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Abstract We study an n-player game with random payoffs and continuous

strategy sets. The payoff function of each player is defined by its expected value

and the strategy set of each player is defined by a joint chance constraint. The

random constraint vectors defining the joint chance constraint are dependent

and follow elliptically symmetric distributions. The Archimedean copula is
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used to capture the dependence among random constraint vectors. We pro-

pose a reformulation of the joint chance constraint of each player. Under mild

assumptions on the players’ payoff functions and 1-dimensional spherical dis-

tribution functions, we show that there exists a Nash equilibrium of the game.

Keywords Chance-constrained game · Elliptical distribution · Nash

equilibrium · Archimedean copulas.

Mathematics Subject Classification (2000) MSC 90C15 · 90C25 · 90C59

1 Introduction

The publication of the seminal book Researches into the Mathematical Prin-

ciples of the Theory of Wealth by Cournot in 1838 was the trigger for the

widespread use of the equilibrium under market conditions [5]. Later, the sad-

dle point equilibrium for a two player zero-sum game of von Neumann [17]

follows on this work. In 1950, Nash [15] showed that for a finite strategic game

there exists an equilibrium point, know as Nash equilibrium, from which there

is no incentive for any player to deviate unilaterally. Despite its practical limi-

tation, the general strategic games are extensively studied in the literature [1,

6,7]. The theory of Nash equilibrium in deterministic setup faces challenges

especially when it comes to deal with real applications with random payoffs

and strategy sets. The most commonly used tool to deal with random pay-

offs is the expectation function [21] which is more appropriate for risk neutral

cases. The risk averse games are studied by considering an alternative payoff
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criterion based on risk measure CVaR [13,21] and chance constraint program-

ming [23,25]. In [23], the authors studied a finite strategic game where the

payoff vector of each player is elliptically distributed, and showed the exis-

tence of a Nash equilibrium. The equivalence between the Nash equilibrium

of chance-constrained games (CCGs for short) in [23] and the global optimal

solutions of a certain mathematical program is stated in [25].

In the above referred games, the players payoff functions are random while

the strategy sets are deterministic. However, the strategy sets containing chance

constraints are often considered in various applications, e.g., risk constraints

in portfolio optimization problem [11] and resource constraints in stochastic

shortest path problem [4]. Recently, the games with chance constraint based

strategy sets are introduced in the literature [18,19,20,26,27]. Singh and Lisser

[26] considered a 2-player zero-sum game with individual chance constraints

and showed that a saddle point equilibrium problem is equivalent to a primal-

dual pair of second order cone programs when the random constraint vectors

follow elliptically symmetric distribution. Singh et al. [27] considered an n-

player general-sum game with individual chance constraints under elliptically

symmetric distributions and showed that a Nash equilibrium problem is equiv-

alent to the global optimization of a nonlinear optimization problem. In the

wake of these results, Peng et al. [19] showed the existence of Nash equilibrium

for the n-player general-sum games where the strategy profile set of each player

is defined by a joint chance constraint, and the random constraint vectors are

either independently normally distributed or follow a mixture of elliptical dis-
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tributions [20]. When the probability distributions are not completely known

and belong to a given distributional uncertainty set, Peng et al. [18] formu-

lated the chance constraints of each player as distributional robust joint chance

constrained problem. They consider several uncertainty sets, namely a density

based uncertainty set and four two-moments based uncertainty sets where one

of them has a nonnegative support. They show that there exists a Nash equi-

librium of a distributionally robust joint chance constrained game for each

uncertainty set.

In [18,19,20], the authors assume that the random constraint vectors are

independently distributed. However, the random variables are usually depen-

dent in real world applications. In order to study the dependence structure of

random variable, the concept of copula was introduced by Abe Sklar in 1959

[28], as a solution to a probability problem stated by Maurice Fréchet in the

context of random metric spaces. Copulas are functions used to distinguish

the marginal distributions from a given dependent structure based multivari-

ate distribution. Henrion and Strukgarek [9] introduced the notion of log-exp

concavity of copula to investigate the convexity of elliptically dependent dis-

tributed joint chance constraints. We refer the reader to [16] for a detailed

introduction to the theory of copulas.

