
A [(y + ad)[m]] > b, Vye(0,d)

The steps of the Newton method are stated as follows.

Algorithm 2.4. (Newton’s Method)

Initial. Given a small constant € € (0, 1) and constants o € (0, %),n,p € (0,1). Select an initial
point xo € F.. Let yy = xgm_” and k = 0.

Step 1. Stop if lf il < .

Step 2. Solve the system of linear equations

f'ood+ for) =0 (2.3)
to get dj.

Step 3. Determine a steplength ay = max{p’ : i =0,1,...} such that yy + axdy € Fe and that the
inequality
If Ok + axd)IP < (1 = 20l f Il (2.4)

is satisfied.

(=51

Step 4. Let yiv1 = yr + axdy and xgq =y, Goto Step 1.

Remark

e [t is easy to see that the last method is very similar to the standard damped Newton method except
the line search step where we need to ensure x4 € Fe. If yi + di € Fo, then the last method is

equivalent to the standard Newton method for solving nonlinear equation f(y) = 0.

e The steps of the last method ensure that the generated sequence of iterates {xz} € . As a result,
f () is a strong M-matrix and hence the method is well defined. Moreover, the residual sequence
{Ilf Ooll} is decreasing. It then follows from Lemma [2.2]that there are positive constants ¢ < C such
that

ce < yr < Ce. (2.5)



e It follows from Lemma[2.3lthat if y; € ¥, then
i+ aidy € Fe,Vay € (0, @)

where

o f21-eb RN
ak—mln{w Hie [n]}ﬂ{ . - o <o} (2.6)

and L is the bound of f”’(y) on the set compact set Fe N L) ¢(y,)]-

Let x* be the unique positive solution to the M-Teq and y* = (x*)'"~!l. It is easy to see that for any
€ € (0,1),x* € F.. Consequently, the matrix f’(y*) is a nonsingular M-matrix. As a result, the full step
Newton method is locally quadratically convergent.

In what follows, we are going to show that Algorithm 2.4lis globally convergent and that after finitely
many iterations, the method reduces to the full step Newton method. Consequently, it is quadratically

convergent. We first show the following lemma.

Lemma 2.5. Suppose that A is a strong M-tensor and b > 0. Then the sequence {y;} and {d}} generated
by Algorithm 24 are bounded. In addition, there is a positive constant & such that

Vi + apdi € Fe, Yag € (0, @). 2.7

Proof. By the steps of the algorithm, it is easy to see that the sequence {y} is contained in the compact
set D = Fc N Q¢ and hence bounded. Since f’(yx) is a nonsingular M-matrix and D is compact, the
sequence {di}x is bounded too. Notice that b > 0 and {y;} has a positive lower bound, the scalar ;¥
defined by (2.6) has a positive lower bound. This together with the boundedness of {||dy||} implies that @y

has a positive lower bound. Consequently, (2.7) is satisfied with some positive @. O
The following theorem establishes the global convergence of the proposed method.

Theorem 2.6. Suppose that A is a strong M-tensor and b > 0. Then the sequence of iterates {x;}
generated by Algorithm 2.4 converges to the unique positive solution to the M-Teq ([.2).

Proof. 1t suffices to show that there is an accumulation point y of {y;} satisfying f(y) = 0. Let the
subsequence {y;}x converge to y. Without loss of generality, we suppose that the subsequence {dj}x
converges to some d.

Denote @ = lim infy_, o gex . If @ > 0, the inequality (2.4) implies f(¥) = 0. Consider the case @ = 0.
By the line search rule, when k € K is sufficiently large, a; = o~ ay will not satisty @4), i.e.,

[ (v + )| = 17 002 > 2004 15 G2

Dividing both sizes of the last inequality by «; and then taking limits as k — co with k € K, we get

2fG) 3 = =20l fG)I? (2.8)



On the other hand, by taking limits in (2.3)), we can obtain f’(7)d + f(¥) = 0. It together with (2.8) and the
fact o € (0, 1) yields f(¥) = 0. The proof is complete. |

The last theorem established the global convergence of the proposed Newton method. Moreover, we
see from (2.2) that x; + d; € F, for all k sufficiently large because {d;} — 0. Consequently, the method
locally reduces to a standard damped Newton method. Following a standard discussion as the proof of the
quadratic convergence of a damped Newton method, it is not difficult to prove the quadratic convergence

of the method. We give the result but omit the proof.

