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Abstract
Since the global COVID-19 pandemic in 2020, some people who have dropped out of
online game have become re-addicted to it due to the order of stay-at-home, making
the phenomenon of online game addiction even worse. Controlling the prevalence of
online game addiction is of great significance to protect people’s healthy life. For this
purpose, amathematicalmodel of online game addictionwith incomplete recovery and
relapse is established. First, we analyze the basic properties of the model and obtain
the expression of the basic reproduction number and all equilibria. By constructing
suitable Lyapunov functions, the global asymptotical stability of the equilibria are
proved. Then in the numerical simulation, we use the least squares estimation method
to fit the real data of e-sports users inChina from2010 to 2020, and obtain the estimated
value of all parameters. The approximation value of the basic reproduction number is
obtained as R0 ≈ 5.05. The result reflects that the spread of game addiction in China is
very serious. The stability of the equilibria are proved by using the estimated parameter
values. Finally, the simulation results between with control and without control during
2020 to 2050 are compared, and the optimal control strategy is found by comparing the
total infectious people. The results of optimal control suggest that if we increase our
continuous attention to incompletely recovered people, we can prevent more people
from becoming addicted to games. The findings in this paper reveal new mechanisms
of game addiction transmission and demonstrate a more detailed and reliable control
strategy.
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1 Introduction

Since 2020, the coronavirus (COVID-19) pandemic has seriously affected people’s
normal life. Stay-at-home commands and isolation increased the consumption of digi-
tal amusement, particularly online game and related activities (such as e-sports viewing
and video game streaming). For example, Verizon, the US telecoms provider, reported
in a report that online game activity increased by 75% during the initial stay-at-home
order [7]. According to a report from Italy, web traffic related to the “Fortnite game”
increased by 70% during the early stay-at-home order period compared to the previ-
ous year [6]. Online games can enrich people’s lives, but excessive gaming can cause
many negative effects, including harmful patterns on mental health, sleep, or physical
health [21]. It’s also worrisome that the increase in gaming time is causing many of the
inadequately recovered game addicts who are in self-quarantine and are undergoing
treatment to relapse and become addicted again [10].

Infectious disease dynamics is an important method for theoretical quantitative
research. It is based on the characteristics of population growth, the occurrence of
diseases, the transmission pattern within the population and related social influence
factors to build a reasonable mathematical model to reflect the dynamic changes of
infectious diseases [11]. Because of these characteristics, the research methods of
infectious disease dynamics have been applied by many scholars to analyze and solve
other contagious social problems, such as smoking, alcoholism, drug addiction, game
addiction, information diffusion etc. [3, 5, 13, 14, 16–19, 23, 26].

Rahman et al. [19] presented a qualitative analysis of a new smoking model and
provided parametric conditions for controlling the influence of smoking. This novel
model took into account harmonic mean type incidence rate between the incidence
of potential and casual smokers. Ma et al. [17] established and analyzed an alcohol
consumptionmodel that considered health education and three time delays. The global
dynamic characteristics and control problem of the model with three different time
delays are analyzed. Ma et al. [16] proposed a new model of drug transmission that
included the influence of media coverage, and analyzed the dynamic behavior to
answer the question: Does media coverage affect the transmission of drug addiction?
The results showed that the effect ofmedia coverage did not change the stability of drug
transmission, but it did affect the number of drug addicts. Li and Guo [14] established
a mathematical model of game addiction with a compartment of professional game
players for the first time by studying the problem of game addiction in the real world.
Through stability analysis and optimal control strategy research, scientific prevention
and control suggestions are provided for reducing the number of game addicts. Tian
and Ding [26] established a new mathematical model of rumor propagation with
rumor refutation behavior,which considered the existence of rumor refutation behavior
for the first time, and analyzed the influence of rumor refutation behavior on rumor
propagation.

Optimal control theory can be used as a powerful tool to solve the control problem
of infectious disease dynamics, and can provide scientific advice for public health
administration. Therefore, this method has been widely used in the field of biological
mathematics [2, 8, 9, 15, 20, 27, 28, 30]. In [8], the authors developed a Zika virus
control model with asymptomatic carriers, taking into account control measures such
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asmosquito nets, insecticide spraying, and treatment. The numerical solutionswith and
without control were carried out by the backward Runge–Kutta method. The results of
the study provide an optimal control strategy to effectively inhibit the spread of Zika
virus. In [28], the authors developed a mathematical model of COVID-19 that took
into account an effective contact tracing policy and hospitalization of confirmed cases.
In the absence of effective drug interventions, the authors proposed an optimal control
strategy to effectively reduce the number of infected persons. In [30], the authors
established a stage-structured compartment model in order to study the spread of
Huanglongbing.With the aid of optimal control theory, four control methods including
spraying insecticide, injecting nutrient solution, cutting down infected trees and setting
yellow adhesive traps were considered, and a scientific proposal was put forward to
prevent and control the spread of Huanglongbing. There are some other important
applications, please see the references.