In this paper, we extend the results of [19,20] to the general case where the

payoff function is random and the strategy profile set of each player is defined

by elliptically distributed dependent joint chance constraints. We derive a new

reformulation of joint chance constraint with dependent random constraint
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vectors and show that there exists a Nash equilibrium of the game under mild

conditions on the payoff functions.

The rest of the paper is organized as follows. Section 2 contains the def-

inition of an n-player CCG. In Section 3, we prove the existence of a Nash

equilibrium of the CCG under elliptical distributions. We conclude the paper

in Section 4.

2 The model and preliminary results

2.1 Chance-constrained game

We consider an n-player CCG, where H = {1, 2, .., n} is the set of players.

Let Si ⊂ Rdi be the strategy set of player i which is a non-empty, convex and

compact set. For each i ∈ H, S−i denotes the set of strategy vectors of all

players j, j 6= i. A strategy profile x = (x1, x2, . . . , xn) ∈ S is represented as

(xi, x−i) where xi denotes the strategy of player i and x−i denotes the vector

of strategies of the players other than player i. The strategy set of player i,

i ∈ H, is further restricted by the following joint chance constraint

P(V ixi ≤ Di) ≥ αi, (1)

where αi ∈ [0, 1] is a given probability level, Di = (Di,1, ..., Di,Ki)T ∈ RKi is

a deterministic vector and V i = [V i,1, ..., V i,Ki ]T is a Ki × di random matrix,

where V i,k denotes the kth row of matrix V i; T denotes the transposition.

Let J i = {1, 2, . . . ,Ki} denotes the index set of ith player’s constraints. The



6 Hoang Nam Nguyen Abdel Lisser Vikas Vikram Singh

feasible strategy set of player i is defined as

Siαi =
{
xi ∈ Si | P(V ixi ≤ Di) ≥ αi

}
.

We assume that for each i ∈ H, Siαi is a non-empty set. Let α = (αi)i∈H

be the confidence level vector and Sα =
∏n
i=1 S

i
αi be the set of all feasible

strategy profiles. The payoff function of each player is defined using random

variables. For each x ∈ Sα, the payoff of player i is given by fi(x, ζ) where ζ is

an m-dimensional random vector. We use expected value approach to model

the payoff function of each player. Therefore, the payoff function of player i is

given by

pi(x) = E[fi(x, ζ)], ∀ x ∈ Sα. (2)

We assume that the CCG is of complete information, i.e., the payoff function,

the strategy set of each player, and the confidence level vector α are known to

all the players.

Definition 2.1 A strategy profile y∗ is a Nash equilibrium of the CCG at

confidence level vector α if for each i ∈ H

pi(y
i∗, y−i∗) ≥ pi(xi, y−i∗), ∀ xi ∈ Siαi .

Assumption 1. For each player i, i ∈ H, the following conditions hold.

1. fi(., x−i, ζ) is a concave function of xi for every (x−i, ζ) ∈ S−i × Rm.

2. fi(·) is a continuous function.

3. pi(x) is finite valued for every x ∈ S.

Under Assumption 1, the payoff function of player i defined by (2) is a

continuous function of x and it is a concave function of xi for every x−i [20].
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2.2 Basic concepts and known results

In this section, we present some basic definitions and important results which

are used in our subsequent analysis.

Definition 2.2 An n-dimensional random vector X follows a spherical dis-

tribution if there exists a function Ψ : R → R such that the characteristic

function φX(t) of X is given by

φX(t) = E(eit
TX) = Ψ(tT t).

The function Ψ is called a characteristic generator of the spherical distribution.

Definition 2.3 An n-dimensional random vector U follows an elliptical dis-

tribution with location parameter µ, positive definite scale matrix Σ and char-

acteristic generator Ψ , i.e., U ∼ Ellip(µ,Σ, Ψ), if we have the following repre-

sentation

U
d
= µ+AX,

where X follows a spherical distribution with a characteristic generator Ψ ,

A ∈ Rn×n such that AAT = Σ and µ ∈ Rn; d
= implies that the both sides

have the same distribution.

