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Abstract

In this paper, we consider the optimal stopping problem on semi-Markov processes

(SMPs) with finite horizon, and aim to establish the existence and computation of

optimal stopping times. To achieve the goal, we first develop the main results of finite

horizon semi-Markov decision processes (SMDPs) to the case with additional terminal

costs, introduce an explicit construction of SMDPs, and prove the equivalence between

the optimal stopping problems on SMPs and SMDPs. Then, using the equivalence

and the results on SMDPs developed here, we not only show the existence of optimal

stopping time of SMPs, but also provide an algorithm for computing optimal stopping

time on SMPs. Moreover, we show that the optimal and ε-optimal stopping time can be

characterized by the hitting time of some special sets, respectively.
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1. Introduction

The optimal stopping problem is an important branch of the intersection of probability

and control theory, which aims to find the optimal stopping time of stochastic systems under
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some certain criterion, and has been studied and widely applied in finance, such as the pricing

of American options and the buying-selling problem, see the monographes [3, 6, 19] and

the references therein. In most existing literature on optimal stopping problems, the case

on discrete-time Markov processes (de Saporta et al. [8]; Dufour & Piunovskiy [9]; Huang

& Zhou [13]) and the case on continuous-time Markov processes (Arkin & Slastnikov [1];

Bäuerle & Popp [2]; Christensen & Lindensjö [7]; Gapeev et al. [10]; Shao & Tian [18]) are

commonly considered.

Note that between two jump epochs in discrete-time Markov processes and continuous-

time Markov processes are constant and exponentially distributed, respectively. As is well

known, semi-Markov processes (SMPs) are more general than these two processes since the

time between two jump epochs in SMPs can not only follow more distribution but also depend

on the present state and the next state. Thus, SMPs haven been widely studied and applied in

many areas [12, 17, 14]. However, to the best of our knowledge, the optimal stopping problem

on SMPs is addressed only in Boshuizen & Gouweleeuw [4] and Chen et al. [5]. More

precisely, Boshuizen & Gouweleeuw [4] and Chen et al. [5] both studied the optimal stopping

problems under the infinite-horizon discounted criterion, and show the existence of an optimal

time for time-dependent costs in Boshuizen & Gouweleeuw [4] and state-dependent costs in

Chen et al. [5], respectively. As in well-known in many practical applications, the underlying

process will be forced to end at a certain time. Thus, it is natural and desirable to consider the

optimal stopping problem on SMPs with finite horizon, which has not been studied yet, and

which will be studied in this paper.

In practical applications, if one breaks a contract, one has to pay an additional penalty,

which will be regarded as a terminal cost. Thus, in optimal stopping problems with finite

horizon, the costs consist of both the running costs and additional terminal costs [3]. To deal

with the optimal stopping problem on SMPs with finite horizon, we follow the idea of trans-

forming the discrete-time optimal stopping problem into an equivalent discrete-time Markov

decision process in [3], which has an obvious advantage that the existence and computation

of optimal stopping times can be obtained together. Indeed, noting that “continue” or “stop”

may be considered as an action, using the date of the optimal stopping problem on SMPs,

we also construct a corresponding SMDP with the action space {0, 1}, where the action 0

and action 1 mean continuation and stop respectively, and prove the equivalence between the

optimal stopping time problems on SMPs and the corresponding SMDPs, that is, given any
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deterministic policy in the SMDPs and planning horizon, we can induce a stopping time with

the same expected cost as that for the policy, and vice versa. To deal with optimal stopping

problem on SMPs with a terminal cost by the equivalent SMDP, we need to extend the results

in [12] without any terminal cost to the more natural case with an additional terminal cost,

and establish the existence of an optimal policy and an approximation algorithm for the value

function of the SMDP by a minimal non-negative solution method. Using this equivalence and

the results about SMDPs developed here, we not only show the existence of optimal stopping

time on SMPs, but also provide an algorithm for computing optimal stopping time on SMPs.

Moreover, we show that the optimal and ε-optimal stopping time can be characterized by the

hitting time of some special sets.

The rest of the paper is organized as follows. We describe optimal stopping problems on

SMPs with finite horizon in Section 2. In section 3, we develop some results on SMDPs

with additional terminal costs. Our main results on the existences and computation of optimal

stopping times are given in Section 4 after giving the preliminaries in Section 3.

2. Optimal stopping problem on semi-Markov processes

Notation. If X is a Borel space, we denote by B(X) the Borel σ-algebra, by P(X) the

set of all probability measures on B(X), by δx the Dirac measure at the point x, and by 1D

the indicator function on the set D ⊂ X. Moreover, let R := (−∞,+∞), R+ := [0,+∞),

x+ := max{x, 0} and x∧ y := min{x, y} (for all x, y ∈ R). Finally, for any sequence {xk} ⊂ R, we

use the convention
∑m

k=n yk = 0 if n > m.

The model of SMPs is the two-tuples as below

{E,Q(·, ·|x)} (1)

where E is the state space, which is assumed to be a Borel space and the transition mechanism

of the SMPs is defined by the semi-Markov kernel Q(·, ·|x) on R+ × E given E. It is assumed

that:

(i) given any B ∈ B(E) and x ∈ E, Q(·, B|x) is a non-decreasing right continuous real-valued

function on R+, with Q(0, B|x) = 0;

(ii) given any t ∈ R+, Q(t, ·|·) is a sub-stochastic kernel on E;

(iii) limt→∞ Q(t, ·|·) is a stochastic kernel on E.
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Then, we introduce the measurable space (Ω,F ), which is based on the Kitaev construction

(see [15, 16]),

Ω = {(x0, t1, x1, . . . , tn, xn, . . .) : x0 ∈ E, (tn, xn) ∈ R+ × E, n > 1} ,

and F is the corresponding product Borel σ-algebra. The history of SMPs up to the n-th jump

epoch is

h0 = x0, hn+1 = (x0, t1, x1, . . . , tn+1, xn+1), n > 0.

Let Hn be the set of all histories hn. For each ω = (x0, t1, . . . , xn, tn+1, . . .) ∈ Ω , define

Xn(ω) = xn, T0(ω) = 0, Tn+1(ω) = tn+1, S n(ω) =

n
∑

k=0

Tk(ω), ∀n > 0,

where S n, Tn+1 and Xn denote the n-th jump time, the sojourn time between the n-th and

(n+ 1)-th jumps and the state at the n-th jump time, respectively. Further, we assume here that

the decision may only depend on the observation of the marked point process {Tn, Xn, n > 0}.

Thus we denote by Fn the filtration generated by {Tn, Xn, n > 0}, i.e.,

Fn := σ(T0, X0, . . . , Tn, Xn).

Hence, we can give the definition of stopping times as following.

Definition 2.1. A random variable τ : Ω → N ∪ {+∞} is called Fn-stopping time if for all

n ∈ N,

{τ = n} ∈ Fn.

This condition means that upon observing the marked point process {Xn, Tn, n > 0} until n-th

jump time we can decide whether or not τ has already occurred. Since the filtration will always

be generated by {Xn, Tn, n > 0} in this paper, we will not mention it explicitly. Denote by Γ the

set of all stopping times.

Using the Tulcea theorem (see [11, Proposition C.10]), for each x ∈ E, there exists a unique

probability measure Px on (Ω,F ) satisfying that Px(T0 = 0, X0 = x) = 1 and

Px(Tn+1 6 t, Xn+1 ∈ B|Yn) = Q(t, B|Xn),

where Yn = (X0, . . . , Tn, Xn). Denote by Ex the expectation with respect to Px. Moreover, we

give the following assumption, which can ensure the regularity of SMPs, i.e., Px(limn→∞ S n =

∞) = 1.
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Assumption 1. There exist δ > 0 and ǫ > 0, such that

Q(δ, E|x) 6 1 − ǫ, ∀x ∈ E. (2)

The Assumption 1 is a standard regular condition widely used in SMPs and SMDPs, see [5,

12, 17], for instance. According to [12], the Assumption 1 implies that

Px( lim
n→∞

S n = ∞) = 1, ∀x ∈ E.

Corresponding to {(Tn, Xn), n > 0}, we define an underlying continuous-time state process

{X(t), t ∈ R+} by

X(t) = Xn, S n 6 t < S n+1.

Refer to Limnios and Oprisan [17] for more details about {X(t), t ∈ [0,∞)}. Next step, we

introduce the optimal stopping problem with finite horizon.