Some game quitters who are not fully recovered may relapse, fall back into game
addiction again, and become addicts. This kind of phenomenon is objective existence,
relatively serious, and can not be ignored, especially during home quarantine due to
COVID-19 [10]. In order to highlight this phenomenon, we set up a compartment
for incompletely recovered quitters when building the model, and there is a certain
possibility of recurrence among the population in this compartment.

Based on the above literature and idea, we establish a mathematical model of
online game addiction with incompletely recovered quitters, and these incompletely
recovered quitters have a certain possibility of relapse. The structure of this paper is
as follows. The establishment of the model is shown in Sect. 2, the basic reproduction
number and all equilibria of themodel are solved inSect. 3, the stability of the equilibria
are proved in Sect. 4, the optimal control problem of the model is analyzed in Sect. 5,
and the numerical simulation is studied in Sect. 6.

2 TheModel Formulation

2.1 SystemDescription

We divide the total population N (t) into six compartments: susceptible compartment
S(t), exposed compartment E(t), infected compartment I (t), professional compart-
ment P(t), the compartment of the incompletely recovered quitters Q1(t), and the
compartment of the completely recovered quitters Q2(t). Thus, the total population
is given by:

N (t) = S(t) + E(t) + I (t) + P(t) + Q1(t) + Q2(t). (1)

S(t): the group of susceptible people who have never been exposed to games;
E(t): the group of exposed people with less exposure to games;
I (t): the group of infected people who are addicted to games;
P(t): the group of professionals who work in professional games or games-related
jobs;
Q1(t): the group of people who were previously addicted to games and now have
temporarily withdrawn;
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Fig. 1 Transfer diagram of model

Q2(t): the group of people who the group of people who quit the game permanently.
In the study of gaming addiction, there exists a group of people who cannot be

ignored, who have professional scientific training or who have gaming-related jobs as
a profession. Although they have been in contact with games for a very long time, it
is not reasonable to classify them in the same category as game addicts. Therefore,
we classify people who are professionally involved in gaming as a professional com-
partment P(t). There are some more descriptions of professional compartment P(t),
please see references [5, 14].

There is an important group of game quitters who are influenced by external envi-
ronmental factors or their own psychological factors and become addicted to games
again. Thiswas especially evident during theCOVID-19 epidemic, when stay-at-home
mandates was imposed in many places [1, 29]. Therefore, we classify these unstable
and dissolute dropouts as the incomplete recovery group Q1(t).

With the rapid development of e-sports, there are more and more e-sports type
competitions, many colleges and universities have opened e-sports majors, and many
gamers choose to become professional gamers or engage in game-related careers, such
as: game designers, game commentators, e-sports tournament hosts, etc [22]. They can
go directly from exposed E(t) to professional P(t) without going through the stage
of addicted to games. Therefore, we set up a direct connection from E(t) to P(t).

The population flow among those compartments is shown in Fig. 1.
The transfer diagram leads to the following system of ordinary differential equa-

tions:

S′(t) = μN (t) − μS(t) − S(t)
α I (t) + βP(t)

N (t)
,

E ′(t) = S(t)
α I (t) + βP(t)

N (t)
− (ξ1 + ξ2 + μ)E(t),
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I ′(t) = ξ1E(t) + δ1Q1(t) − (v1 + v2 + v3 + μ)I (t),

P ′(t) = ξ2E(t) + v1 I (t) − (w1 + w2 + μ)P(t),

Q′
1(t) = v2 I (t) + w1P(t) − (δ1 + δ2 + μ)Q1(t),

Q′
2(t) = v3 I (t) + w2P(t) + δ2Q1(t) − μQ2(t), (2)

where
μ is the nature birth rate and death rate;
α denotes the transmission coefficient of the addicted users I ;
β is the transmission coefficient of the professional users P;
ξ1 is the transfer rate from E to I ;
ξ2 is the transfer rate from E to P;
v1 represents the transfer rate from I to P;
v2 represents the proportion of temporarily quit game in I ;
v3 represents the proportion of quit game permanently I ;
w1 represents the proportion of temporarily quit game in P;
w2 represents the proportion of quit game permanently P;
δ1 denotes the recurrence rate;
δ2 denotes the proportion of quit game permanently Q1.

For the convenience of expression, we make some shorthand. k1 = ξ1 + ξ2 + μ,
k2 = v1 + v2 + v3 + μ, k3 = w1 + w2 + μ, k4 = δ1 + δ2 + μ.

2.2 Positivity and Boundedness of Solutions

Since the number of people in each compartment ofmodel (2) is nonnegative and finite,
we want to verify here that the solution of model (2) is non-negative and bounded for
all t > 0.