Not all elliptical distributions have a probability density function. When-

ever it exists, it has the form

fU (z) =
c√

det(Σ)
gs

(√
(z − µ)TΣ−1(z − µ)

)
,

where gs is a nonnegative function called radial density and c > 0 is a normal-

ization factor which makes fU a probability density function.
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Definition 2.4 (Definition 2.2, [9]) A real function f : R → R is r-

decreasing for some real number r ∈ R, if f is continuous on (0,+∞) and there

exists some strictly positive real number t∗ such that the function t 7→ trf(t)

is strictly decreasing on (t∗,+∞).

Definition 2.5 The cumulative distribution function (CDF) F : R → [0, 1]

of an 1-dimensional real-valued random variable X has r-decreasing density

if the probability density function of X is r-decreasing for some real number

r ∈ R.

Table 1 presents some 1-dimensional spherical distributions with r-decreasing

densities for some values of r and their thresholds t∗.

Table 1 List of selected 1-dimensional spherical distributions with r-decreasing density and

their thresholds t∗.

Distribution Radial density r t∗

Normal e−
1
2
u2

r > 0
√
r

t

(
1 + 1

ν
u2
)−(1+ν)/2

,

ν > 0, ν integer
0 < r < ν + 1

√
rν

ν+1−r

Laplace e−|u| r > 0 r√
2

Kotz type
u2(N−1)e−qu

2s
,

q, s > 0, N > 1
2

r > 2(1−N) 2s
√

2(N−1)+r
2qs

Pearson type VII

(
1 + u2

m

)−N
,

m > 0, N > 1
2

0 < r < 2N
√

rm
2N−r
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Definition 2.6 A function C : [0, 1]K → [0, 1] is a K-dimensional copula if

C is a joint CDF of a K-dimensional random vector, on the unit cube [0, 1]K ,

whose marginals are uniformly distributed on [0, 1].

Proposition 2.1 (Sklar’s Theorem) Given F : RK → [0, 1] is a joint CDF

of a K-dimensional random vector and F1, ..., FK are the marginal CDFs,

respectively. Then, there exists a K-dimensional copula C such that

F (z) = C (F1(z1), ..., FK(zK)) .

Moreover, if Fi is continuous for any i = 1, ...,K, then C is uniquely given by

C(u) = F
(
F

(−1)
1 (u1), ..., F

(−1)
K (uK)

)
.

Proposition 2.2 (Fréchet-Hoeffding upper bound) For any K-dimensional

copula C and K-dimensional vector u = (u1, ..., uK) ∈ [0, 1]K , we have

C(u) ≤ min
k=1,...,K

uk.

Definition 2.7 A K-dimensional copula C is strictly Archimedean if there

exists a continuous and strictly decreasing function ψ : (0, 1] → [0,+∞),

such that ψ(1) = 0, limt→0 ψ(t) = +∞, and for any K-dimensional vector

u = (u1, ..., uK) ∈ [0, 1]K , we have

C(u) = ψ(−1)

(
K∑
i=1

ψ(ui)

)
.

The function ψ is called a generator of the copula C.

Table 2 presents a selection of some strictly Archimedean copulas with

their generators.
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Table 2 Different types of strictly Archimedean copulas.

Type of copula Parameter θ Generator ψθ(t)

Independent - -log(t)

Gumbel-Hougaard θ ≥ 1 [− log(t)]θ

Frank θ > 0 − log
(
e−θt−1
e−θ−1

)
Clayton θ > 0 1

θ
(tθ − 1)

Joe θ ≥ 1 − log[1− (1− t)θ]

Definition 2.8 A function f : R → R is K-monotonic on an open interval

I ⊆ R for some positive integer K ≥ 2, if the following three conditions hold:

1. f is differentiable up to the order (K − 2) on I,

2. The derivatives of f are satisfied by

(−1)k d
k

dtk
f(t) ≥ 0, 0 ≤ k ≤ K − 2,

for all t ∈ I,

3. The function t 7→ (−1)K−2 d
K−2

dtK−2 f(t) is nonincreasing and convex on I.

Proposition 2.3 (Theorem 2.2, [14]) Given ψ : (0, 1] → [0,+∞) is a

strictly decreasing function such that ψ(1) = 0 and limt→0 ψ(t) = +∞. Then,

ψ is the generator of a K-dimensional strictly Archimedean copula if and only

if the inverse function ψ(−1) is K-monotonic on (0,+∞) and continuous on

[0,+∞).
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Definition 2.9 A function f : Q → (0,+∞) is r-concave on a convex set

Q ⊂ Rs for a given r ∈ (−∞,+∞) if for any x, y ∈ Q and α ∈ [0, 1],

f(αx+ (1− α)y) ≥ [αf(x)r + (1− α)f(y)r] 1r , when r 6= 0,

f(αx+ (1− α)y) ≥ f(x)αf(y)1−α, otherwise.