Let c(x) and g(x) be the nonnegative measurable real-valued functions on E, which repre-

sent the cost rates and the terminal costs, respectively. For a given planning horizon T ∈ R+,

the optimal stopping time problem with finite horizon T implies that if we have not stopped

before time T we must stop paying at time T . Thus, for a given planning horizon T ∈ R+, if

we choose a stopping time τ ∈ Γ, we pay the cost

RT
τ :=



































∫ S τ

0

c(X(t))t. + g(X(S τ)), S τ < T ;

∫ T

0

c(X(t))t., S τ > T.

(3)

Remark 2.1. From the definition RT
τ , if we stop before time T , we need to pay the terminal

cost at the time S τ. This is very common in practical applications, such as house renting

problems. Because if one breaks the contract, one has to pay an additional penalty.

The T -horizon expected cost of a stopping time τ is given by

Vτ(T, x) := Ex

[

RT
τ

]

, x ∈ E. (4)

Then, the value function of optimal stopping problems with finite horizon T is defined by

V∗(T, x) := inf
τ∈Γ

Vτ(T, x). (5)
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Definition 2.2. Given any planning horizon T ∈ R+, a stopping time τ∗ ∈ Γ is called T -optimal

if it satisfies that

Vτ
∗

(T, x) = V∗(T, x) = inf
τ∈Γ

Vτ(T, x), ∀x ∈ E.

Here and what follows, we fix a planning horizon T ∈ R+. The main purpose of this paper

is to find a T -optimal stopping time and give an algorithm for computing the value function

V∗.

3. On semi-Markov decision processes

We want to solve the stopping time problem by formulating it as SMDPs, so we need to

consider the model of SMDPs with a terminal cost and give some results about the model.

Moreover, if the terminal cost is always equal to 0, these results are same as those about

SMDPs without terminal cost in [12].

Here and in what follows, we always use “ ˆ ” to distinguish SMDPs from SMPs. The

model of SMDPs is introduced by:

{Ê, A, (A(x), x ∈ Ê), Q̂(·, ·|x, a), ĉ(x, a), ĝ(x, a)}

where Ê is the state space and A is the action set, which are assumed to be a Borel space and

a denumerable set, respectively; A(x) ⊂ A denotes the set of admissible actions at x ∈ Ê,

which assume to be finite; Q̂(·, ·|x, a) is the semi-Markov kernel on R+ × Ê given K, where

K := {(x, a)|x ∈ Ê, a ∈ A(x)} denotes the set of admissible state-action pairs. Assume that

K ∈ B(Ê) × B(A) and that there exists a measurable mapping f : R × Ê → A such that

(x, f (t, x)) ∈ K for all (t, x) ∈ R × Ê. Finally, the functions ĉ(x, a) and ĝ(x, a) on K represent

the cost rates and terminal costs, which are assumed to be nonnegative and measurable.

Remark 3.1. If Ê is denumerable and ĝ = 0, the model is same as that in [12].

The evolution of the finite horizon SMDPs as follows. Initially, the system occupies some

state x0 ∈ Ê and the decision maker has a planning horizon s ∈ R, then he/she chooses an action

a0 ∈ A(x0) according to the current state x0 and the planning horizon s. As a consequence,

the system jumps to state x1 after a sojourn time t1 in x0, in which the transition law is subject

to the semi-Markov kernel Q̂. At time t1, there is a remaining planning horizon s − t1 for the

decision maker. According to the current state x1 and the current planning horizon s−t1 as well
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as the previous state and action (x0, a0) and the sojourn time t1, the decision maker chooses an

action a1 ∈ A(x1) and the same sequence of events occur. The decision process evolves in this

way and thus we obtain a remaining planning horizon s −
∑n

k=1 tk and an admissible history ĥn

and of the SMDPs up to the n-th decision epoch i.e.,

ĥn = (x0, a0, t1, x1, . . . , an−1, tn, xn),

where (xm, am) ∈ K, tm+1 ∈ R+ for all m = 0, 1, . . . , n − 1, xn ∈ Ê. Let Ĥn denote the set of all

admissible histories ĥn of the system up to the n-th decision epoch, which is endowed with the

corresponding product σ-algebra.

Definition 3.1. A policy π = {πn, n > 0} is a sequence of stochastic kernels πn on A given

R × Ĥn satisfying

πn(A(xn)|s, ĥn) = 1, ∀n > 0, ĥn = (x0, a0, t1, x1, . . . , an−1, tn, xn) ∈ Ĥn. (6)

The set of all policies is denoted by Π.

Remark 3.2. The s in (6) means the remaining planning horizon up to the n-th decision epoch,

and it is assumed can be negative just for convenience. Moreover, the definition of policies here

is horizon-relevant, whereas that in infinite horizon case is not.

To distinguish the subclasses of Π, we introduce the following notations.

Notation. Let Φ represent the set of stochastic kernels ϕ on A given R × Ê such that

ϕ(A(x)|s, x) = 1 for all (s, x) ∈ R × Ê, and F represent the set of measurable functions f :

R × Ê → A such that f (s, x) ∈ A(x) for all (s, x) ∈ R × Ê.

Definition 3.2. (a) A policy π = {πn} is said to be randomized Markov if there is a sequence

{ϕn} of stochastic kernels ϕn ∈ Φ such that πn(·|s, ĥn) = ϕn(·|s, xn) for every (s, ĥn) ∈

R × Ĥn and n > 0. We write such a policy as π = {ϕn}.

(b) A randomized Markov policy π = {ϕn} is said to be randomized stationary if ϕn are

independent of n. In this case, we write π as ϕ for simplicity.

(c) A policy π = {πn} is called deterministic if there exists a sequence {dn} of measurable

functions dn : R× Ĥn → A such that for all (s, ĥn) ∈ R × Ĥn and n > 0, dn(s, ĥn) ∈ A(xn)

and πn(·|s, ĥn) is the Dirac measure at dn(s, ĥn), i.e.,

πn(a|s, ĥn) = δ{dn(s,ĥn)}(a), ∀ a ∈ A.
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We write such a policy as π = {dn}.

(d) A randomized Markov policy π = {ϕn} is said to be deterministic Markov if there is a

sequence { fn} of functions fn ∈ F such that ϕn(·|s, x) is concentrated at fn(s, x) for all

(s, x) ∈ R × Ê and n > 0. We write such a policy as π = { fn}.

(e) A deterministic Markov policy π = { fn} is said to be deterministic stationary if fn are

independent of n. In this case, we write π as f for simplicity.

For convenience, we denote by ΠRM , ΠRS , ΠDH , ΠDM and ΠDS the families of all random-

ized Markov, randomized stationary, deterministic, deterministic Markov and deterministic

stationary policies, respectively. Obviously, F = ΠDS ⊂ ΠDM ⊂ ΠDH ⊂ Π and F ⊂ Φ = ΠRS ⊂

ΠRM ⊂ Π.

Let Ω̂ = (Ê × A × R+)∞ be a sample space and F̂ be the corresponding product σ-algebra.

Similar to SMPs, for any ω̂ = (x0, a0, t1, x1, . . . , an, tn+1, xn+1, . . .) ∈ Ω̂ and n > 0, we can define

T̂0(ω̂) = 0, T̂n+1(ω̂) = tn+1, X̂n(ω̂) = xn, An(ω̂) = an.

Further, for all n > 0, let Ŝ n =
∑n

m=0 T̂m. And then, we define {X̂(t), A(t), t ∈ R+} by

X̂(t) :=



















X̂n, Ŝ n 6 t < Ŝ n+1;

∂S , t > limn→∞ Ŝ n;
A(t) :=



















An, Ŝ n 6 t < Ŝ n+1;

∂A, t > limn→∞ Ŝ n,

where ∂S and ∂A are the extra state and action jointed to Ê and A, respectively. Now, given

(s, x) ∈ R × Ê and π = {πn} ∈ Π, by the Ionescu Tulcea theorem (see [3, Proposition B.2.5]),

there exists a unique probability measure P̂π
(s,x)

on (Ω̂, F̂ ) such that

P̂
π
(s,x)(T̂0 = 0, X̂0 = x) = 1, (7)

P̂
π
(s,x)(An = a|Ŷn) = πn(a|(s − Ŝ n), Ŷn), (8)

P̂
π
(s,x)(T̂n+1 6 t, X̂n+1 ∈ B|Ŷn, An) = Q̂(t, B|X̂n, An), (9)

whereŶn := (X̂0, A0, T̂1, X̂1, . . . , An−1, T̂n, X̂n), t ∈ R+, B ∈ B(Ê), a ∈ A and n > 0. The

expectation operator with respect to P̂π
(s,x)

is denoted by Êπ
(s,x)

. Recall that we fix a planning

horizon T in Section 2. To treat T -horizon optimization problem, naturally, we assume a finite

number of jumps until time T . Thus, we propose Assumption 2.