System (2) can be put into the matrix form

X ′ = G(X), (3)

where X = (S, E, I , P, Q1, Q2)
T ∈ R6 and G(X) is given by

G(X) =

⎛
⎜⎜⎜⎜⎜⎜⎝

G1(X)

G2(X)

G3(X)

G4(X)

G5(X)

G6(X)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

μN − μS − S α I+βP
N

S α I+βP
N − k1E

ξ1E + δ1Q1 − k2 I
ξ2E + v1 I − k3P

v2 I + w1P − k4Q1
v3 I + w2P + δ2Q1 − μQ2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4)
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Because of �6
i=1Gi (X) = 0, N (t) is a constant denoted by N . Letting ϕ(t) =

α I+βP
N + μ, the first equation of system (2) can be written in the following form.

dS

dt
= μN − ϕ(t)S.

Since the initial values of system (2) are all non-negative, we can obtain the following
results by using the integration factor method.

S(t) = S(0) exp

(
−

∫ t

0
ϕ(u)du

)
+ exp

(
−

∫ t

0
ϕ(u)du

) ∫ t

0
μN

[∫ x

0
ϕ(z)dz

]
dx

> 0.

For the remaining 5 variables, by a similar method, we can obtain the positivity of the
solution. We set

� =
{
(S, E, I , P, Q1, Q2) ∈ R6+ : S + E + I + P + Q1 + Q2 = N

}
, (5)

and it is a positive invariant set of system (2).

3 The Basic Reproduction Number and Existence of
Addiction-Present Equilibrium

3.1 The Basic Reproduction Number

The model has an addiction-free equilibrium D0 given by

D0 = (N , 0, 0, 0, 0, 0). (6)

In the following, the basic reproduction number of system (2) will be obtained by the
next generation matrix method. Let x = (E, I , P, Q1, Q2, S)T, then system(2) can
be written as

dx

dt
= F (x) − V (x). (7)

where

F (x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

S α I+βP
N
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, V (x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

k1E1
−ξ1E − δ1Q1 + k2 I
−ξ2E − v1 I + k3P

−v2 I − w1P + k4Q1
−v3 I − w2P − δ2Q1 + μQ2

−μN + μS + S α I+βP
N

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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The Jacobian matrices of F (x) and V (x) at the addiction-free equilibrium D0 are

DF (D0) =
(
F4×4 0
0 0

)
, DV (D0) =

(
V4×4 0
J1 J2

)
.

where

F4×4 =

⎛
⎜⎜⎝
0 α β 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , V4×4 =

⎛
⎜⎜⎝

k1 0 0 0
−ξ1 k2 0 −δ1
−ξ2 −v1 k3 0
0 −v2 −w1 k4

⎞
⎟⎟⎠ .

J1 =
(
0 −v3 −w2 −δ2
0 α β 0

)
, J2 =

(
μ 0
0 μ

)
.

Following Diekmann et al. [4], we can obtain the expression for the basic repro-
duction number from the spectral radius of FV−1.

R0 = ρ
(
FV−1

)
= αξ1k3k4 + αδ1ξ2w1 + βξ2k2k4 + βξ1v1k4 − βδ1ξ2v2

k1k2k3k4 − δ1v2k1k3 − δ1v1w1k1
,

where ρ(A) denotes the spectral radius of a matrix A.
Since βξ2(k2k4 − δ1v2) is greater than 0, the numerator of R0 is greater than 0. In

the denominator of R0, we get that

k1k2k3k4 − δ1v2k1k3 − δ1v1w1k1
> k1k2k3k4 − δ1v2k1k3 − δ1v1k3k1
= k1k3(k2k4 − δ1v2 − δ1v1)

> k1k3(k2k4 − δ1k2)

> 0.

Therefore, the basic reproduction number R0 is always positive.

3.2 Existence of Addiction-Present Equilibrium

Theaddiction-present equilibrium D∗ (
S∗, E∗, I ∗, P∗, Q∗

1, Q
∗
2

)
of system (2) is deter-

mined by equations:

μN − μS − S
α I + βP

N
= 0, (8)

S
α I + βP

N
− k1E = 0, (9)

ξ1E + δ1Q1 − k2 I = 0, (10)

ξ2E + v1 I − k3P = 0, (11)

v2 I + w1P − k4Q1 = 0, (12)
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v3 I + w2P + δ2Q1 − μQ2 = 0. (13)

Through the above equations we can have D∗ (
S∗, E∗, I ∗, P∗, Q∗

1, Q
∗
2

)
.

Theorem 3.1 In the model (2), there is always an addiction-free equilibrium D0 =
(N , 0, 0, 0, 0, 0). When R0 > 1, the model has a unique addiction-present equilibrium
D∗ (

S∗, E∗, I ∗, P∗, Q∗
1, Q

∗
2

)
, where

S∗ = N

R0
,

E∗ = μN

k1

(
1 − 1

R0

)
,

I ∗ = μN (ξ1k3k4 + ξ2δ1w1)

k1k2k3k4 − δ1v2k1k3 − δ1v1w1k1

(
1 − 1

R0

)
,

P∗ = μN (ξ1v1k4 + ξ2k2k4 − ξ2δ1v2)

k1k2k3k4 − δ1v2k1k3 − δ1v1w1k1

(
1 − 1

R0

)
,

Q∗
1 = μN (w1ξ1v1 + w1ξ2k2 + v2ξ1k3)

k1k2k3k4 − δ1v2k1k3 − δ1v1w1k1

(
1 − 1

R0

)
,

Q∗
2 = N

(
v3ξ1k3k4 + v3ξ2δ1w1 + w2ξ1v1k4 + w2ξ2k2k4 − w2ξ2δ1v2 + w1ξ1δ2v1

k1k2k3k4 − δ1v2k1k3 − δ1v1w1k1

+ δ2v2ξ1k3 + δ2w1ξ2k2
k1k2k3k4 − δ1v2k1k3 − δ1v1w1k1

) (
1 − 1

R0

)
.