3 Existence of Nash equilibrium

For each i ∈ H, we assume that the random constraint vector V i,k ∼ Ellip(µi,k, Σi,k, Ψ i,k),

k ∈ J i. Let λi,k,min be the smallest eigenvalue of the positive definite matrix

Σi,k. Define, S̃iαi = Siαi \ {0}, then for xi ∈ S̃iαi , let

ξi,k(xi) =
(V i,k)Txi − (µi,k)Txi√

(xi)TΣi,kxi
.

gi,k(xi) =
Di,k − (µi,k)Txi√

(xi)TΣi,kxi
. (3)

It is well known that ξi,k(xi) follows 1-dimensional spherical distribution with

characteristic generator Ψ i,k [8]. Using the above mentioned notations, the

constraint (1) can be written as

P
{
ξi,k(xi) ≤ gi,k(xi), k ∈ J i

}
≥ αi. (4)

By Proposition 2.1, (4) can be equivalently written as

Cixi
(
(F i,1 ◦ gi,1)(xi), ..., (F i,Ki ◦ gi,Ki)(xi)

)
≥ αi, (5)

where Cixi is the Ki-dimensional copula of the random vector (ξi,k(xi))Kik=1 and

F i,k is the cumulative distribution function of ξi,k(xi); ◦ denotes the function

composition.
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Assumption 2. There exists a Ki-dimensional copula Ci such that Cixi = Ci

for all xi ∈ Si, and Ci is a Ki-dimensional strictly Archimedean copula with a

generator ψi such that the inverse function ψ(−1)
i is 4-monotonic on (0,+∞).

Remark 3.1 The 4-monotonicity of ψ(−1)
i ensures that ψ(−1)

i is twice differen-

tiable. It follows from Proposition 2.3 that 4-monotonicity condition holds if

Ki ≥ 4.

Under Assumption 2, we can equivalently write (5) as

Ci[(F i,1 ◦ gi,1)(xi), ..., (F i,Ki ◦ gi,Ki)(xi)] ≥ αi. (6)

Proposition 3.1 If xi ∈ S̃iαi and Assumption 2 holds, the joint chance con-

straint (1) is equivalent to
(i) (F i,k ◦ gi,k)(xi) ≥ ψ(−1)

i (yi,kψi(αi)), k ∈ J i.

(ii)
∑
k∈Ji

yi,k = 1, yi,k ≥ 0, k ∈ J i.
(7)

Proof. Let xi ∈ S̃iαi . Under Assumption 2, the joint chance constraint (1) is

equivalent to (6). It is enough to show the equivalence between (6) and (7).

Since, Ci is strictly Archimedean copula, (6) is equivalent to

∑
k∈Ji

(ψi ◦ F i,k ◦ gi,k)(xi) ≤ ψi(αi). (8)

Define Ki-dimensional vector yi = (yi,1, ..., yi,Ki) ∈ [0, 1]Ki such that

yi,k =
(ψi ◦ F i,k ◦ gi,k)(xi)∑
j∈Ji(ψi ◦ F i,j ◦ gi,j)(xi)

, k ∈ J i.
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From non-increasing property of ψ−1i , it follows that (xi, yi) satisfies (7). Con-

versely, we assume (xi, yi) satisfies (7). By adding all the constraints (i) of (7)

after applying ψi(·) on both sides, we can say that xi satisfies (8) which is

equivalent to (6).

The convexity of the feasible strategy set Siαi plays a very important role

in showing the existence of Nash equilibrium. We show that there exists α∗i ∈

[0, 1] such that Siαi is a convex set for all αi ∈ (α∗i , 1]. For each i ∈ H, define

an index set I(i) = {k ∈ J i | µi,k 6= 0} and a set of real numbers {ri,k | k ∈ J i}

such that

ri,k > 1, if k ∈ I(i),

ri,k = 1, if k /∈ I(i).

