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Abstract

We are concerned with the tensor equations whose coefficient tensor is an M-tensor. We first

propose a Newton method for solving the equation with a positive constant term and establish its global

and quadratic convergence. Then we extend the method to solve the equation with a nonnegative

constant term and establish its convergence. At last, we do numerical experiments to test the proposed

methods. The results show that the proposed method is quite efficient.
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1 Introduction

Newton’s method is a famous iterative method for solving nonlinear equations. An attractive property of

the method is its superlinear/quadratic convergence if the Jacobian of the residual function is nonsingular

at the solution. However, when the Jacobian of the function is singular, the method may loss its fast

convergence property or even fail to work. As an example, we consider the following system of nonlinear

equations

Fi(x) =

n
∑

j=1

ai jx
m−1
j − bi = 0, i = 1, 2, . . . , n. (1.1)

When matrix A = (ai j) is nonsingular and b = (b1, . . . , bn)T ≥ 0, the equation has solutions satisfying

x̄i = (A−1b)
1/(m−1)

i
, i = 1, 2, . . . , n. If there is some x̄i = 0, then the Jacobian F′(x̄) is singular. As a result,

the Newton method may loss its superlinear/quadratic convergence or even be failure.

The last equation (1.1) is a special tensor equation. In this paper, we will consider the following

general tensor equation

F(x) = Axm−1 − b = 0, (1.2)
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where x, b ∈ Rn andA is an mth-order n-dimensional tensor consists of nm elements:

A = (ai1 i2...im ), ai1i2...im ∈ R, 1 ≤ i1, i2, · · · , im ≤ n,

andAxm−1 ∈ Rn with elements

(Axm−1)i =

n
∑

i2 ,...,im=1

aii2 ...im xi2 · · · xim , i = 1, 2, . . . , n.

We will pay particular attention to the M-tensor equation (1.2) in whichA is an M-tensor. To give the

definition of M-tensor, we first introduce some concepts. We refer two recent books [23, 24] for details.

We denote the set of all mth-order n-dimensional tensors by T (m, n) and [n] = {1, 2, . . . , n}.

A tensor A = (ai1i2 ...im) ∈ T (m, n) is called non-negative tensor, denoted by A ≥ 0, if all its elements

are non-negative, i.e., ai1i2 ...im ≥ 0, ∀i1, . . . , im ∈ [n]. A is called the identity tensor, denoted by I, if

its diagonal elements are all ones and other elements are zeros, i.e., all ai1i2 ...im = 0 except aii...i = 1,

∀i, i1, . . . , im ∈ [n].

If a real number λ and a nonzero real vector x ∈ Rn satisfy

Axm−1 = λx[m−1],

then λ is called an H-eigenvalue of A and x is an H-eigenvector of A associated with λ. Here, for a real

scalar α, x[α] = (xα
1
, xα

2
, . . . , xαn ) whenever it is meaningful.

A tensor A = (ai1 i2...im ) ∈ T (m, n) is symmetric if its elements ai1i2...im are invariant under any permu-

tation of their indices. The set of all mth-order n-dimensional symmetric tensors is denoted by ST (m, n).

A is called semi-symmetric if for any i ∈ [n], the sub-tensor Ai := (aii2 ...im )1≤i2 ,...,im≤n is symmetric. In the

caseA ∈ ST (m, n), we have

∇(Axm) = mAxm−1.

In the caseA ∈ T (m, n) is semi-symmetric, we have

∇(Axm−1) = (m − 1)Axm−2.

The definition of M-tensor is introduced in [6, 24, 30].

Definition 1.1. A tensor A ∈ T (m, n) is called an M-tensor, if it can be written as

A = sI − B, B ≥ 0, s ≥ ρ(B), (1.3)

where ρ(B) is the spectral radius of tensor B, that is

ρ(B) = max {|λ| : λ is an eigenvalue of B} .

If s > ρ(B), thenA is called a strong or nonsingular M-tensor.
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For x, y ∈ Rn, we use x ◦ y to denote their Hadamard product defined by

x ◦ y = (x1y1, · · · , xnyn)T .

We use Rn
+ and Rn

++ to denote the sets of all nonnegative vectors and positive vectors in Rn. That is,

R
n
+ = {x ∈ R

n | x ≥ 0} and R
n
++ = {x ∈ R

n | x > 0}.

Tensor equation is also called multi-linear equation. It appears in many practical fields including data

mining and numerical partial equations [4, 7, 8, 9, 13, 15, 16, 27].

The study in the numerical methods for solving tensor equation has begun only a few years ago. Most

of them focus on solving the M-tensor equation (abbreviated as M-Teq). The existing methods for solving

M-Teq focus on finding a positive solution under the restriction b > 0. Such as Jacobian and Gauss-

Seidal methods [7], the homotopy method [11], tensor splitting method [20], Newton-type method [12],

continuous time neural network method [25].

Recently, Bai, He, Ling and Zhou [2] proposed a nonnegativity preserving algorithm to solve M-Teq

with b ≥ 0. Li, Guan and Wang [18] proposed a monotone iterative method to solve the M-Teq with

arbitrary b. Li, Guan and Xu [14] proposed an inexact Newton method with b > 0 and extended the

method to solving the M-Teq with b ≥ 0.

