
A norm minimization-based convex vector optimization

algorithm∗

Çağın Ararat† Firdevs Ulus‡ Muhammad Umer§

February 17, 2022

Abstract

We propose an algorithm to generate inner and outer polyhedral approximations to

the upper image of a bounded convex vector optimization problem. It is an outer ap-

proximation algorithm and is based on solving norm-minimizing scalarizations. Unlike

Pascolleti-Serafini scalarization used in the literature for similar purposes, it does not

involve a direction parameter. Therefore, the algorithm is free of direction-biasedness.

We also propose a modification of the algorithm by introducing a suitable compact

subset of the upper image, which helps in proving for the first time the finiteness of an

algorithm for convex vector optimization. The computational performance of the algo-

rithms is illustrated using some of the benchmark test problems, which shows promising

results in comparison to a similar algorithm that is based on Pascoletti-Serafini scalar-

ization.

Keywords and phrases: convex vector optimization, multiobjective optimization,

∗This work was funded by TÜBİTAK (Scientific & Technological Research Council of Turkey), Project
No. 118M479.

†Bilkent University, Department of Industrial Engineering, Ankara, Turkey, cararat@bilkent.edu.tr.
‡Bilkent University, Department of Industrial Engineering, Ankara, Turkey, firdevs@bilkent.edu.tr.
§Bilkent University, Department of Industrial Engineering, Ankara, Turkey, muham-

mad.umer@bilkent.edu.tr.

ar
X

iv
:2

10
4.

10
28

2v
2

 [
m

at
h.

O
C

]
 1

6
Fe

b
20

22

approximation algorithm, scalarization, norm minimization.

Mathematics Subject Classification (2020): 90B50, 90C25, 90C29.

1 Introduction

In multiobjective optimization, the decision-maker is supposed to consider multiple objective

functions simultaneously. In general, these functions conflict in the sense that improving one

objective leads to deteriorating some of the others. Consequently, there does not exist a

feasible solution which can generate optimal values of all the objectives. Rather, there

exists a subset of feasible solutions, called efficient solutions, which map to the so called

nondominated points in the objective space. The image of a feasible solution is said to be

nondominated if none of the objective functions can be improved in value without degrading

some of the other objective values.

In vector optimization, the objective function takes values again in a vector space, namely,

the objective space. However, rather than comparing the objective function values compo-

nentwise as in the multiobjective case, a more general order relation, which is induced by

an ordering cone, is used for this purpose. Clearly, multiobjective optimization can be seen

as a special case where the ordering cone is the positive orthant. Assuming that the vector

optimization problem (VOP) is a minimization problem with respect to an ordering cone

C, the concept of nondominated point for a multiobjective optimization problem (MOP) is

generalized to minimal point with respect to C in the vector optimization case.

A special class of vector optimization problems is the linear VOPs, where the objective

function is linear and the feasible region is a polyhedron. There is rich literature available

discussing various methods and algorithms for solving linear VOPs. They deal with the

problem by generating either the efficient solutions in the decision space [16, 41] or the

nondominated points in the objective space [4, 28, 32]. The reader is referred to the books

by Ehrgott [14] and by Jahn [23] for the details of these approaches.

2

In 1998, Benson proposed an outer approximation algorithm for linear MOPs which

generates the set of all nondominated points in the objective space rather than the set of

all efficient points in the decision space [4]. Later, this algorithm is extended to solve linear

VOPs, see [28]. The main principle of the algorithm is that if one adds the ordering cone

to the image of the feasible set, then the resulting set, called the upper image, contains all

nondominated points in its boundary. The algorithm starts with a set containing the upper

image and iterates by updating the outer approximating set until it is equal to the upper

image.

For nonlinear MOPs/VOPs, there is a further subdivision, namely the convex and the

nonconvex problems. Note that the methods described for linear MOPs/VOPs may not be

directly applicable to these classes as, in general, it is not possible to generate the set of all

nondominated/minimal points in the objective space. Therefore, approximation algorithms,

which approximate the set of all minimal points in the objective space, are widely explored

in the literature, refer for example to the survey paper by Ruzika and Wiecek [42] for the

multiobjective case.

For bounded convex vector optimization problems (CVOPs), see Section 3 for precise

definitions, there are several outer approximation algorithms in the literature that work on

the objective space. In [13], the algorithm in [4] is extended for the case of convex MOPs.

Another extension of Benson’s algorithm for the vector optimization case is proposed in [29],

which is a simplification and generalization of the algorithm in [13]. This algorithm has

already been used for solving mixed-integer convex multiobjective optimization problems

[10], as well as problems in stochastic optimization [2] and finance [18, 40]. Recently, in [11],

a modification of the algorithm in [29] is proposed. The main idea of these algorithms is to

generate a sequence of better approximating polyhedral supersets of the upper image until

the approximation is sufficiently fine. This is done by sequentially solving some scalarization

models in which the original CVOP is converted into an optimization problem with a single

objective. There are many scalarization methods available in the literature for MOPs/VOPs,

3

see for instance the book by Eichfelder [15] as well as the recent papers [7, 24, 27].

In particular, in each iteration of the CVOP algorithms proposed in [11, 13, 29], a

Pascoletti-Serafini scalarization [38], which requires a reference point v and a direction vec-

tor d in the objective space as its parameters, is solved. For the algorithms in [13] and [29],

the reference point v is selected to be an arbitrary vertex of the current outer approximation

of the upper image. Moreover, in [13], the direction parameter d is computed depending on

the reference point v together with a fixed point in the objective space, whereas it is fixed

throughout the algorithm proposed in [29]. In [11], a procedure to select a vertex v as well

as a direction parameter d, which depends on v and the current approximation, is proposed.

In this study, we propose an outer approximation algorithm (Algorithm 1) for CVOPs,

which solves a norm-minimizing scalarization in each iteration. Different from Pascoletti-

Serafini scalarization, it does not require a direction parameter; hence, one does not need to

fix a direction parameter as in [29], or a point in the objective space in order to compute

the direction parameter as in [13]. Moreover, when terminates, the algorithm provides the

Hausdorff distance between the upper image and its outer approximation, directly.

The scalarization methods based on a norm have been frequently used in the context of

MOPs, see for instance [15]. These methods generally depend on the ideal point at which

all objectives of the MOP attain its optimal value, simultaneously. Since the ideal point is

not feasible in general, the idea is to find the minimum distance from the ideal point to the

image of the feasible region. One of the well-known methods is the weighted compromise

programming problem, which utilizes the `p norm with p ≥ 1, see for instance [26, 43]. The

most commonly used special case is also known as the weighted Chebyshev scalarization,

where the underlying norm is taken as the `∞ norm, see for instance [12, 34, 42]. The weight

vector in these scalarization problems are taken such that each component is positive. If

the weight vector is taken as the vector of ones, then they are simply called compromise

programming (p ≥ 1) and Chebyshev scalarization (p = +∞), respectively.

The scalarization method that is solved in the proposed algorithm works with any norm

4

defined on the objective space. It simply computes the distance, with respect to a fixed

norm, from a given reference point in the objective space to the upper image. This is similar

to compromise programming, however it has further advantages compared to it:

• The reference point used in the norm-minimizing scalarization is not necessarily the

ideal point, which is not well-defined for a VOP. Indeed, within the proposed algorithm,

we solve it for the vertices of the outer approximation of the upper image. In weighted

compromise programming, finding various nondominated points is done by varying

the (nonnegative) weight parameters. It is not straightforward to generalize weighted

compromise programming for a vector optimization setting, whereas this can be done

directly with the proposed norm-minimizing scalarization.

We discuss some properties of the proposed scalarization under mild assumptions. In

particular, we prove that if the feasible region of the VOP is solid and compact, then there

exist an optimal solution to it as well as an optimal solution to its Lagrange dual. Moreover,

strong duality holds between these solutions. We further prove that using a dual optimal

solution, one can generate a supporting halfspace to the upper image. Note that for these

results, the ordering cone is assumed to be a closed convex cone that is solid, pointed and

nontrivial. However, different from the similar results regarding Pascoletti-Serafini scalar-

ization, see for instance [29], the ordering cone is not necessarily polyhedral.

The main idea of Algorithm 1 is similar to the Benson-type outer approximation algo-

rithms; iteratively, it finds better outer approximations to the upper image and stops when

the approximation is sufficiently fine. As already mentioned, it solves the proposed norm-

minimizing scalarization model instead of Pascoletti-Serafini scalarization. Hence, it is free

of direction-biasedness. Using the properties of the norm-minimizing scalarization, we prove

that the algorithm works correctly, that is, given an approximation error ε > 0, when ter-

minates, the algorithm returns an outer approximation to the upper image such that the

Hausdorff distance between the two is less than ε.

We also propose a modification of Algorithm 1, namely, Algorithm 2. In addition to its

5

correctness, we prove that if the feasible region is compact, then for a given approximation

error ε > 0, Algorithm 2 stops after finitely many iterations. Note that the finiteness of outer

approximation algorithms for linear VOPs are known, see for instance [28]. Also, under com-

pact feasible region assumption, the finiteness of an outer approximation for nonlinear (even

for nonconvex) MOPs, proposed in [37], is known. However, to the best of our knowledge,

Algorithm 2 is the first CVOP algorithm with a guarantee for finiteness. Compared to the

cases of linear VOPs and nonconvex MOPs, proving the finiteness of Algorithm 2 has the

following new challenges which we address by our technical analysis:

• Since the upper image is polyhedral for a linear VOP, the algorithms find exact so-

lutions, and finiteness follows by the polyhedrality of the upper image. On the other

hand, for a CVOP, we look for approximate solutions of a convex and generally non-

polyhedral upper image. Hence, the proof of finiteness requires completely different

arguments.

• The algorithm for nonconvex MOPs in [37] constructs an outer approximation for the

upper image by discarding sets of the form {v} − intRq
+, where v is a point on the

upper image (see Section 2 for precise definitions). In this case, the proof of finiteness

relies on a hypervolume argument for certain small hypercubes generated by the outer

approximation. In the current work, we deal with CVOPs with general ordering cones

and our algorithms construct an outer approximation by intersecting certain supporting

halfspaces of the upper image (instead of discarding “point minus cone” type sets). To

prove the finiteness of Algorithm 2, we propose a novel hypervolume argument which

exploits the relationship between these halfspaces and certain subsets of small norm

balls (see Lemma 7.1). Another important challenge in using supporting halfspaces is to

guarantee that the vertices of the outer approximations, which are the reference points

for the scalarization models, as well as the minimal points of the upper image found by

solving these scalarizations throughout the algorithm are within a compact set. Note

that this is naturally the case in [37] by the structure of their outer approximations.

6

For our proposed algorithm, we construct sufficiently large compact sets S and S2 such

that the vertices and the corresponding minimal points of the upper image are within

S and S2, respectively (see Lemmas 6.3, 7.2 and Remark 6.4).

The rest of the paper is organized as follows. In Section 2, we introduce the notation of the

paper and recall some well-known concepts and results in convex analysis. In Section 3, we

present the setting for CVOP, discuss an approximate solution concept from the literature.

This is followed by a detailed treatment of norm-minimizing scalarizations in Section 4,

including some duality results as well as geometric properties of optimal solutions. Sections

5 and 6 are devoted to Algorithms 1 and 2, respectively, where we prove their correctness.