 (9)

Lemma 3.1 Let Assumption 2 holds and for each k ∈ J i, the CDF F i,k has

(ri,k + 1)-decreasing density with a threshold t∗i,k, where r
i,k is defined by (9)

and t∗i,k refers to Definition 2.4. Then, Siαi is a convex set for all αi ∈ (α∗i , 1],

where

α∗i := max

{
1

2
, max
k∈I(i)

F i,k
(
ri,k + 1

ri,k − 1
λ
− 1

2

i,k,min||µ
i,k||
)
,max
k∈Ji

F i,k(t∗i,k)

}
. (10)

In order to prove Lemma 3.1, we need the three following lemmas.

Lemma 3.2 Let αi ∈ ( 12 , 1] and xi ∈ S̃iαi . Then, Di,k > (µi,k)Txi for all

k ∈ J i.

Proof. The proof is given in 4.
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Lemma 3.3 Let ri,1, ..., ri,Ki be the real numbers defined by (9) and for each

k ∈ I(i), define

Ωi,k :=

{
xi ∈ Si | Di,k − µTi,kxi >

ri,k + 1

ri,k − 1
λ
− 1

2

i,k,min||µi,k||
√

(xi)TΣi,kxi
}
.

Then,

Conv(S̃iαi) ⊂
⋂

k∈I(i)
Ωi,k,

for all αi ∈ (α∗∗i , 1], where

α∗∗i = max

{
1

2
, max
k∈I(i)

F i,k
(
ri,k + 1

ri,k − 1
λ
− 1

2

i,k,min||µ
i,k||
)}

, (11)

and Conv represents the convex hull. Moreover, for any convex subset Qi,k of⋂
k∈I(i) Ω

i,k such that 0 /∈ Qi,k, gi,k(xi) is defined and (−ri,k)-concave on Qi,k

for all k ∈ J i

Proof. The proof is given in 4.

Lemma 3.4 Let Assumption 2 holds. Then, ψ(−1)
i (yi,kψi(αi)) is a convex

function of yi,k for all αi ∈ [0, 1].

Proof. The proof is given in 4.

We present the proof of Lemma 3.1 using the results of Lemma 3.2, Lemma

3.3 and Lemma 3.4.

Proof of Lemma 3.1. Let αi ∈ (α∗i , 1], λ ∈ [0, 1] and z1, z2 ∈ Siαi . We need to

show that λz1 + (1− λ)z2 ∈ Siαi .
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Case 1: Let z1 = 0 or z2 = 0. Without loss of generality, we assume that

z2 = 0. This gives Di,k ≥ 0 for all k ∈ J i, which in turn implies that

P(V iλz1 ≤ Di) ≥ P(V iz1 ≤ Di) ≥ αi.

Hence, λz1 + (1− λ)z2 ∈ Siαi .

Case 2: Let z1 6= 0, z2 6= 0 and λz1+(1−λ)z2 = 0. In this case, z2 = −λ
1−λz1 ∈

S̃iαi and z1 ∈ S̃
i
αi . It follows from Lemma 3.2 that

(µi,k)T z1 >
λ− 1

λ
Di,k, (µi,k)T z1 < Di,k, ∀ k ∈ J i.

This implies that Di,k ≥ 0 for all k ∈ J i. Therefore, λz1+(1−λ)z2 = 0 ∈ Siαi .

Case 3: Let z1 6= 0, z2 6= 0 and 0 ∈ Seg(z1, z2), where Seg(z1, z2) =

{z1 + l(z2 − z1), 0 ≤ l ≤ 1}. Then, the points on the line segment Seg(z1, z2)

are either belong to Seg(z1, 0) or Seg(0, z2). It follows from Case 1 that

Seg(z1, 0) and Seg(0, z2) are subset of Siαi . Therefore, λz1 + (1 − λ)z2 ∈ Siαi

for all λ ∈ [0, 1].

Case 4: Let z1 6= 0, z2 6= 0 such that 0 /∈ Seg(z1, z2). It is clear that

Seg(z1, z2) ⊂ Conv(S̃iαi). From Lemma 3.3, gi,k(·) is defined and (−ri,k)-

concave on Seg(z1, z2). Therefore,

gi,k(λz1 + (1− λ)z2) ≥
(
λ(gi,k(z1))

−ri,k + (1− λ)(gi,k(z2))−r
i,k
)− 1

ri,k

.

