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Abstract Our aim in this article is to study the class of so-called ρ−paraconvex
multifunctions from a Banach space X into the subsets of another Banach space Y .
These multifunctions are defined in relation with a gauge ρ : X → [0,+∞) satisfy-
ing some suitable conditions. This class of multifunctions generalizes the class of
γ−paraconvex multifunctions with γ > 1 introduced and studied by Rolewicz, in the
eighties and subsequently studied by A. Jourani and some others authors.

We establish some regular properties of graphical tangent and normal cones to
paraconvex multifunctions between Banach spaces as well as a sum rule for coderiva-
tives for such class of multifunctions. The use of subdifferential properties of the
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lower semicontinuous envelope function of the distance function associated to a mul-
tifunction established in the present paper plays a key role in this study.
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1 Introduction and Preliminaries

Because of the importance of convexity, both from a theoretical point of view, but
also for the role it plays in certain applications, many efforts have been made in recent
decades to extend the notion of convexity. This work dedicated to Franco Giannessi
gives us the opportunity to quote one of his remarks concerning generalizations of
convexity, a quote given in his book [1, page 127]:

”[...] in the last three decades there has been an impressive growth of definitions
of generalized convexity, both for sets and functions. The way of obtaining them is
very simple: if we remove one of the many properties enjoyed by convexity, or we ex-
tend one of the terms of the definition, then we obtain a generalized concept; now, the
same can be done with the concept just obtained, and so on in a practically endless
process. Some of such generalizations are of fundamental importance; unfortunately,
many generalizations look like mere formal mathematics without any motivation and
contribute to drive mathematics away from the real world. Neglecting the fact that
definition is the cornerstone of mathematics and hence is the most difficult task, new
generalized concepts of convexity sprout like mushrooms (even 30 meaningless gener-
alizations of convexity can be found in a same recent paper! while E. De Giorgi, in his
entire mathematical life, gave only one concept: (p,q)−convexity; and G. Stampac-
chia dealt with coerciveness; both such extensions of convexity have been introduced
and used under strong motivations”.

The problem addressed in this paper belongs to the study of variational properties
of paraconvex multifunctions between Banach spaces. The concept of paraconvexity
of functions or multifunctions traces back to the work by S. Rolewicz [2–7] and later
has been the object of contributions by Jourani [8, 9], Ngai and Penot [10] and some
others.

Historically, traces of paraconvexity can be found in the notion of (p,q)−conve-
xity defined by De Giorgi-Marino-Tosques ( [11], see also [12]) and has been used in
the study of evolution equations as well as in some problems related to the calculus of
variations. Notions of paraconvexity are also found in Mifflin’s semiconvexity [13], in
Cannarsa and Sinestrari [14] (Semi-convex functions ), in Janin [15] (PC functions),
in Mazure and Volle [16] (A-convexity), in Spingarn [17] and Rockafellar [18] (lower
C1 and lower C2 functions), or in the definition of weak convexity by Vial [19]. A
common feature of the above mentioned classes of functions is that each of them
preserves more or less interesting geometrical/analytic properties of convexity. Also,
as mentioned for instance by Daniidilis and Malick [20], in Hilbert spaces, when f
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is locally Lipschitz, weakly convexity, lower C2 and ρ-paraconvexity (for ρ(x) =
1
2‖x‖

2) are equivalent. This fact is highlighted by the numerous applications of this
particular class of functions in optimization, but also in areas such that statistical
learning and signal processing. We refer for details to the recent article of Davis and
Drusvyatskiy1.

Another motivation for considering such classes of nonsmooth functions possess-
ing nice variational properties is the point of view of the theory of subdifferentiability.
In [21], the authors showed that almost every 1−Lipschitz function function defined
on a Banach space has a Clarke subdifferential identically equal to the dual ball. For
such functions, the subgradient (Clarke) gives no significant information. Therefore,
the task of considering special classes of nonsmooth functions which establish reg-
ular properties of subdifferentials plays an important role in variational analysis and
applications.

In the works by Rolewicz and the other authors mentioned above, some nice prop-
erties on subdifferentials and on generic differentiation of paraconvex functions, as
well as some properties of openness, Lipschitzness, metric regularity and error bound
of paraconvex multifunctions have been established. This article can be considered
as a continuation of these previous works concerning paraconvex multifunctions be-
tween Banach spaces. Here, we consider in a unified way paraconvexity with respect
to a gauge function satisfying some suitable conditions. Namely, the main results
established in this article concern:

• The regularity of graphical tangent and normal cones to paraconvex multifunc-
tions between Banach spaces;

• Some calculus for subgradients of the lower semicontinuous envelope function
of the distance function associated to a multifunction. This allows to characterize
the paraconvexity via the paramonotonicity;

• A sum rule for coderivatives of paraconvex multifunctions.

We conclude the study by stating some open problems.

1.1 Tools from variational analysis

Variational analysis being instrumental in this study, let us briefly gather some of its
basics. They can be found for example in [22–25] and will be used throughout the
paper.

Throughout we assume that X is a Banach space with norm ‖ · ‖. We denote by
X∗ the continuous dual of X , and we assume that X and X∗ are paired by 〈·, ·〉. We use
BX , for the closed unit ball in X and B(x,δ ) for the open ball centered at x with radius
δ > 0. Given a subset S of X we note cl(S) and Int(S) the closure and the interior
of S, respectively. We use the notation F : X ⇒ Y to mean a multifunction from X
to Y , that is, for every x ∈ X , F(x) is a subset (possibly empty) of Y . The graph of

1 Subgradient methods under weak convexity and tame geometry, SIAG/OPT (Volume 28, Number 1,
December 2020).
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F is gphF := {(x,y) ∈ X ×Y : y ∈ F(x)} and DomF = {x ∈ X : F(x) 6= /0} is the
effective domain of F . We say that F is closed-graph (or simply closed) whenever
gphF is closed with respect to the product topology on X×Y.

Definition 1.1 (Tangent cones) Let C be a nonempty subset of X and fix x ∈C.

The contingent (or Bouligand) tangent cone to C at x is the set

T ↓C (x) :=
{

u ∈ X : ∃ sequences (un)⊆ X , un→ u, tn→ 0+, x+ tnun ∈C, ∀n ∈ N
}
.

The Clarke tangent cone to C at x is the set

T ↑C (x) :=
{

u ∈ X : ∀(xn)→ x, with xn ∈C, ∀(tn)→ 0+, ∃(un)→ u, xn + tnun ∈C
}
.

Definition 1.2 (Normal cones) The Bouligand normal cone to C to x ∈C is the set

N↓C(x) :=
{

x∗ ∈ X∗ : 〈x∗,u〉 ≤ 0, ∀u ∈ T ↓C (x)
}

;

The Clarke normal cone to C at x is the set

N↑C(x) :=
{

x∗ ∈ X∗ : 〈x∗,u〉 ≤ 0, ∀u ∈ T ↑C (x)
}
.

If f : X → R∪{+∞} is an extended-real-valued function, its effective domain is the
set Dom f := {x ∈ X : f (x)<+∞}. We use the notation y−→

f
x (respectively, y−→

C
x

) to mean y→ x and f (y)→ f (x), (respectively, y→ x and y ∈C).

Definition 1.3 (Directional derivatives)

The (lower) Hadamard directional derivative (or contingent derivative) of f at
x ∈ Dom f in the direction v is

f ↓(x,v) := liminf
(t,u)→(0+,v)

f (x+ tv)− f (x)
t

, v ∈ X .

The Clarke-Rockafellar generalized directional derivative of f at x ∈ Dom f in the
direction v is

f ↑(x,v) := lim
ε→0+

limsup
y−→

f
x,t→0+

inf
w∈v+εBX

f (y+ tw)− f (y)
t

.

Definition 1.4 (Subdifferentials) The Hadamard-subdifferential of f at x ∈Dom f
is

∂
↓ f (x) := {x∗ ∈ X∗ : 〈x∗,v〉 ≤ f ↓(x,v), ∀v ∈ X}.

The Clarke-Rockafellar subdifferential of f at x ∈ Dom f is

∂
↑ f (x) := {x∗ ∈ X∗ : 〈x∗,v〉 ≤ f ↑(x,v), ∀v ∈ X}.

The Fréchet subdifferential ∂̂ f (x) of f at x ∈ Dom f is defined as

∂̂ f (x) :=
{

x∗ ∈ X∗ : liminf
h→0

f (x+h)− f (x)−〈x∗,h〉
‖h‖

≥ 0
}

and ∂̂ f (x) := /0 if f (x) = +∞.
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Note that the subdifferentials ∂ ↓ f , ∂ ↑ f can be represented geometrically as fol-
lows.

∂
↓ f (x) = {x∗ ∈ X∗ : (x∗,−1) ∈ N↓epi f (x, f (x))},

and
∂
↑ f (x) = {x∗ ∈ X∗ : (x∗,−1) ∈ N↑epi f (x, f (x))},

where epi f denotes the epigraph of f :

epi f := {(x,α) ∈ X×R : f (x)≤ α}.

Conversely, the Bouligand and Clarke normal cones to a subset C⊆ X (at x ∈C) may
be represented as the respective subdifferentials of the indicator function δC of C:

N↓C(x) = ∂
↓
δC(x), N↑C(x) = ∂

↑
δC(x),

where

δC(x) :=
{

0 if x ∈C
+∞ otherwise.

The Clarke-Rockafellar subdifferential enjoys a sum rule (see [22, Theo. 2.9.8]):

∂
↑( f1 + f2)(x)⊆ ∂

↑ f1(x)+∂
↑ f2(x), (1)

provided f1 is lower semicontinuous and f2 is locally Lipschitz around x.

The Fréchet normal cone to a subset C ⊆ X at some point x ∈C is defined as

N̂C(x) := ∂̂ δC(x) =
{

x∗ ∈ X∗ : limsup
z→Cx

〈x∗,z− x〉
‖z− x‖

≤ 0
}
.

The following inclusions hold:

T ↓C (x)⊇ T ↑C (x), and N̂C(x)⊆ N↓C(x)⊆ N↑C(x).

When X is Asplund, i.e., when every continuous convex function defined on X is
generically Fréchet differentiable, the Fréchet subdifferential enjoys a fuzzy sum rule
( [26], see also [23]): For any ε > 0, for x ∈ Dom f1 ∩Dom f2, provided f1, f2 are
lower semicontinuous and one of them is locally Lipschitz around x, one has

∂̂ ( f1 + f2)(x)

⊆
⋃{

∂̂ f1(x1)+ ∂̂ f2(x2)+ εBX∗ : (xi, f (xi)) ∈ B((x, f (x)),ε), i = 1,2
}
. (2)

Let X ,Y be Banach spaces. Throughout, when considering the cartesian product X×
Y , unless otherwise stated, we suppose it endowed with the max-norm:

‖(x,y)‖= max{‖x‖,‖y‖}, (x,y) ∈ X×Y.

For a multifunction F : X ⇒Y , the naming coderivative of F at a point (x,y)∈ gphF,
refers to a multifunction (DF∗)!(x,y) : Y ∗⇒ X∗ and defined as

(DF∗)!(x,y)(y∗) :=
{

x∗ : (x∗,−y∗) ∈ N!
gphF(x,y)

}
, y∗ ∈ Y ∗,

for every (x,y) ∈ gphF . The symbol ”!” means that the coderivative of F is related
either to the lower Hadamard or the Clarke, or the Fréchet normal cone.
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2 Paraconvexity of functions and multifunctions

We start by recalling the notion of gauge function.

Definition 2.1 (Gauge function) Let X ,Y be Banach spaces. We say that a function
ρ : X → R+ := [0,+∞) is a gauge if it verifies the following properties:

(C1) ρ is a continuous convex functions on X ;
(C2) ρ(0) = 0, and the function ρ is even, i.e., ρ(−x) = ρ(x), for all x ∈ X ;
(C3) lim

‖x‖→0

ρ(x)
‖x‖ = 0.

A gauge ρ enables us to define the known notion of ρ-paraconvexity of functions
and multifunctions, see [27]. The first one was introduced by Rolewicz [2] with the
specific gauge ρ(x) = ‖x‖2.

Definition 2.2 An extended-real-valued function f : X→R∪{+∞} is called ρ−para-
convex if there exists a non-negative constant κ such that for all x1,x2 ∈ X , and all
t ∈ [0,1], one has

f (tx1 +(1− t)x2)≤ t f (x1)+(1− t) f (x2)+κt(1− t)ρ(x1− x2). (3)

Definition 2.3 A multifunction F : X ⇒ Y between two Banach spaces X and Y is
called ρ-paraconvex if there exists a non-negative constant κ such that for all x1,x2 ∈
X , and all t ∈ [0,1], one has

tF(x1)+(1− t)F(x2)⊆ F(tx1 +(1− t)x2)+κt(1− t)ρ(x1− x2)BY . (4)

Taking ρ(x) = ε‖x‖γ , γ > 1, we recover the γ-paraconvexity in the sense of Rolewicz
[3]. Obviously if a function f : X → R∪{+∞} is ρ-paraconvex for a gauge function
ρ verifying (C1)− (C3), then it is approximately convex at all point x ∈ Dom f , in
the sense introduced and studied by Ngai-Luc-Théra [28], then in [27, 29, 30].

Consider m functions fi : X → R∪{+∞}, i = 1, ...,m, for some m ∈ N∗. Define
the multifunction F : X → Rm by

F(x) = Π
m
i=1[ fi(x),+∞), x ∈ X . (5)

The following proposition shows the equivalence between the paraconvexity of the
functions fi, i = 1, ...,m, and the one of the multifunction F. The proof is straightfor-
ward from the definition.