The theoretical analysis of Algorithm 2 continues in Section 7, which concludes with the proof

of finiteness for this algorithm. We provide several examples and discuss the computational

performance of the proposed algorithms on these examples in Section 8. We conclude the

paper in Section 9.

2 Preliminaries

In this section, we describe the notations and definitions which will be used throughout the

paper. Let q ∈ N := {1, 2, . . .}. We denote by Rq the q-dimensional Euclidean space. When

q = 1, we have the real line R := R1, and the extended real line R := R∪{+∞}∪{−∞}. On

Rq, we fix an arbitrary norm ‖·‖, and we denote its dual norm by ‖·‖∗. We will sometimes

assume that ‖·‖ = ‖·‖p is the `p-norm on Rq, where p ∈ [1,+∞]. For y ∈ Rq, the `p-norm

of y is defined by ‖y‖p := (
∑q

i=1|yi|p)
1
p when p ∈ [1,+∞), and by ‖y‖p := maxi∈{1,...,q}|yi|

when p = +∞. In this case, the dual norm is ‖·‖∗ = ‖·‖p′ , where p′ ∈ [1,+∞] is the

conjugate exponent of p via the relation 1
p

+ 1
p′

= 1. For ε > 0, we define the closed ball

Bε := {z ∈ Rq | ‖z‖ ≤ ε} centered at the origin.

Let f : Rq → R be a convex function and y0 ∈ Rq with f(y0) ∈ R. The set ∂f(y0) :=

{z ∈ Rq | ∀y ∈ Rq : f(y) ≥ f(y0) + zT(y − y0)} is called the subdifferential of f at y0.

7

For a set A ⊆ Rq, we denote by intA, clA, bdA, convA, coneA, the interior, closure,

boundary, convex hull, conic hull of A, respectively. A recession direction of A is a vector

k ∈ Rq \ {0} satisfying A + {λk ∈ Rq | λ > 0} ⊆ A. The set of all recession directions

of A, reccA = {k ∈ Rq | ∀a ∈ A, ∀λ ≥ 0 : a + λk ∈ A}, is the recession cone of A.

If A,B ⊆ Rq are nonempty sets and λ ∈ R, then we define the Minkowski operations

A+B := {y1 + y2 | y1 ∈ A, y2 ∈ B}, λA := {λy | y ∈ A}, A−B := A+ (−1)B.

Let C ⊆ Rq be a convex cone. The set C+ := {z ∈ Rq | ∀y ∈ C : zTy ≥ 0} is a closed

convex cone, and it is called the dual cone of C. The cone C is said to be solid if intC 6= ∅,

pointed if it does not contain any lines, and nontrivial if {0} (C (Rq. If C is a solid

pointed nontrivial cone, then the relation ≤C on Rq defined by y1 ≤C y2 ⇐⇒ y2 − y1 ∈ C

for every y1, y2 ∈ Rq is a partial order. Let X ⊆ Rn be a convex set, where n ∈ N. A

function Γ: X → Rq is said to be C-convex if Γ(λx1 + (1− λ)x2) ≤C λΓ(x1) + (1− λ)Γ(x2)

for every x1, x2 ∈ X,λ ∈ [0, 1]. In this case, the function x 7→ wTΓ(x) on X is convex for

every w ∈ C+. Let X ⊆ X. Then, the set Γ(X) := {Γ(x) | x ∈ X} is the image of X

under Γ. The function IX : Rq → [0,+∞] defined by IX (x) = 0 whenever x ∈ X and by

IX (x) = +∞ whenever x ∈ Rq \ X is called the indicator function of X .

Let A ⊆ Rq be a nonempty set. A point y ∈ A is called a C-minimal element of A if

({y}−C \ {0})∩A = ∅. If the cone C is solid, then y is called a weakly C-minimal element

of A if ({y} − intC) ∩ A = ∅. We denote by MinC(A) the set of all C-minimal elements of

A, and by wMinC(A) the set of all weakly C-minimal elements of A whenever C is solid.

For each z ∈ Rq, we define d(z, A) := infy∈A‖z − y‖. Let B ⊆ Rq be a nonempty

set. We denote by δH(A,B) the Hausdorff distance between A,B. It is well-known that [9,

Proposition 3.2]

δH(A,B)=max

{
sup
y∈A

d(y,B), sup
z∈B

d(z, A)

}
=inf {ε > 0 | A ⊆ B + Bε, B ⊆ A+ Bε} . (2.1)

Suppose that A is a convex set and let y ∈ A, w ∈ Rq \ {0}. If wTy = infz∈Aw
Tz,

8

then the set {z ∈ Rq | wTz = wTy} is called a supporting hyperplane of A at y and the set

{z ∈ Rq | wTz ≥ wTy} ⊇ A is called a supporting halfspace of A at y.

Suppose that A is a polyhedral closed convex set. The representation of A as the inter-

section of finitely many halfspaces, that is, as A =
⋂r
i=1{y ∈ Rq | (wi)Ty ≥ ai} for some

r ∈ N, wi ∈ Rq \ {0} and ai ∈ R, i ∈ {1, . . . , r}, is called an H-representation of A. Alter-

natively, A is uniquely determined by a finite set {y1, . . . , ys} ⊆ Rq of vertices and a finite

set {d1, . . . , dt} ⊆ Rq of directions via A = conv{y1, . . . , ys} + conv cone{d1, . . . , dt}, which

is called a V -representation of A.

3 Convex vector optimization

We consider a convex vector optimization problem (CVOP) of the form

minimize Γ(x) with respect to ≤C subject to x ∈ X , (P)

where C ⊆ Rq is the ordering cone of the problem, Γ: X → Rq is the vector-valued objective

function defined on a convex set X ⊆ Rn, and X ⊆ X is the feasible region. The conditions

we impose on C,Γ,X are stated in the next assumption.

Assumption 3.1. The following statements hold.

(a) C is a closed convex cone that is also solid, pointed, and nontrivial.

(b) Γ is a C-convex and continuous function.

(c) X is a compact convex set with intX 6= ∅.

The set P := cl(Γ(X)+C) is called the upper image of (P). Clearly, P is a closed convex

set with P = P + C.

9

Remark 3.2. Note that, under Assumption 3.1, Γ(X) is a compact set as the image of a

compact set under a continuous function. Then, Γ(X) + C is a closed set as the algebraic

sum of a compact set and a closed set [1, Lemma 5.2]. Hence, we have P = Γ(X) + C.

We recall the notion of boundedness for CVOP next.

Definition 3.3. [29, Definition 3.1] (P) is called bounded if P ⊆ {y}+C for some y ∈ Rq.

In view of Remark 3.2, it follows that (P) is bounded under Assumption 3.1.

The next definition recalls the relevant solution concepts for CVOP.

Definition 3.4. [21, Definition 7.1] A point x̄ ∈ X is said to be a (weak) minimizer for

(P) if Γ(x̄) is a (weakly) C-minimal element of Γ(X). A nonempty set X̄ ⊆ X is called an

infimizer of (P) if cl conv(Γ(X̄)+C) = P. An infimizer X̄ of (P) is called a (weak) solution

of (P) if it consists of only (weak) minimizers.

In CVOP, it may be difficult or impossible to compute a solution in the sense of Defini-

tion 3.4, in general. Hence, we consider the following notion of approximate solution.

Definition 3.5. [11, Definition 3.3] Suppose that (P) is bounded and let ε > 0. Let X̄ ⊆ X

be a nonempty finite set and define P̄ := conv Γ(X̄) + C. The set X̄ is called a finite ε-

infimizer of (P) if P̄ + Bε ⊇ P. The set X̄ is called a finite (weak) ε-solution of (P) if it is

an ε-infimizer that consists of only (weak) minimizers.

For a finite (weak) ε-solution X̄ , it is immediate from Definition 3.5 that

P̄ + Bε ⊇ P ⊇ P̄ . (3.1)

Hence, X̄ provides an inner and an outer approximation for the upper image P .

Remark 3.6. In [11, Definition 3.3] the statement of the definition is slightly different.

Instead of P̄ + Bε ⊇ P, the requirement is given as δH(P , P̄) ≤ ε. However, both yield

equivalent definitions. Indeed, by (3.1) we have P ⊆ P̄ + Bε as well as P̄ ⊆ P ⊆ P + Bε.

Then, δH(P , P̄) ≤ ε follows by (2.1). The converse holds similarly by (2.1).

10

Given w ∈ C+ \ {0}, the following convex program is the well-known weighted sum

scalarization of (P):

minimize wTΓ(x) subject to x ∈ X . (WS(w))

The following proposition is a standard result in vector optimization, it formulates the

connection between weighted sum scalarizations and weak minimizers.

Proposition 3.7. [22, Corollary 2.3] Let w ∈ C+ \ {0}. Then, every optimal solution of

(WS(w)) is a weak minimizer of (P).

For the new notion of approximate solution in Definition 3.5, we prove an existence result.

Proposition 3.8. Suppose that Assumption 3.1 holds. Then, there exists a solution of (P).

Moreover, for every ε > 0, there exists a finite ε-solution of (P).

Proof. The existence of a solution X̄ of (P) follows by [29, Proposition 4.2]. By [29, Propo-

sition 4.3], for every ε > 0, there exists a finite ε-solution of (P) in the sense of [29, Definition

3.3]. By [11, Remark 3.4], an ε-solution in the sense of [29, Definition 3.3] is also an ε-solution

in the sense of Definition 3.5. Hence, the result follows.

4 Norm-minimizing scalarization

In this section, we describe the norm-minimizing scalarization model that we use in our

proposed algorithm and provide some analytical results regarding this scalarization.

Let us fix an arbitrary norm ‖·‖ on Rq and a point v ∈ Rq. We consider the norm-

minimizing scalarization of (P) given by

minimize ‖z‖ subject to Γ(x)− z − v ≤C 0, x ∈ X , z ∈ Rq. (P(v))

Note that this is a convex program.

11

Remark 4.1. The optimal value of (P(v)) is equal to d(v,P), the distance of v to the upper

image P. Indeed, by Remark 3.2, we have

d(v,P) = inf
y∈P
‖v − y‖ = inf{‖z‖ | v + z ∈ P , z ∈ Rq}

= inf {‖z‖ | v + z ∈ {Γ(x)}+ C, x ∈ X , z ∈ Rq} (4.1)

= inf {‖z‖ | Γ(x)− v − z ≤C 0, x ∈ X , z ∈ Rq} . (4.2)

In order to derive the Lagrangian dual of (P(v)), we first pass to an equivalent formulation

of (P(v)). To that end, let us define a scalar function f : X × Rq → R and a set-valued

function G : X × Rq ⇒ Rq by

f(x, z) := ‖z‖+ IX (x), G(x, z) := {Γ(x)− z − v}, x ∈ X, z ∈ Rq.

Note that (P(v)) is equivalent to the following problem:

minimize f(x, z) subject to G(x, z) ∩ −C 6= ∅, (x, z) ∈ X × Rq. (P′(v))

To use the results from [28, Section 3.3.1] and [25, Section 8.3.2] for convex programming

with set-valued constraints, we define the Lagrangian L : X × Rq × Rq → R for (P′(v)) by

L(x, z, w) := f(x, z) + inf
u∈G(x,z)+C

wTu, (x, z, w) ∈ X × Rq × Rq. (4.3)

Then, the dual objective function φ : Rq → R is defined by

φ(w) := inf
x∈X,z∈Rq

L(x, z, w), w ∈ Rq.