Theorem 2.7. Let the conditions in Theorem hold. Then the convergence rate of the sequence {y;}
generate by Algorithm 2.4 is quadratic.

3 An Extension

In this section, we extend the Newton method proposed in the last section to the M-Teq (I.2) with » > 0. In
the case b has zero elements, the M-Teq may have multiple nonnegative or positive solutions. Our purpose
is to find one nonnegative or positive solution of the equation. By Theorem 2.6 in [14], a nonnegative

solution of (L2)) has zero elements if and only if A is reducible with respect to some I C Iy, where
Iy ={ie[n]|b;=0}.

Since justifying the reducibility is an easy task, without loss of generality, we suppose that the nonnegative

solutions of the M-Teq are positive.

Assumption 3.1. Suppose b > 0 and that tensor A is a strong M-tensor and irreducible with respect to

Iy. Suppose further that for each i € Iy, there is an element a;;, ;, # 0 with, ia, ..., 1, € I,.
Under the conditions of Assumption 3.1} we have
1
AGlmTyly, <0, VyeR:,.

For the sake of convenience, we introduce some notations. Denote I, = {i : b; > O}and I = {i : b; =

0}. For given constants 1 > € > € > 0, we define
— —1 =2
TE,EI = TE N TE’

with
?i = {y eRY, : (\?l(y[ﬁ])(m_l))l+ > eb1+}

and
Fo={ye Rl : (AW, 2 € F O O, b )

It is easy to see that every solution X € Fe.



Fory e R}, we split f'(y) into

fl’+1+(y) fl’+10(y) ] .

1o :[ o0 )

It is easy to see that f’(y) is a Z-matrix.
The next theorem shows that for any y € Fe f’(y) is a nonsingular M-matrix. As a result, the set Fe

is well defined.
Theorem 3.2. Let1 > e >¢€ > 0. Foranyy € ?5,6/, f'(y) is a nonsingular M-matrix.

-1 —1
Proof. By direct computation, we get f/(y)y = ﬂ(y[ﬁ])m . The condition y € ¥, yields

[=] m=1 ’ ’ ’
0<eb, < (ﬂ(y -1 ) ) L= FOneyn + Oy, < Oy,

Consequently, f’(y)7,;, is a nonsingular M-matrix. We are going to show that the Schur complement

T Oioto = L Dot ' O, Dt

is also a nonsingular M-matrix.

—
Observing f'(y)g,1, <0, we get from the condition y € ¥,

\%

€ Dot 'O br, = F Oy,
€ ' Ot f OV br, = F Ot f 0011, (€br, = £ Oy
~(e = V' Oior ' O b1+ ' Dior S OV, ' Do,

' ODiotodio

\%

which implies
(f "Wioto = f Do, ' OV f ’(y)1+10)y10 > —(e — ' Oipr.f Oy, b1, > 0.

The last condition ensures that f’(y) is a nonsingular M-matrix. O

Similar to Lemma[2.2] we have the following lemma.

Lemma 3.3. If A = (a;,._;,) is a Z-tensor and b > 0, then for any € > 0, the set ?E is bounded away from

zero. That is, there is a constant 6 > 0 such that
y>oe, Vye ?e,e'-

Proof. First, following the same arguments as the proof of Lemma (i), it is easy to show that the
elements y;, has a positive lower bound. We only need to prove that y;, has a positive lower bound too.

—1 —1
It is easy to see by the definition of ¥, that each y € ¥ satisfies

1

ebr, < (A", = (oW < F O,

9



which implies
yi. = f OV b > € f O b

—2
The condition y € ¥, implies

0< 1,00 - €FO7bL)+ 1,0

By the condition of Assumption[3.T]and the fact that y,, has positive lower bound, we claim that the vector
fl’0 L (y)(y,+ —€ef (y)]:lh b1+) is bounded away from zero. Taking into account that fl’0 1, () is a Z-matrix and
vi, > 0, it is easy to see that yj, is bounded away from zero too.