Proposition 2.1 Let X be a Banach space. Let given a gauge function ρ : X → R+

and m extended-real-valued functions fi : X →R∪{+∞}, i = 1, ...,m, and the multi-
function F defined by (5). If all fi, i = 1, ...,m are ρ-paraconvex functions, then F is
a ρ-paraconvex multifunction. The converse holds provided all Dom fi (i = 1, ...,m)
are equal.

This following lemma is an approximate Jensen inequality (inclusion) for paraconvex
functions (resp. multifunctions).
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Lemma 2.1 (Approximate Jensen’s inequality) Let ρ : X → R+ be a gauge veri-
fying (C1)− (C2).

(i) Let f : X → R∪{+∞} be a ρ-paraconvex function with respect to some κ > 0
as in Definition 2.2. Then for any k ∈ N∗, x1, ...,xk ∈ X , λi ≥ 0, i = 1, ...,k with
∑

k
i=1 λi = 1, one has

f

(
k

∑
i=1

λixi

)
≤

k

∑
i=1

λi f (xi)+κ

k

∑
i=1

λi(1−λi) max
1≤ j≤k

ρ(x j− xi). (6)

(ii) Let F : X ⇒ Y be a ρ-paraconvex multifunction with respect to some κ > 0 as
in Definition 2.3. Then for any k ∈ N∗, x1, ...,xk ∈ X , λi ≥ 0, i = 1, ...,k with
∑

k
i=1 λi = 1, one has

k

∑
i=1

λiF(xi)⊆ F

(
k

∑
i=1

λixi

)
+κ

[
k

∑
i=1

λi(1−λi) max
1≤ j≤k

ρ(x j− xi)

]
BY . (7)

Proof. We proceed by induction. For k = 1, or k = 2, relation (6) holds by the defini-
tion. Assume (6) holds for k = n ∈N∗ and consider n+1 points x1, ...,xn+1 in X , and
reals λi ≥ 0, (i = 1, ...,n+1), with ∑

n+1
i=1 λi = 1. If λi = 0 for some i ∈ {1, ...,n+1},

then we apply the induction. So, suppose that λi > 0 for all i = 1, ...,n+ 1. By the
representation

n+1

∑
i=1

λixi = (1−λn+1)

(
n

∑
i=1

λi

1−λn+1
xi

)
+λn+1xn+1,

and by virtue of (3), one has

f

(
n+1

∑
i=1

λixi

)
≤ (1−λn+1) f

(
n

∑
i=1

λi

1−λn+1
xi

)
+λn+1 f (xn+1)

+κλn+1(1−λn+1)ρ

(
xn+1−

n

∑
i=1

λi

1−λn+1
xi

)
.

Since ρ is a convex function,

ρ

(
xn+1−

n

∑
i=1

λi

1−λn+1
xi

)
= ρ

(
n

∑
i=1

λi

1−λn+1
(xn+1− xi)

)

≤
n

∑
i=1

λi

1−λn+1
ρ(xn+1− xi)

≤ max
1≤i≤n+1

ρ(xn+1− xi)
n

∑
i=1

λi

1−λn+1

= max
1≤i≤n+1

ρ(xn+1− xi).
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Therefore,

f

(
n+1

∑
i=1

λixi

)
≤ (1−λn+1) f

(
n

∑
i=1

λi

1−λn+1
xi

)
+λn+1 f (xn+1)

+κλn+1(1−λn+1) max
1≤i≤n+1

ρ(xn+1− xi).

(8)

Next, by applying the induction assumption one has

f

(
n

∑
i=1

λi

1−λn+1
xi

)
≤

n

∑
i=1

λi

1−λn+1
f (xi)

+κ

n

∑
i=1

λi

1−λn+1

(
1− λi

1−λn+1

)
max

1≤ j≤n
ρ(x j− xi)

≤
n

∑
i=1

λi

1−λn+1
f (xi)+κ

n

∑
i=1

λi(1−λi)

1−λn+1
max

1≤ j≤n+1
ρ(x j− xi).

This relation, together with (8) implies that relation (6) holds for k = n+ 1, which
ends the proof of (i).

The proof of (ii) is similar. �

Given a multifunction F : X ⇒Y , we consider the distance function dF : X×Y →
R∪{+∞} defined by

dF(x,y) := d(y,F(x)) = inf{‖y− z‖ : z ∈ F(x)}, (x,y) ∈ X×Y,

with the convention d(y, /0) = +∞. This distance function has been studied and used
in the literature, e.g., by Thibault [31], Bounkhel-Thibault [32], and Mordukhovich-
Nam [33]. Except when Y is finite dimensional, dF is not lower semicontinuous, even
if F is a closed multifunction (i.e., the graph of F is closed in the product space
X ×Y ). We will use the lower semicontinuous envelope ϕF : X ×Y → R∪{+∞} of
dF and defined as follows:

ϕF(x,y) := liminf
(u,v)→(x,y)

dF(u,v) = liminf
u→x

dF(u,y), (x,y) ∈ X×Y.

This function ϕF played a key role in the study of metric regularity and implicit
multifunction theorems (e.g., see [34–36] and the references given therein).

The relationships between the paraconvexity of a multifunction F : X ⇒Y , the as-
sociated distance function dF and its lower semicontinuous envelope ϕF are stated in
the following proposition. Note that the equivalence between (i) and (ii) for γ−para-
convex multifunctions for γ > 0, was given in [8].

Proposition 2.2 Let X and Y be Banach spaces and suppose that F : X ⇒ Y is a
multifunction and ρ : X →R is a gauge verifying (C1)− (C2). Let consider the three
following statements:

(i) F is a ρ-paraconvex multifunction;
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(ii) dF is a ρ-paraconvex function;
(iii) ϕF is a ρ-paraconvex function.

Then, one has (i)⇔ (ii)⇒ (iii). Moreover, if Y is a reflexive space, then the three
statements are equivalent.

Proof. For (i)⇒ (ii), suppose that the multifunction F is ρ-paraconvex with respect
to some κ > 0. Given (x1,y1),(x2,y2) ∈ X×Y, t ∈ [0,1], we need to show that

dF(t(x1,y1)+(1− t)(x2,y2))≤ tdF(x1,y1)+(1− t)dF(x2,y2)+κt(1− t)ρ(x1−x2).
(9)

Obviously, (9) holds trivially when F(x1) or F(x2) is an empty set. Hence, we sup-
pose that F(x1) 6= /0, F(x2) 6= /0. Then, picking sequences (zk) with zk ∈ F(x1) and
(vk) with vk ∈ F(x2) such that

lim
k→∞
‖y1− zk‖= dF(x1,y1), lim

k→∞
‖y2− vk‖= dF(x2,y2),

and using the ρ-paraconvex of F, for each k ∈ N, there exists wk such that

wk ∈ F(tx1 +(1− t)x2) and ‖tzk +(1− t)vk−wk‖ ≤ κt(1− t)ρ(x1− x2).

Hence,

dF(t(x1,y1)+(1− t)(x2,y2))≤ ‖ty1 +(1− t)y2−wk‖
≤ ‖ty1 +(1− t)y2− tzk− (1− t)vk‖
+‖tzk +(1− t)vk−wk‖
≤ t‖y1− zk‖+(1− t)‖y2− vk‖+κt(1− t)ρ(x1− x2).

By letting k→ ∞ in the preceding relation, we obtain (9).

For (ii)⇒ (i), suppose that dF is ρ-paraconvex with respect to some κ > 0. Fix
x1,x2 ∈X , t ∈ [0,1]. Then for any y1 ∈F(x1), y2 ∈F(x2), observing that dF(xi,yi)= 0
(i = 1,2), by taking any real µ > κ, we may select w ∈ F(tx1 +(1− t)x2) such that

‖ty1 +(1− t)y2−w‖ ≤ µt(1− t)ρ(x1− x2),

establishing that F is ρ-paraconvex with respect to any real µ > κ.

(ii)⇒ (iii). For (x1,y1),(x2,y2) ∈ DomϕF , for t ∈ [0,1], picking sequences (u1
k)

and (u2
k) converging respectively to x1 and to x2, such that dF(u1

k ,y1)→ ϕF(x1,y1)
and dF(u2

k ,y2)→ ϕF(x2,y2), one has

dF(t(u1
k ,y1)+(1− t)(u2

k ,y2))≤ tdF(u1
k ,y1)+(1− t)dF(u2

k ,y2)+κt(1− t)ρ(x1−x2).

By letting k→ ∞, as

ϕF(t(x1,y1)+(1− t)(x2,y2))≤ liminf
k→∞

dF(t(u1
k ,y1)+(1− t)(u2

k ,y2)),

we derive

ϕF(t(x1,y1)+(1− t)(x2,y2))≤ tϕF(x1,y1)+(1− t)ϕF(x2,y2)+κt(1− t)ρ(x1−x2),
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establishing the ρ-paraconvexity of ϕF .

Suppose now that Y is reflexive and that ϕF is ρ-paraconvex with respect to some
κ > 0. In order to prove (iii)⇒ (ii), it suffices to show that ϕF = dF , i.e., dF is
itself lower semicontinuous on X ×Y. We may assume that ϕF(x,y) < +∞, since
when ϕF(x,y) = +∞, then as ϕF ≤ dF , dF(x,y) = +∞. Pick sequences (uk),(vk)
with uk ∈ X , limk→∞ uk = x, and vk ∈ F(uk) such that limk→∞ ‖y− vk‖ = ϕF(x,y).
This yields that (vk) is a bounded sequence, and consequently it has a weak conver-
gent subsequence. Without loss of generality, assume that the whole sequence (vk)
converges weakly to v ∈ Y. By the Mazur Lemma (see [37]), we may find convex
combinations

wk =
N(k)

∑
i=k

θ
(k)
i vi, where θ

(k)
i ∈ [0,1] and

N(k)

∑
i=k

θ
(k)
i = 1,

such that (wk) converges strongly to v. As ϕF is ρ-paraconvex with respect to κ > 0,
thanks to Lemma 2.1, for zk = ∑

N(k)
i=k θ

(k)
i ui,

ϕF(zk,wk)≤
N(k)

∑
i=k

θ
(k)
i ϕF(ui,vi)+κ

N(k)

∑
i=k

θ
(k)
i (1−θ

(k)
i ) max

k≤ j≤N(k)
ρ(u j−ui)

= κ

N(k)

∑
i=k

θ
(k)
i (1−θ

(k)
i ) max

k≤ j≤N(k)
ρ(u j−ui)

≤ κ max
k≤i, j≤N(k)

ρ(u j−ui).

Reminding that uk→ x, and ρ is continuous, the right hand of the preceding relation
tends to 0 as k→ ∞ . It follows that

0≤ ϕF(x,v)≤ liminf
k→∞

ϕF(zk,wk) = 0,

and consequently, ϕF(x,v) = 0. Hence, v ∈ F(x), since gphF is closed. Finally, since

dF(x,y)≤ ‖y− v‖ ≤ lim
k→∞
‖y− vk‖= ϕF(x,y)≤ dF(x,y),

one obtains dF(x,y) = ϕF(x,y). �

Open problem 1. Does the equivalence between (i) and (iii) in Proposition 2.2
holds when the reflexivity of the image space Y fails?

3 Regularity of graphical tangent cones and normal cones of paraconvex
multifunctions

As mentioned before, every ρ-paraconvex function defined on a Banach space X is
approximately convex at all points for any gauge ρ verifying (C1)− (C3). In view
of [28, Theo. 3.6], for approximately convex functions, all the usual suddifferentials
in the literature coincide. In this section, we shall establish the regularity of graphical
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tangent cones and normal cones to the graph of paraconvex multifunctions between
Banach spaces. The first theorem concerns the regularity of the Clarke graphical tan-
gent cone.

Theorem 3.1 Let ρ : X → R+ be a gauge satisfying (C1)− (C3). Let F : X ⇒ Y
be a ρ-paraconvex multifunction. Then Bouligand’s and Clarke’s tangent cones to
the graph of F coincide at all (x,y) ∈ gphF : T ↓gphF(x,y) = T ↑gphF(x,y). As a result,

N↓gphF(x,y) = N↑gphF(x,y), for all (x,y) ∈ gphF.

Proof. Given (x,y) ∈ gphF, it always holds T ↑gphF(x,y) ⊆ T ↓gphF(x,y). Hence, it suf-

fices to show that T ↓gphF(x,y) ⊆ T ↑gphF(x,y). Let (u,v) ∈ T ↓gphF(x,y) be given. Then
there exist sequences (tn) ↓ 0+,(un,vn)→ (u,v) such that (x+ tnun,y+ tnvn) ∈ gphF.
Pick sequences ((xn,yn))→gphF (x,y), and (sn) ↓ 0+, as well as a sequence of posi-
tive reals (εn) ↓ 0, such that

max
n∈N
{sn,‖xn− x‖,‖yn− y‖} ≤ ε1t1.

For each n ∈ N, define

k(n) := max{k ∈ N : max{si,‖xi− x‖,‖yi− y‖ : i≥ n} ≤ εktk} .

Then obviously (k(n)) is a non-decreasing sequence. Suppose to contrary that k(n) is
bounded above by some N0. Then

max{si,‖xi− x‖,‖yi− y‖ : i≥ n}> εN0+1tN0+1, for all n ∈ N.

This contradicts the convergence of the sequences (sn),(‖xn− x‖), and (‖yn− y‖) to
0. Hence, lim

n→∞
k(n) = +∞. As a result,

sn

tk(n)
→ 0,

xn− x
tk(n)

→ 0, and
yn− y
tk(n)

→ 0.