By the definitions of f,G and using the fact that infc∈C w
Tc = −IC+(w) for every w ∈ Rq,

12

we obtain

φ(w) =


infx∈X ,z∈Rq

(
‖z‖+ wT(Γ(x)− z − v)

)
if w ∈ C+,

−∞ otherwise.

Finally, the dual problem of (P′(v)) is formulated as

maximize φ(w) subject to w ∈ Rq. (D(v))

Then, the optimal value of (D(v)) is given by

sup
w∈Rq

φ(w) = sup
w∈C+

(
inf
x∈X

wTΓ(x)− sup
z∈Rq

(
wTz − ‖z‖

)
− wTv

)
(4.4)

= sup

{
inf
x∈X

wTΓ(x)− wTv | ‖w‖∗ ≤ 1, w ∈ C+

}

since the conjugate function of ‖·‖ is the indicator function of the unit ball of the dual norm

‖·‖∗; see, for instance, [6, Example 3.26].

The next proposition shows the strong duality between (P(v)) and (D(v)).

Proposition 4.2. Under Assumption 3.1, for every v ∈ Rq, there exist optimal solutions

(xv, zv) and wv of problems (P(v)) and (D(v)), respectively, and the optimal values coincide.

Proof. Let us fix some x̃ ∈ X and define z̃ := Γ(x̃)− v. Clearly, (x̃, z̃) is feasible for (P(v)).

We consider the following problem with compact feasible region in Rn+q:

minimize ‖z‖ subject to Γ(x)− z − v ≤C 0, ‖z‖ ≤ ‖z̃‖, x ∈ X , z ∈ Rq. (4.5)

An optimal solution (x∗, z∗) for the problem in (4.5) exists by Weierstrass Theorem and

(x∗, z∗) is also optimal for (P(v)). To show the existence of an optimal solution of (D(v)),

13

we show that the following constraint qualification in [25, 28] holds for (P(v)):

G(dom f) ∩ − intC 6= ∅, (4.6)

where dom f := {(x, z) ∈ X × Rq | f(x, z) < +∞}. Since intX 6= ∅ and intC 6= ∅ by

Assumption 3.1, we may fix x0 ∈ intX , y0 ∈ Γ(x0) + intC and define z0 := y0− v. We have

v + z0 − Γ(x0) ∈ intC, equivalently, G(x0, z0) ⊆ − intC. As (x0, z0) ∈ dom f = X × Rq, it

follows that (4.6) holds. Moreover, the set-valued map G : X × Rq ⇒ Rq is C-convex [25,

Section 8.3.2], that is,

λG(x1, z) + (1− λ)G(x2, z) ⊆ G(λ(x1, z) + (1− λ)(x2, z)) + C (4.7)

for every x1, x2 ∈ X, z ∈ Rq, λ ∈ [0, 1]. Indeed, by the C-convexity of Γ: X → Rq, we have

λ(Γ(x1)− z − v) + (1− λ)(Γ(x2)− z − v) ∈ Γ(λx1 + (1− λ)x2)− z − v + C

for every x1, x2 ∈ X, z ∈ Rq, and λ ∈ [0, 1], from which (4.7) follows. Finally, since

f : X × Rq → R is also convex, by [28, Theorem 3.19], we have strong duality and dual

attainment.

Notation 4.3. From now on, we fix an arbitrary optimal solution (xv, zv) of (P(v)) and an

arbitrary optimal solution wv of (D(v)). Their existence is guaranteed by Proposition 4.2.

Remark 4.4. Note that (xv, zv, wv) is a saddle point of the Lagrangian for (P(v)) given by

(4.3); see [6, Section 5.4.2]. Hence, we have

sup
w∈Rq

L(xv, zv, w) = L(xv, zv, wv) = inf
x∈X ,z∈Rq

L(x, z, wv).

The second equality yields that (wv)TΓ(xv) = infx∈X (wv)TΓ(x). Hence, xv is an optimal

solution of (WS(w)) for w = wv.

14

In the next lemma, we characterize the cases where zv = 0.

Lemma 4.5. Suppose that Assumption 3.1 holds. The following statements hold. (a) If

v /∈ P, then zv 6= 0 and wv 6= 0. (b) If v ∈ bdP, then zv = 0. (c) If v ∈ intP, then zv = 0

and wv = 0. In particular, v ∈ P if and only if zv = 0.

Proof. To prove (a), suppose that v /∈ P . To get a contradiction, we assume that zv = 0.

Since (xv, zv) is feasible for (P(v)), we have v = v+zv ∈ {Γ(xv)}+C ⊆ P , contradicting the

supposition. Hence, zv 6= 0. Moreover, if we had wv = 0, then the optimal value of (D(v))

would be zero and strong duality would imply that ‖zv‖ = 0, that is, zv = 0. Therefore, we

must have wv 6= 0.

To prove (b) and (c), suppose that v ∈ P . By Remark 3.2, there exists x ∈ X such that

Γ(x) ≤C v. Then, (x, 0) is feasible for (P(v)). Hence, the optimal value of (P(v)) is zero so

that ‖zv‖ = 0, that is, zv = 0. Suppose that we further have v ∈ intP . Let δ ∈ intC be such

that v− δ ∈ P . By Remark 3.2, there exists xδ ∈ X such that Γ(xδ) ≤C v− δ, which implies

(wv)TΓ(xδ) ≤ (wv)Tv − (wv)Tδ. Moreover, by strong duality, infx∈X (wv)T(Γ(x) − v) = 0

holds. Combining these gives 0 = infx∈X (wv)T(Γ(x)− v) ≤ (wv)T(Γ(xδ)− v) ≤ −(wv)Tδ ≤ 0

so that (wv)Tδ = 0. As δ ∈ intC and wv ∈ C+, we must have wv = 0.

The next proposition shows that solving (P(v)) when v /∈ intP yields a weak minimizer

for problem (P).

Proposition 4.6. Suppose that Assumption 3.1 holds. If v /∈ intP, then xv is a weak

minimizer of (P), and yv := v + zv ∈ wMinC(P).

Proof. As X is nonempty and compact, we have P 6= ∅ and P 6= Rq. By [28, Definition 1.45

and Corollary 1.48 (iv)], we have wMinC(P) = bdP . First, suppose that v ∈ bdP . Then,

zv = 0 by Lemma 4.5. Together with primal feasibility, this implies Γ(xv) ≤C v. As

v ∈ wMinC(P), by the definition of weakly C-minimal element, we have Γ(xv) ∈ wMinC(P).

Hence, xv is a weak minimizer of (P) in this case. Next, suppose that v /∈ P . Then, wv 6= 0

15

by Lemma 4.5. By Remark 4.4, xv is an optimal solution of (WS(w)) for w = wv ∈ C+ \{0}.

Hence, by Proposition 3.7, xv is a weak minimizer of (P).

Since (xv, zv) is feasible for (P(v)), yv ∈ P holds. To get a contradiction, assume that yv /∈

wMinC(P); hence, yv = v+zv ∈ intP . Then, there exists ε > 0 such that v+zv− ε zv

‖zv‖ ∈ P ,

which implies the existence of x̄ ∈ X with v+zv−ε zv

‖zv‖ ∈ {Γ(x̄)}+C. Let z̄ := (‖zv‖−ε) zv

‖zv‖ .

Then, (x̄, z̄) is feasible for (P(v)). This is a contradiction as ‖z̄‖ < ‖zv‖.

The following result shows that a supporting hyperplane of P at yv = v+zv can be found

by using a dual optimal solution wv.

Proposition 4.7. Suppose that Assumption 3.1 holds and wv 6= 0. Then, the halfspace

H = {y ∈ Rq | (wv)Ty ≥ (wv)TΓ(xv)}

contains the upper image P. Moreover, bdH is a supporting hyperplane of P both at Γ(xv)

and yv = v + zv. In particular, (wv)TΓ(xv) = (wv)Tyv.

Proof. We clearly have Γ(xv) ∈ bdP ∩ H and yv ∈ P ∩ H. Let y ∈ P be arbitrary and

x̄ ∈ X be such that Γ(x̄) ≤C y. Consider the problems (P(y)) and (D(y)). Clearly, (x̄, 0) is

feasible for (P(y)). Moreover, the optimal solution wv of (D(v)) is feasible for (D(y)). Using

weak duality for (P(y)) and (D(y)), we obtain 0 ≥ infx∈X (wv)TΓ(x) − (wv)Ty. Moreover,

from strong duality for (P(v)) and (D(v)), we have ‖zv‖ = infx∈X (wv)TΓ(x)−(wv)Tv. Hence,

(wv)Ty ≥ inf
x∈X

(wv)TΓ(x) = ‖zv‖+ (wv)Tv.

Note that ‖zv‖ ≥ (wv)Tzv holds as ‖wv‖∗ ≤ 1 by dual feasibility. Then, we obtain (wv)Ty ≥

(wv)Tyv. In particular, we have (wv)TΓ(xv) ≥ (wv)Tyv as Γ(xv) ∈ P . On the other hand,

since Γ(xv) ≤C yv and wv ∈ C+, we also have (wv)TΓ(xv) ≤ (wv)Tyv. The equality (wv)Tyv =

(wv)TΓ(xv) completes the proof as it implies y ∈ H (hence P ⊆ H) as well as yv ∈ bdH.

Proposition 4.7 provides a method to generate a supporting halfspace of P at Γ(xv) in

16

which one uses an arbitrary dual optimal solution wv. The next result shows that if the

norm in (P(v)) is taken as the `p-norm for some p ∈ [1,+∞), e.g., the Euclidean norm, then

it is possible to generate a supporting halfspace to P at Γ(xv) using zv instead of wv.

Corollary 4.8. Suppose that Assumption 3.1 holds and ‖·‖ = ‖·‖p for some p ∈ [1,+∞).

Assume that v /∈ P. Then, the halfspace

H =
{
y ∈ Rq |

q∑
i=1

sgn(zvi)|zvi |p−1yi ≥
q∑
i=1

sgn(zvi)|zvi |p−1Γi(x
v)
}

contains the upper image P, where sgn is the usual sign function. Moreover, bdH is a

supporting hyperplane of P both at Γ(xv) and yv = v + zv.

Proof. Consider (P(v)) and its Lagrange dual (D(v)). Let us define g(z) := ‖z‖p − (wv)Tz,

z ∈ Rq. The arbitrarily fixed dual optimal solution wv satisfies the first order condition with

respect to z, that is, 0 ∈ ∂g(zv). By the chain rule for subdifferentials, this is equivalent to

wv ∈
(q∑
i=1

|zvi |p
) 1−p

p (|zv1 |p−1S1 × · · · × |zvq |p−1Sq
)
, (4.8)

where, for each i ∈ {1, . . . , q}, Si denotes the subdifferential of the absolute value function

at zvi . Let i ∈ {1, . . . , q}. Note that if zvi 6= 0, then we have Si = {sgn(zvi)}. On the

other hand, if zvi = 0, then for each si ∈ Si, we have |zvi |p−1si = 0. Hence, by (4.8),

wvi =
(∑q

i=1|zvi |p
) 1−p

p |zvi |p−1 sgn(zvi). The assertion follows from Proposition 4.7.