There are few methods to solve the tensor equation with other structure tensors or more general ten-

sors. Li, Xie and Xu [15] extended the classic splitting methods for solving system of linear equations to

solving tensor equations with symmetric tensor. Li, Dai and Gao [17] proposed a alternating projection

method for solving tensor equations with a special 3-order tensor. Other related works can also be found

in [3, 4, 5, 10, 16, 19, 21, 22, 26, 27, 28, 29].

In this paper, we further study numerical methods for solving M-Teq (1.2). Our purpose is to find a

nonnegative solution of the equation with b ≥ 0. As we know in [14], finding a nonnegative solution of the

M-tensor equation can be done by finding a positive solution of a lower dimensional M-tensor equation

with nonnegative constant term. It is noting that the constant term of that lower dimensional equation is

still not guaranteed to be positive. So most of the existing methods are not able to be applied. We will

propose a Newton method to get a positive solution of the equation and prove its global convergence and

quadratic convergence. Our numerical results show that the proposed Newton method is very efficient.

In the next section, we propose a Newton method to find the unique positive solution to a M-tensor

equation with positive constant term. We will also establish its global and quadratic convergence in Sec-

tion 2. In section 3, we extend the idea of the method proposed in Section 2 to get a nonnegative solution of

an M-tensor equation with nonnegative constant term and establish its convergence. It should be pointed

out that such an extension is not trivial because the M-tensor equation with positive and nonnegative con-

stant terms are quite different. At last, in Section 4, we do numerical experiments to test the proposed

methods.
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2 A Newton Method for M-Tensor Equation (1.2) with b > 0

In this section, we propose a Newton method to find the unique positive solution to (1.2) with b > 0.

Throughout this section, without specification, we always suppose that the following assumption holds.

Assumption 2.1. TensorA in (1.2) is a semi-symmetric and strong M-tensor, and b > 0.

Since our purpose is to get a positive solution of the M-Teq (1.2), we restrict x ∈ Rn
++. Making a

variable transformation y = x[m−1], we formulate the M-Teq (1.2) as

f (y) = F

(

y

[

1
m−1

])

= A

(

y

[

1
m−1

])m−1

− b = 0. (2.1)

A direct computation gives

f ′(y) = A

(

y

[

1
m−1

]
)m−2

diag

(

y

[

1
m−1−1

]
)

.

It follows that

f ′(y)y = A

(

y

[

1
m−1

]
)m−2

diag

(

y

[

1
m−1
−1

]
)

y = A

(

y

[

1
m−1

]
)m−1

= f (y) + b.

For ǫ ∈ (0, 1) and β > 0, define

Fǫ =
{

x ∈ Rn
+ : Axm−1 ≥ ǫb

}

=

{

y ∈ Rn
+ : A

(

y

[

1
m−1

]
)m−1

≥ ǫb

}

and

Ωβ =
{

x ∈ Rn :
∥

∥

∥Axm−1 − b
∥

∥

∥ ≤ β
}

=

{

y ∈ Rn :

∥

∥

∥

∥

∥

∥

A

(

y

[

1
m−1

])m−1

− b

∥

∥

∥

∥

∥

∥

≤ β

}

.

It is easy to see that for any ǫ ∈ (0, 1], the positive solution of the equation (1.2) is contained in ∈ Fǫ . In

addition, the Jacobian matrices F′(x) and f ′(y) are nonsingular M-matrices for any x, y ∈ Fǫ .

Lemma 2.2. The following statements are true.

(i) IfA = (ai1 ...im ) is a Z-tensor and b > 0, then for any ǫ > 0, the set Fǫ is bounded away from zero.

That is, there is a constant δ > 0 such that

x ≥ δe, ∀x ∈ Fǫ ,

where e = (1, 1, . . . , 1)T .

(ii) IfA is a strong M-tensor, then for any β ∈ R, the level set Ωβ is bounded.

Proof. We prove the lemma by contradiction.

(i) Suppose conclusion (i) is not true. Then, there is a sequence {xk} ⊂ Fǫ and an index i ∈ [n] such

that {(xk)i} → 0. Since xk ∈ Fǫ , it holds that

(ǫ − 1)bi ≤ ai...i(xk)m−1
i +

∑

(i2 ,...,im),(i,...,i)

aii2 ...im (xk)i2 . . . (xk)im − bi ≤ ai...i(xk)m−1
i − bi.
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Taking limits in both sides of the last inequality, we get ǫbi ≤ 0. It is a contradiction. Consequently, the

set Fǫ is bounded away from zero.

(ii) Suppose that for some β ∈ R, the level set Ωβ is not bounded. Then there is a sequence {xk} ⊂ Ωβ

satisfying ‖xk‖ → ∞, as k → ∞. However, we obviously have

β

‖x
[m−1]

k
‖
≥
‖Axm−1

k
− b‖

‖x
[m−1]

k
‖
≥

∥

∥

∥

∥

A
( xk

‖xk‖

)m−1
∥

∥

∥

∥

−
‖b‖

‖x
[m−1]

k
‖
.