We may assume that
sn

tk(n)
∈ (0,1) for all n large. By using the following relations

xn + sn

(
uk(n)+

x− xn

tk(n)

)
=

(
1− sn

tk(n)

)
xn +

sn

tk(n)
(x+ tk(n)uk(n));

yn + sn

(
vk(n)+

y− yn

tk(n)

)
=

(
1− sn

tk(n)

)
yn +

sn

tk(n)
(y+ tk(n)vk(n)),

and the ρ-paraconvexity of F (with respect to κ > 0), we may select

wn ∈ F

(
xn + sn

(
uk(n)+

x− xn

tk(n)

))



12

such that∥∥∥∥∥yn + sn

(
vk(n)+

y− yn

tk(n)

)
−wn

∥∥∥∥∥≤ κ
sn

tk(n)

(
1− sn

tk(n)

)
ρ(xn− x− tk(n)uk(n)).

Thus, by setting

an := wn−

[
yn + sn

(
vk(n)+

y− yn

tk(n)

)]
,

one obtains an/sn→ 0 as n→ ∞, due to ‖xn− x‖/tk(n)→ 0, and by (C3),

lim
n→∞

1
tk(n)

ρ(xn− x− tk(n)uk(n)) = lim
n→∞

‖xn− x− tk(n)uk(n)‖
tk(n)

ρ(xn− x− tk(n)uk(n))

‖xn− x− tk(n)uk(n)‖
= 0.

Next, as

wn = yn + sn

(
vk(n)+

y− yn

tk(n)
+

an

sn

)
,

one derives that(
(xn + sn

(
uk(n)+

x− xn

tk(n)

)
,yn + sn

(
vk(n)+

y− yn

tk(n)
+

an

sn

))
∈ gphF ;

(
uk(n)+

x− xn

tk(n)
,vk(n)+

y− yn

tk(n)
+

an

sn

)
→ (u,v),

which yields (u,v) ∈ T ↑gphF(x,y). The proof is completed. �

The following theorem shows the coincidence of the Clarke, the Bouligand and
the Fréchet normal cones to the graph of a ρ-paraconvex multifunction.

Theorem 3.2 Let X and Y be Banach spaces, F : X ⇒ Y a ρ-paraconvex multifunc-
tion with respect to κ > 0, and ρ : X → R+ satisfying (C1)− (C3). Then, setting

N(ρ,κ)
gphF (x̄, ȳ) :=

{
(x∗,y∗) ∈ X∗×Y ∗ :
〈x∗,x− x̄〉+ 〈y∗,y− ȳ〉 ≤ κ‖y∗‖ρ(x− x̄), ∀(x,y) ∈ gphF

}
,

(10)
it holds

N↑gphF(x̄, ȳ) = N↓gphF(x̄, ȳ) = N̂gphF(x̄, ȳ) = N(ρ,κ)
gphF (x̄, ȳ), (11)

for all (x̄, ȳ) ∈ gphF.
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Proof. Obviously, N(ρ,κ)
gphF (x̄, ȳ) ⊆ N̂gphF(x̄, ȳ). Conversely, take (x∗,y∗) ∈ N̂gphF(x̄, ȳ).

By definition, for each ε > 0, there is δ > 0, such that

〈x∗,x− x̄〉+ 〈y∗,y− ȳ〉 ≤ ε‖(x,y)− (x̄, ȳ)‖,

for all (x,y) ∈ gphF ∩B((x̄, ȳ),δ ). Let (x,y) ∈ gphF be given. For t ∈ (0,1), the
ρ-paraconvexity of F gives the existence of some w ∈ F(x̄+ t(x− x̄)) such that

‖ȳ+ t(y− ȳ)−w‖ ≤ κt(1− t)ρ(x− x̄).

This implies that for t > 0 sufficiently small,

(x̄+ t(x− x̄),w) ∈ gphF ∩B((x̄, ȳ),δ ),

and therefore

t(〈x∗,x− x̄〉+ 〈y∗,y− ȳ〉)
= 〈x∗, x̄+ t(x− x̄)− x̄〉+ 〈y∗, ȳ+ t(y− ȳ)− ȳ〉
= 〈x∗, x̄+ t(x− x̄)− x̄〉+ 〈y∗,w− ȳ〉+ 〈y∗, ȳ+ t(y− ȳ)−w〉
≤ ε‖(x̄+ t(x− x̄),w)− (x̄, ȳ)‖+‖y∗‖κt(1− t)ρ(x− x̄)
≤ tε(‖x− x̄‖+‖y− ȳ‖+κ(1− t)ρ(x− x̄))+‖y∗‖κt(1− t)ρ(x− x̄).

,

Consequently,

〈x∗,x− x̄〉+ 〈y∗,y− ȳ〉
≤ ε(‖x− x̄‖+‖y− ȳ‖+κ(1− t)ρ(x− x̄))+‖y∗‖κρ(x− x̄).

By letting ε ↓ 0, one obtains for all (x,y) ∈ gphF,

〈x∗,x− x̄〉+ 〈y∗,y− ȳ〉 ≤ κ‖y∗‖ρ(x− x̄).

Hence, (x∗,y∗) ∈ N(ρ,κ)
gphF (x̄, ȳ). Noticing that N̂gphF(x̄, ȳ) ⊆ N↓gphF(x̄, ȳ), by virtue of

the previous theorem, it suffices to show that N↓gphF(x̄, ȳ) ⊆ N(ρ,κ)
gphF (x̄, ȳ) to complete

the proof. Let (x,y) ∈ gphF be given. By (C3), we can pick a sequence of positive
reals (tn) ↓ 0 such that t0 = 1, tn ∈ (0,1) for all n ∈ N∗, and

ρ(tn+1(x− x̄))
tn+1

≤ ρ(tn(x− x̄))−ρ(tn+1(x− x̄)), for all n ∈ N. (12)

Set x0 = x, y0 = w0, z−1 = z0 = 0, and

x1 = x̄+ t1(x− x̄), y1 = ȳ+ t1(y− ȳ).

As F is ρ-paraconvex, choose w1 ∈ F(x1) such that ‖y1−w1‖≤ κt1(1−t1)ρ(x−x0).
Setting z1 := (w1− y1)/t1, one has

‖z1− z0‖ ≤ κρ(x− x̄),
w1 = ȳ+ t1(y− ȳ+ z1),

y1 = ȳ+
t1
t0
(w1− ȳ) = ȳ+ t1(y− ȳ+ z0).
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Starting from x0,y0,w0,z0 as above, we shall construct by induction sequences (xn),(yn),(wn),(zn)
with xn ∈ X , yn,wn,zn ∈ Y, such that for all n ∈ N,

xn = x̄+ tn(x− x̄),

‖zn+1− zn‖ ≤ κ
ρ(tn(x− x̄))

tn
,

wn = ȳ+ tn(y− ȳ+ zn), (xn,wn) ∈ gphF,
yn = ȳ+ tn(y− ȳ+ zn−1).

(13)

Indeed, suppose we have constructed xn,yn,wn,zn. Set firstly

xn+1 = x̄+ tn+1(x− x̄), yn+1 = ȳ+ tn+1(y− ȳ+ zn).

Then, one has

xn+1 = x̄+
tn+1

tn
(xn− x̄), yn+1 = ȳ+

tn+1

tn
(wn− ȳ).

Thanks to the ρ-paraconvexity of F , we may select wn+1 ∈ F(xn+1) such that

‖yn+1−wn+1‖ ≤ κ
tn+1

tn

(
1− tn+1

tn

)
ρ(tn(x− x̄)).

So, by setting

zn+1 =
wn+1− ȳ− tn+1(y− ȳ)

tn+1
,

we have

wn+1 = ȳ+ tn+1(y− ȳ+ zn+1), zn+1− zn = (wn+1− yn+1)/tn+1.

Therefore,

‖zn+1− zn‖=
‖wn+1− yn+1‖

tn+1
≤ κ

ρ(tn(x− x̄))
tn

.

Thus xn+1,yn+1,wn+1,zn+1 are well defined and satisfy (13). By (12), for all n,m∈N,
with n < m, one has

‖zn− zm‖ ≤
m−1

∑
j=n
‖z j+1− z j‖ ≤ ρ(tn(x− x̄))−ρ(tm(x− x̄)).

From the last inequality we deduce that (zn) is a Cauchy sequence which converges
to some z ∈ Y. Then one has

‖z‖ ≤
∞

∑
j=0
‖z j+1− z j‖ ≤

∞

∑
j=0

ρ(t j(x− x̄))
t j

≤ κρ(x− x̄).

By construction, one has (x− x̄,y− ȳ + z) ∈ T ↓gphF(x̄, ȳ). Hence, for all (x∗,y∗) ∈
N↓gphF(x̄, ȳ),

〈x∗,x− x̄〉+ 〈y∗,y− ȳ+ z〉 ≤ 0,

which yields

〈x∗,x− x̄〉+ 〈y∗,y− ȳ〉 ≤ ‖y∗‖κρ(x− x̄), ∀(x,y) ∈ gphF,

and (x∗,y∗) ∈ N(ρ,κ)
gphF (x̄, ȳ). The proof is completed. �
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4 Subdifferentials of the lower semicontinuous envelope of the distance
function associated to a multifunction

Our aim in this section is to establish some calculus rules for Fréchet and Clarke-
Rockafellar subdifferentials of the lower semicontinuous envelope of the distance
function associated to a multifunction in terms of the respective normal cones to their
graphs. Consider now a multifunction F : X ⇒ Y between Banach spaces X ,Y, and
the lower semicontinuous envelope of the associated distance function:

ϕ(x,y) := ϕF(x,y) = liminf
u→x

d(y,F(u)), (x,y) ∈ X×Y.

The following observation is immediate from the definition.

Observation 1. Given a multifunction F : X ⇒ Y, let us note by F the graphical
closure of F, i.e., gphF = cl(gphF). For (x̄, ȳ) ∈ X×Y, one has

(i) ϕ(x̄, ȳ) = 0 ⇐⇒ (x̄, ȳ) ∈ gphF . In particular, when F is closed, then

ϕ(x̄, ȳ) = 0 ⇐⇒ (x̄, ȳ) ∈ gphF ;

(ii) ϕF(x,y) = ϕF(x,y), for all (x,y) ∈ X×Y ;
(iii) For (x̄, ȳ) ∈ gphF, ∂̂ϕ(x̄, ȳ) = ∂̂dF(x̄, ȳ).

The first theorem concerns the Fréchet subdifferential. Note that the part (i) of
Theorem 4.1 could be derived. directly from [38, Prop. 4.1] and Observation 1-(iii).
For the reader’s convenience, we give a direct proof.

Theorem 4.1 Let F : X ⇒ Y be a multifunction between Banach spaces X ,Y. For
(x̄, ȳ) ∈ Domϕ, one has

(i) If (x̄, ȳ) ∈ gphF then

∂̂ϕ(x̄, ȳ) =
{
(x∗,y∗) ∈ X∗×Y ∗ : (x∗,y∗) ∈ N̂gphF(x̄, ȳ), ‖y∗‖ ≤ 1

}
.

(14)
(ii) Suppose that X and Y are Asplund spaces and F is closed. If (x̄, ȳ) /∈ gphF then

∂̂ϕ(x̄, ȳ)⊆


(x∗,y∗) ∈ X∗×Y ∗ :

∀(xn)→ x̄, ∀(yn), (xn,yn) ∈ gphF ;
(‖ȳ− yn‖)→ ϕ(x̄, ȳ), ∃(un,vn) ∈ gphF,
(u∗n,v

∗
n) ∈ N̂gphF(un,vn);

‖(un,vn)− (xn,yn)‖→ 0;
‖u∗n− x∗‖→ 0; ‖v∗n− y∗‖→ 0; ‖y∗‖= 1
|〈y∗, ȳ− vn〉−‖ȳ− vn‖| → 0


.

(15)

Moreover, if F is ρ-paraconvex for some gauge ρ : X → R+ satisfying (C1)−
(C3), then we have equality.
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Proof. (i). Assume (x̄, ȳ) ∈ gphF, then ϕ(x̄, ȳ) = 0. For (x∗,y∗) ∈ ∂̂ϕ(x̄, ȳ), for any
ε > 0, there is δ > 0 such that

〈(x∗,y∗),(x,y)− (x̄, ȳ)〉 ≤ ϕ(x,y)+ ε‖(x,y)− (x̄, ȳ)‖,

for all (x,y) ∈ (x̄, ȳ)+δBX×Y . Thus

〈(x∗,y∗),(x,y)− (x̄, ȳ)〉 ≤ ε‖(x,y)− (x̄, ȳ)‖,

for all (x,y)∈ ((x̄, ȳ)+δBX×Y )∩gphF . This shows that (x∗,y∗)∈ N̂gphF(x̄, ȳ). More-
over, since 〈y∗,y− ȳ〉 ≤ d(y,F(x̄))+ ε‖y− ȳ‖ ≤ (1+ ε)‖y− ȳ‖ for all y ∈ ȳ+ δBY ,
this implies that ‖y∗‖ ≤ 1. Conversely, for (x∗,y∗) ∈ N̂gphF(x̄, ȳ), with ‖y∗‖ ≤ 1, then
for any ε ∈ (0,1), there is δ ∈ (0,ε) such that

〈(x∗,y∗),(x,y)− (x̄, ȳ)〉 ≤ ε‖(x,y)− (x̄, ȳ)‖, (16)

for all (x,y) ∈ ((x̄, ȳ)+δBX×Y )∩gphF. Pick η > 0 such that

η ∈ (0,δ/4) and (‖x∗‖+‖y∗‖)η < δ/2. (17)

Let (x,y) ∈ B((x̄, ȳ),η) with (x,y) 6= (x̄, ȳ) be given arbitrarily. If ϕ(x,y)≥ δ/2 then

〈(x∗,y∗),(x,y)− (x̄, ȳ)〉 ≤ (‖x∗‖+‖y∗‖)η < δ/2≤ ϕ(x,y), (18)

otherwise, pick sequences (δn) ↓ 0, δn ∈ (0,η); (un)∈B(x,δn) and (vn) with (un,vn)∈
gphF such that

‖y− vn‖ ≤ ϕ(x,y)+δn‖(x,y)− (x̄, ȳ)‖. (19)

If ϕ(x,y)> (‖x∗‖+‖y∗‖)‖(x,y)− (x̄, ȳ)‖, then

〈(x∗,y∗),(x,y)− (x̄, ȳ)〉 ≤ ‖(x∗,y∗)‖‖(x,y)− (x̄, ȳ)‖< ϕ(x,y), (20)

otherwise, as ϕ(x,y)< δ/2,

‖vn− ȳ‖< ‖y− vn‖+‖y− ȳ‖ ≤ ϕ(x,y)+δn‖(x,y)− (x̄, ȳ)‖+‖y− ȳ‖
< δ/2+(δn +1)η < δ .