5 The algorithm

We propose an outer approximation algorithm for finding a finite weak ε-solution to CVOP

as in Definition 3.5. The algorithm is based on solving norm minimization scalarizations

iteratively. The design of the algorithm is similar to the “Benson-type algorithms” in the

literature; see, for instance, [4, 13, 29]. It starts by finding a polyhedral outer approxima-

17

tion Pout
0 of P and iterates in order to form a sequence Pout

0 ⊇ Pout
1 ⊇ . . . ⊇ P of finer

approximating sets.

Before providing the details of the algorithm, we impose a further assumption on C.

Assumption 5.1. The ordering cone C is polyhedral.

Assumption 5.1 implies that the dual cone C+ is polyhedral. We denote the set of

generating vectors of C+ by {w1, . . . , wJ}, where J ∈ N, i.e., C+ = conv cone{w1, . . . , wJ}.

Moreover, under Assumption 3.1, C+ is solid since C is pointed. Hence, J ≥ q.

The algorithm starts by solving the weighted sum scalarizations (WS(w1)), . . . , (WS(wJ)).

For each j ∈ {1, . . . , J}, the existence of an optimal solution xj ∈ X of (WS(wj)) is guaran-

teed by Assumption 3.1 (b, c). The initial set of weak minimizers is set as X0 := {x1, . . . , xJ},

see Proposition 3.7.1 The set Vknown, which keeps the set of all points v ∈ Rq for which (P(v))

and (D(v)) are solved throughout the algorithm, is initialized as the empty set. Moreover,

similar to the primal algorithm in [29], the initial outer approximation is set as

Pout
0 :=

J⋂
j=1

{y ∈ Rq | (wj)Ty ≥ (wj)TΓ(xj)} (5.1)

(see lines 1-3 of Algorithm 1). It is not difficult to see that Pout
0 ⊇ P . Indeed, for each

ȳ ∈ P , there exists x̄ ∈ X such that Γ(x̄) ≤C ȳ. Then, for each j ∈ {1, . . . , J}, we have

(wj)TΓ(x̄) ≤ (wj)Tȳ which implies (wj)Tȳ ≥ infx∈X (wj)TΓ(x) = (wj)TΓ(xj) so that ȳ ∈ Pout
0 .

Moreover, as C is pointed and (P) is bounded, Pout
0 has at least one vertex, see [39, Corollary

18.5.3] (as well as [29, Section 4.1]).

At an arbitrary iteration k ≥ 0 of the algorithm, the set Vk of vertices of the current

outer approximation Pout
k is computed first (line 6).2 Then, for each v ∈ Vk, if not done

before, the norm-minimizing scalarization (P(v)) and its dual (D(v)) are solved in order to

1Alternatively, one may start with X0 = ∅ in line 2 of Algorithm 1. This would decrease |X | by J , the
number of generating vectors C.

2This is done by solving a vertex enumeration problem for Pout
k , that is, from the H-representation of

Pout
k , its V -representation is computed. For the computational tests of Section 8, we use bensolve tools for

this purpose [32].

18

find optimal solutions (xv,zv) and wv, respectively (see Proposition 4.2).3 Moreover, v is

added to Vknown (lines 7-10). If the distance d(v,P) = ‖zv‖ is less than or equal to the

predetermined approximation error ε > 0, then xv is added to the set of weak minimizers

(see Proposition 4.6)4 and the algorithm continues by considering the remaining vertices of

Pk (line 18). Otherwise, the supporting halfspace

Hk := {y ∈ Rq | (wv)Ty ≥ (wv)TΓ(xv)} (5.2)

of P at Γ(xv) is found (see Proposition 4.7); and the current approximation is updated as

Pout
k+1 = Pout

k ∩ Hk (lines 12). The algorithm terminates if all the vertices in Vk are within ε

distance to the upper image (lines 5, 15, 16, 22).

By the design of the algorithm, for each iteration k ≥ 0, the set Pout
k ⊇ P is an outer

approximation of the upper image; similarly, we define an inner approximation of P by

P in
k := conv Γ(Xk) + C ⊆ P . (5.3)

Now, we present two lemmas regarding these inner and outer approximations. The first one

shows that, for each k ≥ 0, the sets Pout
k and P in

k have the same recession cone, which is the

ordering cone C. With the second lemma, we see that, in order to compute the Hausdorff

distance between Pout
k and P (or P in

k), it is sufficient to consider the vertices Vk of Pout
k .

Lemma 5.2. Suppose that Assumptions 3.1 and 5.1 hold. Let k ≥ 0. Then,

reccPout
k = reccP in

k = reccP = C.

Proof. As conv Γ(Xk) is a compact set, we have reccP in
k = C directly from (5.3). Similarly,

3Note that many solvers yield both primal and dual optimal solutions when called only for one of the
problems.

4Since the solution xv found in line 9 of Algorithm 1 is a weak minimizer, it is also possible to update
the set of weak minimizers right after line 9 (without checking the value of ‖zv‖) and subsequently ignore
lines 13 and 18. This would yield a finite weak ε-solution with an increased cardinality.

19

Algorithm 1 Outer Approximation Algorithm for (P)

1. Compute an optimal solution xj of (WS(wj)) for each j ∈ {1, . . . , J};
2. Set k = 0,X0 = {x1, . . . , xJ},Vknown = ∅;
3. Store an H-representation of Pout

0 according to (5.1);
4. repeat
5. Stop ← true;
6. Compute the set Vk of vertices of Pout

k from its H-representation;
7. for v ∈ Vk do
8. if v /∈ Vknown then
9. Solve (P(v)) and (D(v)) to compute (xv, zv) and wv;

10. Vknown ← Vknown ∪ {v};
11. if ‖zv‖ > ε then
12. Pout

k+1 = Pout
k ∩Hk;

13. Xk+1 = Xk;
14. k ← k + 1;
15. Stop ← false;
16. break;
17. else
18. Xk ← Xk ∪ {xv};
19. end if
20. end if
21. end for
22. until Stop

23. return

{
Xk : A finite weak ε-solution to (P);

Pout
k : An outer approximation of P .

since Γ(X) is compact by Assumption 3.1 and P = Γ(X) + C by Remark 3.2, we have

reccP = C. Since Pout
k ⊇ P , we have reccPout

k ⊇ reccP = C; see [33, Proposition 2.5].

In order to conclude that reccPout
k = C, it is enough to show that reccPout

0 ⊆ C. Indeed,

we have Pout
k ⊆ Pout

0 , which implies that reccPout
k ⊆ reccPout

0 . To prove reccPout
0 ⊆ C,

let ȳ ∈ reccPout
0 . Then, for each y ∈ Pout

0 , we have y + ȳ ∈ Pout
0 . By the definition of

Pout
0 in (5.1), we have (wj)T(y + ȳ) ≥ (wj)TΓ(xj) for each j ∈ {1, . . . , J}. In particular,

as Γ(xj) ∈ P ⊆ Pout
0 , we have (wj)T(Γ(xj) + ȳ) ≥ (wj)TΓ(xj), hence (wj)Tȳ ≥ 0 for each

j ∈ {1, . . . , J}. By the definition of dual cone and using (C+)+ = C, we have ȳ ∈ C. The

assertion holds as ȳ ∈ reccPout
0 is arbitrary.

20

Lemma 5.3. Suppose that Assumptions 3.1 and 5.1 hold. Let k ≥ 0. Then,

δH(Pout
k ,P in

k) = max
v∈Vk

d(v,P in
k) and δH(Pout

k ,P) = max
v∈Vk

d(v,P),

where Vk is the set of vertices of Pout
k .

Proof. To see the first equality, note that

δH(Pout
k ,P in

k) = max

{
sup
y∈Pout

k

d(y,P in
k), sup

y∈P in
k

d(y,Pout
k)

}
= sup

y∈Pout
k

d(y,P in
k)

as P in
k ⊆ Pout

k . Moreover, since reccP in
k = reccPout

k by Lemma 5.2, δH(Pout
k ,P in

k) <∞ holds

correct; see [17, Lemma 6.3.15]. Since Pout
k is a polyhedron with at least one vertex, d(·,P in

k)

is a convex function (see, for instance, [36, Proposition 1.77]) and δH(Pout
k ,P in

k) < +∞, we

have

sup
y∈Pout

k

d(y,P in
k) = max

v∈Vk
d(v,P in

k)

from [30, Propositions 7-8]. The second equality can be shown similarly by noting that

δH(Pout
k ,P) ≤ δH(Pout

k ,P in
k) <∞ thanks to P in

k ⊆ P ⊆ Pout
k .

Theorem 5.4. Under Assumptions 3.1 and 5.1, Algorithm 1 works correctly: if the algorithm

terminates, then it returns a finite weak ε-solution to (P).

Proof. For all j ∈ {1, . . . , J}, an optimal solution xj of (WS(wj)) exists since X is compact

and x 7→ (wj)TΓ(x) is continuous by the continuity of Γ: X → Rq provided by Assump-

tion 3.1. Moreover, xj is a weak minimizer of (P) by Proposition 3.7. Thus, X0 consists of

weak minimizers.

Since (P) is a bounded problem and C is a pointed cone, the set Pout
0 contains no lines.

Hence, Pout
0 has at least one vertex [39, Corollary 18.5.3], that is, V0 6= ∅. Moreover, as

detailed after equation (5.1), Pout
0 ⊇ P , hence we have v /∈ intP for any v ∈ V0. As it

21

will be discussed below, for k ≥ 1, Pout
k is constructed by intersecting Pout

0 with supporting

halfspaces of P . This implies Vk 6= ∅ and Vk ⊆ Rq \ intP hold for any k ≥ 0.

By Proposition 4.2, optimal solutions (xv,zv) and wv to (P(v)) and (D(v)), respectively,

exist. Moreover, by Proposition 4.6, xv is a weak minimizer of (P). If ‖zv‖ > 0, then v /∈ P ,

hence wv 6= 0 by Lemma 4.5. By Proposition 4.7, Hk given by (5.2) is a supporting halfspace

of P at Γ(xv). Then, since Pout
0 ⊇ P and Pout

k+1 = Pout
k ∩Hk, we have Pout

k ⊇ P for all k ≥ 0.

Assume that the algorithm stops after k̂ iterations. Since Xk̂ is finite and consists of weak

minimizers, to prove Xk̂ is a finite weak ε-solution of (P) as in Definition 3.5, it is sufficient

to show that P in
k̂

+ Bε ⊇ P , where P in
k̂

= conv Γ(Xk̂) + C.

Note that by the stopping condition, we have ‖zv‖ ≤ ε, hence xv ∈ Xk̂, for all v ∈ Vk̂.

Moreover, since (xv, zv) is feasible for (P(v)), v+ zv ∈ {Γ(xv)}+C ⊆ conv Γ(Xk̂) +C = P in
k̂

.

Then, by Lemma 5.3,

δH(Pout
k̂
,P in

k̂
) = max

v∈Vk̂
d(v,P in

k̂
) = max

v∈Vk̂
inf
u∈P in

k̂

‖u− v‖ ≤ max
v∈Vk̂
‖zv‖ ≤ ε.

Consequently, P in
k̂

+ Bε ⊇ P follows since P in
k̂

+ Bε ⊇ Pout
k̂
⊇ P .

6 The modified algorithm

In this section, we propose a modification of Algorithm 1 and prove its correctness. Recall

that, in Theorem 5.4, we show that Algorithm 1 returns a finite weak ε-solution, provided

that it terminates. The purpose of this section is to propose an algorithm for which we can

prove finiteness as well; the proof of finiteness will be presented separately in Section 7.