Assumption 2. For all (s, x) ∈ R × Ê and π ∈ Π, P̂π
(s,x)

({limn→∞ Ŝ n = ∞}) = 1.
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Given (s, x) ∈ R+ × Ê, we define the expected cost of a policy π ∈ Π by

Uπ(s, x) := Êπ(s,x)

[∫ s

0

ĉ(X̂(t), A(t))t. + ĝ(X̂(s), A(s))

]

and the value function (or minimum expected cost) by U∗(s, x) := infπ∈Π Uπ(s, x).

Definition 3.3. A policy π∗ ∈ Π is called T -horizon optimal if

Uπ
∗

(s, x) = U∗(s, x), ∀ (s, x) ∈ [0, T ] × Ê.

Remark 3.3. Noting that the stopping time τ∗ is T -optimal if and only if it achieves V∗ for

the fixed planning horizon T , while if the policy π∗ ∈ Π is T -optimal, π∗ needs to achieve the

value function of SMDP for all s ∈ [0, T ].

The focus of this section is on finding an optimal policy in Π, which can deduce the optimal

stopping time. The following result reveals that it suffices to seek for optimal policies in ΠRM.

Proposition 3.1. Suppose that Assumption 2 holds. Then for each π = {πn} ∈ Π and (s, x) ∈

R+ × Ê, there exists a policy π̂ = {ϕn} ∈ ΠRM such that Uπ(s, x) = U π̂(s, x).

Proof. Under Assumption 2, the monotone convergence theorem gives that

Uπ(s, x) =

∞
∑

m=0

Ê
π
(s,x)

[

((s − Ŝ m)+ ∧ T̂m+1)ĉ(X̂m, Am) + 1[Ŝ m,Ŝ m+T̂m+1)(s)ĝ(X̂m, Am)

]

. (10)

Hence, it suffices to show that there is a policy π̂ = {ϕn} ∈ ΠRM such that

P̂
π
(s,x)(X̂n ∈ B, An = a, Ŝ n 6 t, T̂n+1 6 v) = P̂π̂(s,x)(X̂n ∈ B, An = a, Ŝ n 6 t, T̂n+1 6 v),

for n = 0, 1, . . ., t, v ∈ R+, B ∈ B(Ê), and a ∈ A. Moreover, noting that (9) implies

Ê
π
(s,x)

[

1[0,v](T̂n+1)|X̂n, An, Ŝ n

]

= Q̂(v, Ê|X̂n, An),

we need only to prove that

P̂
π
(s,x)(X̂n ∈ B, An = a, Ŝ n 6 t) = P̂π̂(s,x)(X̂n ∈ B, An = a, Ŝ n 6 t). (11)

Indeed, fix (s, x) ∈ R+ × Ê, and define a randomized Markov policy π̂ := {ϕn} (depending on

(s, x)) by

ϕn(a|t, y) :=



















Ê
π
(s,x)

[1{a}(An)|Ŝ n = s − t, X̂n = y], t 6 s, y ∈ Ê;

1
|A(y)|
, t > s, y ∈ Ê;

(12)
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where |A(y)| is the cardinality of A(y). We show by induction that (11) holds with π̂ defined

through (12). Clearly it holds with n = 0. Assume that (11) holds for some n (n > 0). Then,

P̂
π
(s,x)(X̂n+1 ∈ B, Ŝ n+1 6 t)

=Êπ(s,x)

[

Ê
π
(s,x)

[

1B(X̂n+1)1[0,t](Ŝ n+1)
∣

∣

∣X̂n, An, Ŝ n

]]

=Êπ(s,x)

[

Q̂((t − Ŝ n)+, B|X̂n, An)
]

(by (9))

=P̂π̂(s,x)(X̂n+1 ∈ B, Ŝ n+1 6 t). (by the induction hypothesis) (13)

Therefore, the definition of π̂ and the above equality give that

P̂
π
(s,x)(X̂n+1 ∈ B, Ŝ n+1 6 t, An+1 = a)

=Êπ(s,x)

[

1B(X̂n+1)1[0,t](Ŝ n+1)Êπ(s,x)[1{a}(An+1)|Ŝ n+1, X̂n+1]
]

=Êπ(s,x)

[

1B(X̂n+1)1[0,t](Ŝ n+1)ϕn(a|s − Ŝ n+1, X̂n+1)
]

(by (12))

=Êπ(s,x)

[

1B(X̂n+1)1[0,t](Ŝ n+1)Êπ̂(s,x)[1{a}(An+1)|Ŝ n+1, X̂n+1]
]

(by (8))

=P̂π̂(s,x)(X̂n+1 ∈ B, Ŝ n+1 6 t, An+1 = a). (by(13))

Thus the induction hypothesis is satisfied and the proof is completed. �

Due to Proposition 3.1, we limit our discussion to randomized Markov policies in the rest

of this section. Next, we establish our main results about the SMDPs. That is, we prove that

the value function is a minimum nonnegative solution to the optimality equation and that there

exists an optimal deterministic stationary policy. Also, we derive an algorithm for computing

optimal policies and the value function.

Let M be the set of Borel measurable functions v : [0, T ] × Ê → R̄+ := [0,∞]. Given

any a ∈ A, define an operator Ta from M to itself as: for each v ∈ M and x ∈ Ê if a < A(x),

T
av(s, x) := +∞, otherwise

T
av(s, x) :=ĉ(x, a)

∫ s

0

(1 − Q̂(t, Ê|x, a)t. + ĝ(x, a)(1 − Q̂(s, Ê|x, a))

+

∫

[0,s]

∫

Ê

v(s − t, y)Q̂(t., y. |x, a).

Moreover, any v ∈ M, ϕ ∈ Φ, and (s, x) ∈ [0, T ] × Ê, let

T
ϕv(s, x) :=

∑

a∈A(x)

ϕ(a|s, x)Tav(s, x), and Tv(s, x) := min
a∈A(x)

T
av(s, x).
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To establish the iteration algorithm for computing Uπ and U∗, we define a function sequence

{Uπn } as following:

Uπ−1(s, x) := 0,

Uπn (s, x) :=

n
∑

m=0

Ê
π
(s,x)

[

((s − Ŝ m)+ ∧ T̂m+1)ĉ(X̂m, Am) + 1[Ŝ m,Ŝ m+1)(s)ĝ(X̂m, Am)

]

for every (s, x) ∈ [0, T ] × Ê and n > 0. Clearly, Uπn (s, x) 6 Uπ
n+1

(s, x) for every n > −1, and

moreover, it follows from (10) that limn→∞Uπn (s, x) = Uπ(s, x).

The following lemma is basic to our results.

Lemma 3.1. Suppose that Assumption 2 holds. Let π = {ϕn, n > 0} ∈ ΠRM be arbitrary.

(a) For each n > −1, Uπ
n+1
= Tϕ0 U

(1)π
n and Uπ = Tϕ0U

(1)π, where (1)π = {ϕn, n > 1}.

(b) In particular, for each ϕ ∈ Φ, U
ϕ

n+1
= TϕU

ϕ
n and Uϕ = TϕUϕ.

Proof. (a) First, using that π is Markovian and (7)-(9), we have

n+1
∑

m=1

Ê
π
(s,x)

[

((s − Ŝ m)+ ∧ T̂m+1)ĉ(X̂m, Am) + 1[Ŝ m,Ŝ m+1)(s)ĝ(X̂m, Am)

]

=

n+1
∑

m=1

∑

a∈A(x)

ϕ0(a|s, x)

∫

R+

∫

Ê

Q̂(t., y. |x, a)

[

Ê
π
(s,x)

[

((s − Ŝ m)+ ∧ T̂m+1)ĉ(X̂m, Am)

+ 1[Ŝ m,Ŝ m+1)(s)ĝ(X̂m, Am)
∣

∣

∣X̂1 = y, T̂1 = t

]]

=
∑

a∈A(x)

ϕ0(a|s, x)

∫

R+

∫

Ê

Q̂(t., y. |x, a)

n+1
∑

m=1

Ê
(1)π
((s−t),y)

[

((s − t) − Ŝ m−1)+ ∧ T̂m)

× ĉ(X̂m−1, Am−1) + 1[Ŝ m−1,Ŝ m)(s − t)ĝ(X̂m−1, Am−1)

]

=
∑

a∈A(x)

ϕ0(a|s, x)

∫

[0,s]

∫

Ê

U
(1)π
n (s − t, y)Q(t., y. |x, a),

where the last equality is due to that if t > s, 1[Ŝ m−1,Ŝ m)(s − t) = 0 and ((s − t) − Ŝ m−1)+ = 0.