So, (un,vn) ∈ B((x̄, ȳ),δ ), and therefore by (16),

〈(x∗,y∗),(un,vn)− (x̄, ȳ)〉 ≤ ε‖(un,vn)− (x̄, ȳ)‖.

Hence, one obtains the following estimates, by ‖y∗‖ ≤ 1; un ∈ B(x,δn); relation (19),
and ϕ(x,y)≤ (‖x∗‖+‖y∗‖)‖(x,y)− (x̄, ȳ)‖,

〈(x∗,y∗),(x,y)− (x̄, ȳ)〉
= 〈(x∗,y∗),(un,vn)− (x̄, ȳ)〉+ 〈x∗,x−un〉+ 〈y∗,y− vn〉
≤ ε‖(un,vn)− (x̄, ȳ)‖+‖x∗‖δn +‖y− vn‖
≤ (ε +‖x∗‖)δn +‖y− vn‖+ ε(‖(x,y)− (x̄, ȳ)‖+‖y− vn‖)
≤ (ε +‖x∗‖)δn +ϕ(x,y)+δn‖(x,y)− (x̄, ȳ)‖
+ ε(1+‖x∗‖+‖y∗‖+δn)‖(x,y)− (x̄, ȳ)‖.
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By letting n→ ∞, one obtains

〈(x∗,y∗),(x,y)− (x̄, ȳ)〉 ≤ ϕ(x,y)+ ε(1+‖x∗‖+‖y∗‖)‖(x,y)− (x̄, ȳ)‖.

This relation, together with (18) and (20), and the fact that ε > 0 is arbitrary, yield
(x∗,y∗) ∈ ∂̂ϕ(x̄, ȳ), which completes the proof of (i).

(ii). Let (x̄, ȳ) /∈ gphF, and (x∗,y∗) ∈ ∂̂ϕ(x̄, ȳ) be given. Let sequences (xn)→
x̄, (yn), such that (xn,yn) ∈ gphF for all n ∈ N and ‖ȳ− yn‖ → ϕ(x̄, ȳ). Picking a
sequence (εn) ↓ 0, with εn ∈ (0,1) for all n, then there is a sequence (δn) ↓ 0, δn ∈
(0,1), such that

〈(x∗,y∗),(x,y)− (x̄, ȳ)〉 ≤ ϕ(x,y)−ϕ(x̄, ȳ)+ εn‖(x,y)− (x̄, ȳ)‖, (21)

for all (x,y) ∈ (x̄, ȳ)+δnBX×Y . For each n ∈ N, set

k(n) := max
{

k ∈ N : max
i≥n

{
‖xi− x̄‖,‖ȳ− yi‖−ϕ(x̄, ȳ)

}
≤ δ

2
k /8
}
.

Proceeding similarly to the proof of Theorem 3.1 (k(n)) is a non-decreasing and
unbounded sequence. Using (21), one derives that for all (x,y) ∈ (x̄, ȳ)+ δk(n)BX×Y
and every integer,

〈(x∗,y∗),(x,y)−(x̄, ȳ)〉≤ ‖y−v‖+δgphF(x,v)−‖ȳ−yn‖+δ
2
k(n)/8+εk(n)δk(n). (22)

Define the function g : X×Y ×Y → R∪{+∞} by

g(x,y,v) = ‖y− v‖+δgphF(x,v)−〈(x∗,y∗),(x,y)〉, (x,y,v) ∈ X×Y ×Y.

Relation (22) implies

g(xn, ȳ,yn)≤ inf{g(x,y,v) : (x,y) ∈ (x̄, ȳ)+δk(n)BX×Y , (x,v) ∈ gphF}+αn,

where, αn = (1+‖x∗‖)δ 2
k(n)/8+ εk(n)δk(n). Setting βn := (1+‖x∗‖)δk(n)/2+4εk(n)

and applying the Ekeland Variational Principle [39], take (an, b̄n,bn) ∈ (xn, ȳ,yn)+
(δk(n)/4)BX×Y×Y with (an,bn) ∈ gphF, such that

g(an, b̄n,bn)≤ g(x,y,v)+βn‖(x,y,v)− (an, b̄n,bn))‖,

for all (x,y) ∈ (x̄, ȳ)+δk(n)BX×Y , with (x,v) ∈ gphF . Consequently,

(0,0,0) ∈ ∂̂ [g+βn‖ ·−(an, b̄n,bn))‖](an, b̄n,bn).

In view of the fuzzy sum rule ( [26]), there exist

(un,vn) ∈ gphF ∩ ((an,bn)+(δk(n)/4)BX×Y ); (u∗n,v
∗
n) ∈ N̂gphF(un,vn);

(zn,wn) ∈ (b̄n,bn)+(δk(n)/4)BX×Y ; (z∗n,w
∗
n) ∈ ∂̂‖ ·− ·‖(zn,wn)

such that
‖(x∗,y∗,0)− (0,z∗n,w

∗
n)− (u∗n,0,v

∗
n)‖ ≤ 2βn. (23)
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As,

‖(un,vn)− (an,bn)‖ ≤ δk(n)/4 and ‖(an,bn)− (xn,yn)‖ ≤ δk(n)/4,

one has ‖(un,vn)− (xn,yn)‖→ 0, as n→ ∞. On one hand, inequality (23), yields

‖u∗n− x∗‖→ 0, ‖z∗n− y∗‖→ 0, and ‖w∗n + v∗n‖→ 0.

On the other hand, we know that (x̄, ȳ) /∈ gphF , (xn,yn)∈ gphF , xn→ x̄, zn→ ȳ. Sup-
pose by contradiction that for large n, (n≥ n0), wn≡ zn. Then wn→ ȳ and also yn→ ȳ.
Thus, (xn,yn) ∈ gphF→ (x̄, ȳ). Hence, (x̄, ȳ) ∈ gphF , a contradiction. Therefore, for
n ≥ n0, wn 6= zn. Thus, from the relation (z∗n,w

∗
n) ∈ ∂̂‖ ·− · ‖(zn,wn), it follows that

‖z∗n‖= 1, w∗n =−z∗n, and 〈z∗n,zn−wn〉= ‖zn−wn‖. Thus, as w∗n =−z∗n, ‖w∗n+v∗n‖→ 0
and z∗n → y∗, it yields ‖v∗n− y∗‖ → 0. Moreover, since zn → ȳ, ‖wn− vn‖ → 0, and
‖z∗n− y∗‖→ 0, one obtains

|〈y∗, ȳ− vn〉−‖ȳ− vn‖| → 0 and ‖y∗‖= 1.

Hence (15) is shown.

Suppose now F isρ-paraconvex with respect to some κ > 0, for some function
ρ verifying (C1)− (C3). Let (x∗,y∗) be in the set of the right side of (15). Since
(u∗n,v

∗
n) ∈ N̂gphF(un,vn), thanks to Theorem 3.2, one has

〈(u∗n,v∗n),(u,v)− (un,vn)〉 ≤ κρ(u−un), (24)

for all (u,v) ∈ gphF. For (x,y) ∈ Domϕ, there are sequence (zn)→ x, (wn) with
wn ∈ F(zn), such that ‖y−wn‖→ ϕ(x,y). One has

〈(x∗,y∗),(x,y)− (x̄, ȳ)〉= 〈x∗,x− zn +un− x̄〉+ 〈(x∗,y∗),(zn,wn)− (un,vn)〉
+ 〈y∗,y−wn〉−〈y∗, ȳ− vn〉

≤ 〈x∗,x− zn +un− x̄〉+κρ(zn−un)+‖y−wn‖−〈y∗, ȳ− vn〉.

By letting n→ ∞, as (un)→ x̄; (zn)→ x; ‖y−wn‖ → ϕ(x,y), and 〈y∗, ȳ− vn〉 →
ϕ(x̄, ȳ), one obtains

〈(x∗,y∗),(x,y)− (x̄, ȳ)〉 ≤ ϕ(x,y)−ϕ(x̄, ȳ)+κρ(x− x̄),

showing (x∗,y∗) ∈ ∂̂ϕ(x̄, ȳ). The proof ends. �

The preceding theorem yields the following corollary.

Corollary 4.1 Suppose that X and Y are Asplund spaces and that F is a closed mul-
tifunction. Given (x̄, ȳ) /∈ gphF, assume that the projection PF(x̄)(ȳ) of ȳ onto F(x̄) is
nonempty, and that ϕ(x̄, ȳ) = d(ȳ,F(x̄)). Then for any v̄ ∈ PF(x̄)(ȳ), one has

∂̂ϕ(x̄, ȳ)⊆
{
(x∗,y∗) ∈ X∗×Y ∗ : (x∗,y∗) ∈ N̂gphF(x̄, v̄); ‖y∗‖= 1

〈y∗, ȳ− v̄〉= d(ȳ,F(x̄))

}
. (25)

[ Moreover, equality holds in (25) if F is ρ-paraconvex for some gauge ρ : X → R+

satisfying (C1)− (C3).
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Proof. Inclusion (25) follows directly from (15) by picking (xn) = (un) := (x̄);(yn) =
(vn) := (v̄). Next, take (x∗,y∗) in the set of the right side of (25). One has

〈(x∗,y∗),(u,v)− (x̄, v̄)〉 ≤ κρ(x− x̄), (26)

for all (u,v) ∈ gphF. For (x,y) ∈ Domϕ, pick (zn)→ x, (wn) with wn ∈ F(zn), such
that ‖y−wn‖→ ϕ(x,y). One has

〈(x∗,y∗),(x,y)− (x̄, ȳ)〉 = 〈x∗,x− zn〉+ 〈(x∗,y∗),(zn,wn)− (x̄, v̄)〉
+〈y∗,y−wn〉−〈y∗, ȳ− v̄〉
≤ 〈x∗,x− zn〉+κρ(zn− x̄)+‖y−wn‖−〈y∗, ȳ− v̄〉.

By letting n→ ∞, as (zn)→ x, ‖y−wn‖ → ϕ(x,y), and 〈y∗, ȳ− v̄〉 = d(ȳ,F(x̄)) =
ϕ(x̄, ȳ), one obtains

〈(x∗,y∗),(x,y)− (x̄, ȳ)〉 ≤ ϕ(x,y)−ϕ(x̄, ȳ)+κρ(x− x̄),

showing that (x∗,y∗) ∈ ∂̂ϕ(x̄, ȳ). �

Remark 4.1 It is important to observe that in the proof of part (ii) of Theorem 4.1,
the Asplund property of the spaces under consideration is only needed for using the
fuzzy sum rule for Fréchet subdifferentials. When F is ρ-paraconvex, according to
Theorem 3.2, gphF is Clarke regular, that is N↑gphF(x̄, ȳ) = N̂gphF(x̄, ȳ) for all (x̄, ȳ) ∈
gphF . Also, instead of using in the proof of the preceding theorem the fuzzy sum
rule for Fréchet subdifferentials in Asplund spaces, we may use the sum rule for
Clarke-Rockafellar subdifferentials. Hence, we may establish that inclusion (15) in
Theorem 4.1, as well as, (25) in Corollary 4.1, are valid for any graphically Clarke
regular multifunction F between Banach spaces X and Y. Moreover, when F is ρ-
paraconvex for ρ verifying (C1)−(C3), equality in (15) and (25) holds in any Banach
space.

In general Banach spaces, for establishing an estimate of the Clarke-Rockafellar sub-
differential ∂ ↑ϕ(x̄, ȳ) at points (x̄, ȳ) ∈Domϕ, outside of the graph of F, we need the
following (graphical) norm-to-weak closedness of F :

Definition 4.1 A multifunction F : X ⇒ Y is said to be (graphically) norm-to-weak
closed at x̄ ∈ DomF, if for any sequences (un) and (vn) with (un,vn) ∈ gphF such
that (un)→ x̄, and (vn) converges weakly to some v̄, one has (x̄, v̄) ∈ gphF. We shall
say that F is norm-to-weak closed if it is norm-to-weak closed at all point x∈DomF.

Obviously, in finite dimension, graphically norm-to-weak closed property coincides
with the usual graphical closedness property. As shown in the following Lemma 4.1,
when Y is reflexive, graphical norm-to-weak closedness and graphical strong closed-
ness for paraconvex multifunctions agree.