Suppose that the subsequence {xk/ ‖xk‖}K converges to some ū , 0. Taking limits as k → ∞ with k ∈ K

in both sides of the last inequality, we getAūm−1 = 0. SinceA is a strong M-tensor, from Theorem 2.3 in

[14], we get a contradiction. �

The idea to develop Newton’s method is described as follows. Starting from some y0 = x
[m−1]
0

satisfy-

ing x0 ∈ Fǫ with some given small ǫ ∈ (0, 1), the method generates a sequence of iterates {xk} ⊂ Fǫ by a

damped Newton iteration such that the residual sequence {‖ f (yk)‖} is decreasing.

We first show the following lemma.

Lemma 2.3. Suppose that A is a strong M-tensor and b > 0. Let d be the Newton direction that is the

unique solution of the system of linear equations

f ′(y)d + f (y) = 0.

Then there is a constant L > 0 such that the inequality

A

[

(y + αd)[ 1
m−1 ]

]m−1

≥ ǫb + α

(

(1 − ǫ)b −
1

2
Lα‖d‖2e

)

, ∀α > 0,∀y ∈ Fǫ ∩ Ωβ,

where e = (1, 1, . . . , 1)T .

Proof. It follows from Lemma 2.2 that the set D = Fǫ ∩ Ωβ has positive lower and upper bounds. It is

also clear that function f (y) is twice continuously differentiable on D. Denote by L the bound of ‖ f ′′(y)‖

on D. By the use of the mean-value theorem, we obtain for any y ∈ D and α > 0,

A[(y + αd)[ 1
m−1

]]m−1 = f (y + αd) + b

= f (y) + α f ′(y)d + α

∫ 1

0

[

f ′(y + ατd) − f ′(y)
]

d · dτ + b

≥ (1 − α) f (y) + b −
1

2
Lα2‖d‖2e

= (1 − α)A

[

(y)

[

1
m−1

]]m−1

+ αb −
1

2
Lα2‖d‖2e

≥ (1 − α)ǫb + αb −
1

2
Lα2‖d‖2e

= ǫb + α

(

(1 − ǫ)b −
1

2
Lα‖d‖2e

)

. (2.2)
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The proof is complete. �

Denote

ᾱ = min

{

2(1 − ǫ)bi

L‖d‖2
: i ∈ [n]

}

.

It follows from the last lemma that if y ∈ D, then it holds that

A

[

(y + αd)

[

1
m−1

]
]m−1

≥ ǫb, ∀y ∈ (0, ᾱ)

The steps of the Newton method are stated as follows.

Algorithm 2.4. (Newton’s Method)

Initial. Given a small constant ǫ ∈ (0, 1) and constants σ ∈ (0, 1
2
), η, ρ ∈ (0, 1). Select an initial

point x0 ∈ Fǫ . Let y0 = x
[m−1]
0

and k = 0.

Step 1. Stop if ‖ f (yk)‖ ≤ η.

Step 2. Solve the system of linear equations

f ′(yk)dk + f (yk) = 0 (2.3)

to get dk.

Step 3. Determine a steplength αk = max{ρi : i = 0, 1, . . .} such that yk + αkdk ∈ Fǫ and that the

inequality

‖ f (yk + αkdk)‖2 ≤ (1 − 2σαk)‖ f (yk)‖2 (2.4)

is satisfied.

Step 4. Let yk+1 = yk + αkdk and xk+1 = y
[ 1

m−1
]

k+1
. Go to Step 1.

Remark

• It is easy to see that the last method is very similar to the standard damped Newton method except

the line search step where we need to ensure xk+1 ∈ Fǫ . If yk + dk ∈ Fǫ , then the last method is

equivalent to the standard Newton method for solving nonlinear equation f (y) = 0.

• The steps of the last method ensure that the generated sequence of iterates {xk} ∈ Fǫ . As a result,

f ′(yk) is a strong M-matrix and hence the method is well defined. Moreover, the residual sequence

{‖ f (yk)‖} is decreasing. It then follows from Lemma 2.2 that there are positive constants c ≤ C such

that

ce ≤ yk ≤ Ce. (2.5)
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• It follows from Lemma 2.3 that if yk ∈ Fǫ , then

yk + αkdk ∈ Fǫ ,∀αk ∈ (0, ᾱk)

where

ᾱk = min

{

2(1 − ǫ)bi

L ‖dk‖
2

: i ∈ [n]

}

⋂

{

−
(yk)i

(dk)i

: (dk)i < 0

}

(2.6)

and L is the bound of f ′′(y) on the set compact set Fǫ ∩ Ω‖ f (y0)‖.

Let x∗ be the unique positive solution to the M-Teq and y∗ = (x∗)[m−1]. It is easy to see that for any

ǫ ∈ (0, 1), x∗ ∈ Fǫ . Consequently, the matrix f ′(y∗) is a nonsingular M-matrix. As a result, the full step

Newton method is locally quadratically convergent.

In what follows, we are going to show that Algorithm 2.4 is globally convergent and that after finitely

many iterations, the method reduces to the full step Newton method. Consequently, it is quadratically

convergent. We first show the following lemma.