Then, we have

Uπn+1(s, x) =
∑

a∈A(x)

ϕ0(a|s, x)

[

ĉ(x, a)

∫

R+

(t ∧ s)Q̂(t., Ê|x, a)

+ ĝ(x, a)

∫

R+

1[0,t)(s)Q̂(t., Ê|x, a) +

∫

[0,s]

∫

Ê

U
(1)π
n (s − t, y)Q̂(t., y. |x, a)

]

=
∑

a∈A(x)

ϕ0(a|s, x)

[

ĉ(x, a)

∫ s

0

(1 − Q̂(t, Ê|x, a)t. + ĝ(x, a)(1 − Q̂(s, Ê|x, a))
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+

∫

[0,s]

∫

Ê

U
(1)π
n (s − t, y)Q̂(t., y. |x, a)

]

=Tϕ0 U
(1)π
n (s, x).

Further, noting that A(x) is finite, under Assumption 2, the monotone convergence theorem

implies Uπ = Tϕ0 U
(1)π.

(b) It immediately follows from part (a). �

At the end of this section, we state our main results about SMDPs with the terminal cost

function. In detail, we provide an iterative algorithm for computing the value function U∗, and

give the optimality equation and the existence of optimal policies.

Theorem 3.1. Suppose that Assumption 2 holds. Then the following statements hold.

(a) (Value iteration) For every n > 0, let U∗
0
=: 0 and U∗

n+1
:= TU∗n. Then, U∗ =

limn→∞ U∗n ∈ M.

(b) (Optimality equation) U∗ is the minimum solution in M to the optimality equation

U∗ = TU∗, that is, if u ∈ M satisfies that u = Tu, then u > U∗.

(c) (Optimal policy) There exists an f ∗ ∈ F such that U∗ = T f ∗U∗, and such a policy

f ∗ ∈ F is T -horizon optimal.

Proof. (a) Since ĉ(x, a) and ĝ(x, a) are nonnegative and T is a nondecreasing map from M

to M, we obtain U∗
n+1

(s, x) > U∗n(s, x) and U∗n ∈ M for all n > 0 by U∗
0
= 0. Therefore,

u∗ := limn→∞ U∗n ∈ M. To prove part (a), it remains to establish that u∗ = U∗. We show

u∗ 6 U∗ and U∗ > u∗, respectively.

To show u∗ 6 U∗, we prove that

U∗n+1 6 Uπn , ∀n > −1, π ∈ ΠRM, (14)

and do this by induction. It is obviously true for n > −1. Suppose that U∗
n+1
6 Uπn for some

n > −1 and any π ∈ ΠRM . Then, fixed any π = {ϕn, n > 0} ∈ ΠRM, by Lemma 3.1 part (a), it

holds that

Uπn+1 = T
ϕ0 U

(1)π
n > T

ϕ0 U∗n+1 > TU∗n+1 = U∗n+2,

where (1)π = {ϕn, n > 1} ∈ ΠRM and the second and third inequalities follow from inductive

hypothesis and the definitions of T and Tϕ0 , respectively. Hence (14) holds, and thus u∗ 6 U∗.
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We now show that u∗ > U∗. For every fixed (s, x) ∈ [0, T ] × Ê, since A(x) is finite, there

exists an a∗n(s, x) satisfying that Ta∗n(s,x)U∗n(s, x) = TU∗n(s, x) = U∗
n+1

(s, x). Using that A(x) is

finite again, there is a subsequence {nk} of {n} and a∗(s, x) ∈ A(x) such that a∗nk
(s, x) = a∗(s, x)

for all nk. Hence, U∗
nk+1

(s, x) = Ta∗(s,x)U∗nk
(s, x). Letting nk → ∞, it holds that u∗(s, x) =

T
a∗(s,x)u∗(s, x) by monotone convergence theorem, which implies that u∗(s, x) > Tu∗(s, x). By

the arbitrariness of (s, x), we have u∗ > Tu∗. On the other hand, the finiteness of A(x) and

measurable selection theorem (see [11, Proposition D.5]) ensure that there is an f ∗ ∈ F such

that

T
f ∗u∗ = Tu∗ 6 u∗.

Moreover, Since u∗ > 0 = U
f ∗

−1
, by induction it holds that u∗ > T f ∗U

f ∗

n = U
f ∗

n+1
for all n > −1,

which implies

u∗ > lim
n→∞

U
f ∗

n = U f ∗
> U∗ > u∗ (15)

Therefore, u∗ = U∗.

(b) For every π = {ϕn, n > 0} ∈ ΠRM, by Lemma 3.1 (a), it holds that

Uπ = Tϕ0 U
(1)π
> T

ϕ0U∗ > TU∗.

Then, the arbitrariness of π implies that U∗ > TU∗. On the other hand,

U∗n+1(s, x) = TU∗n(s, x) 6 TaU∗n(s, x), ∀(s, x) ∈ [0, T ] × Ê, a ∈ A(x), n > 0.

Hence, by the monotone convergence theorem, we obtain that U∗(s, x) 6 TaU∗(s, x), and so

U∗(s, x) 6 TU∗(s, x). Therefore, U∗ = TU∗.

Let u ∈ M be an arbitrary solution to the equation u = Tu. Since u > 0 = U∗
0

and u = Tnu,

it follows from part (a) that

u = lim
n→∞
T

n+1u > lim
n→∞
T

n+1U∗0 = lim
n→∞

U∗n = U∗,

where T 1v = Tv and T nv = T (T n−1v) for all n > 1 and v ∈ M. This means that U∗ is the

minimum solution inM to the optimality equation.

(c) By the proof of part (a), there is an f ∗ ∈ F such that TU∗ = T f ∗U∗. Therefore, part (b)

gives U∗ = T f ∗U∗. Hence, f ∗ is T -horizon optimal by part (a) and (15). �

Remark 3.4. In particular, if Ê is denumerable and ĝ = 0, the above results are same as [12,

Theorem 3.1 and Theorem 3.2].
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4. Existence and computation of optimal stopping times

In this section, we introduce the equivalent SMDPs corresponding to the original optimal

stopping problem of SMPs in section 2. And then, we show that for every stopping time τ and

s ∈ [0, T ], there is a policy πτ such that the s-horizon expected cost of τ is equal to s-horizon

expected cost of the policy πτ. Hence, we can analyze the value function V∗ and the optimal

stopping time τ∗ of SMPs through the conclusions of SMDPs given in section 3. Note that the

regular condition (Assumption 1) is needed.

Intuitively, in the SMPs, “continue” or “stop” can be considered as a special action in the

corresponding SMDPs. This intuition gives us an idea to construct the SMDPs. The details

about the constructions of SMDPs are given as follows. Hence, the model of the corresponding

SMDPs is
{

Ê, A, (A(x) ⊂ A, x ∈ Ê), Q̂T (·, ·|x, a), ĉ(x, a), ĝ(x, a)
}

. (16)

where the state space Ê := E ∪ {∆} includes the state space E of SMPs and a virtual state ∆.

A(x), denoting the set of admissible actions at state x ∈ Ê, is defined as

A(x) :=



















{0, 1}, x ∈ E;

{1}, x = ∆,

where the action 0 means continuation and 1 means stop. The action space A = {0, 1} is finite.

Then the set of admissible state-action pairs K = (E × A) ∪ {(∆, 1)} is a Borel subset of Ê × A.

For each t > 0 and B ∈ B(Ê), the semi-Markov kernel Q̂T (t, B|x, a) is given by

Q̂T (t, B|x, a) :=



















Q(t, B \ {∆}|x), x ∈ E, a = 0;

1[T+1,+∞)(t)δ∆(B), x ∈ Ê, a = 1,
(17)

where Q(t, B|x) is the kernel of SMPs given in (1). Finally, the cost rate function and terminal

cost function of SMDP are defined as

ĉ(x, a) :=



















c(x), x ∈ E, a = 0;

0, otherwise,
(18)

ĝ(x, a) :=



















g(x), x ∈ E, a = 1;

0, otherwise,
(19)

where c and g are the cost rate function and terminal cost function of SMPs, respectively. Since

c and g are measurable on E, ĉ(x, a) and ĝ(x, a) are measurable on K. Firstly, we give a lemma

to show that the above model satisfies Assumption 2.
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Lemma 4.1. Suppose that Assumption 1 holds. For the SMDPs as in (16), Assumption 2 is

fulfilled.