The main feature of the modified algorithm, Algorithm 2 is that, in each iteration, it

intersects the current outer approximation of P with a fixed halspace S and considers only

the vertices of the intersection. As we describe next, the halfspace S is formed in such a way

that P ∩ S is compact and Γ(X) ⊆ P ∩ S.

5More precisely, in Algorithm 1, we apply P̄out
k+1 = P̄out

k ∩ Hk in line 12, X̄k+1 = X̄k in line 13, X̄k ←

22

Algorithm 2 Modified Outer Approximation Algorithm for (P)

1. Compute an optimal solution xj of (WS(wj)) for each j ∈ {1, . . . , J};
2. Set k = 0, X̄0 = {x1, . . . , xJ},Vknown = ∅;
3. Store an H-representation of Pout

0 according to (5.1);
4. Compute the set V0 of vertices of Pout

0 from its H-representation;
5. P̄out

0 = Pout
0 ;

6. for v ∈ V0 do
7. Solve (P(v)) and (D(v)) to compute (xv, zv), wv, and d(v,P);
8. Vknown ← Vknown ∪ {v};
9. if ‖zv‖ > ε then

10. P̄out
0 ← P̄out

0 ∩ {y ∈ Rq | (wv)Ty ≥ (wv)TΓ(xv)};
11. else
12. X̄0 ← X̄0 ∪ {xv};
13. end if
14. end for
15. Compute β by Remark 6.1 and α by (6.3);
16. Store an H-representations S according to (6.4);
17. repeat
18. Stop ← true;
19. Compute the set V̄k of vertices of P̄out

k ∩ S from its H-representation;
20. for v ∈ V̄k do
21. Follow lines 8-20 of Algorithm 1 using P̄out

k , P̄out
k+1, X̄k, X̄k+1

5;
22. end for
23. until Stop

24. return

{
X̄k : A finite weak ε-solution to (P);

P̄out
k : An outer approximation of P .

23

For the construction of S, let us define

w̄ :=

∑J
j=1w

j

‖
∑J

j=1w
j‖∗
∈ intC+, (6.1)

and fix β ∈ R such that

β ≥ sup
x∈X

w̄TΓ(x). (6.2)

The existence of such β is guaranteed by Assumption 3.1 since X ⊆ Rn is a compact set

and x 7→ w̄TΓ(x) is a continuous function on X under this assumption. Note that β is an

upper bound on the optimal value of an optimization problem that may fail to be convex,

in general. We address some possible ways of computing β in Remark 6.1 below.

Remark 6.1. Note that, w̄TΓ(x) is convex as Γ : X → Rq is C-convex and w̄ ∈ intC+.

Hence, supx∈X w̄
TΓ(x) is a concave minimization problem over a compact convex set X .

Concave minimization is a well-known problem type in optimization for which numerous

algorithms available in the literature to find a global optimal solution, see for instance [3, 5].

In our case, it is enough to run a single iteration of one such algorithm to find β.

In addition to w̄ and β, we fix α ∈ R such that

α > max
v∈V0

(w̄Tv − β)+ + δH(Pout
0 ,P), (6.3)

where Pout
0 is the initial outer approximation used in Algorithm 1, V0 is the set of ver-

tices of Pout
0 , and a+ := max{a, 0} for a ∈ R. By Lemma 5.3, we have δH(Pout

0 ,P) =

maxv∈V0 d(v,P). Moreover, for each v ∈ V0, we have d(v,P) = ‖zv‖, where (xv, zv) is an

optimal solution to (P(v)). Hence, α can be computed once (P(v)) is solved for each v ∈ V0.

Finally, using w̄, α, β, we define

S := {y ∈ Rq | w̄Ty ≤ β + α}. (6.4)

X̄ ∪ {xv} in line 18.

24

Algorithm 2 starts with an initialization phase followed by a main loop that is similar to

Algorithm 1. The initialization phase starts by constructing Pout
0 according to (5.1) (lines

1-4 of Algorithm 2) and computing the set V0 of its vertices. For each v ∈ V0, the problems

(P(v)) and (D(v)) are solved (line 7). The common optimal value ‖zv‖ = d(v,P) is used

in the calculation of δH(Pout
0 ,P) as described above. Moreover, these problems yield a

supporting halfspace of P which is used to refine the outer approximation (line 10) if ‖zv‖

exceeds the predetermined error ε > 0. Otherwise, the solution of (P(v)) is added to the

set of weak minimizers (line 12). We denote by P̄out
0 the refined outer approximation that is

obtained at the end of the initialization phase.

The main loop of Algorithm 2 (lines 17-23) follows the same structure as Algorithm 1

except that it computes the set V̄k of all vertices of P̄out
k ∩ S (as opposed to that of Pout

k)

at each iteration k ≥ 0 (line 19). The algorithm terminates if all the vertices in V̄k are

within ε distance to P . As opposed to Algorithm 1, in Algorithm 2, the norm-minimizing

scalarization (P(v)) is not solved for a vertex v of P̄out
k if it is not in S. In Theorem 6.6, we

will prove that the modified algorithm works correctly even if it ignores such vertices. The

next proposition, even though it is not directly used in the proof of Theorem 6.6, provides a

geometric motivation for this result. In particular, it shows that if (P(v)) is solved for some

v /∈ intS, then the supporting halfspace obtained as in Proposition 4.7 supports the upper

image at a weakly C-minimal but not C-minimal element of the upper image.

Proposition 6.2. Let v be a vertex of P̄out
k for some k ≥ 1. If v /∈ intS, then yv = v+ zv ∈

wMinC(P) \MinC(P).

Proof. Suppose that v /∈ intS. As v is a vertex of P̄out
k , we have v /∈ intP . By Proposi-

tion 4.6, yv ∈ wMinC(P); in particular, yv ∈ P . Using Remark 3.2, there exist x̃ ∈ X , c̃ ∈ C

such that yv = Γ(x̃) + c̃. Next, we show that c̃ 6= 0, which implies yv /∈ MinC(P). From

Hölder’s inequality and (6.1), we have w̄T(v − yv) ≤ ‖yv − v‖‖w̄‖∗ = ‖yv − v‖ = ‖zv‖.

25

Moreover, using P̄out
k ⊆ Pout

0 , we obtain

‖zv‖ = d(v,P) ≤ sup
v′∈P̄out

k

d(v′,P) ≤ sup
v′∈Pout

0

d(v′,P) = δH(P ,Pout
0) < α,

where the last inequality follows from (6.3). Together, these imply w̄Tyv > w̄Tv − α. Using

(6.4), (6.2) and v /∈ intS, we also have w̄Tv − α ≥ supx∈X w̄
TΓ(x). Now, since w̄Tyv >

supx∈X w̄
TΓ(x), it must be true that yv /∈ Γ(X), which implies c̃ 6= 0.

It may happen that a vertex of P̄out
k , k ≥ 1, falls outside S. We will illustrate this case

in Remark 8.4 of Section 8.

With the following lemma and remark, we show that S satisfies the required properties

mentioned at the beginning of this section. Note that Lemma 6.3 implies the compactness

of P ∩ S since P ⊆ Pout
0 .

Lemma 6.3. Suppose that Assumptions 3.1 and 5.1 hold. Let Pout
0 and S be as in (5.1) and

(6.4), respectively. Then, Pout
0 ∩ S is a compact set.

Proof. Since Pout
0 and S are closed sets, Pout

0 ∩ S is closed. Let r ∈ recc(Pout
0 ∩ S) and

a ∈ Pout
0 ∩ S be arbitrary. For every λ ≥ 0, we have a+ λr ∈ Pout

0 ∩ S. By the definition of

Pout
0 , this implies

(wj)T(a+ λr) ≥ (wj)TΓ(xj) = inf
x∈X

(wj)TΓ(x), (6.5)

for each j ∈ {1, . . . , J}. On the other hand, by the definition of S in (6.4), we have

w̄T(a+ λr) ≤ β + α. (6.6)

Since (6.5) and (6.6) hold for every λ ≥ 0, we have (wj)Tr ≥ 0 for each j ∈ {1, . . . , J} and

w̄Tr =
∑J

j=1(wj)Tr/‖
∑J

j=1w
j‖∗ ≤ 0, respectively. Together, these imply that

(wj)Tr = 0 (6.7)

26

for each j ∈ {1, . . . , J}. Recall that J ≥ q is implied by Assumptions 3.1 and 5.1. Consider

the q×J matrix, say W , whose columns are the generating vectors of C+. Since C+ is solid,

which follows from C being pointed, rankW = q, see for instance [8, Theorem 3.1]. Consider

a q × q invertible submatrix W̃ of W . From (6.7), we have W̃Tr = 0 ∈ Rq, which implies

r = 0. As r ∈ recc(Pout
0 ∩ S) is chosen arbitrarily, Pout

0 ∩ S is bounded, hence compact.

Remark 6.4. It is clear by the definition of S that Γ(X) ⊆ S. Let k ≥ 0. Since P ⊆ P̄out
k ,

we also have Γ(X) ⊆ P̄out
k ∩ S. Then, using Remark 3.2, we obtain P = Γ(X) + C ⊆

(P̄out
k ∩ S) + C. Also note that, if the algorithm terminates, then all the vertices in V̄k are

within ε distance to P.

Remark 6.5. In line 19 of Algorithm 2, if we compute Vk ∩ S instead of V̄k, that is, if we

just ignore the vertices of P̄out
k which are outside S, then we cannot guarantee returning a

finite weak ε-solution. This is because there may exist some vertices of P̄out
k that are out of

S with distance to the upper image being larger than ε. Moreover, conv(Vk ∩S) +C may not

contain P. This will be illustrated in Remark 8.4 of Section 8.

Theorem 6.6. Under Assumptions 3.1 and 5.1, Algorithm 2 works correctly: if the algorithm

terminates, then it returns a finite weak ε-solution to (P).

Proof. Similar to the proof of Theorem 5.4, the set X̄0 is initialized by weak minimizers

of (P), and V0 is nonempty. Moreover, for each v ∈ V0, optimal solutions (xv, zv) and wv

exist (Proposition 4.2); xv is a weak minimizer (Proposition 4.6) and {y ∈ Rq | (wv)Ty ≥

(wv)TΓ(xv)} is a supporting halfspace of P at Γ(xv) (Proposition 4.7). Hence, P̄out
0 ⊇ P is

an outer approximation and X̄0 consists of weak minimizers. By the definition of S, we have

V0 ⊆ S. Hence, the set V̄0 is nonempty.

Considering the main loop of the algorithm, we know by Proposition 4.2 that optimal

solutions (xv,zv) and wv to (P(v)) and (D(v)), respectively, exist. Moreover, if ‖zv‖ ≥ ε,

then wv 6= 0 by Lemma 4.5. Hence, by Proposition 4.7, Hk given by (5.2) is a supporting

halfspace of P . This implies P̄out
k ⊇ P for all k ≥ 0. Since P̄out

k ⊇ P ⊇ Γ(X) and S ⊇ Γ(X),

27

see Remark 6.4, the set P̄out
k ∩ S is nonempty. Moreover, as P̄out

k ⊆ Pout
0 , it is true that

P̄out
k ∩ S is compact by Lemma 6.3. Then, V̄k is nonempty for all k ≥ 0. Note that every

vertex v ∈ V̄k satisfies v /∈ intP . Indeed, since v is a vertex of P̄out
k ∩S, it must be true that

v ∈ bdHk̄ for some k̄ ≤ k. The assertion follows since bdHk̄ is a supporting hyperplane of

P . Then, by Proposition 4.6, xv is a weak minimizer of (P).