4 Stability Analysis of Equilibria

Theorem 4.1 For the system (2), the addiction-free equilibrium D0 is globally asymp-
totically stable (GAS) if R0 < 1.

Proof In order to construct a Lyapunov function, let’s first prove that k1k3 − βξ2 is
positive. When 0 < R0 < 1,

α(ξ1k3k4 + δ1ξ2w1) + βk4(ξ2k2 + ξ1v1) − βδ1ξ2v2

< k1(k2k3k4 − δ1v2k3 − δ1v1w1),

α(ξ1k3k4 + δ1ξ2w1) + βξ1v1k4 + δ1v1w1k1 < (k1k3 − βξ2)(k2k4 − δ1v2).

Due to α (ξ1k3k4 + δ1ξ2w1) + βξ1v1k4 + δ1v1w1k1 > 0 and k2k4 − δ1v2 > 0,
k1k3 − βξ2 is positive. Thus, we can introduce the Lyapunov function V as follows:

V (t) = ξ1k3k4 + δ1w1ξ2

k1k3k4 − βξ2k4
E1(t) + I (t) +

(
β

k3

ξ1k3k4 + δ1w1ξ2

k1k3k4 − βξ2k4
+ δ1w1

k3k4

)
P + δ1

k4
Q1.
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So

V ′(t) = ξ1k3k4 + δ1w1ξ2

k1k3k4 − βξ2k4

(
S
α I + βP

N
− k1E

)
+ ξ1E + δ1Q1 − k2 I

+
(

β

k3

ξ1k3k4 + δ1w1ξ2

k1k3k4 − βξ2k4
+ δ1w1

k3k4

)
(ξ2E + v1 I − k3P)

+ δ1

k4
(v2 I + w1P − k4Q1)

<
ξ1k3k4 + δ1w1ξ2

k1k3k4 − βξ2k4
(α I + βP − k1E) + ξ1E + δ1Q1 − k2 I

+
(

β

k3

ξ1k3k4 + δ1w1ξ2

k1k3k4 − βξ2k4
+ δ1w1

k3k4

)
(ξ2E + v1 I − k3P)

+ δ1

k4
(v2 I + w1P − k4Q1)

= E

[
− ξ1k1k3k4 + δ1w1ξ2k1

k1k3k4 − βξ2k4
+ ξ1 +

(
β

k3

ξ1k3k4 + δ1w1ξ2

k1k3k4 − βξ2k4
+ δ1w1

k3k4

)
ξ2

]

+I

[
αξ1k3k4 + αδ1w1ξ2

k1k3k4 − βξ2k4
− k2+

(
β

k3

ξ1k3k4 + δ1w1ξ2

k1k3k4 − βξ2k4
+ δ1w1

k3k4

)
v1+ δ1v2

k4

]

+P

[
βξ1k3k4 + βδ1w1ξ2

k1k3k4 − βξ2k4
−

(
β

k3

ξ1k3k4 + δ1w1ξ2

k1k3k4 − βξ2k4
+ δ1w1

k3k4

)
k3 + δ1w1

k4

]

= I

k1k3k4 − βξ2k4

[
αξ1k3k4 + αδ1w1ξ2 − k1k2k3k4 + βξ2k2k4

+ β

k3
(v1ξ1k3k4 + v1δ1w1ξ2) + δ1w1v1

k3k4
(k1k3k4 − βξ2k4)

+δ1v2

k4
(k1k3k4 − βξ2k4)

]

= I

k1k3k4 − βξ2k4
[αξ1k3k4 + αδ1w1ξ2 + βξ2k2k4 + βv1ξ1k4 − βδ1ξ2v2

−(k1k2k3k4 − δ1v2k1k3 − δ1w1v1k1)]
= I

k1k3k4 − βξ2k4
(k1k2k3k4 − δ1v2k1k3 − δ1w1v1k1)(R0 − 1).

It can be shown that V ′(t) < 0 if R0 < 1, and V ′(t) = 0 if I = 0. So we can get
that V ′(t) ≤ 0, and the addiction-free equilibrium D0 is the singleton largest compact
invariant set in �. Due to the LaSalle’s Invariance Principle [11], the addiction-free
equilibrium D0 is globally asymptotically stable. ��
Theorem 4.2 For the system (2), the addiction-present equilibrium D∗ = (S∗, E∗, I ∗,
P∗, Q∗

1, Q
∗
2) is globally asymptotically stable if R0 > 1.