Proof. Under Assumption 1, there exist δ > 0 and ǫ > 0 such that (2) holds. Let δ̂ =

min{δ, 1
2
}, and thus

Q̂T (δ̂, Ê|x, a) =



















Q(δ̂, E|x) 6 Q(δ, E|x) 6 1 − ǫ, x ∈ E, a = 0;

1[T+1,+∞)(δ̂) = 0 6 1 − ǫ, i ∈ Ê, a = 1.

Hence, Assumption 2 is fulfilled by [12, Proposition 2.1]. �

Next step, we will show the relationship between the stopping times τ ∈ Γ of SMPs and the

policies π ∈ ΠDH of SMDPs as in (16). To do so, for all n > 0 and history of SMPs up to the

n-th jump epoch hn = (x0, t1, . . . , xn−1, tn, xn) ∈ Hn, let

h0
n = (x0, 0, t1, x1, . . . , 0, tn, xn) ∈ Ĥn. (20)

The action 0 (means continuation) added to the equation (20) indicates that the system has

been running incessantly before the n-th jump epoch. Obviously, by the definition of h0
n, it

holds that

C0 := {h0
n | hn ∈ C} ∈ B(Ĥn), ∀C ∈ B(Hn). (21)

In particular, H0
n = E × ({0} × R+ × E)n ∈ B(Ĥn).

Definition 4.1. Given any deterministic policy π = {dn, n > 0} ∈ ΠDH defined in Definition

3.2 (c) and s ∈ R, define

τs
π(ω) := inf

{

n ∈ N

∣

∣

∣

∣

∣

dn(s − S n(ω), Y0
n (ω)) = 1

}

, ω = (x0, t1, . . . , xn, tn+1, . . .) ∈ Ω,

where inf{∅} := +∞ and Y0
n := (X0, 0, T1, X1, . . . , 0, Tn, Xn). Then τs

π is called the stopping

time induced by the policy π and s.

Lemma 4.2. For each deterministic policy π = {dn, n > 0} and s ∈ R, the induced stopping

time τs
π is a stopping time.

Proof. Note that for each n > 0, the random variables Y0
n and S n, and the function dn are

measurable in their corresponding spaces. Hence, we have

{τs
π = n} =

(

∩n−1
k=0 {dk((s − S k), Y0

k ) = 0}
)

∩
{

dn((s − S n), Y0
n ) = 1

}

∈ σ(Yn) =Fn,

which implies that τs
π is a stopping time. �
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We introduce a subclass Π0
DH

of ΠDH by

Π0
DH := {π = {dn, n > 0} ∈ ΠDH | dn(0, ĥn) = 0,∀n > 0, ĥn ∈ H0

n}.

We now give a key theorem which establishes the relationship between the s-horizon expected

cost of polices in Π0
DH

and that of the stopping times induced by the polices.

Theorem 4.1. Suppose that Assumption 1 holds. For any π = {dn, n > 0} ∈ Π0
DH

, it holds that

Uπ(s, x) = Vτ
s
π(s, x), ∀x ∈ E, s ∈ [0, T ],

where τs
π is the stopping time induced by π and s, and Vτ

s
π(s, x) is the s-horizon expected cost

of τs
π.

Proof. For each ω̂ = (x0, a0, t1, . . . , xn, an, tn+1, . . .) ∈ Ω̂, recall that Ŝ n(ω) =
∑n

k=1 tk and

Ŷn(ω̂) = (x0, a0, t1, x1 . . . , an−1, tn, xn).

We define Cn(n > 0) and C, the subsets of Ω̂, as

Cn :=
{

ω ∈ Ω̂ : inf
{

k ∈ N : dk(s − Ŝ k(ω), Ŷk(ω)) = 1
}

= n
}

, n > 0;

C :=
{

ω ∈ Ω̂ : dk(s − Ŝ k(ω), Ŷk(ω)) = 0,∀k > 0
}

.

It is easy to know that {C,Cn, n > 0} is a partition of Ω̂ and

1Cn
=

n−1
∏

k=0

1{0}(dk(s − Ŝ k, Ŷk)) × 1{1}(dn(s − Ŝ n, Ŷn)).

Hence, the monotone convergence theorem implies that

Uπ(s, x) =

∞
∑

n=0

Ê
π
(s,x)

[

1Cn

(∫ s

0

ĉ(X̂(t), A(t))t. + ĝ(X̂(s), A(s))

)]

+ Êπ(s,x)

[

1C

(
∫ s

0

ĉ(X̂(t), A(t))t. + ĝ(X̂(s), A(s))

)]

. (22)

Noting that π is a deterministic, the definition of Cn and (8) give

P̂
π
(s,x) [Ak = 1|Cn] = P̂π(s,x)

[

dk(s − Ŝ k, Ŷk) = 1
∣

∣

∣Cn

]

=



















0, k < n;

1, k = n,
(23)

which, together with limt→∞ Q̂T (t,∆|x, 1) = 1 and A(∆) = {1}, implies that P̂π
(s,x)

(X̂m = ∆|Cn) =

1 for all m > n. Thus, by Lemma 4.1, (10), (18) and (19) give

Ê
π
(s,x)

[

1Cn

(∫ s

0

ĉ(X̂(t), A(t))t. + ĝ(X̂(s), A(s))

)]
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=

n−1
∑

m=0

Ê
π
(s,x)

[

ĉ(X̂m, Am)((s − Ŝ m)+ ∧ T̂m+1)1Cn

]

+ Êπ(s,x)

[

1Cn
1[Ŝ n,Ŝ n+1)(s)ĝ(X̂n, 1)

]

. (24)

And then, for each m < n, using

1{τs
π=n} =

n−1
∏

k=0

1{0}(dk(s − S k, Y
0
k )) · 1{1}(dn(s − S n, Y

0
n )) (25)

and Q̂T (·, B|x, 0) = Q(·, B \ {∆}|x) for all x ∈ E and B ∈ B(Ê), it holds that

Ê
π
(s,x)

[

ĉ(X̂m, Am)((s − Ŝ m)+ ∧ T̂m+1)1Cn

]

=

∫

Ê

δx(x. 0)

∫

Ê

∫

R+

Q̂T (t.1, x. 1|x0, d0(s, ĥ0))

∫

Ê

∫

R+

Q̂T (t.2, x. 2|x1, d0(s − s1, ĥ1))

· · ·

∫

Ê

∫

R+

Q̂T (t.n, x. n|xn−1, dn−1(s − sn−1, ĥn−1))ĉ(xm, dm(s − sm, ĥm))

((s − sm)+ ∧ tm+1)

n−1
∏

k=0

1{0}(dk(s − sk, ĥk)) · 1{1}(dn(s − sn, ĥn))

=

∫

E

δx(x. 0)

∫

E

∫

R+

Q(t.1, x. 1|x0) · · ·

∫

E

∫

R+

Q(t.n, x. n|xn−1)c(xm)

((s − sm)+ ∧ tm+1)

n−1
∏

k=0

1{0}(dk(s − sk, h
0
k)) · 1{1}(dn(s − sn, h

0
n))

=Ex

[

((s − S m)+ ∧ Tm+1)c(Xm)1{τs
π=n}

]

, (26)

where sk =
∑k

i=1 ti, ĥ0 = x0, ĥk+1 = (ĥk, dk(s− sk, ĥk), tk+1, xk+1), hk = (x0, t1, x1, . . . , tk, xk), and

h0
k

defined in (20). For each ω̂ ∈ Cn, π ∈ Π0
HD

gives Ŷn(ω̂) ∈ H0
n , and then dn(0, Ŷn(ω̂)) = 0.