(12)

Since, z1 ∈ S̃iαi , from Lemma 3.2 gi,k(z1) > 0 and it follows from (6) that

Ci[(F i,1 ◦ gi,1)(z1), ..., (F i,Ki ◦ gi,Ki)(z1)] > α∗i . (13)
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By using Proposition 2.2 and the definition of α∗i from (10), we get

F i,k(gi,k(z1)) > α∗i ≥ F i,k(t∗i,k). (14)

This implies that

0 < gi,k(z1)
−ri,k < (t∗i,k)

−ri,k .

Similarly,

0 < gi,k(z2)
−ri,k < (t∗i,k)

−ri,k .

By applying the non-decreasing function F i,k(·) on both side of (12), we can

write

(F i,k ◦ gi,k)(λz1 + (1− λ)z2) ≥

F i,k
((

λ(gi,k(z1))
−ri,k + (1− λ)(gi,k(z2))−r

i,k
)− 1

ri,k

)
. (15)

Since, F i,k(·) has (ri,k + 1)-decreasing density, from Lemma 3.1 of [9], the

function t 7→ F i,k
(
t−

1

ri,k

)
is concave on (0, (t∗i,k)

−ri,k). Therefore, we can

write

F i,k
((

λ(gi,k(z1))
−ri,k + (1− λ)(gi,k(z2))−r

i,k
)− 1

ri,k

)
≥ λ

(
(F i,k ◦ gi,k)(z1)

)
+ (1− λ)

(
(F i,k ◦ gi,k)(z2)

)
. (16)

From (15) and (16), we have

(F i,k ◦ gi,k)(λz1 + (1− λ)z2) ≥

λ
(
(F i,k ◦ gi,k)(z1)

)
+ (1− λ)

(
(F i,k ◦ gi,k)(z2)

)
. (17)

This implies that the composition function (F i,k ◦ gi,k)(·) is a concave func-

tion over Seg(z1, z2). It follows from Lemma 3.4 that ψ(−1)
i (yi,kψi(αi)) is a
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convex function of yi,k. Because z1, z2 ∈ S̃iαi and from Proposition 3.1, S̃iαi

and (7) are equivalent, then there exists vectors (y1i,k)k∈Ji and (y2i,k)k∈Ji such

that
(
z1, (y

1
i,k)k∈Ji

)
and

(
z2, (y

2
i,k)k∈Ji

)
are feasible points of (7). Using the

fact that (F i,k ◦ gi,k)(·) is a concave function and ψ
(−1)
i (·) is a convex func-

tion, we can say that the convex combination of points
(
z1, (y

1
i,k)k∈Ji

)
and(

z2, (y
2
i,k)k∈Ji

)
is also a feasible point of (7). Again from the equivalence of S̃iαi

and (7), λz1+(1−λ)z2 ∈ S̃iαi which in turn implies that λz1+(1−λ)z2 ∈ Siαi .

Next, we prove that Siαi is a closed set.

Lemma 3.5 The probability function xi 7→ P(V ixi ≤ Di) used in the joint

chance constraint (1) of player i is continuous on S̃i, where S̃i = Si\ {0}.

Proof. We can write P(V ixi ≤ Di) as follows

P(V ixi ≤ Di) = E
(
I{V ixi≤Di}

)
= E

(∏
k∈Ji

I{(V i,k)T xi≤Di,k}

)
,

where IA denotes the indicator function of an event A. Given xi ∈ S̃i and

a sequence xij ∈ S̃i such that xij → xi when j → +∞. For each k ∈ J i,

let Ai,k =
{
ω | (V i,k(ω))Txi > Di,k

}
and Bi,k =

{
ω | (V i,k(ω))Txi < Di,k

}
.

For ω ∈ Ai,k, we have I{(V i,k)T xi≤Di,k}(ω) = 0. Since, xij → xi, there exists a

positive integer N(ω) such that for all j > N(ω), we have (V i,k(ω))Txij > Di,k.