The proof is complete. |

In what follows, we propose a Newton method for finding a positive solution to the M-Teq (I2) with

b > 0 as follows
Algorithm 3.4. (Extended Newton Method for (I.2) with » > 0)

Initial. Given constants €, €' ,p,n,0 € (0, 1) satisfying € < €. Select an initial point yy € ?E, e. Let
k=0.

Step 1. Stop if [lf Il < 7.

Step 2. Solve the system of linear equations

T Gdi + fri) = 0. (3.1

to get dj.

Step 3. Determine a steplength a; = max{pi 1 i=0,1,...} such that y, + aydy, € ?E, ¢ and that the
inequality
IOk + axdpl* < (1 = 20ap)llfoll? (3.2)

is satisfied.
Step 4. Let yir1 = yx + axdy. Go to Step 1.
In what follows, we show that the algorithm above is well-defined.
Proposition 3.5. Let the conditions in Assumption 31 hold. Then Algorithm is well defined.

Proof. 1t suffices to verify that the relation yj + ayd € ?E, e, is satisfied for all @ > O sufficiently small.

Indeed, we have

A + ad)7T)" = fly+ ad) + b
JOO +af Gu)d + O(ladyl?) + b

(1 = a)fGi) + b+ O(lledll®)

(1 =A™ + ab + OlladilP).

10



—1
Since y; € ¥, and b;, > 0, we get from the last equality

[y 2
(A(x + ad)'5T)" ) > ebr, +al(l - by, + Oalldil). (3.3)

—1
which implies y; + ady € ¥ for all @ > 0 sufficiently small.
—2
Similarly, we have by the fact y;, € ¥ and b;, = 0

(A + adk)w)’”‘l),o > € 'Ot S OO, br, + o = € F OO £ 0, br, + O@ldilP)). (3.4)

By the condition of Assumption[3.1] it is not difficult to see from the last inequality that we claim that the
inequality

[ m=1 ’ 71
(A0 + ad)FT)" ) 2 € F O f O, b
is satisfied for all @ > O sufficiently small. |

It is easy to show that Lemma 2.2l holds true for the case b > 0. As a result, the sequence generated
by Algorithm [3.4]is bounded. Consequently, the inequalities (3.3) and (3.4) ensure that there is a positive
constant @ > 0 such that x; + ad; € ?E,E'. Ya € (0, a].

Similar to the proof of Theorem we can prove the global convergence of Algorithm 3.4

Theorem 3.6. Let the conditions in Assumption3_11hold. Then the sequence of iterates {y} generated by
Algorithm is bounded. Moreover, every accumulation point of the iterates {y;} is a positive solution to
the M-tensor equation f(y) = 0.

The remainder of this section is devoted to the proof of the quadratic convergence of Algorithm 3.4 It
should be pointed out that the unit steplength may not be acceptable due to the existence of zero elements
in b. To ensure the quadratic convergence of the method, we need to make a slight modification to Step 3
of the algorithm. Specifically, we use the following Step 3’ instead of Step 3 in Algorithm 3.4

Step 3'. If @ = 1 satisfies y; + aydi € ?E, « and (3.2), then we let @, = 1. Otherwise, for given
constant ¢ > 0, we let B = 1 — c||f(yp)ll. If Br < 0, we let B¢ = 1. Determine a steplength a; = max{ﬂkpi :
i=0,1,...} such that y; + aydy € ?E, « and that the inequality (3.2)) is satisfied.

It is not difficult to see that the global convergence still remains true if Step 3 is replaced by Step 3.
Moreover, since {dy} — 0, it is easy to prove from (3.3), (3.4) and (B.2)) that for all k sufficiently large,
the step ax = Br = 1 — ¢||f(vx)l| will be accepted. In this case, the sequence of iterates {y;} satisfies

Yir1 = Yk + di, with dy = Bdy = (1 = || f (vl satisfying
foode + for) = fOde + for) — cllf Golldr = =l f Gi)lldk-

If ypo1 = yx + dy € ?5,5/, then when k is sufficiently, y; can be regarded as the sequence generated by a

full step inexact Newton method. Consequently, the quadratic convergence becomes well-known.