Further, by dn(s − Ŝ n(ω̂), Ŷn(ω̂)) = 1 for all ω̂ ∈ Cn, Cn ∩ {s = Ŝ n} = ∅. Therefore, we have

1Cn
1[Ŝ n,Ŝ n+1)(s) = 1Cn

1(Ŝ n,Ŝ n+1)(s). Thus, (17) and (19) show

Ê
π
(s,x)

[

1Cn
1[Ŝ n,Ŝ n+1)(s)ĝ(X̂n, 1)

]

=

∫

Ê

δx(x. 0)

∫

Ê

∫

R+

Q̂T (t.1, x. 1|x0, d0(s, ĥ0))

∫

Ê

∫

R+

Q̂T (t.2, x. 2|x1, d0(s − s1, ĥ1))

· · ·

∫

Ê

∫

R+

Q̂T (t.n+1, x. n+1|xn, dn(s − sn, ĥn))ĝ(xn, 1)1(sn,sn+tn+1)(s)

×

n−1
∏

k=0

1{0}(dk(s − sk, ĥk)) · 1{1}(dn(s − sn, ĥn))

=

∫

E

δx(x. 0)

∫

E

∫

R+

Q(t.1, x. 1|x0) · · ·

∫

E

∫

R+

Q(t.n, x. n|xn−1)g(xn)1(sn,sn+T+1)(s)

×

n−1
∏

k=0

1{0}(dk(s − sk, h
0
k)) · 1{1}(dn(s − sn, h

0
n)) (by Q̂T (t, Ê|xn, 1) = 1[T+1,∞)(t))
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=Ex

[

1(S n,+∞)(s)g(Xn)1{τs
π=n}

]

. (27)

Moreover, by the definition of Rs
τs
π

given in (3), (24), (26), and (27), we have

Ex

[

1{τs
π=n}R

s
τs
π

]

=Ex

[

1{S n<s}1{τs
π=n}

(∫ S n

0

c(X(t))t. + g(X(S n))

)]

+ Ex

[

1{S n>s}1{τs
π=n}

∫ s

0

c(X(t))t.

]

=Ex

[

1{S n<s}1{τs
π=n}g(Xn)

]

+ Ex

















1{S n<s}1{τs
π=n}

n−1
∑

m=0

c(Xm)((s − S m)+ ∧ Tm+1)

















+ Ex

















1{S n>s}1{τs
π=n}

n−1
∑

m=0

c(Xm)((s − S m)+ ∧ Tm+1)

















=Êπ(s,x)

[

1Cn

(∫ s

0

ĉ(X̂(t), A(t))t. + ĝ(X̂(s), A(s))

)]

. (28)

Next, we calculate the second item of (22). Using that {C,Cn, n > 0} is a partition of Ω̂ again,

for all k > 0 we obtain that

1C = 1C ×

k
∏

m=0

(1 − 1Cm
) = (1 −

+∞
∑

n=0

1Cn
) ×

k
∏

m=0

(1 − 1Cm
) =

k
∏

m=0

(1 − 1Cm
) −

+∞
∑

n=k+1

1Cn
,

which, combining with (10), implies that

Ê
π
(s,x)

[

1C

(∫ s

0

ĉ(X̂(t), A(t))t. + ĝ(X̂(s), A(s))

)]

=

∞
∑

k=0

{

Ê
π
(s,x)

[
k

∏

m=0

(1 − 1Cm
)

(

((s − Ŝ k)+ ∧ T̂k+1)ĉ(X̂k, Ak) + 1[Ŝ k ,Ŝ k+1)(s)ĝ(X̂k, Ak)

)]

−

+∞
∑

n=k+1

Ê
π
(s,x)

[

1Cn

(

((s − Ŝ k)+ ∧ T̂k+1)ĉ(X̂k, Ak) + 1[Ŝ k ,Ŝ k+1)(s)ĝ(X̂k, Ak)

)]}

.

Firstly, using that ĝ(x, 0) = 0 for allx ∈ E, (23) and (26), we obtain that for each n > k,

Ê
π
(s,x)

[

1Cn

(

((s − S k)+ ∧ T̂k+1)ĉ(X̂k, Ak) + 1[Ŝ k ,Ŝ k+1)(s)ĝ(X̂k, Ak)

)]

=Ex

[

((s − S m)+ ∧ Tm+1)c(Xm)1{τs
π=n}

]

.

And for any k > 0, by the same methods of (26)

Ê
π
(s,x)

[ k
∏

m=0

(1 − 1Cm
)

(

((s − Ŝ k)+ ∧ T̂k+1)ĉ(X̂k, Ak) + 1[Ŝ k ,Ŝ k+1)(s)ĝ(X̂k, Ak)

)]

=Ex

















k
∏

m=0

(1 − 1{τs
π=m})((s − S k)+ ∧ Tk+1)c(Xk)

















.
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Therefore, we obtain that

Ex

[

1{τs
π=+∞}R

s
τs
π

]

= Êπ(s,x)

[

1C

(∫ s

0

ĉ(X̂(t), A(t))t. + ĝ(X(s), A(s))

)]

,

which, together with (22) and (28), shows that

Uπ(s, x) =

∞
∑

n=0

Ex

[

1{τs
π=n}R

s
τs
π

]

+ Ex

[

1{τs
π=+∞}R

s
τs
π

]

= Vτ
s
π(s, x),∀x ∈ E, s ∈ [0, T ].

The proof of Theorem 4.1 is completed. �

For any s ∈ [0, T ], the Definition 4.1, Lemma 4.2 and Theorem 4.1 say that for each policy

π ∈ Π0
DH

, we can construct a stopping time τs
π such that their s-horizon expected costs are

equal. On the other hand, for each stopping time we also can construct a policy which satisfies

this condition, see Definition 4.2, Lemma 4.3 and Theorem 4.2.

Definition 4.2. Given any stopping time τ ∈ Γ and n > 0, let

Bτn :=
{

Yn(ω) : ω = (x0, t1, x1, . . . , tk, xk, . . .) ∈ {τ = n}
}

,

where Yn(ω) = (x0, t1, x1, . . . , tn, xn). For each ĥn = (x0, a0, t1, x1, . . . , an−1, tn, xn) ∈ Ĥn, s ∈ R,

define

dτn(s, ĥn) :=



















1Bτn(x0, t1, x1, . . . , tn, xn)1(0,∞)(s), ĥn ∈ H0
n ;

1, ĥn ∈ Ĥn \ H0
n ,

where H0
n = E × ({0} × R+ × E)n. πτ := {dτn, n > 0} is called the policy induced by τ.

Lemma 4.3. For each stopping time τ ∈ Γ, πτ is in Π0
DH

on the corresponding SMDPs.

Proof. By Definition 4.2, it can verify easily that dτn(s, ĥn) ∈ A(xn). Then, we just need to

consider the measurability. Noting that {τ = n} ∈ Fn = σ(Yn), we obtain Bτn ∈ B(Hn). Thus,

we have

{

(s, ĥn) ∈ R × Ĥn|d
τ
n(s, ĥn) = 0

}

=

(

(0,+∞) × (Hn \ Bτn)0
)

∪

(

(−∞, 0] × H0
n

)

∈ B(R × Ĥn),

where (Hn \ Bτn)0 is defined in (21). Hence, πτ := {dτn, n > 0} is a deterministic policy of the

corresponding SMDPs. Furthermore, for each ĥn ∈ H0
n , it holds that f τn (0, ĥn) = 0, which

implies that πτ ∈ Π
0
DH

. �

Theorem 4.2. Suppose that Assumption 1 holds. For each stopping time τ ∈ Γ, let πτ :=

{dτn, n > 0} be the policy induced by τ. Then,

Vτ(s, x) = Uπτ (s, x) = Vτ
s
πτ (s, x) ∀(s, x) ∈ [0, T ] × E, (29)
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where τs
πτ

is the stopping time induced by πτ and s.

Proof. To prove (29), by the Theorem 4.1, it suffices to show that Vτ(s, x) = Vτ
s
πτ (s, x). By

the (25) and the definition of dτn, we have

1{τs
πτ=n} =

n−1
∏

k=0

1{0}(d
τ
k(s − S k, Y

0
k )) · 1{1}(d

τ
n(s − S n, Y

0
n )) = 1[0,s)(S n)1{τ=n}, (30)

where Y0
k
= (X0, 0, T1, X1, . . . , 0, Tk, Xk). Moreover, using the definition of τs

πτ
again,

1{τs
πτ=∞}

=

∞
∏

n=0

(

1 − 1Bτn(Yn)1(0,∞)(s − S n)
)

=1{τ=∞}

∞
∏

n=0

(

1 − 1{τ=n}1(0,∞)(s − S n)

)

+ 1{τ,∞}

∞
∏

n=0

(

1 − 1{τ=n}1(0,∞)(s − S n)

)

=1{τ=∞} +

∞
∑

k=0

1{τ=k}1[s,∞)(S k). (31)

According to the definition of Rs
τ given in (3), (30) and (31), we have that

Vτ
s
πτ (s, x) =

∞
∑

n=0

Ex

[

1{τs
πτ=n}R

s
n

]

+ Ex

[

1{τs
πτ=∞}

∫ s

0

c(X(t))t.

]

=

∞
∑

n=0

Ex

[

1[0,s)(S n)1{τ=n}R
s
n

]

+ Ex





























1{τ=∞} +

∞
∑

n=0

1{τ=n}1[s,∞)(S n)















∫ s

0

c(X(t))t.