Assume that the algorithm stops after k̂ iterations. Clearly, X̄k̂ is finite and consists of

weak minimizers. By Definition 3.5, it remains to show that P̄ in
k̂

+ Bε ⊇ P holds, where

P̄ in
k̂

:= conv Γ(X̄k̂)+C. By the stopping condition, for every v ∈ V̄k̂, we have ‖zv‖ ≤ ε, hence

xv ∈ X̄k̂. Moreover, since (xv, zv) is feasible for (P(v)),

v + zv ∈ {Γ(xv)}+ C ⊆ conv Γ(X̄k̂) + C = P̄ in
k̂
. (6.8)

By Remark 6.4, it is true that P̄ in
k̂
⊆ P ⊆ (P̄out

k̂
∩ S) + C. Moreover, as conv Γ(X̄k̂) and

P̄out
k̂
∩S are compact sets, recc P̄ in

k̂
= recc((P̄out

k̂
∩S) +C) = C. By repeating the arguments

in the proof of Lemma 5.3, it is easy to check that

δH(P̄ in
k̂
, (P̄out

k̂
∩ S) + C) = max

v∈V̄C
k̂

d(v, P̄ in
k̂

),

where V̄C
k̂

denotes the set of all vertices of (P̄out
k̂
∩ S) + C. Observe that every vertex v of

(P̄out
k̂
∩ S) + C is also a vertex of P̄out

k̂
∩ S, that is, V̄C

k̂
⊆ V̄k̂. Then, we obtain

δH(P̄ in
k̂
, (P̄out

k̂
∩ S) + C) ≤ max

v∈V̄k̂
d(v, P̄ in

k̂
) = max

v∈V̄k̂
inf
u∈P̄ in

k̂

‖u− v‖ ≤ max
v∈V̄k̂
‖zv‖ ≤ ε,

where the penultimate inequality follows by Equation (6.8). Since

P̄ in
k̂

+ Bε ⊇ (P̄out
k̂
∩ S) + C ⊇ P , (6.9)

P̄ in
k̂

+ Bε ⊇ P follows.

28

7 Finiteness of the modified algorithm

The correctness of Algorithms 1 and 2 are proven in Theorems 5.4 and 6.6, respectively. In

this section, we prove the finiteness of Algorithm 2. We provide two technical results before

proceeding to the main theorem.

Lemma 7.1. Suppose that Assumptions 3.1 and 5.1 hold. Let v /∈ P and H be the halfspace

defined by Proposition 4.7. If ‖zv‖ ≥ ε, then B∩H = ∅, where B :=
{
y ∈ {v}+ C | ‖y − v‖ ≤ ε

2

}
.

Proof. Consider (P(v)) and its Lagrange dual (D(v)). The arbitrarily fixed dual optimal

solution wv satisfies the first order condition with respect to z, which can be expressed as

wv ∈ ∂‖zv‖. Note that the subdifferential of ‖·‖ at zv has the variational characterization

∂‖zv‖ =
{
w ∈ Rq | sup{(w′)Tzv | ‖w′‖∗ ≤ 1} = wTzv, ‖w‖∗ ≤ 1

}
,

which follows by applying [39, Theorem 23.5]. Since the dual norm of ‖·‖∗ is ‖·‖,

wv ∈ ∂‖zv‖ = {w ∈ Rq | ‖zv‖ = wTzv, ‖w‖∗ ≤ 1}, (7.1)

Let ȳ ∈ H be arbitrary. From the definition ofH and (7.1), we have (wv)Tȳ ≥ (wv)T(v+zv) =

(wv)Tv + ‖zv‖. Equivalently, (wv)T(ȳ − v) ≥ ‖zv‖. On the other hand, from Hölder’s

inequality and (7.1), we have |(wv)T(ȳ − v)| ≤ ‖wv‖∗‖ȳ − v‖ ≤ ‖ȳ − v‖. If ‖zv‖ ≥ ε, then

from the last two inequalities, we obtain ‖ȳ − v‖ ≥ |(wv)T(ȳ − v)| ≥ ‖zv‖ ≥ ε. Therefore,

ȳ /∈ B, which implies B ∩H = ∅.

Lemma 7.2. Suppose that Assumptions 3.1 and 5.1 hold. Let k ≥ 0, v be a vertex of P̄out
k ,

S be as in (6.4); and define

S2 := {y ∈ Rq | w̄Ty ≤ β + 2α},

where w̄, β, α are defined by (6.1), (6.2), (6.3), respectively. If v ∈ S, then v + zv ∈ intS2.

29

Proof. Let Ṽk denote the set of all vertices of P̄out
k . It is given that v ∈ Ṽk. Using Remark 4.1

and the arguments in the proof of Lemma 5.3, we obtain δH(P , P̄out
k) = maxṽ∈Ṽk d(ṽ,P) ≥

d(v,P) = ‖zv‖. From (6.3) and the inclusion Pout
0 ⊇ P̄out

k , we have δH(P , P̄out
k) ≤ δH(P ,Pout

0) <

α, which implies ‖zv‖ < α. Then, using Hölder’s inequality together with ‖w̄‖∗ = 1, we ob-

tain w̄Tzv ≤ ‖zv‖‖w̄‖∗ = ‖zv‖ < α. On the other hand, v ∈ S implies that w̄Tv ≤ β + α.

Then, v + zv ∈ intS2 follows since w̄T(v + zv) < β + 2α.

Theorem 7.3. Suppose that Assumptions 3.1 and 5.1 hold. Algorithm 2 terminates after a

finite number of iterations.

Proof. By the construction of the algorithm, the number of vertices of P̄out
k is finite for

every k ≥ 0. It is sufficient to prove that there exists K ≥ 0 such that for every vertex

v ∈ V̄K of P̄out
K ∩ S, we have ‖zv‖ ≤ ε. To get a contradiction, assume that for every k ≥ 0,

there exists a vertex vk ∈ V̄k such that ‖zvk‖ > ε. For convenience, an optimal solution

(xv
k
, zv

k
) of (P(vk)) is denoted by (xk, zk) throughout the rest of the proof. Let S2 be as in

Lemma 7.2. Then, following similar arguments presented in the proof of Lemma 6.3, one

can show that Pout
0 ∩ S2 is compact.

Let k ≥ 0 be arbitrary. We define Bk :=
{
y ∈ {vk}+ C | ‖y − vk‖ ≤ ε

2

}
. Note that Bk

is a compact set in Rq and, as C is solid by Assumption 3.1, Bk has a positive volume, which

is free of the choice of k. Next, we show that Bk ⊆ Pout
0 ∩ S2. Repeating the arguments in

the proof of Lemma 5.2, it can be shown that recc P̄out
k = C. Then, since vk ∈ P̄out

k , it holds

{vk}+ C ⊆ P̄out
k ⊆ Pout

0 . (7.2)

Hence, Bk ⊆ Pout
0 . To see Bk ⊆ S2, let y ∈ Bk. From Hölder’s inequality and (6.1),

w̄T(y − vk) ≤ ‖y − vk‖‖w̄‖∗ = ‖y − vk‖ ≤ ε

2
. (7.3)

As there exists v0 ∈ V̄0 with ‖z0‖ > ε, it holds true that δH(P ,Pout
0) > ε. From (6.3), it

30

follows that α > ε. Then, from (7.3), we obtain w̄T(y − vk) ≤ ε
2
< α. Since vk ∈ S, this

implies w̄Ty < w̄Tvk + α ≤ β + 2α, hence y ∈ S2.

Next, we prove that Bi ∩ Bj = ∅ for every i, j ≥ 0 with i 6= j. Assume without loss

of generality that i < j. Thus, P̄out
j ⊆ P̄out

i+1. From Lemma 7.1, we have Bi ∩ Hi = ∅,

where Hi is the supporting halfspace at Γ(xi) as obtained in Proposition 4.7. This implies

Bi ∩ P̄out
j = ∅ as we have P̄out

j ⊆ P̄out
i+1 = P̄out

i ∩ Hi ⊆ Hi. On the other hand, we have

Bj ⊆ P̄out
j from (7.2). Thus, Bi ∩ Bj = ∅. These imply that there is an infinite number

of non-overlapping sets, having strictly positive fixed volume, contained in a compact set

Pout
0 ∩ S2, a contradiction.

We conclude this section with a convergence result regarding the Hausdorff distance

between the upper image and its polyhedral approximations.

Corollary 7.4. Suppose that Assumptions 3.1 and 5.1 hold. Let ε = 0 and Algorithm 2 be

modified by introducing a cutting order based on selecting a farthest away vertex (instead of

an arbitrary vertex) in line 20. Then,

lim
k→∞

δH(P̄ in
k ,P) = lim

k→∞
δH((P̄out

k ∩ S) + C,P) = 0,

where P̄ in
k := conv Γ(X̄k) + C, the sets X̄k, P̄out

k are as described in Algorithm 2, and S is

given by (6.4).

Proof. Note that Algorithm 2 is finite by Theorem 7.3 for an arbitrary vertex selection rule,

hence, also when a farthest away vertex is selected in line 20. Therefore, given ε > 0, there

exists K(ε) ∈ N such that the set X̄K(ε) is a finite weak ε-solution as in Definition 3.5 and

δH(P̄ in
K(ε),P) ≤ ε by Remark 3.6. Let us consider the modified algorithm (with ε = 0). If

δH(P̄ in
k ,P) = 0 for some k ∈ N, then it is clear that limk→∞ δ

H(P̄ in
k ,P) = 0. Suppose that

δH(P̄ in
k ,P) > 0 for every k ∈ N. With the farthest away vertex selection rule, when we

run the algorithm with ε = 0 and ε = ε > 0, the two work in the same way until the one

with ε = ε stops. Hence, they find the same inner approximation P̄ in
K(ε) at step K(ε). Let

31

k0 := K(ε). By an induction argument, for every n ∈ N, the inequality δH(P̄ in
kn
,P) ≤ ε

n
will

be satisfied by the algorithm with ε = 0 for some kn > kn−1. Hence, limn→∞ δ
H(P̄ in

kn
,P) = 0,

which implies that limk→∞ δ
H(P̄ in

k ,P) = 0 by the monotonicity of (δH(P̄ in
k ,P))k∈N.

Moreover, similar to the discussion in the proof of Theorem 6.6, see (6.9), it can be shown

that δH((P̄out
k ∩ S) + C,P) ≤ δH(P̄ in

k ,P) holds for each k ∈ N. Hence, limk→∞ δ
H((P̄out

k ∩

S) + C,P) = 0.

Remark 7.5. In Corollary 7.4, choosing the farthest away vertex in each iteration is critical.

Indeed, without this rule, the algorithm run with ε = 0 and ε = ε > 0 may not work in the

same way due to line 11 in Algorithm 2. In such a case, we may not use Theorem 7.3 to

argue that the algorithm with ε = 0 satisfies δH(P̄ in
k ,P) ≤ ε for some k ∈ N. Indeed, it might

happen in case of non-polyhedral P that the algorithm keeps updating the outer approximation

by focusing only on one part of P. Thus, the Hausdorff distance at the limit may not be zero.