Lemma 2.5. Suppose that A is a strong M-tensor and b > 0. Then the sequence {yk} and {dk} generated

by Algorithm 2.4 are bounded. In addition, there is a positive constant ᾱ such that

yk + αkdk ∈ Fǫ , ∀αk ∈ (0, ᾱ). (2.7)

Proof. By the steps of the algorithm, it is easy to see that the sequence {yk} is contained in the compact

set D = Fǫ ∩ Ω‖ f (y0)‖ and hence bounded. Since f ′(yk) is a nonsingular M-matrix and D is compact, the

sequence {dk}K is bounded too. Notice that b > 0 and {yk} has a positive lower bound, the scalar ¡¥ᾱk

defined by (2.6) has a positive lower bound. This together with the boundedness of {‖dk‖} implies that ᾱk

has a positive lower bound. Consequently, (2.7) is satisfied with some positive ᾱ. �

The following theorem establishes the global convergence of the proposed method.

Theorem 2.6. Suppose that A is a strong M-tensor and b > 0. Then the sequence of iterates {xk}

generated by Algorithm 2.4 converges to the unique positive solution to the M-Teq (1.2).

Proof. It suffices to show that there is an accumulation point ȳ of {yk} satisfying f (ȳ) = 0. Let the

subsequence {yk}K converge to ȳ. Without loss of generality, we suppose that the subsequence {dk}K

converges to some d̄.

Denote α̃ = lim infk→∞,k∈K αk. If α̃ > 0, the inequality (2.4) implies f (ȳ) = 0. Consider the case α̃ = 0.

By the line search rule, when k ∈ K is sufficiently large, α′
k
= ρ−1αk will not satisfy (2.4), i.e.,

∥

∥

∥

∥

f
(

yk + α
′
kdk

)

∥

∥

∥

∥

2
− ‖ f (yk)‖2 > −2σα′k ‖ f (yk)‖2

Dividing both sizes of the last inequality by α′
k

and then taking limits as k → ∞ with k ∈ K, we get

2 f (ȳ)T f ′(ȳ)d̄ ≥ −2σ‖ f (ȳ)‖2 (2.8)

7



On the other hand, by taking limits in (2.3), we can obtain f ′(ȳ)d̄+ f (ȳ) = 0. It together with (2.8) and the

fact σ ∈ (0, 1) yields f (ȳ) = 0. The proof is complete. �

The last theorem established the global convergence of the proposed Newton method. Moreover, we

see from (2.2) that xk + dk ∈ Fǫ for all k sufficiently large because {dk} → 0. Consequently, the method

locally reduces to a standard damped Newton method. Following a standard discussion as the proof of the

quadratic convergence of a damped Newton method, it is not difficult to prove the quadratic convergence

of the method. We give the result but omit the proof.

Theorem 2.7. Let the conditions in Theorem 2.6 hold. Then the convergence rate of the sequence {yk}

generate by Algorithm 2.4 is quadratic.

3 An Extension

In this section, we extend the Newton method proposed in the last section to the M-Teq (1.2) with b ≥ 0. In

the case b has zero elements, the M-Teq may have multiple nonnegative or positive solutions. Our purpose

is to find one nonnegative or positive solution of the equation. By Theorem 2.6 in [14], a nonnegative

solution of (1.2) has zero elements if and only ifA is reducible with respect to some I ⊆ I0, where

I0 = {i ∈ [n] | bi = 0}.

Since justifying the reducibility is an easy task, without loss of generality, we suppose that the nonnegative

solutions of the M-Teq are positive.

Assumption 3.1. Suppose b ≥ 0 and that tensor A is a strong M-tensor and irreducible with respect to

I0. Suppose further that for each i ∈ I0, there is an element aii2 ...im , 0 with, i2, . . . , im ∈ I+.

Under the conditions of Assumption 3.1, we have

Ac(y[ 1
m−1 .)m−1)I0

< 0, ∀y ∈ Rn
++.

For the sake of convenience, we introduce some notations. Denote I+ = {i : bi > 0} and I0 = {i : bi =

0}. For given constants 1 > ǫ > ǫ′ > 0, we define

F ǫ,ǫ′ = F
1

ǫ ∩ F
2

ǫ′

with

F
1

ǫ =
{

y ∈ Rn
++ :

(

A
(

y[ 1
m−1

]
)(m−1))

I+
≥ ǫbI+

}

and

F
2

ǫ′ =
{

y ∈ Rn
++ :

(

A
(

y[ 1
m−1 ]

)m−1)

I0
≥ ǫ′ f ′(y)I0I+ f ′(y)−1

I+ I+
bI+

}

.

It is easy to see that every solution x̄ ∈ F ǫ .
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For y ∈ Rn
++, we split f ′(y) into

f ′(y) =















f ′
I+I+

(y) f ′
I+I0

(y)

f ′
I0I+

(y) f ′
I0I0

(y)















.

It is easy to see that f ′(y) is a Z-matrix.

The next theorem shows that for any y ∈ F ǫ , f ′(y) is a nonsingular M-matrix. As a result, the set F ǫ

is well defined.

Theorem 3.2. Let 1 > ǫ > ǫ′ > 0. For any y ∈ F ǫ,ǫ′ , f ′(y) is a nonsingular M-matrix.

Proof. By direct computation, we get f ′(y)y = A
(

y[ 1
m−1

]
)m−1

. The condition y ∈ F
1

ǫ yields

0 < ǫbI+ ≤
(

A
(

y[ 1
m−1

]
)m−1)

I+
= f ′(y)I+ I+yI+ + f ′(y)I+ I0

yI0
≤ f ′(y)I+I+yI+ .