=

∞
∑

n=0

(

Ex

[

1[0,s)(S n)1{τ=n}R
s
n

]

+ Ex

[

1{τ=n}1[s,∞)(S n)Rs
n

])

+ Ex

[

1{τ=∞}R
s
τ

]

=Vτ(s, x),

which is the desired result. �

LetM be the set of Borel measurable functions u : [0, T ] × E → [0,∞]. Next, we define

the operator G fromM intoM as follows:

Gu(s, x) = min

{

c(x)

∫ s

0

(1 − Q(t, E|x))t. +

∫

E

∫

[0,s]

u(s − t, y)Q(t., y. |x), g(x)

}

,

for each u ∈ M and (s, x) ∈ [0, T ]×E. Then, we can state our main results of optimal stopping

problems, these are an algorithm for computing the value function V∗ and a finite optimal

stopping time.

Theorem 4.3. (Value iteration) Suppose that Assumption 1 holds. For any n > −1, let V∗
0
≡ 0

and V∗
n+1
= GV∗n . Then, we have V∗ = limn→∞ V∗n and, moreover, V∗ = GV∗.
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Proof. We define the policy f ∗ for the SMDP as in (16) by

f ∗(s, x) = 1(0,∞)×E(s, x)1{U∗(s,x)=ĝ(x,1)}(s, x) + 1{∆}(x). (32)

Since {U∗(s, x) = g(x, 1)} is a measurable subset of R× Ê and f ∗(·,∆) = 1, f ∗ is a deterministic

stationary policy. Moreover, for any x ∈ E, we have that f ∗(0, x) = 0, which implies f ∗ ∈ Π0
DH

.

Next we will show that f ∗ is T -optimal.

(i) x = ∆: Noting that A(∆) = {1}, by U∗
0
≡ 0 and ĉ(∆, 1) = ĝ(∆, 1) = 0, it holds that

U∗(s,∆) = TU∗(s,∆) = T f ∗(s,∆)U∗(s,∆) = 0, ∀s ∈ [0, T ].

(ii) s = 0 and x ∈ E: By f ∗(0, x) = 0, we have U∗(0, x) = min{0, g(x)} = T f ∗(0,x)U∗(0, x).

(iii) (s, x) ∈ ((0, T ] × E): Noting that T1U∗(s, x) = ĝ(x, 1), by U∗ = TU∗, we have

U∗(s, x) =



















T
1U∗(s, x) = T f ∗(s,x)U∗(s, x), U∗(s, x) = ĝ(x, 1);

T
0U∗(s, x) = T f ∗(s,x)U∗(s, x), U∗(s, x) , ĝ(x, 1).

Hence, f ∗ is T -optimal by Theorem 3.1 part (c). Therefore, Theorem 4.1 implies that

U∗(s, x) = U f ∗(s, x) = V
τs

f ∗ (s, x) > V∗(s, x), ∀x ∈ E, s ∈ [0, T ].

where τs
f ∗

is the stopping time induced by f ∗ and s. On the other hand, for each τ ∈ Γ, Theorem

4.2 gives

Vτ(s, x) = Uπτ (s, x) > U∗(s, x) ∀x ∈ E, s ∈ [0, T ].

By the arbitrariness of τ, V∗(s, x) > U∗(s, x). Hence,

V∗(s, x) = U∗(s, x), ∀x ∈ E, s ∈ [0, T ]. (33)

Next, we show that for all n > 0

U∗n(s, x) = V∗n(s, x), ∀x ∈ E, s ∈ [0, T ]. (34)

Obviously, it holds that for n = 0. Assume that (34) holds for some n. Then

U∗n+1(s, x) =min

{

ĝ(x, 1), ĉ(x, 0)

∫ s

0

(1 − Q̂T (t, Ê|x, 0))t.

+ ĝ(x, 0)(1 − Q̂T (s, Ê|x, 0)) +

∫

[0,s]

∫

Ê

U∗n(s − t, y)Q̂T (t., y. |x, 0)

}

=min

{

g(x), c(x)

∫ s

0

(1 − Q(t, E|x))t. +

∫

[0,s]

∫

E

V∗n (s − t, y)Q(t., y. |x)

}
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=GV∗n(s, x) = V∗n+1(s, x),

where the second equality is due to inductive hypothesis and (17)-(19). Hence, by Theorem 3.1

part (a), (33) and (34) give that V∗(s, x) = limn→∞ V∗n(s, x). Further, the monotone convergence

theorem gives V∗ = GV∗. �

Theorem 4.4. (Optimal stopping time) Suppose that Assumption 1 holds. Define a subset of

(0, T ] × E by

D∗ := {(s, x) ∈ (0, T ] × E : V∗(s, x) = g(x)}, (35)

and for each ω = (x0, t1, x1, . . . , tn, xn, . . .) ∈ Ω, define

τ∗(ω) := inf

{

n
∣

∣

∣(T −

n
∑

k=1

tk, xn) ∈ D∗
}

∧ inf

{

n
∣

∣

∣T 6

n
∑

k=1

tk

}

(36)

Then, τ∗ is a T-optimal stopping time and satisfies that Px (τ∗ = ∞) = 0 for all x ∈ E.

Proof. The definition of f ∗ given in (32) and Definition 4.1 show that for each ω ∈ Ω

τT
f ∗ (ω) = inf {n ∈ N| f ∗(T − S (ω), Xn(ω)) = 1}

= inf















n ∈ N

∣

∣

∣

∣

∣

U∗(T −

n
∑

k=1

tk, xn) = g(xn), T >

n
∑

k=1

tk















= inf















n ∈ N

∣

∣

∣

∣

∣

(T −

n
∑

k=1

tk, xn) ∈ D∗















,

which, implies τ∗(ω) = τT
f ∗

(ω) ∧ inf

{

n
∣

∣

∣T 6
∑n

k=1 tk

}

. By V∗(0, x) = 0 = Vτ
∗

(0, x), we only

consider the case T > 0. First, we have

{τ∗ = 0} = {τT
f ∗ = 0} ∪ {τT

f ∗ > 0, T 6 0} = {τT
f ∗ = 0};

{τ∗ = n + 1} = {τT
f ∗ = n + 1} ∪ {τT

f ∗ > n + 1, S n < T 6 S n+1}, ∀n > 0;

{τ∗ = ∞} = {τT
f ∗ = ∞} ∩ {T > lim

n→∞
S n}.

Hence, using that f ∗ is T -optimal, Theorem 4.1 and Theorem 4.3, we obtain that

Vτ
∗

(T, x) =

∞
∑

n=1

{

Ex

[

1{τT
f ∗
=n}R

T
n

]

+ Ex

[

1{S n−1<T6S n}1{τT
f ∗
>n}R

T
n

]}

+ Ex

[

1{τT
f ∗
=0}R

T
n

]

+ Ex

[

1{τT
f ∗
=∞}1{T>limn→∞ S n}

∫ T

0

c(X(t))t.

]

=

∞
∑

n=0

Êx

[

1{τT
f ∗
=n}R

T
n

]

+

∞
∑

n=1

Ex

[

1{S n−1<T6S n}1{τT
f ∗
=∞}R

T

τT
f ∗

]
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=V
τT

f ∗ (T, x) = V∗(T, x).

Therefore, τ∗ is T -optimal stopping time. Moreover, using (36), we have

0 6 Px(τ∗ = ∞) 6 Px(T > lim
n→∞

S n) = 0,∀x ∈ E,

which means τ∗ is a finite stopping time, whereas τT
f ∗

does not necessarily. �

The condition of Theorem 4.3 requires the value function V∗, but in practical applications,

V∗ is often unknown. Intuitively, we can replace V∗ by the approximation function V∗n , which

is obtained by the iterative algorithm given in Theorem 4.3. Therefore, the concept of optimal

stopping time will be replaced by ε-T -optimal, that is the following definition.

Definition 4.3. Given any ε > 0, a stopping time τ is called ε-T -optimal if it holds that

Vτ(T, x)−V∗(T, x) 6 ε for all x ∈ E, where Vτ(T, x) is T -horizon expected cost of the stopping

time τ given in (4).

The following theorem shows that for any ε > 0, we can iterate enough times and get an

ε-T -optimal stopping time under some conditions. For the convenience of statement, we give

two notations, i.e. || f || := supx∈C | f (x)| for any function f defined on the set C; ⌈x⌉ := min{n ∈

N : n > x} for any x ∈ R+.