Lemma 4.1 Let Y be a reflexive space, and let F : X ⇒ Y be a ρ-paraconvex multi-
function for ρ verifying (C1)− (C2). If F is graphically (strongly) closed, then F is
graphically norm-to-weak closed.
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Proof. Let x ∈ DomF. Take equences (un)→ x, (vn) with (un,vn) ∈ gphF and (vn)
converging weakly to v∈Y. By the Mazur Lemma, we may find convex combinations

wn =
N(n)

∑
k=n

θ
(n)
k vk, where θ

(n)
k ∈ [0,1] and

N(n)

∑
k=n

θ
(n)
k = 1,

such that (wn) converges strongly to v. As F is ρ-paraconvex, thanks to Lemma 2.1,
forzk = ∑

N(k)
i=k θ

(k)
i ui, there is yn ∈ F(zn) such that

‖yn−wn‖ ≤ κ ∑
N(n)
k=n θ

(n)
k (1−θ

(n)
k )maxn≤ j≤N(n) ρ(u j−uk)

≤ κ maxn≤i, j≤N(n) ρ(u j−ui).

Since un → x, (wn)→ v, ρ is continuous and F is (strongly) closed, then (yn)→ v,
and one obtains that v ∈ F(x). �

Lemma 4.2 Let Y be reflexive and F : X ⇒Y be a norm-to-weak closed multifunction
at x̄ ∈ DomF. Then PF(x̄)(y) 6= /0 and ϕ(x̄,y) = d(y,F(x̄)) for all y ∈ Y.

Proof. For y ∈ Y, pick sequences (un)→ x̄ and (vn) with (un,vn) ∈ gphF such that
‖y− vn‖ → ϕ(x̄,y). Then (vn) is bounded. So, since Y is reflexive, there is a subse-
quence (vk(n)) converging weakly to some v̄ ∈ F(x̄) according to the norm-to weak
closedness of F . Hence

d(y,F(x̄))≥ ϕ(x̄,y) = lim
n
‖y− vn‖ ≥ ‖y− v̄‖ ≥ d(y,F(x̄)).

So, v ∈ PF(x̄)(y) and ϕ(x̄,y) = d(y,F(x̄)). �

Recall that a Banach space Y is said to have the Kadec-Klee property if the se-
quential weak convergence on the unit sphere SY of Y coincides with the norm conver-
gence. Equivalently, whenever a sequence (xn) in X satisfies ‖xn‖→ ‖x̄‖ and xn → x̄
weakly, then lim

n→+∞
‖xn− x̄‖= 0. It is well known that Lp -spaces (1 < p <+∞) have

the Kadec-Klee property.

Theorem 4.2 Let F : X ⇒Y be a closed multifunction between Banach spaces X and
Y. Let (x̄, ȳ) ∈ Domϕ be given.

(i) For (x̄, ȳ) ∈ gphF, one has

N↑gphF(x̄, ȳ) = clw∗
⋃

λ≥0

λ∂
↑
ϕ(x̄, ȳ), (27)

where the symbol clw∗ denotes the weak∗ closure.
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(ii) For x̄ ∈ DomF, (x̄, ȳ) ∈ (X ×Y ) \ gphF, assume that Y is a reflexive space with
the norm on Y satisfying the Kadec-Klee property, and that F is (graphically)
norm-to-weak closed at x̄. Then one has

∂
↑
ϕ(x̄, ȳ)×{0} ⊆ clw∗co


(x∗,y∗,v∗− y∗) ∈ X∗×Y ∗×Y ∗ :
v̄ ∈ PF(x̄)(ȳ), (x∗,v∗) ∈ N↑gphF(x̄, v̄);
‖y∗‖= 1; 〈y∗, ȳ− v̄〉= d(ȳ,F(x̄))

 ,

(28)

where the notation clw∗co denotes the weak∗ closed convex hull. As a result, if
PF(x̄)(ȳ) is singleton (which holds e.g., when the norm on Y is strictly convex and
F(x̄) is convex), then

∂
↑
ϕ(x̄, ȳ)⊆

{
(x∗,y∗) ∈ X∗×Y ∗ : v̄ = PF(x̄)(ȳ), (x∗,y∗) ∈ N↑gphF(x̄, v̄);

‖y∗‖= 1; 〈y∗, ȳ− v̄〉= d(ȳ,F(x̄))

}
.

(29)

Proof. (i). Define the function ψ : X×Y ×Y → R∪{+∞} by

ψ(x,y,v) = ‖y− v‖+δgphF(x,v), (x,y,v) ∈ X×Y ×Y.

Given (u,d) ∈ X×Y, take sequences (εn) ↓ 0, (xn,yn)−→
ϕ

(x̄, ȳ), (tn) ↓ 0 such that

ϕ
↑((x̄, ȳ),(u,d)) = lim

n→∞
inf

(u′,d′)∈(u,d)+εnBX×Y

ϕ((xn,yn)+ tn(u′,d′))−ϕ(xn,yn)

tn
.

Pick (zn,vn) ∈ gphF such that zn− xn = tnεnan/2 with

‖an‖ ≤ 1 and ‖yn− vn‖ ≤ ϕ(xn,yn)+ t2
n .

Note that (vn)→ ȳ since (ϕ(xn,yn))→ 0 and (yn)→ ȳ, and for any (u′,d′,w′) ∈
(u,d,w)+(εn/2)BX×Y×Y , we have

ψ(((zn,yn,vn)+ tn(u′,d′,w′))

= ‖(yn + tnd′)− (vn + tnw′)‖+δgphF(zn + tnu′,vn + tnw′)

≥ ‖(yn + tnd′)− (vn + tnw′)‖ with vn + tnw′ ∈ F(zn + tnu′)

≥ d((yn + tnd′),F(zn + tnu′))≥ ϕ(zn + tnu′,yn + tnd′).

Combining this inequality with the fact that

ψ(xn,yn,vn) = ‖yn− vn‖ ≤ ϕ(xn,yn)+ t2
n ,

one has

ψ((zn,yn,vn)+ tn(u′,d′,w′))−ψ(zn,yn,vn)

tn
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≥ ϕ(xn + tn(u′+ εnan/2),yn + tnd′)−ϕ(xn,yn)

tn
− tn. (30)

As u′ ∈ u+εn/2BX , u′+εnan/2 ∈ u+εnBX , for all (u,d,w) ∈ X×Y ×Y , (30) yields

ψ↑((x̄, ȳ, ȳ),(u,d,w))

≥ limsupn→∞ inf(u′,d′)∈(u,d)+(εn/2)BX×Y

ϕ(xn + tn(u′+ εnan/2),yn + tnd′)−ϕ(xn,yn)

tn
≥ ϕ↑((x̄, ȳ),(u,d)).

Hence, ∂ ↑ϕ(x̄, ȳ)×{0} ⊆ ∂ ↑ψ(x̄, ȳ, ȳ), and by the sum rule applied to the Clarke-
Rockafellar subdifferential of ψ, one obtains

∂
↑
ϕ(x̄, ȳ)⊆

{
(x∗,y∗) ∈ N↑gphF(x̄, ȳ), ‖y

∗‖ ≤ 1
}
,

and therefore,
clw∗

⋃
λ≥0

λ∂
↑
ϕ(x̄, ȳ)⊆ N↑gphF(x̄, ȳ).

For the opposite inclusion, consider the distance function dgphF to the graph of F on
the product space X×Y, endowed with the norm

‖(x,y)‖= ‖x‖+‖y‖, (x,y) ∈ X×Y.

Due to ( [22, Prop. 2.4.2]),

N↑gphF(x̄, ȳ) = clw∗
⋃

λ≥0

λ∂
↑dgphF(x̄, ȳ).

Hence it suffices to show that ∂ ↑dgphF(x̄, ȳ)⊆ ∂ ↑ϕ(x̄, ȳ), or equivalently,

d↑gphF((x̄, ȳ),(u,w))≤ ϕ
↑((x̄, ȳ),(u,w)), ∀(u,w) ∈ X×Y.

Indeed, for (u,w) ∈ X×Y, pick (εn) ↓ 0, (xn,yn)→ (x̄, ȳ), (tn) ↓ 0 such that

d↑gphF((x̄, ȳ),(u,w))= lim
n→∞

inf
(u′,w′)∈(u,w)+εnBX×Y

dgphF((xn,yn)+ tn(u′,w′))−dgphF(xn,yn)

tn
.

Pick (un,vn) ∈ gphF, such that

d((xn,yn),(un,vn)) = ‖xn−un‖+‖yn− vn‖ ≤ dgphF(xn,yn)+ t2
n .

and note that since (xn,yn)→ (x̄, ȳ), then (un,vn)→ (x̄, ȳ).
For (u′,w′) ∈ (u,w) + εnBX×Y , with ϕ(un + tnu′,yn + tnw′) < +∞, select a se-

quence (zn,wn) ∈ gphF such that

‖zn−un− tnu′‖ ≤ t2
n ;

‖yn + tnw′−wn‖ ≤ ϕ(un + tnu′,yn + tnw′)+ t2
n .
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One has

ϕ(un + tnu′,yn + tnw′)−ϕ(un,yn)≥ ‖yn + tnw′−wn‖− t2
n −‖yn− vn‖

≥ dgphF(xn + tnu′,yn + tnw′)−‖xn + tnu′− zn‖−‖yn− vn‖− t2
n

≥ dgphF(xn + tnu′,yn + tnw′)−‖un + tnu′− zn‖−‖xn−un‖−‖yn− vn‖− t2
n

≥ dgphF(xn + tnu′,yn + tnw′)−dgphF(xn,yn)−3t2
n .

Thus

ϕ
↑((x̄, ȳ),(u,w))

≥ limsup
n→∞

inf
(u′,w′)∈(u,w)+εnBX×Y

ϕ((un,yn)+ tn(u′,w′))−ϕ(un,yn)

tn

≥ lim
n→∞

inf
(u′,w′)∈(u,w)+εnBX×Y

dgphF((xn,yn)+ tn(u′,w′))−dgphF(xn,yn)

tn

= d↑gphF((x̄, ȳ),(u,w)),

for all (u,w) ∈ X×Y, which completes the proof of (i).

(ii). Consider the function ψ as before. Given (u,d) ∈ X ×Y, take sequences
(εn) ↓ 0, ((xn,yn))−→

ϕ
(x̄, ȳ), (tn) ↓ 0 such that

ϕ
↑((x̄, ȳ),(u,d)) = lim

n→∞
inf

(z,w)∈(u,d)+εnBX×Y

ϕ((xn,yn)+ tn(z,w))−ϕ(xn,yn)

tn
.

Pick (zn), (vn) such that

(zn,vn) ∈ gphF ;
zn− xn = tnεnan/2 with ‖an‖ ≤ 1;

‖yn− vn‖ ≤ ϕ(xn,yn)+ t2
n .

Observing that

‖vn‖ ≤ ‖yn− vn‖+‖yn‖ ≤ ϕ(xn,yn)+ t2
n +‖yn‖,

and combining this estimate along with the convergence of (ϕ(xn,yn)) to ϕ(x̄, ȳ) and
(yn) to ȳ, one concludes that (vn) is bounded. Moreover, due to the reflexivity of Y and
the graphical norm-to-weak closednes of F , relabeling if necessary, we may assume
that the whole sequence (vn) converges weakly to some v̄ ∈ F(x̄). Therefore, one has

ϕ(x̄, ȳ)≤ ‖ȳ− v̄‖ ≤ lim
n→∞
‖yn− vn‖= lim

n→∞
ϕ(xn,yn) = ϕ(x̄, ȳ),

and consequently, ‖ȳ− v̄‖ = ϕ(x̄, ȳ). This yields v̄ ∈ PF(x̄)(ȳ). Moreover, as (vn)
converges weakly to v̄ and ‖yn − vn‖ → ‖ȳ− v̄‖, due to the Kadec-Klee property,
(vn)→ v̄, strongly. Now for any w ∈ Y, one has

ψ
↑((x̄, ȳ, v̄),(u,d,w))

≥ limsup
n→∞

inf
(u′,d′,w′)∈(u,d,w)+(εn/2)BX×Y×Y

ψ((zn,yn,vn)+ tn(u′,d′,w′))−ψ(zn,yn,vn)

tn
.
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For any (u′,d′,w′) ∈ (u,d,w)+ (εn/2)BX×Y×Y , let’s proceed as in the proof of
the first part of (i). Since

ψ(((zn,yn,vn)+tn(u′,d′,w′))≥ϕ(zn+tnu′,yn+tnd′)=ϕ(xn+tn(u′+εnan/2),yn+tnd′),

and

ψ(xn,yn,vn) = ‖yn− vn‖ ≤ ϕ(xn,yn)+ t2
n ,

one has
ψ((zn,yn,vn)+ tn(u′,d′,w′))−ψ(zn,yn,vn)

tn

≥ ϕ(xn + tn(u′+ εnan/2),yn + tnd′)−ϕ(xn,yn)

tn
− tn.

As u′ ∈ u+ ε/2BX , u′+ εnan/2 ∈ u+ εnBX , therefore one obtains

ψ
↑((x̄, ȳ, v̄),(u,d,w))

≥ limsup
n→∞

inf
(u′,d′)∈(u,d)+(εn/2)BX×Y

ϕ(xn + tn(u′+ εnan/2),yn + tnd′)−ϕ(xn,yn)

tn

≥ ϕ
↑((x̄, ȳ),(u,d)).

Hence,

ϕ
↑((x̄, ȳ),(u,d))≤ sup{ψ↑((x̄, ȳ, v̄),(u,d,w)) : v̄ ∈ PF(x̄)(ȳ)},

for all (u,d,w) ∈ X×Y ×Y. Obviously, for any v̄ ∈ PF(x̄)(ȳ),

ψ
↑((x̄, ȳ, v̄),(u,d,w))>−∞, for all (u,d,w) ∈ X×Y ×Y.