Consequently, f ′(y)I+I+ is a nonsingular M-matrix. We are going to show that the Schur complement

f ′(y)I0 I0
− f ′(y)I0 I+ f ′(y)−1

I+ I+
f ′(y)I+I0

is also a nonsingular M-matrix.

Observing f ′(y)I0 I+ ≤ 0, we get from the condition y ∈ F
2

ǫ′

f ′(y)I0 I0
yI0
≥ ǫ′ f ′(y)I0I+ f ′(y)−1

I+I+
bI+ − f ′(y)I0I+yI+

≥ ǫ′ f ′(y)I0I+ f ′(y)−1
I+I+

bI+ − f ′(y)I0I+ f ′(y)−1
I+I+

(

ǫbI+ − f ′(y)I+I0
yI0

)

= −(ǫ − ǫ′) f ′(y)I0 I+ f ′(y)−1
I+ I+

bI+ + f ′(y)I0 I+ f ′(y)−1
I+ I+

f ′(y)I+I0
y0,

which implies

(

f ′(y)I0 I0
− f ′(y)I0I+ f ′(y)−1

I+ I+
f ′(y)I+ I0

)

yI0
≥ −(ǫ − ǫ′) f ′(y)I0I+ f ′(y)−1

I+I+
bI+ > 0.

The last condition ensures that f ′(y) is a nonsingular M-matrix. �

Similar to Lemma 2.2, we have the following lemma.

Lemma 3.3. IfA =
(

ai1 ...im

)

is a Z-tensor and b ≥ 0, then for any ǫ > 0, the set F ǫ is bounded away from

zero. That is, there is a constant δ > 0 such that

y ≥ δe, ∀y ∈ F ǫ,ǫ′ .

Proof. First, following the same arguments as the proof of Lemma 2.2 (i), it is easy to show that the

elements yI+ has a positive lower bound. We only need to prove that yI0
has a positive lower bound too.

It is easy to see by the definition of F
1

ǫ that each y ∈ F
1

ǫ satisfies

ǫbI+ ≤
(

A
(

y[ 1
m−1

]
)(m−1))

I+
= ( f ′(y)y)I+ ≤ f ′(y)I+ I+yI+ ,

9



which implies

yI+ ≥ f ′(y)−1
I+I+

bI+ > ǫ
′ f ′(y)−1

I+I+
bI+ .

The condition y ∈ F
2

ǫ′ implies

0 ≤ f ′I0I+
(y)

(

yI+ − ǫ
′ f ′(y)−1

I+ I+
bI+

)

+ f ′I0I0
(y)yI0

By the condition of Assumption 3.1 and the fact that yI+ has positive lower bound, we claim that the vector

f ′
I0I+

(y)
(

yI+ − ǫ
′ f ′(y)−1

I+I+
bI+

)

is bounded away from zero. Taking into account that f ′
I0I0

(y) is a Z-matrix and

yI0
> 0, it is easy to see that yI0

is bounded away from zero too.

The proof is complete. �

In what follows, we propose a Newton method for finding a positive solution to the M-Teq (1.2) with

b ≥ 0 as follows

Algorithm 3.4. (Extended Newton Method for (1.2) with b ≥ 0)

Initial. Given constants ǫ, ǫ′, ρ, η, σ ∈ (0, 1) satisfying ǫ′ < ǫ. Select an initial point y0 ∈ F ǫ, ǫ′ . Let

k = 0.

Step 1. Stop if ‖ f (yk)‖ ≤ η.

Step 2. Solve the system of linear equations

f ′(yk)dk + f (yk) = 0. (3.1)

to get dk.

Step 3. Determine a steplength αk = max{ρi : i = 0, 1, . . .} such that yk + αkdk ∈ F ǫ, ǫ′ and that the

inequality

‖ f (yk + αkdk)‖2 ≤ (1 − 2σαk)‖ f (yk)‖2 (3.2)

is satisfied.

Step 4. Let yk+1 = yk + αkdk. Go to Step 1.

In what follows, we show that the algorithm above is well-defined.

Proposition 3.5. Let the conditions in Assumption 3.1 hold. Then Algorithm 3.4 is well defined.

Proof. It suffices to verify that the relation yk + αkdk ∈ F ǫ, ǫ′
k+1

is satisfied for all α > 0 sufficiently small.

Indeed, we have

A
(

(yk + αdk)[ 1
m−1

]
)m−1

= f (yk + αdk) + b

= f (yk) + α f ′(yk)dk + O(‖αdk‖
2) + b

= (1 − α) f (yk) + b + O(‖αdk‖
2)

= (1 − α)A
(

y
[ 1

m−1
]

k

)m−1
+ αb + O(‖αdk‖

2).
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Since yk ∈ F
1

ǫ and bI+ > 0, we get from the last equality

(

A
(

(yk + αdk)[ 1
m−1

]
)m−1)

I+
≥ ǫbI+ + α[(1 − ǫ)bI+ + O(α‖dk‖

2), (3.3)

which implies yk + αdk ∈ F
1

ǫ for all α > 0 sufficiently small.