Theorem 3.7. Let the conditions in Assumption 31| hold. Suppose that the sequence of iterates {yy}

11



generated by Algorithm converges to a positive solution y* to the M-tensor equation f(y) = 0. Then

the convergence rate of {y} is quadratic.
Proof. We only need to verify
Yert = e+ di =y + (1= clfGull)di € Fee- (3.5)

It is not difficult to show from (@.1)) that

ldill = OdlfolD = OUf D = Olx = x™I).

Similar to the proof of (3.3)), we can derive
[L] m—1 2
(A0 +Bed)TTY)" ) = ebr, +Bil(1L — by, + OBilldul).

Since {B8;} — 1 and {d;} — 0, the last inequality implies y; + Brdy € ?i

We also can obtain

(A + ﬁkdk)[ﬁl)’"‘l)lo > € 'Ot S OO, br, + Bi( = € F Goir, £ 07, b, + OBilldilP)).

By the condition of Assumption 31 it is clear that f’(yg)sr, f '()’1<)1_+11+191+ < 0. Consequently, the last

—2
inequality implies yx + Sxdi € ¥ .. The proof is complete. |

4 Numerical Results

In this section, we do numerical experiments to test the effectiveness of the proposed methods. We im-
plemented our methods in Matlab R2019a and ran the codes on a computer with Intedl(R) Core(TM)
i7-10510U CPU @ 1.80GHz 2.30 GHz and 16.0 GB RAM. We used a tensor toolbox [1]] to proceed some
tensor computation.

The test problems are from [7, 14} [15} 27].

Problem 1. We solve tensor equation (L2) where A is a symmetric strong M-tensor of order m
(m = 3,4,5) in the form A = sJ — B, where tensor B is symmetric tensor whose entries are uniformly
distributed in (0, 1), and

s=(1+0.01)- i:rlr}za}?f,n(ﬂe”’_l)i,

where e = (1,1,..., 7.
Problem 2. We solve tensor equation (L2) where A is a symmetric strong M-tensor of order m

(m = 3,4,5) in the form A = s7 — B, and tensor B is a nonnegative tensor with
biliz...i,,, = |sin(i1 + i2 + ...+ lm)|,
1

and s = n""".

12



Problem 3. Consider the ordinary differential equation

’x() _ GM
arr x()*

1€ (0, 1),
with Dirichlet’s boundary conditions
x(0) = co.  x(1) = c1,

where G ~ 6.67 x 107" Nm? /kg? and M ~ 5.98 x 10?* is the gravitational constant and the mass of the
earth.

Discretize the above equation, we have

3_ 3
X = o

3_ .2 2 _ GM _
2xl.—xl.x,-_1—xl.x,-+1—w, i=2,3,---,n—1,
3_3
X, = cj.

It is a tensor equation, i.e.,

where A is a 4-th order M tensor whose entries are

aill = Aupann = 19
aijii =2, 1=2,3,---,n-1,
Aji-1yii = QiiGi-1yi = Giii-1) = —1/3, 1=2,3,---,n—1,

Qi+ )i = Qi+ )i = Giiie1y = —1/3, 1=2,3,---,n—1,

and b is a positive vector with

3
bl—CO,
bl_(’fiﬂf)Z’ l_293a ’n_19
b,,:c?.

Problem 4. We solve tensor equation (I.2)) where A is a non-symmetric strong M-tensor of order m
(m = 3,4,5) in the form A = sI — B, and tensor B is nonnegative tensor whose entries are uniformly

distributed in (0, 1). The parameter s is set to

.....

Problem 5. We solve tensor equation (I.2) where A is a lower triangle strong M-tensor of order m

(m = 3,4,5) in the form A = 57 — B, and tensor B is a strictly lower triangular nonnegative tensor whose
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entries are uniformly distributed in (0, 1). The parameter s is set to

s=(1-0.5)- _max (Be™ ;.

For Problem 1, 2 4 and 5, similar to [11}[12], we solved the tensor equation
Fx)y=Ax""'1-b=0

instead of the tensor equation (I.2), where A = AJw and b= b/w with w is the largest value among the

absolute values of components of A and b. The stopping criterion is set to
IF (el < 10717,

And for Problem 3, the stopping criterion is set to

A" — bl

<1071,
11D1]

We also stop the tested algorithms if the number of iteration reaches to 300, which means that the method

is failure for the problem.