Thus ψ↑((x̄, ȳ, v̄), ·) : X×Y ×Y →R∪{+∞} is lower semicontinuous and sublinear.
Hence, thanks to (Hörmander [40] or [22, Prop. 2.1.4]), one has

∂
↑
ϕ(x̄, ȳ)×{0} ⊆ clw∗co{∂ ↑ψ(x̄, ȳ, v̄) : v ∈ PF(x̄)(ȳ)}.

Applying the sum rule to the Clarke-Rockafellar subdifferential, for all v̄ ∈ PF(x̄)(ȳ),
we have

∂
↑
ψ(x̄, ȳ, v̄)⊆

{
(x∗,y∗,w∗+ v∗) : (y∗,w∗) ∈ ∂

↑‖ ·− ·‖Y (ȳ, v̄), (x∗,v∗) ∈ N↑gphF(x̄, v̄)
}
.

Consequently,

∂
↑
ψ(x̄, ȳ, v̄)⊆

{
(x∗,y∗,v∗− y∗) ∈ X∗×Y ∗×Y ∗ : (x∗,v∗) ∈ N↑gphF(x̄, v̄);

‖y∗‖= 1; 〈y∗, ȳ− v̄〉= d(ȳ,F(x̄))

}
.

Combining this inclusion with the previous relation shows (28). �
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5 ρ-paraconvexity and ρ-paramonotonicity

It is well known that the convexity of a lower semicontinuous function is charac-
terized by the monotonicity of its subdifferential. To characterize some notions of
generalized convexity, some corresponding generalized monotonicity have been in-
troduced in the literature. For instance, in this generalized direction of paraconvex-
ity considered in the present paper, γ−monotonicity for some γ ∈ [1,2), was used
in [9], (or more general α(·)−paramonotonicity in [5]), and approximate monotonic-
ity in [27]. We introduce a notion of ρ−monotonicity associated to a gauge ρ for a
multifunctions T : X ⇒ X∗, which generalizes naturally the one of γ−monotonicity
for some γ > 0 ( [9], see also [5, 41]).

Definition 5.1 Suppose given a Banach space X with continuous dual X∗, and a
gauge ρ : X → R+. A multifunction T : X ⇒ X∗ is called ρ−paramonotone with
respect to some constant κ > 0 if

〈x∗1− x∗2,x1− x2〉 ≥ −κρ(x1− x2), ∀(xi,x∗i ) ∈ gphT, i = 1,2.

If F (X) stands for set of all lower semicontinuous extended-real-valued functions
f : X → R∪{+∞}, recall that (see, e.g., [27]) a subdifferential is a correspondence
∂ : F (X)×X ⇒X∗ which assigns to any f ∈F (X), and x∈Dom f a subset ∂ f (x)⊆
X∗ such that 0 ∈ ∂ f (x) if x is a local minimizer of f .

Definition 5.2 [Fuzzy Mean Value Theorem], [27, Def. 6]) A subdifferential ∂ is
said to be valuable on X , if for any x̄, ȳ ∈ X , with x̄ 6= ȳ, and for any (l.s.c.) lower
semicontinuous function f : X→R∪{+∞} finite at x̄ and for any r∈R with f (ȳ)≥ r,
there exist u ∈ [x̄, ȳ[:= {tx̄+(1− t)ȳ : t ∈ (0,1]} and sequences (un)→ u, (u∗n) such
that u∗n ∈ ∂ f (un), ( f (un))→ f (u),

(i) liminf
n→∞

〈u∗n, ȳ− x̄〉 ≥ r− f (x̄);

(ii) liminf
n→∞

〈
u∗n,

ȳ−un

‖ȳ−u‖

〉
≥ r− f (x̄)
‖ȳ− x̄‖

;

(iii) lim
n→∞
‖u∗n‖d[x̄,ȳ](un) = 0.

This fuzzy mean value property was firstly established by Zagrodny [42] for the
Clarke-Rockafellar subdifferential in Banach spaces. Its extensions have been devel-
oped in the literature for some classes of subdifferentials (see [43] and the references
given therein). For our purpose, we just mention that the Clarke-Rockafellar subdif-
ferential is valuable on any Banach space; the Hadamard subdifferential is valuable
on any Hadamard smooth Banach space, and the Fréchet subdifferential is valuable
on every Asplund space.

Also, let us mention the dag subdifferential associated to the dag derivative and
introduced in [30]:

f †(x,v) := limsup
t↓0,y→ f x

1
t
( f (y+ t(v+ x− y))− f (y)) x ∈ Dom f , v ∈ X ;

∂
† f (x) = {x∗ ∈ X∗ : 〈x∗,v〉 ≤ f †(x,v), ∀v ∈ X},
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when x ∈ Dom f , and ∂ † f (x) = /0, otherwise. It seems to be the largest possible sub-
differential to be used in our context. In particular, it contains the Clarke-Rockafellar
subdifferential.

The following subdifferential characterizations generalize the usual convex case,
and the one of γ−convexity for γ ∈ (1,2] in [8]). The proof which is omitted is stan-
dard, and similar to the one in [27, Theo. 10] in which the characterizations of ap-
proximate convexity have been established.

Theorem 5.1 Let ρ : X → R+ be a gauge verifying (C1)− (C3) on a Banach space
X . Let f : X → R∪{+∞} be a lower semicontiuous function. Le ∂ be a suddiffer-
ential operator such that for any f , ∂ f is contained in ∂ † f . Consider the following
assertions:

(i) f is ρ-paraconvex;
(ii) there is some κ > 0 such that for all x ∈ Dom f , and all u ∈ X ,

f †(x,u)≤ f (x+u)− f (x)+κρ(u);

(iii) there is some κ > 0 such that for all x ∈ Dom f , and all x∗ ∈ ∂ f (x),

〈x∗,u〉 ≤ f (x+u)− f (x)+κρ(u), for all u ∈ X ;

(iv) ∂ f is ρ−paramonotone.

Then (i)⇒ (ii)⇒ (iii)⇒ (iv). If moreover, ∂ is valuable, then all assertions are
equivalent.

The preceding theorem subsumes the equivalence between ρ-paraconvexity of ϕF
and ρ−paramonotonicity of ∂ϕF , where ∂ is either the Clarke-Rockafellar subdiffer-
ential on Banach spaces X×Y , or the Fréchet subdifferential when X ,Y are Asplund
spaces. In the following theorem, we show that ρ-paraconvexity of the function ϕF
can be characterized by the ρ−monotonicity of ∂ϕF ∩(X∗×SY ∗), for the appropriate
subdifferential ∂ , where SY ∗ stands for the unit sphere in Y ∗.
Here we adopt the notion of (relative) radial continuity of a function, which means
continuity along segments whose extremities belong to the domain of the function.
From Proposition 2.2 and ( [28, Cor. 3.3]), one has the following lemma.

Lemma 5.1 If F : X ⇒Y is ρ-paraconvex for a gauge ρ verifying (C1)− (C2), then
ϕF is radially continuous.

Theorem 5.2 Let ρ : X→R+ be a given gauge verifying (C1)−(C3). Let F : X ⇒Y
be a closed multifunction between Banach spaces X and Y. Then the function ϕF
is ρ-paraconvex if and only if ϕF is radially continuous, F has convex values and
∂ϕF ∩ (X∗×SY ∗) is ρ−paramonotone, provided that

(i) either ∂ = ∂̂ and X ,Y being Asplund spaces; moreover, in this case, for the suffi-
cient part, the condition for F to have convex values can be removed,

(ii) or ∂ = ∂ ↑, Y is reflexive with a strictly convex norm having the Kadec-Klee prop-
erty, the multifunction F is graphically norm-to-weak closed.
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Due to ( [28, Cor. 3.3]), the ρ−paraconvexity of ϕF implies immediately the radial
continuity of ϕF . If ϕF is ρ−paraconvex, then for any x̄ ∈ X , ϕF(x̄, ·) is convex with
respect to the variable y. Therefore, since ϕF(x̄,y1) = ϕF(x̄,y1) = 0, then for any
y1,y2 ∈ F(x̄), or any y ∈ [y1,y2], ϕF(x̄,y) = 0, which implies y ∈ F(x̄), i.e., F has
convex values. So the necessary part is a corollary of the preceding theorem. For the
sufficiency part, assume that ϕ := ϕF is radially continuous and there is some κ > 0
such that for ∂ = ∂ ↑, or ∂̂ ,

〈(x∗1,y∗1)− (x∗2,y
∗
2),(x1,y1)− (x2,y2)〉 ≥ −κρ(x1− x2), (31)

for all ((xi,yi),(x∗i ,y
∗
i ))∈ gph∂ϕ∩(X×Y ×X∗×SY ∗). Let (xi,yi)∈Domϕ be given

with (x1,y1) 6= (x2,y2). Given t ∈ (0,1), set (x,y) = t(x1,y1) + (1− t)(x2,y2). We
shall show that

ϕ(x,y)≤ tϕ(x1,y1)+(1− t)ϕ(x2,y2)+2κt(1− t)ρ(x1− x2). (32)

If ϕ(x,y) = 0, then (32) holds trivially. Otherwise, consider the case ϕ(x,y)> 0. By
the lower semicontinuity of ϕ, select (ūi, v̄i) ∈ [(xi,yi),(x,y)[, i = 1,2, such that

ϕ(u,v)> 0, for all (u,v) ∈](ū1, v̄1),(ū2, v̄2)[, (33)

and
either (ūi, v̄i) = (xi,yi) or ϕ(ūi, v̄i) = 0, for i = 1 or 2. (34)

Consider s̄ ∈ (0,1) such that (x,y) = s̄(ū1, v̄1) + (1− s̄)(ū2, v̄2), along with arbi-
trary (ui,vi) ∈](ūi, v̄i),(x,y)[, i = 1,2; then there exists s ∈ (0,1) such that (x,y) =
s(u1,v1)+(1−s)(u2,v2). Applying the fuzzy mean value (Definition 5.2) to ϕ on the
segments [(u1,v1),(x,y)], with r < ϕ(x,y), we get (z1,z2) ∈ [(u1,v1),(x,y)[ and se-
quences ((z1,n,z2,n))→ (z1,z2), ((z∗1,n,z

∗
2,n)) such that (z∗1,n,z

∗
2,n) ∈ ∂ϕ(z1,n,z2,n) for

each n and

liminf
n→+∞

〈
(z∗1,n,z

∗
2,n),

(u2,v2)− (z1,n,z2,n)

‖(u2,v2)− (z1,n,z2,n)‖

〉
>

r−ϕ(u1,v1)

‖(x,y)− (u1,v1)‖
. (35)

Let β ∈ (0,1) be such that (x,y) = β (u2,v2)+ (1−β )(z1,z2) and let (w1,n,w2,n) =
β (u2,v2)+ (1−β )(z1,n,z2,n). Then, as ϕ is l.s.c., for large n, and using the fact that
(z1,n,z2,n)→ (z1,z2) and r < ϕ(w1,n,w2,n) we get ((w1,n,w2,n))→ (x,y) . Moreover,
‖(w1,n,w2,n)− (u2,v2)‖ = (1− sn)‖(u1,v1)− (u2,v2)‖ for some sequence (sn)→ s.
Applying again Definition 5.2 to ϕ on [(u2,v2),(w1,n,w2,n)], one obtains (v1,n,v2,n)∈
[(u2,v2),(w1,n,w2,n)[ a sequence (v1,n,p,v2,n,p)→ (v1,n,v2,n) as p→∞,, (v∗1,n,p,v

∗
2,n,p)

with (v∗1,n,p,v
∗
2,n,p) ∈ ∂ϕ(v1,n,p,v2,n,p) for all n, p, and

liminf
p

〈
(v∗1,n,p,v

∗
2,n,p),

(z1,n,z2,n)− (v1,n,p,v2,n,p)

‖(z1,n,z2,n)− (v1,n,p,v2,n,p)‖

〉
>

r−ϕ(u2,v2)

‖(w1,n,w2,n)− (u2,v2)‖

=
r−ϕ(u2,v2)

(1− sn)‖(u1,v1)− (u2,v2)‖
. (36)
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From relation (35), there exists some m≥ k such that for all n≥ m,〈
(z∗1,n,z

∗
2,n),

(v1,n,v2,n)− (z1,n,z2,n)

‖(v1,n,v2,n)− (z1,n,z2,n)‖

〉
=

〈
(z∗1,n,z

∗
2,n),

(u2,v2)− (z1,n,z2,n)

‖(u2,v2)− (z1,n,z2,n)‖

〉
>

r−ϕ(u1,v1)

‖(x,y)− (u1,v1)‖

=
r−ϕ(u1,v1)

s‖(u1,v1)− (u2,v2)‖
. (37)

On the other hand, since (v1,n,p,v2,n,p)→ (v1,n,v2,n), for each n and (sn)→ s, from
(36) and (37), one can find q(n) such that for all p≥ q(n),〈

(v∗1,n,p,v
∗
2,n,p),

(z1,n,z2,n)− (v1,n,p,v2,n,p)

‖(z1,n,z2,n)− (v1,n,p,v2,n,p)‖

〉
>

r−ϕ(u2,v2)

(1− sn)‖(u1,v1)− (u2,v2)‖
,

and 〈
(z∗1,n,z

∗
2,n),

(v1,n,p,v2,n,p)− (z1,n,z2,n)

‖(v1,n,p,v2,n,p)− (z1,n,z2,n)‖

〉
>

r−ϕ(u1,v1)

sn‖(u1,v1)− (u2,v2)‖
.