In other words, I{(V i,k)T xij≤Di,k}(ω) = 0, for all j > N(ω). Hence,

I{(V i,k)T xij≤Di,k} → I{(V i,k)T xi≤Di,k} on Ai,k, j → +∞.
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Similarly,

I{(V i,k)T xij≤Di,k} → I{(V i,k)T xi≤Di,k} on Bi,k, j → +∞.

Define Ci,k =
{
ω | (V i,k(ω))Txi = Di,k

}
. Using the notations from (3), Ci,k ={

ω | ξi,k(xi)(ω) = gi,k(xi)
}
. Since, ξi,k(xi) follows an 1-dimensional real con-

tinuous distribution with a density function, P(ξi,k(xi) = c) = 0, for any c ∈ R.

In other words, Ci,k is a negligible set. Note that Ai,k ∪ Bi,k ∪ Ci,k = Ω,

where Ω is the sample space. Therefore, for each k ∈ J i, I{(V i,k)T xij≤Di,k} →

I{(V i,k)T xi≤Di,k} almost everywhere which in turn implies that I{V ixij≤Di} →

I{V ixi≤Di} almost everywhere. Moreover, I{V ixij≤Di} is upper bounded by

a positive integrable function IΩ . Then, it follows from dominated conver-

gence theorem that E(I{V ixij≤Di}) → E(I{V ixi≤Di}) as j → +∞. Therefore,

P(V ixi ≤ Di) is a continuous function on S̃i.

Lemma 3.6 The feasible strategy set Siαi of player i is a closed set.

Proof. Given xi ∈ Si and a sequence xij ∈ Siαi such that xij → xi when

j → +∞. If xi 6= 0, the proof follows from Lemma 3.5. If xi = 0, we need to

prove that 0 ∈ Siαi . Let 0 /∈ Siαi and x
i
j 6= 0 for all j ∈ N. Then, there exists

k∗ ∈ J i such that Di,k∗ < 0. For each j ∈ N, we have

P(V ixij ≤ Di) ≤ P((V i,k
∗
)Txij ≤ Di,k∗).
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It follows from the Cauchy-Schwarz inequality that P((V i,k∗)Txij ≤ Di,k∗) ≤

P(−||V i,k∗ || × ||xij || ≤ Di,k∗) = P(||V i,k∗ || × ||xij || ≥ −Di,k∗). Hence,

P(V ixij ≤ Di) ≤ P(||V i,k
∗
|| × ||xij || ≥ −Di,k∗).

= P

(
||V i,k

∗
|| ≥ −D

i,k∗

||xij ||

)
. (18)

As −Di,k∗ > 0 and xij → 0, we deduce that P
(
||V i,k∗ || ≥ −D

i,k∗

||xij ||

)
→ 0. Then,

from (18), we have

P(V ixij ≤ Di)→ 0, j → +∞. (19)

However, as xij ∈ Siαi , we deduce that P(V ixij ≤ Di) ≥ αi, for all j ∈ N which

contradicts (19). Therefore, 0 ∈ Siαi .

The feasible strategy set Siαi is a compact set because, from Lemma 3.6, it

is a closed subset of the compact set Si. Finally, we show that there exists a

Nash equilibrium of the CCG.

Theorem 3.1 Consider an n-player CCG defined in Section 2.1, where

1. Assumptions 1, 2 hold.

2. For each i ∈ H and k ∈ J i, V i,k ∼ Ellip(µi,k, Σi,k, Ψ i,k), where Σi,k is a

positive definite matrix.

3. For each i ∈ H and k ∈ J i, suppose CDF F i,k(·) has (ri,k + 1)-decreasing

density with a threshold t∗i,k, where r
i,k is defined by (9) and t∗i,k refers to

Definition 2.4.

Then, there exists a Nash equilibrium of the CCG for any α ∈ (α∗1, 1] × ... ×

(α∗n, 1], where α∗i , i ∈ H, is defined by (10).
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Proof. Let α ∈ (α∗1, 1]× ...× (α∗n, 1]. Under Assumption 1, the payoff function

pi(x
i, x−i) is a concave function of xi, for every x−i ∈ S−i, and a continuous

function of x. It follows from Lemma 3.1 that the feasible strategy set Siαi ,

i ∈ H, is a convex set for all αi ∈ (α∗i , 1]. For each i ∈ H, Siαi is a compact set.