Theorem 4.5. Suppose that c and g are bounded and that the semi-Markov kernel Q satisfies

supx∈E Q(T, E|x) =: β < 1. For any ε > 0, the number of iterations Nε is given by

Nε :=

⌈

log(ε(1 − β)) − log(M + 1)

log β

⌉

,

where M = T ||c|| + ||g||. Let V∗
Nε

(s, x) be the Nε-th step iterative function given in Theorem 4.3

and Dε be the subset of [0, T ] × E given by

Dε :=
{

(s, x) ∈ (0, T ] × E|g(x) = GV∗Nε(s, x)
}

.

Then, the following statements hold.

(a) Then, define the stopping time τε by

τε(ω) = inf

{

n
∣

∣

∣((T −

n
∑

k=1

tk, xn) ∈ Dε
}

∧ inf

{

n
∣

∣

∣T 6

n
∑

k=1

tk

}

.

Then, τε is an ε-T -optimal stopping time.
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(b) If it holds that

inf
(s,x)∈((0,T ]×E)\Dε

(

g(x) − GV∗Nε(s, x)
)

> ε, (37)

then, τε is also the T-optimal stopping time.

Proof. By (17), we have that

Q̂T (T, Ê|x, a) :=



















Q(T, E|x) 6 β, x ∈ E, a = 0;

1[T+1,+∞)(T )δ∆(Ê) = 0 6 β, x ∈ Ê, a = 1.

Then, using that c and g are bounded and T is a monotone operator, we have

||U∗n|| 6 ||U
∗|| 6 T ||c|| + ||g|| = M, ∀n > 0.

Moreover, by the definitions of T, for each (s, x) ∈ [0, T ] × E, we have

TU∗n+1(s, x) 6TU∗n(s, x) + β||U∗n+1 − U∗n ||,

which implies that ||U∗
n+1
− U∗n || = β||U

∗
n − U∗

n−1
|| 6 βn||U∗

1
− U∗

0
|| 6 βn M. Then, we define a

policy f ε by

f ε(s, x) = 1(0,∞)×E(s, x)1{TU∗
Nε

(s,x)=ĝ(x,1)}(s, x) + 1{∆}(x),

and then, we have f ε ∈ Π0
HD

. Moreover, similar to the proof of Theorem 4.3, we have that

U∗Nε+1(s, x) = TU∗Nε(s, x) = T f ε(s,x)U∗Nε (s, x), ∀(s, x) ∈ [0, T ] × Ê. (38)

Then, for each n > 0, by induction, we can show that

U∗Nε+1(s, x) > U
f ε

n (s, x) + Ê
f ε

(s,x)

[

U∗Nε+1(s − Ŝ n+1, X̂n+1)
]

−

n
∑

m=0

βm+1||U∗Nε+1 − U∗Nε ||. (39)

By the definition of T f ε(s,x), we obtain that

U∗Nε+1(s, x) =U
f ε

0
(s, x) +

∫

[0,s]

∫

Ê

U∗Nε (s − t, y)Q̂T (t., y. |x, f ε(s, x))

>U
f ε

0
(s, x) + Ê

f ε

(s,x)

[

U∗Nε+1(s − Ŝ 1, X̂1)
]

− β||U∗Nε+1 − U∗Nε ||,

which means that (39) holds for n = 0. On the other hand, for any n > 0

Ê

[

U∗Nε(s − Ŝ n+1, X̂n+1)
]

=

∫

Ê

δx(x. 0)

∫

[0,s]

∫

Ê

Q̂T (t.1, x. 1|x0, f ε(s, x0))

∫

[0,s−s1]

∫

Ê

Q̂T (t.2, x. 2|x1, f ε(s − s1, x1))
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· · ·

∫

[0,s−sn]

∫

Ê

Q̂T (t.n+1, x. n+1|x1, f ε(s − sn, xn))U∗Nε(s − sn+1, xn+1)

>

∫

Ê

δx(x. 0)

∫ s

0

∫

Ê

Q̂T (t.1, x. 1|x0, f ε(s, x0))

∫

[0,s−s1]

∫

Ê

Q̂T (t.2, x. 2|x1, f ε(s − s1, x1))

· · ·

∫

[0,s−sn]

∫

Ê

Q̂T (t.n+1, x. n+1|x1, f ε(s − sn, xn))(U∗Nε+1(s − sn+1, xn+1) − ||U∗Nε+1 − U∗Nε ||)

>Ê

[

U∗Nε+1(s − Ŝ n+1, X̂n+1)
]

− βn+1||U∗Nε+1 − U∗Nε ||.

Thus, suppose that (39) holds for some n, it holds that by (8), (9) and (38)

U∗Nε+1(s, x) >U
f ε

n (s, x) + Ê
f ε

(s,x)

[

T
f εU∗Nε(s − Ŝ n+1, X̂n+1)

]

−

n
∑

m=0

βm+1||U∗Nε+1 − U∗Nε ||

=U
f ε

n+1
(s, x) + Ê

f ε

(s,x)

[

U∗Nε (s − Ŝ n+2, X̂n+2)
]

−

n
∑

m=0

βm+1||U∗Nε+1 − U∗Nε ||

>U
f ε

n+1
(s, x) + Ê

f ε

(s,x)

[

U∗Nε+1(s − Ŝ n+2, X̂n+2)
]

−

n+1
∑

m=0

βm+1||U∗Nε+1 − U∗Nε ||.

Hence, passing the limit n→ ∞ in (39), it holds that for all (s, x) ∈ [0, T ] × E

U∗(s, x) > U∗Nε+1(s, x) > U f ε(s, x) −
β

1 − β
||U∗Nε+1 − U∗Nε || > U f ε(s, x) − ε. (40)

In the same method of Theorem 4.4, we can verify τε = τT
f ε
∧ inf

{

n
∣

∣

∣T 6 S n

}

and

Vτ
ε

(T, x) = U f ε(T, x) 6 V∗(T, x) + ε,

i.e., τε is an ε-T -optimal stopping time.

If ((0, T ]×E) \Dε = ∅, then (0, T ]×E = Dε and the condition (37) holds naturally. Hence,

for each (s, x) ∈ (0, T ]×E, we have g(x) = V∗
Nε+1

(s, x) 6 V∗(s, x). That means D∗ = Dε, where

D∗ given in (35).

Next, we consider the case ((0, T ] × E) \ Dε , ∅. Again, using the monotonicity of G, we

have Dε ⊂ D∗. Conversely, by the definition of V∗
Nε

(s, x) and (40), it holds that

HV∗Nε(s, x) = V∗Nε+1(s, x) > U f ε(s, x) − ε > U∗(s, x) − ε = V∗(s, x) − ε,

i.e. V∗(s, x) 6 HV∗
Nε

(s, x) + ε for each (s, x) ∈ (0, T ] × E. For each (s, x) ∈ ((0, T ] × E) \ Dε,

the condition (37) implies that

g(x) − V∗(s, x) > g(x) − GV∗Nε(s, x) − ε > 0,

which means (s, x) ∈ ((0, T ] × E) \ D∗. Hence, we have D∗ ⊂ Dε and then D∗ = Dε. Finally,

we have τε = τ∗, which is a T -optimal stopping time given in Theorem 4.3. �
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Hence, given any accuracy ε > 0 and planning horizon T > 0, we can devire an approach

of computing ε-T -optimal stopping time.

An algorithm (for ε-T -optimal stopping time)

Step 1 (Initialization): Let V∗
0
(s, x) = 0 for every (s, x) ∈ [0, T ] × E.

Step 2 (Iteration): Compute the function V∗n(s, x) for every (s, x) ∈ [0, T ] × E by

V∗n+1(s, x) = min

{

c(x)

∫ s

0

(1 − Q(t, E|x))t. +

∫

E

∫

[0,s]

V∗n(s − t, y)Q(t., y. |x), g(x)

}

.

Step 3 (Accuracy control): If V∗
n+1

(s, x)− V∗(s, x) 6 ε for every (s, x) ∈ [0, T ]× E, go to Step

4; otherwise, go to Step 2 by replacing n with n + 1.

Step 4 (ε-T -optimal stopping time): Compute the set

Dε =
{

(s, x) ∈ (0, T ] × E|g(x) = GV∗Nε(s, x)
}

and the ε-T -optimal stopping time

τε(ω) = inf{n
∣

∣

∣((T −

n
∑

k=1

tk, xn) ∈ Dε} ∧ inf{n
∣

∣

∣T 6

n
∑

k=1

tk}, ∀ω = (x0, . . . , xn, tn+1, . . .) ∈ Ω.
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