Similarly, we have by the fact yk ∈ F
2

ǫ′ and bI0
= 0

(

A
(

(yk + αdk)[ 1
m−1

]
)m−1)

I0
≥ ǫ′ f ′(yk)I0I+ f ′(yk)−1

I+I+
bI+ + α

(

− ǫ′ f ′(yk)I0I+ f ′(y)−1
I+I+

bI+ + O(α‖dk‖
2)
)

. (3.4)

By the condition of Assumption 3.1, it is not difficult to see from the last inequality that we claim that the

inequality
(

A
(

(yk + αdk)[ 1
m−1

]
)m−1)

I0
≥ ǫ′ f ′(y)I0 I+ f ′(y)−1

I+ I+
bI+

is satisfied for all α > 0 sufficiently small. �

It is easy to show that Lemma 2.2 holds true for the case b ≥ 0. As a result, the sequence generated

by Algorithm 3.4 is bounded. Consequently, the inequalities (3.3) and (3.4) ensure that there is a positive

constant ᾱ > 0 such that xk + αdk ∈ F ǫ,ǫ′ . ∀α ∈ (0, ᾱ].

Similar to the proof of Theorem 2.6, we can prove the global convergence of Algorithm 3.4.

Theorem 3.6. Let the conditions in Assumption 3.1 hold. Then the sequence of iterates {yk} generated by

Algorithm 3.4 is bounded. Moreover, every accumulation point of the iterates {yk} is a positive solution to

the M-tensor equation f (y) = 0.

The remainder of this section is devoted to the proof of the quadratic convergence of Algorithm 3.4. It

should be pointed out that the unit steplength may not be acceptable due to the existence of zero elements

in b. To ensure the quadratic convergence of the method, we need to make a slight modification to Step 3

of the algorithm. Specifically, we use the following Step 3′ instead of Step 3 in Algorithm 3.4.

Step 3′. If αk = 1 satisfies yk + αkdk ∈ F ǫ, ǫ′ and (3.2), then we let αk = 1. Otherwise, for given

constant c > 0, we let βk = 1 − c‖ f (yk)‖. If βk ≤ 0, we let βk = 1. Determine a steplength αk = max{βkρ
i :

i = 0, 1, . . .} such that yk + αkdk ∈ F ǫ, ǫ′ and that the inequality (3.2) is satisfied.

It is not difficult to see that the global convergence still remains true if Step 3 is replaced by Step 3′.

Moreover, since {dk} → 0, it is easy to prove from (3.3), (3.4) and (3.2) that for all k sufficiently large,

the step αk = βk = 1 − c‖ f (yk)‖ will be accepted. In this case, the sequence of iterates {yk} satisfies

yk+1 = yk + d̄k, with d̄k = βkdk = (1 − c‖ f (yk)‖)dk satisfying

f ′(yk)d̄k + f (yk) = f ′(yk)dk + f (yk) − c‖ f (yk)‖dk = −c‖ f (yk)‖dk.

If yk+1 = yk + d̄k ∈ F ǫ,ǫ′ , then when k is sufficiently, yk can be regarded as the sequence generated by a

full step inexact Newton method. Consequently, the quadratic convergence becomes well-known.

Theorem 3.7. Let the conditions in Assumption 3.1 hold. Suppose that the sequence of iterates {yk}
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generated by Algorithm 3.4 converges to a positive solution y∗ to the M-tensor equation f (y) = 0. Then

the convergence rate of {yk} is quadratic.

Proof. We only need to verify

yk+1 = yk + d̄k = yk +
(

1 − c‖ f (yk)‖
)

dk ∈ F ǫ,ǫ′ . (3.5)

It is not difficult to show from (3.1) that

‖dk‖ = O(‖ f (yk)‖) = O(‖ f (yk)‖) = O(‖x − x∗‖).

Similar to the proof of (3.3), we can derive

(

A
(

(yk + βkdk)[ 1
m−1 ]

)m−1)

I+
≥ ǫbI+ + βk[(1 − ǫ)bI+ + O(βk‖dk‖

2).

Since {βk} → 1 and {dk} → 0, the last inequality implies yk + βkdk ∈ F
1

ǫ .

We also can obtain

(

A
(

(yk + βkdk)[ 1
m−1

]
)m−1)

I0
≥ ǫ′ f ′(yk)I0 I+ f ′(yk)−1

I+I+
bI+ + βk

(

− ǫ′ f ′(yk)I0I+ f ′(yk)−1
I+I+

bI+ + O(βk‖dk‖
2)
)

.

By the condition of Assumption 3.1, it is clear that f ′(yk)I0I+ f ′(yk)−1
I+I+

bI+ < 0. Consequently, the last

inequality implies yk + βkdk ∈ F
2

ǫ . The proof is complete. �

4 Numerical Results

In this section, we do numerical experiments to test the effectiveness of the proposed methods. We im-

plemented our methods in Matlab R2019a and ran the codes on a computer with Intedl(R) Core(TM)

i7-10510U CPU @ 1.80GHz 2.30 GHz and 16.0 GB RAM. We used a tensor toolbox [1] to proceed some

tensor computation.

The test problems are from [7, 14, 15, 27].

Problem 1. We solve tensor equation (1.2) where A is a symmetric strong M-tensor of order m

(m = 3, 4, 5) in the form A = sI − B, where tensor B is symmetric tensor whose entries are uniformly

distributed in (0, 1), and

s = (1 + 0.01) · max
i=1,2,...,n

(Bem−1)i,

where e = (1, 1, . . . , 1)T .