In view of (34), as ((z1,n,z2,n))→ (z1,z2) ∈ [(u1,v2),(x,y)[; ((w1,n,w2,n))→ (x,y);
and (v1,n,v2,n) ∈ [(u2,v2),(w1,n,w2,n)[, one can find M ≥ m, and N(n) ≥ q(n) such
that for n ≥M, p ≥ N(n), one has ϕ(z1,n,z2,n) > 0 and ϕ(v1,n,p,v2,n,p) > 0, as well.
Thus (since gphF is closed), z2,n /∈ F(z1,n) and v2,n,p /∈ F(v1,n,p), and thanks to
Theorem 4.1 for the case (i), and to relation (29) in Theorem 4.1 for the case (ii),
‖v∗2,n,p‖= ‖z∗2,n‖= 1, for all n≥M, p≥ N(n).

Adding the corresponding sides of the two inequalities above, and using relation
(31), one derives that

κs(1− sn)
‖(u1,v1)− (u2,v2)‖

‖(v1,n,p,v2,n,p)− (z1,n,z2,n)‖
ρ(v1,n,p− z1,n)

≥ (1− sn)(r−ϕ(u1,v1))+ s(r−ϕ(u2,v2)).
(38)

Considering a subsequence if necessary, without loss of generality, we can assume
that ((v1,n,v2,n))→ (w1,w2) ∈ [(u2,v2),(x,y)]. Therefore, for each n, we can find
an index p(n) ≥ N(n) with p(n)→ ∞ such that ((v1,n,p(n),v2,n,p(n)))→ (w1,w2). By
taking p = p(n) in (38), and letting n→ ∞, one obtains

κs(1− s) ‖u1−u2‖
‖w1−z1‖

ρ(w1− z1) = κs(1− s)
‖(u1,v1)− (u2,v2)‖
‖(w1,w2)− (z1,z2)‖

ρ(w1− z1)

≥ (1− s)(r−ϕ(u1,v1))+ s(r−ϕ(u2,v2)).
(39)

Note that ρ is convex, ρ(0) = 0, and ρ is an even function. As [z1,w1]⊆ [u1,u2], one
has

‖u1−u2‖
‖w1− z1‖

ρ(w1− z1)≤ ρ(u1−u2).
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Hence, since r is arbitrary close to ϕ(x,y), (39) yields

ϕ(x,y)≤ sϕ(u1,v1)+(1− s)ϕ(u2,v2)+κs(1− s)ρ(u1−u2).

As (ui,vi) is respectively arbitrary close to (ūi, v̄i), i = 1,2, using the radial continuity
of ϕ, the preceding inequality implies

ϕ(x,y)≤ s̄ϕ(ū1, v̄1)+(1− s̄)ϕ(ū2, v̄2)+κ s̄(1− s̄)ρ(ū1− ū2). (40)

To establish (32) from (40), let α1,α2 ∈ [0,1] with α1 > α2 such that

(ūi, v̄i) = αi(x1,y1)+(1−αi)(x2,y2), i = 1,2.

Then, t = s̄α1 +(1− s̄)α2, and

ϕ(ū1− ū2) = ϕ((α1−α2)(x1− x2))≤ (α1−α2)ϕ(x1− x2).

Therefore, it yields

s̄(1− s̄)ρ(ū1− ū2)≤ 2t(1− t)ϕ(x1− x2). (41)

On the other hand, by (34),

ϕ(ūi, v̄i)≤ αiϕ(x1,y1)+(1−αi)ϕ(x2,y2), i = 1,2.

Hence,

s̄ϕ(ū1, v̄1)+(1− s̄)ϕ(ū2, v̄2) ≤ (s̄α1 +(1− s̄)α2)ϕ(x1,y1)+((1− s̄)α1 + s̄α2)ϕ(x2,y2)
= tϕ(x1,y1)+(1− t)ϕ(x2,y2).

This inequality together with (41) yields (32). �

When Y is a finite dimensional space, using the Bouligand normal cone, Huang
[44], gave some characterizations of the γ-paraconvexity for γ > 1. We present in the
next theorems characterizations of the ρ-paraconvexity of a multifunction F : X ⇒Y
between a Banach space X and a reflexive Banach space Y .

Theorem 5.3 Let X and Y be Banach spaces with Y reflexive. Let ρ : X → R+ be a
gauge verifying (C1)− (C3), and F : X ⇒ Y be a closed multifunction. Consider the
following assertions:

(i) F is ρ-paraconvex;
(ii) F is graphically norm-to-weak closed with convex values and N↑gphF(x,y)=N(ρ,κ)(x,y)

for all (x,y) ∈ gphF, for some κ > 0;
(iii) F is graphically norm-to-weak closed with convex values and N↑gphF ∩(X

∗×BY ∗)
is ρ−monotone;

(iv) ϕF is ρ-paraconvex;
(v) ∂ ↑ϕF is ρ−paramonotone;

(vi) ϕF is radially continuous, F is graphically norm-to-weak closed with convex val-
ues, and ∂ ↑ϕF ∩ (X∗×SY ∗) is ρ−paramonotone;

(vii) ϕF is radially continuous, F is graphically norm-to-weak closed with convex val-
ues, and N↑gphF ∩ (X

∗×SY ∗) is ρ−monotone.
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Then one has (i)⇒ (ii)⇔ (iii); (i)⇔ (iv)⇔ (v)⇒ (vi), and (i)⇒ (vii). Moreover,
if in addition the norm on Y is strictly convex and has the Kadec-Klee property, then
all assertions are equivalent.

Proof. (i)⇒ (ii) is due to Lemma 4.1 and Theorem 3.2, while the equivalence of (ii)
and (iii) is straightforward from the cone property. The equivalences (i)⇔ (iv)⇔ (v)
is due to Proposition 2.2 and Theorem 5.1, while (v)⇒ (vi) as well as (i)⇒ (vii) are
due to (i)⇔ (v); (i)⇒ (iii), and Lemmas 5.1. Suppose in addition that the norm on
Y is strictly convex and has the Kadec-Klee property. The implication (vii)⇒ (iv)
follows from Theorem 5.2. [(ii)]. Let us prove (ii)⇒ (v) and (vii)⇒ (vi) to complete
the proof. Denote ϕ := ϕF , and let (x̄, ȳ) ∈ X ×Y, (x∗,y∗) ∈ ∂ ↑ϕ(x̄, ȳ). Then ‖y∗‖ ≤
1, and by Lemma 4.2, PF(x̄)(ȳ) is nonempty and reduces to a singleton since F(x̄)
is convex, and ϕ(x̄, ȳ) = d(ȳ,F(x̄)). From Theorem 4.2, for v̄ := PF(x̄)(ȳ), one has
〈y∗, ȳ− v̄〉= ‖ȳ− v̄‖= ϕ(x̄, ȳ), and (x̄∗, ȳ∗) ∈ N↑gphF(x̄, v̄) = N(ρ,κ)(x,y). Thus

〈(x̄∗, ȳ∗),(x,v)− (x̄, v̄)〉 ≤ κρ(x− x̄), for all (x,v) ∈ gphF.

For any (x,y) ∈ Domϕ, consider sequences (un)→ x; (vn) with (un,vn) ∈ gphF,
‖y− vn‖→ ϕ(x,y). The relation above implies

〈(x̄∗, ȳ∗),(x,y)− (x̄, ȳ)〉
= 〈x̄∗,x−un〉+ 〈ȳ∗,y− vn〉−〈ȳ∗, ȳ− v̄〉+ 〈(x̄∗, ȳ∗),(un,vn)− (x̄, v̄)〉
≤ 〈x̄∗,x−un〉+‖y− vn‖−‖ȳ− v̄‖+κρ(un− x̄),

.

When n→ ∞, we obtain

〈(x̄∗, ȳ∗),(x,y)− (x̄, ȳ)〉 ≤ ϕ(x,y)−ϕ(x̄, ȳ)+κρ(x− x̄),

Thus for any (x,y) ∈ Domϕ and (x∗,y∗) ∈ ∂ ↑ϕ(x,y),

〈(x∗,y∗),(x̄, ȳ)− (x,y)〉 ≤ ϕ(x̄, ȳ)−ϕ(x,y)+κρ(x− x̄).

Adding side by side the two last inequalities yields,

〈(x̄∗, ȳ∗)− (x∗,y∗),(x̄, ȳ)− (x,y)〉 ≥ −2κρ(x− x̄),

and the ρ−paramonotonicity of ∂ ↑ϕ.
For (vii)⇒ (vi), let (x̄, ȳ),(x,y) ∈ X ×Y, (x̄∗, ȳ∗) ∈ ∂ ↑ϕ(x̄, ȳ), (x∗,y∗) ∈ ∂ ↑ϕ(x,y)
with ‖ȳ∗‖ = ‖y∗‖ = 1 be given. By Theorem 4.2, (x̄∗, ȳ∗) ∈ N↑gphF(x̄, v̄); (x

∗,y∗) ∈
N↑gphF(x,v); 〈ȳ

∗, ȳ− v̄〉 = ‖ȳ− v̄‖ and 〈y∗,y− v〉 = ‖y− v‖, where v̄ = PF(x̄)(ȳ), v =

PF(x)(y). Thus due to the ρ−paramonotonicity of N↑gphF ∩(X
∗×SY ∗), for some κ > 0,

one has

〈(x∗,y∗)− (x̄∗, ȳ∗),(x,y)− (x̄, ȳ)〉
= 〈y∗,(y− v)− (ȳ− v̄)〉+ 〈ȳ∗,(ȳ− v̄)− (y− v)〉+ 〈(x∗,y∗)− (x̄∗, ȳ∗),(x,v)− (x̄, v̄)〉
≥ (‖y− v‖−‖ȳ− v̄‖)+(‖ȳ− v̄‖−‖y− v‖)−κρ(x− x̄) =−κρ(x− x̄).

That is, ∂ ↑ϕF ∩ (X∗×SY ∗) is ρ−paramonotone. The proof is complete. �

The next characterizations use Fréchet normal cones and subdifferentials in As-
plund spaces.
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Theorem 5.4 Let X and Y be Asplund spaces. Let ρ : X→R+ be a function verifying
(C1)−(C3). For a closed multifunction F : X ⇒Y, consider the following assertions:

(i) F is ρ-paraconvex;
(ii) N̂gphF(x,y) = N(ρ,κ)(x,y) for all (x,y) ∈ gphF, for some κ > 0,

(iii) N̂gphF ∩ (X∗×BY ∗) is ρ−monotone;
(iv) ϕF is ρ-paraconvex;
(v) ∂̂ϕF is ρ−paramonotone;

(vi) ϕF is radially continuous and ∂̂ϕF ∩ (X∗×SY ∗) is ρ−paramonotone;
(vii) ϕF is radially continuous and N̂gphF ∩ (X∗×SY ∗) is ρ−monotone.

Then one has (i)⇒ (ii)⇔ (iii)⇒ (iv)⇔ (v)⇔ (vi)⇐ (vii), and (i)⇒ (vii). More-
over, if Y is reflexive, then all assertions are equivalent.

Proof. The implications (i)⇒ (ii)⇔ (iii); (i)⇒ (vii) and the equivalences (iv)⇔
(v)⇔ (vi) can be proved as in the preceding theorem. When Y is reflexive, then (i)⇔
(iv). It remains to prove (iii)⇒ (v) and (vii)⇒ (vi). Suppose (iii) holds, i.e, N̂gphF ∩
(X∗×BY ∗) is ρ−monotone with respect to some constant κ > 0. Let (xi,yi) ∈ X×Y,
(x∗i ,y

∗
i ) ∈ ∂̂ϕ(xi,yi), i = 1,2 be given. Thanks to Theorem 4.1, ‖y∗i ‖ ≤ 1, (i = 1,2),

and we can find sequences ((u(n)i ,v(n)i )) with (u(n)i ,v(n)i ) ∈ gphF and ((u(n)∗i ,v(n)∗i )),
i = 1,2, such that

(u(n)∗i ,v(n)∗i ) ∈ N̂gphF(u
(n)
i ,v(n)i ); ‖u(n)i − xi‖→ 0; ‖yi− v(n)i ‖→ ϕ(xi,yi),

and

‖((u(n)∗i ,v(n)∗i )− (x∗i ,y
∗
i )‖→ 0; |〈v(n)∗i ,yi− v(n)i 〉−‖yi− v(n)i ‖| → 0, i = 1,2.

By the ρ−paramonotonicity of N̂gphF ∩ (X∗×BY ∗),

〈(u(n)∗1 ,v(n)∗1 )− (u(n)∗2 ,v(n)∗2 ),(u(n)1 ,v(n)1 )− (u(n)2 ,v(n)2 )〉 ≥ −κρ(u(n)1 −u(n)2 ).

Hence,

〈(u(n)∗1 ,v(n)∗1 )− (u(n)∗2 ,v(n)∗2 ),(u(n)1 ,y1)− (u(n)2 ,y2)〉
= 〈(u(n)∗1 ,v(n)∗1 )− (u(n)∗2 ,v(n)∗2 ),(u(n)1 ,v(n)1 )− (u(n)2 ,v(n)2 )〉
+〈v(n)∗1 ,(y− v(n)1 )− (y2− v(n)2 )〉+ 〈v(n)∗2 ,(y2− v(n)2 )− (y− v(n)1 )〉
≥ −κρ(u(n)1 −u(n)2 )+ 〈v(n)∗1 ,(y− v(n)1 )〉+ 〈v(n)∗2 ,(y2− v(n)2 )〉
−‖v(n)∗1 ‖‖y2− v(n)2 ‖−‖v

(n)∗
2 ‖‖y− v(n)1 ‖.