8 Examples and computational results

In this section, we examine few numerical examples to evaluate the performance of Algo-

rithms 1 and 2 in comparison with the primal algorithm (referred to as Algorithm 3 here) in

[29]. The algorithms are implemented using MATLAB R2018a along with CVX, a package

to solve convex programs [20, 19], and bensolve tools [32] to solve the scalarization and vertex

enumeration problems in each iteration, respectively. The tests are performed using a 3.6

GHz Intel Core i7 computer with a 64 GB RAM.

We consider three examples: Example 8.1 is a standard illustrative example with a

linear objective function, see [13, 29], in which both the feasible region and its image are

the Euclidean unit ball centered at the vector e = (1, . . . , 1)T ∈ Rq. In Example 8.2, the

objective functions are nonlinear while the constraints are linear; in Example 8.3, nonlinear

terms appear both in the objective function and constraints [13, Examples 5.8, 5.10], [35].

32

Example 8.1. We consider the following problem for q ∈ {2, 3, 4}, where C = Rq
+:

minimize Γ(x) = x with respect to ≤C

subject to ‖x− e‖2 ≤ 1, x ∈ Rq. (8.1)

Example 8.2. Let a1 = (1, 1)T, a2 = (2, 3)T, a3 = (4, 2)T. Consider

minimize Γ(x) = (‖x− a1‖2
2, ‖x− a2‖2

2, ‖x− a3‖2
2)T with respect to ≤R3

+

subject to x1 + 2x2 ≤ 10, 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 4, x ∈ R2. (8.2)

Example 8.3. Let b̂1 = (0, 10, 120), b̂2 = (80,−448, 80), b̂3 = (−448, 80, 80) and b1, b2, b3 ∈

Rn. Consider

minimize Γ(x) = (‖x‖2
2 + b1x, ‖x‖2

2 + b2x, ‖x‖2
2 + b3x)T with respect to ≤R3

+

subject to ‖x‖2
2 ≤ 100, 0 ≤ xi ≤ 10 for i ∈ {1, . . . , n}, x ∈ Rn. (8.3)

(a) Let n = 3 and b1 = b̂1, b2 = b̂2, b3 = b̂3.

(b) Let n = 9 and b1 = (b̂1, b̂1, b̂1), b2 = (b̂2, b̂2, b̂2), b3 = (b̂3, b̂3, b̂3).

We solve these examples with Algorithms 1 and 2, where the norm in (P(v)) is taken as

the `p norm for p ∈ {1, 2,∞}. An outer approximation of the upper image for each example

is shown in Figure 1. For Algorithm 3, the fixed direction vector for the scalarization model is

taken as e
‖e‖p ∈ Rq, again for p ∈ {1, 2,∞}. This way, it is guaranteed that when Algorithm

3 returns a finite weak ε-solution in the sense of [29, Definition 3.3], this solution is also

a finite weak ε-solution in the sense of Definition 3.5 for the corresponding norm-ball, see

[11, Remark 3.4]. We solve Examples 8.2 and 8.3 for the approximation errors as chosen by

Ehrgott et al. in [13] for the same examples.

The computational results are presented in Tables 1-3, which show the approximation

33

error (ε), the algorithm (Alg), the cardinality of finite weak ε-solution (|X̄ |), the number of

optimization problems (Opt), and the number of vertex enumeration problems (En) solved

through the algorithm, along with the respective times taken to solve these problems (Topt,

Ten), as well as the total runtime of the algorithm (T), where Topt, Ten and T are in seconds.

(a) Example 8.1 with ε = 0.01 (b) Example 8.2 with ε = 0.05 (c) Example 8.3 with ε = 5

Figure 1: Outer approximations obtained from Algorithm 1 using `2 norm

Note that we could not run the algorithms in a few settings. We cannot solve Example 8.1,

q = 4 for ε = 0.1 by Algorithms 1 and 2 when p = 2, and by Algorithms 2 and 3 when p =∞.

Similarly, we cannot solve Example 8.2 by Algorithm 3 for any p ∈ {1, 2,∞}. Moreover, we

cannot solve this example by Algorithm 1 when p = ∞ for both ε values and when p = 1

for ε = 0.01. Since it is not possible to provide a comparison, we do not report the results

for p = ∞ in Table 2. Finally, Example 8.3 cannot be solved by Algorithms 1 and 2 when

p = 1. Hence, Table 3 does not show the results for p = 1 for any setting. The main reason

that the algorithms cannot solve these instances is the limitations of bensolve tools in vertex

enumeration.

In line with the theory, Tables 1-3 illustrate that Opt, En as well as T increase when a

smaller approximation error is used, irrespective of the algorithm considered.

According to Table 1, for p = 1 in terms of all performance measures, Algorithms 1 and

2 perform better than Algorithm 3, except for q = 4, ε = 0.5 for which Algorithms 1 and 3

have similar performances. For p ∈ {2,∞}, Algorithms 1 and 3 perform similar to each other

and better than Algorithm 2 in terms of Opt, Topt and T. When we compare Algorithms 1

and 2, we observe that Algorithm 2 solves a larger number of optimization problems (Opt)

34

Table 1: Computational results for Example 8.1
q=3 q=4

p Alg ε |X̄ | Opt Topt En Ten T ε |X̄ | Opt Topt En Ten T

1

1

0.05

33 52 13.29 20 0.31 13.68

0.5

30 41 11.66 12 0.22 11.95
2 42 59 15.59 17 0.26 15.99 57 69 19.27 11 0.28 19.71
3 56 89 17.32 34 1.02 18.56 33 44 9.71 12 0.20 9.97

2

1 29 45 10.49 17 0.23 10.79 29 34 8.70 6 0.07 8.80
2 44 61 14.24 17 0.24 14.68 94 99 25.98 5 0.07 26.20
3 32 50 9.76 19 0.27 10.10 31 42 9.18 12 0.19 9.43

∞
1 21 34 8.15 14 0.16 8.35 8 9 2.34 2 0.02 2.38
2 37 51 12.39 13 0.15 12.61 11 15 4.23 1 0.02 4.39
3 21 34 6.76 14 0.15 6.96 8 9 2.05 2 0.02 2.09

1

1

0.01

175 262 69.13 88 20.17 92.99

0.1

143 177 52.94 34 2.67 56.25
2 161 235 62.55 73 10.56 75.28 232 273 78.37 38 5.05 84.42
3 256 397 76.54 142 113.29 212.22 412 510 111.49 91 48.25 165.40

2

1 128 196 46.51 69 8.41 56.52 -
2 145 209 49.42 64 6.56 57.29 -
3 139 213 41.49 75 10.39 53.88 208 265 57.93 46 5.08 63.67

∞
1 93 145 35.34 53 3.44 39.47 68 82 22.59 12 0.22 22.87
2 107 154 37.20 47 2.43 40.15 -
3 87 137 26.72 51 3.03 30.36 -

Table 2: Computational results for Example 8.2

ε p Alg |X̄ | Opt Topt En Ten T

0.05

1
1 188 310 107.26 87 19.30 130.34
2 157 233 79.79 70 9.88 91.94

2
1 145 225 70.22 76 11.46 84.07
2 141 206 61.72 64 7.18 70.47

0.01

1
1 -
2 772 1187 401.00 340 3197.85 4276.37

2
1 869 1421 420.01 311 2302.12 3171.41
2 655 957 285.04 279 1529.54 2162.02

compared to Algorithm 1 in all settings except p = 1, ε = 0.01. The reason may be that

the former algorithm deals with a higher number of vertices, coming from the intersection

of P̄out
k with bdS, k ≥ 0 (line 19 of Algorithm 2).

Table 2 indicates that, in solving Example 8.2, Algorithm 2 performs better than Algo-

rithm 1 with respect to all indicators.

Finally, for Example 8.3 when we compare the performances under n = 3 with p = 2,

Algorithm 1 works better compared to the others in terms of Opt, En and T. Under n = 3

with p =∞, the same holds for Algorithm 3, see Table 3. However, under n = 9, Algorithm 1

35

Table 3: Computational results for Example 8.3
n=3 n=9

ε p Alg |X̄ | Opt Topt En Ten T |X̄ | Opt Topt En Ten T

10

2

1 502 943 285.43 132 100.12 401.95 1561 2754 1159.60 225 753.05 2046.88
2 958 3924 1194.30 137 122.28 1339.09 1770 4213 1819.70 218 733.58 2682.37
3 305 965 259.85 164 211.23 502.43 2718 4520 1772.08 259 1324.24 3295.96

inf

1 197 592 179.71 106 41.61 227.61 1231 2106 901.81 152 150.43 1076.14
2 199 1206 390.99 100 36.67 432.99 3638 9222 4045.45 166 219.60 4301.63
3 180 586 157.46 101 33.60 196.24 2628 5057 1994.39 164 202.33 2231.07

5

2

1 1178 3127 932.65 245 1059.10 2175.25 4461 7968 3371.91 390 8008.67 12795.23
2 1207 5557 1702.79 259 1488.53 3441.28 7052 15662 6546.29 409 9908.03 18268.17
3 579 3932 1049.79 309 3046.66 4529.37 7046 11149 4307.21 476 16898.76 23603.25

inf

1 412 1740 526.33 185 325.59 907.19 3153 4538 1889.06 294 2164.45 4390.16
2 465 2655 837.24 188 374.95 1268.01 3570 8155 3482.44 305 2589.99 6470.71
3 342 1412 380.10 185 352.70 787.48 3146 4712 1845.91 300 2455.39 4663.98

performs better than the others in all instances.

When we compare the results for Example 8.3(a) and (b), we observe that even with

the same precision level ε, the number of minimizers is at least twice as and generally much

higher than the number of minimizers in Example 8.3(a), which also affects the total times.

The reason may be that due to the increase in the dimension of the feasible region and the

structure of the objective functions, the range of the objective function changes and the

difficulty of the problem increases in Example 8.3(b).

From the results of the test problems above, we deduce a comparable performance of our

proposed algorithms compared to Algorithm 3.

Next, we consider Example 8.1 for q ∈ {2, 3} with different ordering cones than the

positive orthant, see Table 4 and Figure 2. These cones are given below in terms of their

generating vectors:

C1 = conv cone{(1, 2)T, (2, 1)T},

C2 = conv cone{(2,−1)T, (−1, 2)T},

C3 = conv cone{(4, 2, 2)T, (2, 4, 2)T, (4, 0, 2)T, (1, 0, 2)T, (0, 1, 2)T, (0, 4, 2)T},

C4 = conv cone{(−1,−1, 3)T, (2, 2,−1)T, (1, 0, 0)T, (0,−1, 2)T, (−1, 0, 2)T, (0, 1, 0)T}.

36

Note that we have C1 (R2
+ (C2 = C+

1 and C3
6 (R3

+ (C4 = C+
3 . We solve these examples

with Algorithms 1 and 2, where the norm in (P(v)) is the `2 norm. As before, due to the

limitations of bensolve tools, Table 4 does not show the result for Algorithm 2 when the

ordering cone is C3 and ε = 0.01. According to Table 4, for C1 and C2, Algorithms 1 and 2

are comparable in terms of T. For C3 with ε = 0.05, Algorithm 2 gives smaller T. However,

for C4, Algorithm 1 has better runtime.