Proof First, let’s make the following variable substitution. By denoting

x = S

S∗ , y = E

E∗ , z = I

I ∗ ,m = P

P∗ , n = Q1

Q∗
1
.
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We have

dx

dt
= x

[
μN

S∗

(
1

x
− 1

)
− α

I ∗

N
(z − 1) − β

P∗

N
(m − 1)

]
,

dy

dt
= y

[
α1

S∗ I ∗

E∗N

(
xz

y
− 1

)
+ β

S∗P∗

E∗N

(
xm

y
− 1

)]
,

dz

dt
= z

[
ξ1

E∗

I ∗

(
y

z
− 1

)
+ δ1

Q∗
1

I ∗

(
n

z
− 1

)]
,

dm

dt
= m

[
ξ2

E∗

P∗
( y

m
− 1

)
+ v1

I ∗

P∗
( z

m
− 1

)]
,

dn

dt
= n

[
v2

I ∗

Q∗
1

( z

n
− 1

)
+ w1

P∗

Q∗
1

(m
n

− 1
)]

.

Therefore, we can see that the addiction-present equilibrium D∗ of system (2) is
transformed into D̄∗ = (1, 1, 1, 1, 1, 1). Setting a Lyapunov function V as follows:

V = a1S
∗(x − 1 − lnx) + a2E

∗(y − 1 − lny) + a3 I
∗(z − 1 − lnz)

+a4P
∗(m − 1 − lnm) + a5Q

∗
1(n − 1 − lnn),

where a1, a2, a3, a4 and a5 are undetermined positive coefficients. We obtain the
derivative of V as follows:

V ′ = a1S
∗
(
1 − 1

x

)
x ′ + a2E

∗
(
1 − 1

y

)
y′ + a3 I

∗
(
1 − 1

z

)
z′ + a4P

∗
(
1 − 1

m

)
m′

+a5Q
∗
1

(
1 − 1

n

)
n′

= a1

(
2μN − S∗ α I ∗

N
− S∗ βP∗

N

)
+ a2

(
S∗ α I ∗

N
+ S∗ βP∗

N

)
+ a3

(
ξ1E

∗ + δ1Q
∗
1

)

+a4
(
ξ2E

∗ + v1 I
∗) + a5

(
v2 I

∗ + w1P
∗) −

(
a1μN − a1S

∗ α I ∗

N
− a1S

∗ βP∗

N

)
x

−a1μN
1

x
−

(
a2S

∗ α I ∗

N
+ a2S

∗ βP∗

N
− a3ξ1E

∗ − a4ξ2E
∗
)
y − a2S

∗ α I ∗

N

xz

y

−a2S
∗ αP∗

N

xm

y
−

(
−a1S

∗ α I ∗

N
+ a3ξ1E

∗ + a3δ1Q
∗
1 − a4v1 I

∗ − a5v2 I
∗
)
z

−a3ξ1E
∗ y
z

− a3δ1Q
∗
1
n

z
−

(
−a1S

∗ βP∗

N
+ a4ξ2E

∗ + a4v1 I
∗ − a5w1P

∗
)
m

−a4ξ2E
∗ y

m
− a4v1 I

∗ z

m
− (−a3δ1Q

∗
1 + a5v2 I

∗ + a5w1P
∗) n

−a5v2 I
∗ z
n

− a5w1P
∗ m
n

+
(

−a1S
∗ α I ∗

N
+ a2S

∗ α I ∗

N

)
xz +

(
−a1S

∗ βP∗

N
+ a2S

∗ βP∗

N

)
xm.
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Applying the arithmetic geometric mean inequality,

a1 + a2 + · · · + an
n

≥ n
√
a1 · a2 · · · an, ai > 0,

we recombine the variables in the above equation as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 − x − 1
x ≤ 0,

2 − n
z − z

n ≤ 0,
3 − 1

x − xz
y − y

z ≤ 0,

3 − 1
x − xm

y − y
m ≤ 0,

3 − n
z − z

m − m
n ≤ 0,

4 − 1
x − mx

y − y
z − z

m ≤ 0,

5 − 1
x − xz

y − n
z − y

m − m
n ≤ 0.

Thus, let’s assume that

F(x, y, z,m, n) = b1

(
2 − x − 1

x

)
+ b2

(
2 − n

z
− z

n

)
+ b3

(
3 − 1

x
− xz

y
− y

z

)

+b4

(
3 − 1

x
− xm

y
− y

m

)
+ b5

(
3 − n

z
− z

m
− m

n

)

+b6

(
4 − 1

x
− mx

y
− y

z
− z

m

)
+ b7

(
5 − 1

x
− xz

y
− n

z
− y

m
− m

n

)
.