Then, the existence of a Nash equilibrium of the CCG follows from Theorem

4 of [7].

4 Conclusion

In this paper, we studied an n-player non-cooperative CCG where the strategy

sets of each player is given by joint chance constraint with dependent random

constraint vectors which follow elliptically symmetric distributions. We pro-

pose a new reformulation of the joint chance constraints based on the family

of Archimedean copulas. We assume that 1-dimensional spherical distribution

function in the reformulation has r-decreasing densities for some values of r.

This condition is satisfied by a list of prominent 1-dimensional spherical dis-

tributions. Under mild conditions on the payoff functions, we show that there

exists a Nash equilibrium of the CCG.
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Appendices

Appendix A: Proof of Lemma 3.2

Let xi ∈ S̃iαi . By applying Proposition 2.2 on (6), we get

(F i,k ◦ gi,k)(xi) ≥ αi >
1

2
. (20)

Since, F i,k is the CDF of an 1-dimensional real-valued random variable which is symmetric at

0, F i,k(0) = 1
2
. From (20) we get gi,k(xi) > 0 which in turn implies that Di,k− (µi,k)T xi >

0.

Appendix B: Proof of Lemma 3.3

Let k ∈ I(i) and xi ∈ S̃iαi . By applying Proposition 2.2 on (6), we get

(F i,k ◦ gi,k)(xi) ≥ αi. (21)

From the definition of α∗∗i given in (11), we have

F i,k(gi,k)(xi)) > α∗∗i ≥ F i,k
(
ri,k + 1

ri,k − 1
λ
− 1

2
i,k,min||µ

i,k||
)
. (22)

Since, F i,k(·) is a non-decreasing function, from (22) we have

Di,k − (µi,k)T xi >
ri,k + 1

ri,k − 1
λ
− 1

2
i,k,min||µ

i,k||
√

(xi)TΣi,kxi. (23)

Therefore, S̃iαi ⊂
⋂
k∈I(i) Ω

i,k. For each k ∈ I(i), Ωi,k is a convex set which implies that

Conv(S̃iαi ) ⊂
⋂
k∈Ii Ω

i,k. We prove the second part of Lemma 3.3 by considering two cases

as below:

Case 1: Let k /∈ I(i), then µi,k = 0. From the definition of α∗∗i , we have αi > 1
2
. From

Lemma 3.2, Di,k > 0. In this case, the proof follows directly from Lemma 3 of [2].

Case 2: Let k ∈ Ii. It follows from Lemma 2 of [2] that the function

f i,k(xi) =

( √
(xi)TΣi,kxi

Di,k − (µi,k)T xi

)ri,k
.
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is defined and a convex function on
⋂
k∈I(i) Ω

i,k. Therefore, for any y, z ∈ Qi,k and λ ∈ [0, 1],

we have

f i,k[λy + (1− λ)z] ≤ λf i,k(y) + (1− λ)f i,k(z). (24)

Note that gi,k(xi) =
(
f i,k(xi)

) −1

ri,k on Qi,k. From (24), we can write

gi,k[λy + (1− λ)z] ≥
(
λ(gi,k(y))−r

i,k
+ (1− λ)(gi,k(z))−r

i,k
) −1

ri,k .

Hence, gi,k is defined and (−ri,k)-concave on Qi,k.

Appendix C: Proof of Lemma 3.4

Let U(yi,k) = ψ
(−1)
i (yi,kψi(αi)). If ψi(αi) = 0, the proof is trivial because U(yi,k) = 1, for

all yi,k ∈ [0, 1]. Let ψi(αi) > 0. The second-order differentiation of U(yi,k) is given by

d2

dy2i,k
U(yi,k) = [ψi(αi)]

2 ×
(
ψ
(−1)
i

)′′
(yi,kψi(αi)),

for all yi,k ∈ (0, 1]. Since, ψ(−1)
i is 4-monotonic on (0,+∞),

(
ψ
(−1)
i

)′′
≥ 0 on (0,+∞). This

implies d2

dy2
i,k

U(yi,k) ≥ 0 for all yi,k ∈ (0, 1]. Therefore, U(yi,k) is a convex function of yi,k

on (0, 1]. The convexity of U on [0, 1] follows from the continuity of U at 0.
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