(a) C3 (b) C4

Figure 2: Outer approximations obtained from Algorithm 1 using `2 norm for Example 8.1
with q = 3 under different cones

Table 4: Computational results for Example 8.1 with different ordering cones and p = 2
q = 2 q = 3

Alg ε C |X̄ | Opt Topt En Ten T ε C |X̄ | Opt Topt En Ten T

1

0.005

C1

19 34 6.95 16 0.12 7.12

0.05

C3

62 89 20.54 28 0.79 21.50
2 21 36 7.51 15 0.11 7.69 57 77 18.27 18 0.35 18.82
1

C2

6 9 1.87 4 0.02 1.91
C4

22 29 6.57 8 0.08 6.68
2 8 11 2.30 3 0.02 2.36 28 34 7.90 4 0.04 8.01
1

0.001

C1

37 69 14.39 32 0.45 14.96

0.01

C3

229 346 80.66 117 62.00 154.04
2 36 67 14.09 31 0.44 14.69 -
1

C2

10 17 3.44 8 0.05 3.52
C4

71 107 24.99 37 1.45 26.78
2 12 19 4.04 7 0.04 4.13 90 123 28.94 31 1.05 30.31

We conclude this section by a remark that illustrates the necessity of intersecting P̄out
k

with S in Algorithm 2.

Remark 8.4. As noted before in Section 6, it is possible that some vertices of P̄out
k falls

outside S. Consider Example 8.1 with q = 3. Note that Γ(X) is the unit ball centered

6The same cone is used as a dual cone in [31, Example 9].

37

at e ∈ R3, and P0 is the positive orthant. In the initialization phase of Algorithm 2, we

obtain S = {y ∈ R3 | w̄Ty ≤ 3.56}, where w̄ = 1√
3
e. For illustrative purposes, consider

the supporting halfspace H = {y ∈ Rq | wTy ≥ 0.68} of the upper image, where the normal

direction is w = (1, 1, 0.1)T. This would support the upper image at the C-minimal point

(0.2947, 0.2947, 0.9295)T. Note that bdH intersects with P0 to give three vertices: v1 =

(0.68, 0, 0)T, v2 = (0, 0.68, 0)T, v3 = (0, 0, 6.8)T. Clearly, v1, v2 ∈ S and v3 /∈ S. Moreover,

as stated in Remark 6.5 the approximation generated by v1, v2, namely, conv({v1, v2}) + R3
+

does not contain the upper image; see Figure 3.

Figure 3: Projections of Γ(X) (dark blue), conv({v1, v2}) +R3
+ (light blue) from Remark 8.4

on the y3 = 0 plane

We practically encounter vertices which fall outside S, for instance, while running Al-

gorithm 1 for Example 8.1 with q = 3, p = 2 and ε = 0.01. Figure 4 shows the outer

approximation, after iteration k = 37, with one of the vertices outside Pout
0 ∩ S.

9 Conclusions

In this study, we have proposed an algorithm for CVOPs which is based on a norm-minimizing

scalarization. It is different from the similar class of algorithms available in the literature in

the sense that it does not need a direction parameter as an input. We have also proposed

38

Figure 4: Outer approximation Pout
k , k = 37 (vertices and representative points on un-

bounded edges indicated by black markers) for Example 8.1 obtained using Algorithm 1 (for
p = 2 and ε = 0.01) has one vertex outside S (blue).

a modification of the algorithm and proved its finiteness under the assumption of compact

feasible region. Using benchmark test problems, the computational performance of the new

algorithms is found to be comparable to a CVOP algorithm in the recent literature which

uses the Pascoletti-Serafini scalarization.

References

[1] Charalambos D. Aliprantis and Kim C. Border. Infinite Dimensional Analysis: A
Hitchhiker’s Guide. Springer, 2006.

[2] Çağın Ararat, Özlem Çavuş, and Ali İrfan Mahmutoğulları. Multi-objective risk-averse
two-stage stochastic programming problems. arXiv preprint 1711.06403, 2017.

[3] Harold P. Benson. Concave minimization: theory, applications and algorithms. In
Reiner Horst and Panos M Pardalos, editors, Handbook of Global Optimization, pages
43–148. Springer, 1995.

[4] Harold P. Benson. An outer approximation algorithm for generating all efficient extreme
points in the outcome set of a multiple objective linear programming problem. Journal
of Global Optimization, 13(1):1–24, 1998.

39

[5] Harold P. Benson and Reiner Horst. A branch and bound-outer approximation algo-
rithm for concave minimization over a convex set. Computers & Mathematics with
Applications, 21(6-7):67–76, 1991.

[6] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2004.

[7] Regina Sandra Burachik, C. Yalçın Kaya, and M. M. Rizvi. A new scalarization tech-
nique and new algorithms to generate pareto fronts. SIAM Journal on Optimization,
27(2):1010–1034, 2017.

[8] Fennell Burns, Miroslav Fiedler, and Emilie Haynsworth. Polyhedral cones and positive
operators. Linear Algebra and its Applications, 8(6):547–559, 1974.

[9] Aura Conci and Carlos Kubrusly. Distances between sets - a survey. Advances in
Mathematical Sciences and Applications, 26(1), 2017.

[10] Marianna De Santis, Gabriele Eichfelder, Julia Niebling, and Stefan Rocktäschel. Solv-
ing multiobjective mixed integer convex optimization problems. SIAM Journal on Op-
timization, 30(4):3122–3145, 2020.

[11] Daniel Dörfler, Andreas Löhne, Christopher Schneider, and Weißing Benjamin. A
Benson-type algorithm for bounded convex vector optimization problems with vertex
selection. Optimization Methods and Software, 2021.

[12] Matthias Ehrgott. Multicriteria Optimization, volume 491. Springer Science & Business
Media, 2005.

[13] Matthias Ehrgott, Lizhen Shao, and Anita Schöbel. An approximation algorithm
for convex multi-objective programming problems. Journal of Global Optimization,
50(3):397–416, 2011.

[14] Matthias Ehrgott and Margaret M. Wiecek. Mutiobjective programming. In José
Figueira, Salvatore Greco, and Matthias Ehrgott, editors, Multiple Criteria Decision
Analysis: State of the Art Surveys, pages 667–708. Springer, 2005.

[15] Gabriele Eichfelder. Adaptive Scalarization Methods in Multiobjective Optimization.
Springer, 2008.

[16] James P. Evans and Ralph E. Steuer. A revised simplex method for linear multiple
objective programs. Mathematical Programming, 5(1):54–72, 1973.

[17] Francisco Facchinei and Jong-Shi Pang. Finite-Dimensional Variational Inequalities
and Complementarity Problems. Springer Science & Business Media, 2007.

[18] Zachary Feinstein and Birgit Rudloff. A recursive algorithm for multivariate risk mea-
sures and a set-valued bellman’s principle. Journal of Global Optimization, 68, 2017.

40

[19] Michael C. Grant and Stephen P. Boyd. Graph implementations for nonsmooth convex
programs. In Vincent D. Blondel, Stephen P. Boyd, and Hidenori Kimura, editors,
Recent Advances in Learning and Control, Lecture Notes in Control and Information
Sciences, pages 95–110. Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/
graph_dcp.html.

[20] Michael C. Grant and Stephen P. Boyd. CVX: Matlab software for disciplined convex
programming, version 2.2., 2020.

[21] Frank Heyde and Andreas Löhne. Solution concepts in vector optimization: a fresh look
at an old story. Optimization, 60(12):1421–1440, 2011.

[22] Johannes Jahn. Scalarization in vector optimization. Mathematical Programming,
29(2):203–218, 1984.

[23] Johannes Jahn. Vector Optimization. Springer, 2nd edition, 2011.

[24] Refail Kasimbeyli, Zehra Kamisli Ozturk, Nergiz Kasimbeyli, Gulcin Dinc Yalcin, and
Banu Icmen Erdem. Comparison of some scalarization methods in multiobjective op-
timization. Bulletin of the Malaysian Mathematical Sciences Society, 42(5):1875–1905,
2019.

[25] Akhtar A. Khan, Christiane Tammer, and Constantin Zălinescu. Set-valued Optimiza-
tion: An Introduction with Applications. Springer, 2016.

[26] JiGuan G. Lin. On min-norm and min-max methods of multi-objective optimization.
Mathematical Programming, 103(1):1–33, 2005.

[27] C. G. Liu, K. F. Ng, and W. H. Yang. Merit functions in vector optimization. Mathe-
matical Programming, 2009.

[28] Andreas Löhne. Vector Optimization with Infimum and Supremum. Springer Science &
Business Media, 2011.

[29] Andreas Löhne, Birgit Rudloff, and Firdevs Ulus. Primal and dual approximation
algorithms for convex vector optimization problems. Journal of Global Optimization,
60(4):713–736, 2014.

[30] Andreas Löhne and Andrea Wagner. Solving DC programs with a polyhedral component
utilizing a multiple objective linear programming solver. Journal of Global Optimization,
69(2):369–385, 2017.

[31] Andreas Löhne and Benjamin Weißing. Equivalence between polyhedral projection,
multiple objective linear programming and vector linear programming. Mathematical
Methods of Operations Research, 84(2):411–426, 2016.

[32] Andreas Löhne and Benjamin Weißing. The vector linear program solver bensolve–notes
on theoretical background. European Journal of Operational Research, 260(3):807–813,
2017.

41

http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html

[33] Dinh The Luc. Theory of Vector Optimization. Springer, 1989.

[34] Kaisa Miettinen. Nonlinear Multiobjective Optimization, volume 12. Springer Science
& Business Media, 2012.

[35] Kaisa Miettinen, Marko M. Mäkelä, and Katja Kaario. Experiments with classification-
based scalarizing functions in interactive multiobjective optimization. European Journal
of Operational Research, 175(2):931–947, 2006.

[36] Boris S. Mordukhovich and Nguyen Mau Nam. An easy path to convex analysis and
applications. Synthesis Lectures on Mathematics and Statistics, 6(2):1–218, 2013.

[37] Soghra Nobakhtian and Narjes Shafiei. A Benson type algorithm for nonconvex multi-
objective programming problems. TOP, 25(2):271–287, 2017.

[38] Adriano Pascoletti and Paolo Serafini. Scalarizing vector optimization problems. Journal
of Optimization Theory and Applications, 42(4):499–524, 1984.

[39] R. Tyrrell Rockafellar. Convex Analysis, volume 28. Princeton university press, 1970.

[40] Birgit Rudloff and Firdevs Ulus. Certainty equivalent and utility indifference pricing
for incomplete preferences via convex vector optimization. Mathematics and Financial
Economics, 15:397–430, 2021.

[41] Birgit Rudloff, Firdevs Ulus, and Robert Vanderbei. A parametric simplex algorithm
for linear vector optimization problems. Mathematical Programming, 163(1-2):213–242,
2017.

[42] Stefan Ruzika and Margaret M. Wiecek. Approximation methods in multiobjective
programming. Journal of Optimization Theory and Applications, 126(3):473–501, 2005.

[43] Milan Zeleny. Compromise programming. In Milan Zeleny and James L. Cochrane,
editors, Multiple Criteria Decision Making, pages 373–391. University of South Carolina
Press, 1973.

42

	1 Introduction
	2 Preliminaries
	3 Convex vector optimization
	4 Norm-minimizing scalarization
	5 The algorithm
	6 The modified algorithm
	7 Finiteness of the modified algorithm
	8 Examples and computational results
	9 Conclusions