Variables that are not successfully combined will not appear in the final formula, so
we let the coefficients of these terms be 0.

a2S
∗ α I ∗

N
+ a2S

∗ βP∗

N
− a3ξ1E

∗ − a4ξ2E
∗ = 0,

−a1S
∗ α I ∗

N
+ a3ξ1E

∗ + a3δ1Q
∗
1 − a4v1 I

∗ − a5v2 I
∗ = 0,

−a1S
∗ βP∗

N
+ a4ξ2E

∗ + a4v1 I
∗ − a5w1P

∗ = 0,

−a3δ1Q
∗
1 + a5v2 I

∗ + a5w1P
∗ = 0,

−a1S
∗ α I ∗

N
+ a2S

∗ α I ∗

N
= 0,

−a1S
∗ αP∗

N
+ a2S

∗ αP∗

N
= 0.

We can obtain that

a1 = 1,

a2 = 1,

a3 = 1

ξ1

[
k1 − ξ2k1k2Nw1 + ξ1ξ2S∗βv2 − ξ1ξ2S∗w1α

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)

]
,
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a4 = k1k2Nw1 + ξ1S∗βv2 − ξ1S∗w1α

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)
,

a5 = k1k2k3Nw1 + ξ1S∗βv2k3 − ξ1S∗w1αk3
N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)

− S∗β
Nw1

.

Substituting the above coefficients into V ′,

V ′ = 2μN + 1

ξ1

[
k1 − ξ2k1k2Nw1 + ξ1ξ2S∗βv2 − ξ1ξ2S∗w1α

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)

] [
ξ1E

∗ + δ1Q
∗
1

]

+k1k2Nw1 + ξ1S∗βv2 − ξ1S∗w1α

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)
[ξ2E∗ + v1 I

∗]

+
[
k1k2k3Nw1 + ξ1S∗βv2k3 − ξ1S∗w1αk3

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)
− S∗β

Nw1

] [
v2 I

∗ + w1P
∗]

−
[
μN − S∗ α I ∗

N
− S∗ βP∗

N

]
x − μN

1

x
− S∗ α I ∗

N

xz

y
− S∗ βP∗

N

xm

y

− 1

ξ1

[
k1 − ξ2k1k2Nw1 + ξ1ξ2S∗βv2 − ξ1ξ2S∗w1α

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)

]
ξ1E

∗ y
z

− 1

ξ1

[
k1 − ξ2k1k2Nw1 + ξ1ξ2S∗βv2 − ξ1ξ2S∗w1α

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)

]
δ1Q

∗
1
n

z

−k1k2Nw1 + ξ1S∗βv2 − ξ1S∗w1α

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)
ξ2E

∗ y

m

−k1k2Nw1 + ξ1S∗βv2 − ξ1S∗w1α

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)
v1 I

∗ z

m

−
[
k1k2k3Nw1 + ξ1S∗βv2k3 − ξ1S∗w1αk3

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)
− S∗β

Nw1

]
v2 I

∗ z
n

−
[
k1k2k3Nw1 + ξ1S∗βv2k3 − ξ1S∗w1αk3

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)
− S∗β

Nw1

]
w1P

∗m
n

.

Letting the coefficients of all variables of F(x, y, z,m, n, p) and that of V ′ be
equal, we can get the following results.

b1 = μS∗,

b2 =
[
k1k2k3Nw1 + ξ1S∗βv2k3 − ξ1S∗w1αk3

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)
− S∗β

Nw1

]
v2 I

∗,

b3 = 1

ξ1

[
k1 − ξ2k1k2Nw1 + ξ1ξ2S∗βv2 − ξ1ξ2S∗w1α

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)

]
ξ1E

∗,

b4 = S∗ βP∗

N
,

b5 = k1k2Nw1 + ξ1S∗βv2 − ξ1S∗w1α

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)
v1 I

∗,

b6 = 0,
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b7 =
[
k1k2k3Nw1 + ξ1S∗βv2k3 − ξ1S∗w1αk3

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)
− S∗β

Nw1

]
w1P

∗

−k1k2Nw1 + ξ1S∗βv2 − ξ1S∗w1α

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)
v1 I

∗.

We only need to verify that the constant terms of V ′ and that of F(x, y, z,m, n) are
equal.

2b1 + 2b2 + 3b3 + 3b4 + 3b5 + 5b7

= 2μN + 1

ξ1

[
k1 − ξ2k1k2Nw1 + ξ1ξ2S∗βv2 − ξ1ξ2S∗w1α

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)

]
(ξ1E

∗ + δ1Q
∗
1)

+k1k2Nw1 + ξ1S∗βv2 − ξ1S∗w1α

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)
(ξ2E

∗ + v1 I
∗)

+
[
k1k2k3Nw1 + ξ1S∗βv2k3 − ξ1S∗w1αk3

N (ξ2k2w1 + ξ1w1v1 + ξ1k3v2)
− S∗β

Nw1

]
(v2 I

∗ + w1P
∗).

Through the arithmetic geometric mean inequality, we can get the conclusion that

V ′ = F(x, y, z,m, n)

= b1

(
2 − x − 1

x

)
+ b2

(
2 − n

z
− z

n

)
+ b3

(
3 − 1

x
− xz

y
− y

z

)

+b4

(
3 − 1

x
− mx

y
− y

m

)
+ b5

(
3 − n

z
− z

m
− m

n

)

+b7

(
5 − 1

x
− xz

y
− n

z
− y

m
− m

n

)

≤ 0.