Remark 4.1. Since A is a strong M-tensor, there exists a positive vector u such that Au"~' > 0. This
vector u can be obtained in a certain iteration of solving Ax™"' = e by the existing methods proposed
in [Z[I1)[I2)]. Then we can get an initial point of Algorithm 2.4 or Algorithm 3.4 by letting xo = tu and
Yo = xg"_l] with sufficient large constant t. Particularly, if A is a diagonally dominant M-tensor we can

simply let u = e.

Note that strong M-tensor constructed in Problems 1, 2 and 4 are diagonally dorminant M-tensor.
Whereas Problem 3 and 5 both are non-diagonally dorminant M-tensor.

We first test the performance of Algorithm 2.4 (Newton’s Method denoted by "NM”). In order to test
the effectiveness of the proposed method, we compare the Newton method with Inexact Newton Method
(denoted by "INM”) proposed in [14]. We take the parameter of NM be € = 0.1,0- = 0.1 and p = 0.5. And
let parameters of INM be o = 0.1, p = 0.4. We set the initial point for INM as in [14], i.e., yo = r¢ > 0
such that f(yo) < b, where ¢ is a sufficient small positive constant. We use INM to find an initial point of
NM for Problem 3 and 5, i.e., in the iterative of INM, if ﬂx’,?‘l > 0, let the vector u = x; in Remark .11

For the stability of numerical results, we test the problems of different sizes. For each pair (m, n),
we randomly generate 50 tensors A and b € (0, 1). The results are listed in Tables [l to B thereinto
"Pro’ represent the test problem; ’Iter’ represents the average number of iterations; Time-Int” denotes the
average time to find an initial point of NM; *Time’ denotes the computing time (in seconds) including
initial time to find an approximate solution. And the ratio signs are denoted bellow.

It can be seen from Table 1 that the proposed NM has an advantage over the INM in [14]] both in iter-

ation and CPU time. Paticularly, for Problem 1, 2 and 4, the coefficient tensor are diagonally dorminant,
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R-Int RI RT RT1
Time-Int Iter of NM  Time of NM  Time of NM minus Time-Int
Time of NM  Iter of INM  Time of INM Time of INM
NM INM Rate
(m,n) |Iter Time |Iter Time RI RT
(3,2000 | 2 0.01163 | 11 0.03634 | 18.1% 32.0%
(3,401) | 2 0.08120 | 12 0.39976 | 16.9% 20.3%
(3,650) | 2 039719 | 13 1.79962 | 15.8% 22.1%
(4,40) | 2 0.00366 | 8.4 0.00727 | 23.8% 50.4%
“4,71) | 2 0.02786 | 9.2 0.10398 | 21.7% 26.8%
(4,100) | 2 0.11595| 9.6 0.45303 | 20.9% 25.6%
(4,130) | 2 0.38220 | 10 1.34639 | 19.6% 28.4%
(5,30) | 2 0.02681 | 7.6 0.08171 | 26.4% 32.8%
(5,48) | 2 037926 | 8.3 1.27908 | 24.0% 29.7%
Table 1: Comparison on Problem 1.
NM INM Rate
(m,n) | Iter Time |Iter Time RI RT
(3,200) | 3 0.01214 | 11 0.03416 | 28.2% 35.5%
(3,401) | 3 0.10887 | 12 0.40037 | 25.3% 27.2%
(3,650) | 3 0.48992 | 12 1.94355 | 24.9% 25.2%
(4,40) | 3 0.00353|9.4 0.00726 | 31.8% 48.6%
4,71) | 3 0.03599 | 9.3 0.11561 | 32.2% 31.1%
(4,100) | 2.7 0.14569 | 9.1 0.52564 | 29.4% 27.7%
(4,130) | 2 0.35740 | 9.7 1.59151 | 209% 22.5%
(5,30) | 24 0.02937 | 8.4 0.09164 | 29.0% 32.1%
(5,48) | 2 0.38996 | 8 1.61044 |249% 24.2%
Table 2: Comparison on Problem 2.
NM INM Rate
(m,n) | Iter Time Time-Int R-Int | Iter Time RI RT RT1
(4,40) | 1 0.00263 0.00166 63.1% | 5 0.00495 | 20.0% 53.1% 19.6%
4,71) | 1 0.03952 0.02627 66.5% | 5 0.07993 | 20.0% 49.4% 16.6%
(4,100) | 1 0.16575 0.11177 67.4% | 5 0.33503 | 20.0% 49.5% 16.1%
4,130) | 1 0.45219 0.29926 66.2% | 5 091583 |20.0% 49.4% 16.7%