Noticing that for every i = 1,2,

(u(n)i )→ xi;

(u(n)∗i ,v(n)∗i )→ (x∗i ,y
∗
i );

‖y∗i ‖ ≤ 1;

|〈v(n)∗i ,yi− v(n)i 〉−‖yi− v(n)i ‖| → 0,
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and passing to the limit one obtains

(x∗1,y
∗
1)− (x∗2,y

∗
2),(x1,y1)− (x2,y2)〉 ≥ −κρ(x1− x2),

showing the ρ−paramonotonicity of ∂̂ϕ. The proof of (vii)⇒ (vi) is completely
similar. �

Open problem 2. Does the equivalence of all (or some) of assertions in the two
preceding theorems hold without the reflexivity of the image space Y ?

6 Coderivatives of the sum of ρ-paraconvex multifunctions

Consider two multifunctions F1,F2 : X ⇒ Y, which are ρ-paraconvex for a gauge
function verifying (C1)− (C3). Then the sum multifunction F1 +F2 isρ-paraconvex
Hence, the respective coderivatives agree.We denote each of them by DF∗(x̄, ȳ), for
(x̄, ȳ) ∈ gphF. Still, due to Theorem 3.2, for some κ > 0, one has

DF∗(x̄, ȳ)(y∗) =
{

x∗ ∈ X∗ : (x∗,−y∗) ∈ N(ρ,κ)
gphF (x̄, ȳ)

}
,

for all (x̄, ȳ) ∈ gphF, all y∗ ∈ Y ∗, where

N(ρ,κ)
gphF (x̄, ȳ) =

{
(x∗,y∗) ∈ X∗×Y ∗ :
〈x∗,x− x̄〉+ 〈y∗,y− ȳ〉 ≤ κ‖y∗‖ρ(x− x̄), ∀(x,y) ∈ gphF

}
.

The paper concludes with a sum rule for the coderivative of F1 +F2.

Theorem 6.1 Let X ,Y be Banach spaces. Consider two ρ-paraconvex multifunctions
F1,F2 : X ⇒Y, for a gauge function ρ verifying (C1)−(C3). Then for (x̄, ȳ1)∈ gphF1
and (x̄, ȳ2) ∈ gphF2, one has

D(F1 +F2)
∗(x̄, ȳ1 + ȳ2)(y∗)⊇ DF∗1 (x̄, ȳ1)(y∗)+DF∗2 (x̄, ȳ2)(y∗), for all y∗ ∈ Y ∗.

(42)
Equality in (42) holds provided that the following two conditions are satisfied.

(i) There are δ > 0, τ > 0 such that

ϕF1+F2(x,y1 + y2)≤ τ (ϕF1(x,y1)+ϕF2(x,y2))

for all (x,y1,y2) ∈ B((x̄, ȳ1, ȳ2),δ );
(ii) ⋃

λ≥0

λ (DomϕF1(·,0)−DomϕF2(·,0))

is a closed subspace of X .
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Proof. Let y∗ ∈ Y ∗, x∗i ∈ DF∗i (x̄, ȳi)(y∗), i = 1,2. Then for some κ > 0, (x∗i ,−y∗) ∈
N(ρ,κ)

gphFi
(x̄, ȳi), i = 1,2. For any (x,y)∈ gph(F1+F2), there are yi ∈ Fi(x), i = 1,2, such

that y1 + y2 = y, and therefore

〈x∗1,x− x̄〉−〈y∗,y1− ȳ1〉 ≤ κ‖y∗‖ρ(x− x̄);

〈x∗2,x− x̄〉−〈y∗,y2− ȳ2〉 ≤ κ‖y∗‖ρ(x− x̄).

By adding the two inequalities side by side, one obtains

〈x∗1 + x∗2,x− x̄〉−〈y∗,y− (ȳ1 + ȳ2)〉 ≤ 2κ‖y∗‖ρ(x− x̄).

The last inequality being verified for all (x,y) ∈ gph(F1 +F2), this shows that

x∗1 + x∗2 ∈ D(F1 +F2)
∗(x̄, ȳ1 + ȳ2)(y∗),

proving (42).
Let conditions (i)− (ii) be satisfied. Let x∗ ∈D(F1 +F2)

∗(x̄, ȳ1 + ȳ2)(y∗) for y∗ ∈Y ∗.
Thanks to Theorem 4.1 - part (i), (x∗,−y∗) ∈ α∂̂ϕF1+F2(x̄, ȳ1 + ȳ2), for some α > 0,
namely, α = 1 if ‖y∗‖ ≤ 1, and α = ‖y∗‖, otherwise. Thus, as ϕFi(x̄, ȳ1 + ȳ2) = 0, for
any ε > 0, there is δε ∈ (0,δ ), here δ is as in (i), such that

〈(x∗,−y∗),(x,y)− (x̄, ȳ1 + ȳ2)〉 ≤ αϕF1+F2(x,y)+ ε‖(x,y)− (x,y1 + y2)‖, (43)

for all (x,y) ∈ B((x̄, ȳ1 + ȳ2),δε). Consider the mappings fi (i = 1,2) defined on X×
Y ×Y by fi(x,y1,y2) = ϕFi(x,yi). By condition (i), relation (43) implies that for all
(x,y1,y2) ∈ B((x̄, ȳ1, ȳ2),δε/2), we have

〈(x∗,−y∗,−y∗),(x,y1,y2)− (x̄, ȳ1, ȳ2)〉
≤ ατ( f1 + f2)(x,y1,y2)+ ε‖((x,y1,y2)− (x̄, ȳ1, ȳ2)‖. (44)

This yields
(x∗,−y∗,−y∗) ∈ ατ∂̂ ( f1 + f2)(x̄, ȳ1, ȳ2).

Note that f1, f2 are lower semicontinuous ρ-paraconvex functions, therefore they are
approximately convex (at all points). Moreover, Dom fi = DomϕFi(·,0)×Y ×Y, i =
1,2, thus by condition (ii), ⋃

λ≥0

λ (Dom f1−Dom f2)

is a closed space of X×Y ×Y. So thanks to the sum rule formula for the subdifferen-
tial of approximately convex functions [28, Theo. 3.8],

∂̂ ( f1 + f2)(x̄, ȳ1, ȳ2) = ∂̂ f1(x̄, ȳ1, ȳ2)+ ∂̂ f2(x̄, ȳ1, ȳ2).

Hence, there exist (z∗i ,−v∗i ) ∈ ∂̂ϕFi(x̄, ȳi), i = 1,2, such that

(x∗,−y∗,−y∗) = ατ ((z∗1,−v∗1,0)+(z∗2,0,−v∗2)) .



34

That is, ατv∗i = y∗, i= 1,2, and x∗=ατz∗1+ατz∗2. As (z∗i ,−v∗i )∈ ∂̂ϕFi(x̄, ȳi), i= 1,2,
thanks again to Theorem 4.1 - part (i), ατz∗i ∈ DF∗i (x̄, ȳi)(y∗), i = 1,2. Thus,

x∗ ∈ DF∗1 (x̄, ȳ1)(y∗)+DF∗2 (x̄, ȳ2)(y∗),

and accordingly the proof is complete. �

The following lemma gives some verified sufficient conditions to ensure (i)−(ii).

Lemma 6.1 Let X ,Y be Banach spaces. Consider two ρ-paraconvex closed multi-
functions F1,F2 : X ⇒ Y, for a gauge ρ satisfying (C1)− (C3). Let (x̄, ȳi) be given in
gphFi, i = 1,2.

(a) If x̄ belong either to Int(DomF1) or to Int(DomF2), then the both two conditions
(i)− (ii) in the preceding theorem are satisfied.

(b) If Y is reflexive, then condition (i) holds automatically, while (ii) is equivalent to⋃
λ≥0

λ (DomF1−DomF2)

being a closed subspace of X .

Proof. (a). Let e.g., x̄ ∈ Int(DomF1). Then obviously x ∈ Int(Domϕ(·,0)). So as
x̄ ∈ DomF2, ⋃

λ≥0

λ (DomϕF1(·,0)−DomϕF2(·,0)) = X ,

that is, (ii) is satisfied. In [8, Theo. 2.4], Jourani, established that for a γ-paraconvex
multifuntion with γ > 1 between general Banach spaces, the condition x̄ belongs to
the interior of its domain is equivalent to the locally pseudo-Lipschitzness of the mul-
tifunction. Observe that with an almost similar proof (we omit here), this equivalence
also holds for ρ-paraconvex multifunctions with ρ satisfying (C1)− (C3). That is, if
x̄ ∈ Int(DomF1), then for ȳ1 ∈ F1(x̄), there are r,ε > 0 such that

F1(x1)∩ (ȳ1 + εBY )⊆ F1(x2)+ r‖x1− x2‖BY ,

for all xi ∈ x̄+ εBX , i = 1,2. Thus, we can say that d(y1,F(x)) = ϕF1(x,y1) for all
(x,y1) ∈ B((x̄, ȳ1),ε/2), and that ϕF1 is Lipschitz on B((x̄, ȳ1),ε/2). For any (x,y1) ∈
B((x̄, ȳ1),ε/2), any y2 ∈ Y, with ϕF2(x,y2) < +∞, taking a sequence (un)→ x, such
that d(y2,F2(un))→ ϕF2(x,y2), one has

ϕF1+F2(x,y1 + y2) ≤ liminf
n→∞

d(y1 + y2,F1(un)+F2(un))

= lim
n→∞

d(y1,F1(un))+ liminf
n→∞

d(y2,F2(un))

= ϕF1(x,y1)+ϕF2(x,y2).

Hence, (i) is satisfied with τ = 1.
For (b), when Y is reflexive, due to the proof of (iii)⇒ (i) in Proposition 2.2, ϕFi =
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dFi = d(·,Fi(·)), and therefore, DomϕFi(·,0) = DomFi, i = 1,2. So (ii) is equivalent
to say that ⋃

λ≥0

λ (DomF1−DomF2)

is a closed subspace of X . For any (x,y1,y2) ∈ X×Y ×Y, one has

ϕF1+F2(x,y1 + y2) ≤ d(y1 + y2,F1(x)+F2(x))
≤ d(y1,F1(x))+d(y2,F2(x)) = ϕF1(x,y1)+ϕF2(x,y2),

establishing (ii). �

Open problem 3. Is it possible to establish a sum rule for the coderivative of
paraconvex multifunctions without the constraint qualifications (i) and (ii) from the
previous theorem.
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16. Mazure, M.L., Volle, M.: Équations inf-convolutives et conjugaison de Moreau-Fenchel. Ann. Fac.
Sci. Toulouse Math. (5) 12(1), 103–126 (1991). URL http://www.numdam.org/item?id=AFST_

1991_5_12_1_103_0

17. Spingarn, J.E.: Submonotone subdifferentials of Lipschitz functions. Trans. Amer. Math. Soc. 264(1),
77–89 (1981). URL https://doi.org/10.2307/1998411

https://doi.org/10.4064/sm-133-1-29-37
https://doi.org/10.1023/A:1023296417861
https://doi.org/10.1023/A:1023296417861
https://doi.org/10.4064/sm-117-2-123-136
https://doi.org/10.4064/sm-117-2-123-136
https://doi.org/10.4064/sm184-1-1
https://doi.org/10.1016/0362-546X(85)90098-7
https://doi.org/10.1137/0315061
http://www.numdam.org/item?id=AFST_1991_5_12_1_103_0
http://www.numdam.org/item?id=AFST_1991_5_12_1_103_0
https://doi.org/10.2307/1998411


36

18. Rockafellar, R.T.: Favorable classes of Lipschitz-continuous functions in subgradient optimization.
In: Progress in nondifferentiable optimization, IIASA Collaborative Proc. Ser. CP-82, vol. 8, pp. 125–
143. Internat. Inst. Appl. Systems Anal., Laxenburg (1982)

19. Vial, J.P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8(2), 231–259 (1983).
URL https://doi.org/10.1287/moor.8.2.231

20. Daniilidis, A., Malick, J.: Filling the gap between lower-C1 and lower-C2 functions. J. Convex Anal.
12(2), 315–329 (2005)

21. Borwein, J.M., Moors, W.B., Wang, X.: Generalized subdifferentials: a Baire categorical ap-
proach. Trans. Amer. Math. Soc. 353(10), 3875–3893 (2001). URL https://doi.org/10.1090/

S0002-9947-01-02820-3

22. Clarke, F.H.: Optimization and nonsmooth analysis, Classics in Applied Mathematics, vol. 5, second
edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1990). URL https:

//doi.org/10.1137/1.9781611971309

23. Mordukhovich, B.S.: Variational analysis and generalized differentiation. I, Grundlehren der Mathe-
matischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330. Springer-
Verlag, Berlin (2006). Basic theory

24. Penot, J.P.: Calculus without derivatives, Graduate Texts in Mathematics, vol. 266. Springer, New
York (2013). URL https://doi.org/10.1007/978-1-4614-4538-8

25. Rockafellar, R.T., Wets, R.B.: Variational analysis, Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], vol. 317. Springer-Verlag, Berlin (1998). URL
https://doi.org/10.1007/978-3-642-02431-3

26. Fabián, M.: Subdifferentiability and trustworthiness in the light of a new variational principle of Bor-
wein and Preiss. pp. 51–56 (1989). 17th Winter School on Abstract Analysis (Srnı́, 1989)

27. Ngai, H.V., Penot, J.P.: Approximately convex functions and approximately monotonic operators.
Nonlinear Anal. 66(3), 547–564 (2007). URL https://doi.org/10.1016/j.na.2005.11.045
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