Therefore, V ′(t) ≤ 0 and the equal sign holds when and only when x = y = m =
n = z = 1, i.e., when S = S∗, E = E∗, I = I ∗, P = P∗, Q1 = Q∗

1, Q2 = Q∗
2.

The addiction-present equilibrium D∗ is the largest invariant set in �. Using the
LaSalle’s Invariance Principle [11], the addiction-present equilibrium D∗ is globally
asymptotically stable. ��

Remark 4.1 Whenwe use Lyapunov’s theorem and LaSalle’s invariance principle [11]
to prove the global asymptotic stability of the equilibrium point, we need to show that
the derivative of the Lyapunov function over time must be negative definite or semi-
negative definite. One of the common construction techniques is to use the arithmetic
geometric mean inequality, i.e., the arithmetic mean will be greater than or equal to
the geometric mean, and the equal sign will hold when and only when each positive
number is equal. This result also makes it easy to obtain that the equilibrium point is
the largest invariant set in the feasible domain. The global asymptotic stability of this
equilibrium point is then obtained by LaSalle’s invariance principle.
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5 Optimal Control

In this section, we extend model (2) by adding some controls. We consider the follow-
ing four common control measures. Distance control u1 prevents susceptible people
from becoming infectious by detecting and isolating infected people I(t). The media
coverage u2 is primarily for the exposers. By promoting the dangers of game addiction
on some public platforms and raising the public’s awareness of prevention, the aim
is to reduce the number of people addicted to games. Treatment u3 is a physical and
psychological treatment for addicts to increase the probability of permanently quitting
the game. ϕ is the level of treatment. u4 stands for household supervision and caring
controls for people who temporarily quit the game.

The goal of control is not only to minimize the number of addicts, but also to
minimize the cost of control. In order to get the optimal control strategy, we research
the optimal control effect by the following objective function

J (u1, u2, u3, u4) =
∫ t f

0

(
A1E + A2 I + C1

2
u21 + C2

2
u22 + C3

2
u23 + C4

2
u24

)
dt,

where A1, A2 are the weight coefficients relate to the exposed and infected peo-
ple. The constants C1,C2,C3,C4 are the weight coefficients of the control variables
u1, u2, u3, u4.

Thus, the state system becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S′(t) = μN − μS − (1 − u1)α
SI
N − β SP

N ,

E ′(t) = (1 − u1)α
SI
N + β SP

N − [(1 − u2)ξ1 + ξ2 + μ]E,

I ′(t) = (1 − u2)ξ1E + (1 − u4)δ1Q1 − [v1 + v2 + (v3 + u3ϕ) + μ]I ,
P ′(t) = ξ2E + v1 I − (w1 + w2 + μ)P,

Q′
1(t) = v2 I + w1P − [(1 − u4)δ1 + δ2 + u4δ1 + μ]Q1,

Q′
2(t) = (v3 + u3ϕ)I + w2P + (δ2 + u4δ1)Q1 − μQ2.

(14)

Then we want to find an optimal control such that

J (u∗
1, u

∗
2, u

∗
3, u

∗
4) = min J (u1, u2, u3, u4), u1, u2, u3, u4 ∈ U

Here, ui (t) ∈ (0, 1), for all t ∈ [0, t f ], i = 1, 2, 3, 4. The control set is defined as

U = {(u1, u2, u3, u4)|ui (t) is Lebesgue measurable on [0, 1], i = 1, 2, 3, 4}.

According to the Pontryagin’s maximum principle, we set up a Hamiltonian func-
tion as follows

H = A1E1 + A2 I + 1

2

(
C1u

2
1 + C2u

2
2 + C3u

2
3 + C4u

2
4

)

+λ1

[
μN − μS − (1 − u1)α

SI

N
− β

SP

N

]
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+λ2{(1 − u1)α
SI

N
+ β

SP

N
− [(1 − u2)ξ1 + ξ2 + μ]E}

+λ3{(1 − u2)ξ1E + (1 − u4)δ1Q1 − [v1 + v2 + (v3 + u3ϕ) + μ]I }
+λ4[ξ2E + v1 I − (w1 + w2 + μ)P]
+λ5{v2 I + w1P − [(1 − u4)δ1 + δ2 + u4δ1 + μ]Q1}
+λ6[(v3 + u3ϕ)I + w2P + (δ2 + u4δ1)Q1 − μQ2],

where λi (i = 1, 2, 3, 4, 5, 6) are the adjoint variables.