Table 3: Comparison on Problem 3.

and thus NM is easy to get an initial point, while for Problem 3 and 5, although the number of iterations in
NM was significantly less than in INM, the reduction in the required CPU time was not significant since
it take much CPU time to find an initial point.

We then test the performance of Algorithm 3.4 (the Extended Newton Method denoted by 'ENM’) by
comparing with the Regularized Newton Method (denoted by "RNM”) proposed in [14]]. The parameter
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NM INM Rate

(m,n) |Iter Time |Iter Time RI RT

(3,200) | 2 0.00886 | 11 0.03518 | 17.9% 25.2%
(3,401) | 2 0.08087 | 12 0.39426 | 17.2% 20.5%
(3,650) | 2 036240 | 12 1.97655 | 16.4% 18.3%
4,40) | 2 0.00272 | 8.7 0.00662 | 22.9% 41.1%
4,71) | 2 0.02710 | 9.4 0.11227 | 21.3% 24.1%
(4,100) | 2 0.11558 | 9.4 0.54760 | 21.4% 21.1%
(4,130) | 2 0.35507 | 9.9 1.57429 | 20.3% 22.6%
(5,30) | 2 0.02590 | 7.7 0.08085 | 25.9% 32.0%
(5,48) | 2 0.38484 | 8.4 1.68508 | 23.7% 22.8%

Table 4: Comparison on Problem 4.
NM INM Rate

(m,n) | Iter Time  Time-Int R-Int | Iter Time RI RT RT1

(3,200) | 2.9 0.02955 0.02151 72.8% | 12 0.03493 | 24.7% 84.6% 23.0%
(3,401) | 2.9 0.35773 0.25802 72.1% | 12 0.44801 | 24.2% 79.8% 22.3%
(3,650) | 2.9 1.83363 1.38006 75.3% | 13 2.21081 | 22.5% 829% 20.5%
(4,40) | 2.9 0.00673 0.00474 70.4% | 9.1 0.00640 | 32.2% 105.1% 31.1%
4,71) | 2.8 0.09155 0.06100 66.6% | 9.6 0.14487 | 29.1% 63.2% 21.1%
(4,100) | 2.9 0.48084 0.31653 65.8% | 10 0.63916 | 28.3% 752% 25.7%
(4,130) | 2.9 1.53593 1.08875 70.9% | 11 1.90284 | 259% 80.7% 23.5%
(5,30) | 2.8 0.07459 0.04873 65.3% | 8.7 0.10647 | 32.3% 70.1% 24.3%
(5,48) | 2.8 1.42363 092151 64.7% | 9.1 1.87335|30.3% 76.0% 26.8%

Table 5: Comparison on Problem 5.

of ENM are set to € = 0.1,€¢ = 0.05,0 = 0.1 and p = 0.5. And the parameters in RNM are the same as in
[14],i.e.,00=0.1,p0=0.8,y =0.9 and 7 = 0.01.

For Problem 1, 2, 4 and 5, we generated b € R, randomly and then let some but not all elements of
b be 0 randomly, but we let b1 # 0 in Problem 5. Then it is easy to see that the strong M-tensor ‘A and b
constructed in our tested problem satisfy the conditions in Assumption 3.1. For Problem 5, we also use
INM to find an initial point of ENM. The parameter and starting point of INM are the same as before.
And the initial point of RNM is the same as INM. The results are sumerized in Table [6] to B

It can be seen from the data that the proposed ENM is not only effective for solving the M-Teq with
b > 0, but also more efficient than RNM to a certain extent.
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