Problem 2. We solve tensor equation (1.2) where A is a symmetric strong M-tensor of order m

(m = 3, 4, 5) in the formA = sI − B, and tensor B is a nonnegative tensor with

bi1i2 ...im = |sin(i1 + i2 + . . . + im)|,

and s = nm−1.
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Problem 3. Consider the ordinary differential equation

d2x(t)

dt2
= −

GM

x(t)2
, t ∈ (0, 1),

with Dirichlet’s boundary conditions

x(0) = c0, x(1) = c1,

where G ≈ 6.67 × 10−11Nm2/kg2 and M ≈ 5.98 × 1024 is the gravitational constant and the mass of the

earth.

Discretize the above equation, we have



























x3
1
= c3

0
,

2x3
i
− x2

i
xi−1 − x2

i
xi+1 =

GM
(n−1)2 , i = 2, 3, · · · , n − 1,

x3
n = c3

1
.

It is a tensor equation, i.e.,

Ax3 = b,

whereA is a 4-th order M tensor whose entries are







































a1111 = annnn = 1,

aiiii = 2, i = 2, 3, · · · , n − 1,

ai(i−1)ii = aii(i−1)i = aiii(i−1) = −1/3, i = 2, 3, · · · , n − 1,

ai(i+1)ii = aii(i+1)i = aiii(i+1) = −1/3, i = 2, 3, · · · , n − 1,

and b is a positive vector with



























b1 = c3
0
,

bi =
GM

(n−1)2 , i = 2, 3, · · · , n − 1,

bn = c3
1
.

Problem 4. We solve tensor equation (1.2) where A is a non-symmetric strong M-tensor of order m

(m = 3, 4, 5) in the form A = sI − B, and tensor B is nonnegative tensor whose entries are uniformly

distributed in (0, 1). The parameter s is set to

s = (1 + 0.01) · max
i=1,2,...,n

(Bem−1)i.

Problem 5. We solve tensor equation (1.2) where A is a lower triangle strong M-tensor of order m

(m = 3, 4, 5) in the formA = sI−B, and tensor B is a strictly lower triangular nonnegative tensor whose
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entries are uniformly distributed in (0, 1). The parameter s is set to

s = (1 − 0.5) · max
i=1,2,...,n

(Bem−1)i.

For Problem 1, 2 4 and 5, similar to [11, 12], we solved the tensor equation

F̂(x) = Âxm−1 − b̂ = 0

instead of the tensor equation (1.2), where Â := A/ω and b̂ := b/ω with ω is the largest value among the

absolute values of components ofA and b. The stopping criterion is set to

‖F̂(xk)‖ ≤ 10−10.

And for Problem 3, the stopping criterion is set to

‖Axm−1 − b‖

‖b‖
≤ 10−10.

We also stop the tested algorithms if the number of iteration reaches to 300, which means that the method

is failure for the problem.

Remark 4.1. Since A is a strong M-tensor, there exists a positive vector u such that Aum−1 > 0. This

vector u can be obtained in a certain iteration of solving Axm−1 = e by the existing methods proposed

in [7, 11, 12]. Then we can get an initial point of Algorithm 2.4 or Algorithm 3.4 by letting x0 = tu and

y0 = x
[m−1]
0

with sufficient large constant t. Particularly, if A is a diagonally dominant M-tensor we can

simply let u = e.

Note that strong M-tensor constructed in Problems 1, 2 and 4 are diagonally dorminant M-tensor.

Whereas Problem 3 and 5 both are non-diagonally dorminant M-tensor.

We first test the performance of Algorithm 2.4 (Newton’s Method denoted by ’NM’). In order to test

the effectiveness of the proposed method, we compare the Newton method with Inexact Newton Method

(denoted by ’INM’) proposed in [14]. We take the parameter of NM be ǫ = 0.1, σ = 0.1 and ρ = 0.5. And

let parameters of INM be σ = 0.1, ρ = 0.4. We set the initial point for INM as in [14], i.e., y0 = te > 0

such that f (y0) ≤ b, where t is a sufficient small positive constant. We use INM to find an initial point of

NM for Problem 3 and 5, i.e., in the iterative of INM, if Axm−1
k
> 0, let the vector u = xk in Remark 4.1.

For the stability of numerical results, we test the problems of different sizes. For each pair (m, n),

we randomly generate 50 tensors A and b ∈ (0, 1). The results are listed in Tables 1 to 5, thereinto

’Pro’ represent the test problem; ’Iter’ represents the average number of iterations; ’Time-Int’ denotes the

average time to find an initial point of NM; ’Time’ denotes the computing time (in seconds) including

initial time to find an approximate solution. And the ratio signs are denoted bellow.

It can be seen from Table 1 that the proposed NM has an advantage over the INM in [14] both in iter-

ation and CPU time. Paticularly, for Problem 1, 2 and 4, the coefficient tensor are diagonally dorminant,
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R-Int RI RT RT1

Time-Int
Time of NM

Iter of NM
Iter of INM

Time of NM
Time of INM

Time of NM minus Time-Int
Time of INM

NM INM Rate

(m, n) Iter Time Iter Time RI RT

(3,200) 2 0.01163 11 0.03634 18.1% 32.0%

(3,401) 2 0.08120 12 0.39976 16.9% 20.3%

(3,650) 2 0.39719 13 1.79962 15.8% 22.1%

(4, 40) 2 0.00366 8.4 0.00727 23.8% 50.4%

(4, 71) 2 0.02786 9.2 0.10398 21.7% 26.8%

(4,100) 2 0.11595 9.6 0.45303 20.9% 25.6%

(4,130) 2 0.38220 10 1.34639 19.6% 28.4%

(5, 30) 2 0.02681 7.6 0.08171 26.4% 32.8%

(5, 48) 2 0.37926 8.3 1.27908 24.0% 29.7%

Table 1: Comparison on Problem 1.

NM INM Rate

(m, n) Iter Time Iter Time RI RT

(3,200) 3 0.01214 11 0.03416 28.2% 35.5%

(3,401) 3 0.10887 12 0.40037 25.3% 27.2%

(3,650) 3 0.48992 12 1.94355 24.9% 25.2%

(4, 40) 3 0.00353 9.4 0.00726 31.8% 48.6%

(4, 71) 3 0.03599 9.3 0.11561 32.2% 31.1%

(4,100) 2.7 0.14569 9.1 0.52564 29.4% 27.7%

(4,130) 2 0.35740 9.7 1.59151 20.9% 22.5%

(5, 30) 2.4 0.02937 8.4 0.09164 29.0% 32.1%

(5, 48) 2 0.38996 8 1.61044 24.9% 24.2%

Table 2: Comparison on Problem 2.

NM INM Rate

(m, n) Iter Time Time-Int R-Int Iter Time RI RT RT1

(4, 40) 1 0.00263 0.00166 63.1% 5 0.00495 20.0% 53.1% 19.6%

(4, 71) 1 0.03952 0.02627 66.5% 5 0.07993 20.0% 49.4% 16.6%

(4,100) 1 0.16575 0.11177 67.4% 5 0.33503 20.0% 49.5% 16.1%

(4,130) 1 0.45219 0.29926 66.2% 5 0.91583 20.0% 49.4% 16.7%

Table 3: Comparison on Problem 3.

and thus NM is easy to get an initial point, while for Problem 3 and 5, although the number of iterations in

NM was significantly less than in INM, the reduction in the required CPU time was not significant since

it take much CPU time to find an initial point.

We then test the performance of Algorithm 3.4 (the Extended Newton Method denoted by ’ENM’) by

comparing with the Regularized Newton Method (denoted by ’RNM’) proposed in [14]. The parameter
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NM INM Rate

(m, n) Iter Time Iter Time RI RT

(3,200) 2 0.00886 11 0.03518 17.9% 25.2%

(3,401) 2 0.08087 12 0.39426 17.2% 20.5%

(3,650) 2 0.36240 12 1.97655 16.4% 18.3%

(4, 40) 2 0.00272 8.7 0.00662 22.9% 41.1%

(4, 71) 2 0.02710 9.4 0.11227 21.3% 24.1%

(4,100) 2 0.11558 9.4 0.54760 21.4% 21.1%

(4,130) 2 0.35507 9.9 1.57429 20.3% 22.6%

(5, 30) 2 0.02590 7.7 0.08085 25.9% 32.0%

(5, 48) 2 0.38484 8.4 1.68508 23.7% 22.8%

Table 4: Comparison on Problem 4.

NM INM Rate

(m, n) Iter Time Time-Int R-Int Iter Time RI RT RT1

(3,200) 2.9 0.02955 0.02151 72.8% 12 0.03493 24.7% 84.6% 23.0%

(3,401) 2.9 0.35773 0.25802 72.1% 12 0.44801 24.2% 79.8% 22.3%

(3,650) 2.9 1.83363 1.38006 75.3% 13 2.21081 22.5% 82.9% 20.5%

(4, 40) 2.9 0.00673 0.00474 70.4% 9.1 0.00640 32.2% 105.1% 31.1%

(4, 71) 2.8 0.09155 0.06100 66.6% 9.6 0.14487 29.1% 63.2% 21.1%

(4,100) 2.9 0.48084 0.31653 65.8% 10 0.63916 28.3% 75.2% 25.7%

(4,130) 2.9 1.53593 1.08875 70.9% 11 1.90284 25.9% 80.7% 23.5%

(5, 30) 2.8 0.07459 0.04873 65.3% 8.7 0.10647 32.3% 70.1% 24.3%

(5, 48) 2.8 1.42363 0.92151 64.7% 9.1 1.87335 30.3% 76.0% 26.8%

Table 5: Comparison on Problem 5.

of ENM are set to ǫ = 0.1, ǫ′ = 0.05, σ = 0.1 and ρ = 0.5. And the parameters in RNM are the same as in

[14], i.e., σ = 0.1, ρ = 0.8, γ = 0.9 and t̄ = 0.01.

For Problem 1, 2, 4 and 5, we generated b ∈ Rn
++ randomly and then let some but not all elements of

b be 0 randomly, but we let b1 , 0 in Problem 5. Then it is easy to see that the strong M-tensor A and b

constructed in our tested problem satisfy the conditions in Assumption 3.1. For Problem 5, we also use

INM to find an initial point of ENM. The parameter and starting point of INM are the same as before.

And the initial point of RNM is the same as INM. The results are sumerized in Table 6 to 9.

It can be seen from the data that the proposed ENM is not only effective for solving the M-Teq with

b ≥ 0, but also more efficient than RNM to a certain extent.
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