Theorem 5.1 Given optimal control pairs (u∗
1, u

∗
2, u

∗
3) and solutions S(t), E(t), I (t),

P(t), Q1(t), Q2(t) of the state system (18), there exist adjoint variables λi , i =
1, 2, 3, 4, 5, 6, satisfying the following adjoint system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ′
1 = λ1(1 − u1)α

I
N + λ1β

P
N + λ1μ − λ2(1 − u1)α

I
N − λ2β

P
N ,

λ′
2 = −A1 + λ2[μ + (1 − u2)ξ1 + ξ2] − λ3(1 − u2)ξ1 − λ4ξ2,

λ′
3 = −A2 + λ1(1 − u1)α

S
N − λ2(1 − u1)α

S
N + λ3[v1 + v2 + (v3 + u3ϕ) + μ]

−λ4v1 − λ5v2 − λ6(v3 + u3ϕ),

λ′
4 = λ1β

S
N − λ2β

S
N + λ4(w1 + w2 + μ) − λ5w1 − λ6w2,

λ′
5 = −λ3(1 − u4)δ1 + λ5(μ + (1 − u4)δ1 + δ2 + u4δ1) − λ6(δ2 + u4δ1),

λ′
6 = λ6μ.

The terminal condition of adjoint equations is given by

λi (t f ) = 0, i = 1, 2, 3, 4, 5, 6. (15)

and the optimal control functions are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u∗
1 = max{0,min{1, λ2−λ1

C1
α SI

N }},
u∗
2 = max{0,min{1, λ3−λ2

C2
ξ1E}},

u∗
3 = max{0,min{1, λ3−λ6

C3
ϕ I }},

u∗
4 = max{0,min{1, λ5−λ6

C4
δ1Q1}}.

(16)

Proof According to the Pontryagin’s Maximum Principle, first we differentiate the
Hamiltonian operator H . The adjoint system can be written as

λ′
1(t) = −∂H

∂S
(t), λ′

2(t) = −∂H

∂E
(t), λ′

3(t) = −∂H

∂ I
(t),

λ′
4(t) = −∂H

∂P
(t), λ′

5(t) = − ∂H

∂Q1
(t), λ′

6(t) = − ∂H

∂Q2
(t),

and (u∗
1, u

∗
2, u

∗
3, u

∗
4) satisfy the condition

∂H

∂ui
= 0,

where i=1,2,3,4. By solving the above equations, the proof is completed. ��
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Table 1 Real data for the
number of e-sports users (unit:
million)

Year Users Year Users Year Users

2010 304.10 2014 365.85 2018 483.84

2011 324.28 2015 391.48 2019 531.82

2012 335.69 2016 417.04 2020 517.93

2013 338.03 2017 441.61

Remark 5.1 In studies on controlling the spread of infectious diseases, the control
means considered (e.g., isolation) are added additionally to daily life. Because these
means interfere with people’s normal lives, these control measures are considered for a
period of time onlywhen the situation ismore severe.When the disease transmission is
not severe, these controlmeasures arewithdrawn. If the number of infections decreases
to 0 during the implementation of some control measures, the control system will
be stable and the equilibrium point is D0. The control system is also stable if the
number of infections is continuously maintained at a low level of non-zero during
the implementation of some control measures. However, after the end of the control
measures, the disease spreads gradually, and the equilibrium point is D∗.

Remark 5.2 In the basic framework of the optimal control problem, it is included to
prove the existence of optimal control. However, the proof process is mostly the same
for many models. Therefore, in this paper, we omit it. To understand the details of the
proof procedure, please see Theorem 5 of Reference [14].

How the boundaries of the control variables are chosen does not affect the adjoint
equations, but it does affect the rate of change of the adjoint variables and will further
affect the change pattern of the control variables. Therefore, different boundaries of the
control variables are chosen, and different optimal control results will occur. A more
detailed discussion about the boundaries of control variables can be found in Chapter
9 “Bounded case” of Reference [12]. In this paper, due to the objective constraints of
disease transmission in reality and the form of control variables we used, we chose
the interval of variation of the control variables to be [0, 1].

6 Numerical Simulation

In this section, the parameters in model (2) are first estimated by fitting the real data.
Secondly, the global asymptotic stability of the equilibria are demonstrated by the
images, and the previous stability theories are verified. Finally, the optimal control
strategy is determined by comparing the number of infections under different control
strategies.

6.1 Estimation of Model Parameters

We collect the number of e-sports users in mainland China over the years from 2010
to 2020 from the China Statistical Yearbook [24]. These data are shown in Table 1.
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Fig. 2 Fitting result to the reported data using model (2)

From the data in Table 1, we can see that the current number of e-sports users in
China is increasing almost every year, which shows the popularity of online games in
China. And we can guess from it that with the popularity of online games, more and
more users are addicted to online games, which will bring some negative effects to
individuals, society and the country.

Before using the above data to estimate the parameters in model 2, the values of
some parameters can be obtained from some existing literatures. According to the
Chinese Demographic Survey [25], the resident population in China in 2020 is about
N = 1400050000, and the average life expectancy of Chinese people in 2020 is 77
years, so we take the natural death rate μ = 1/77 per year.

The method we use to estimate the parameters is the least squares estimation
method. The sum of the squares errors (SSE), is expressed mathematically as:

SSE =
n∑
j=1

(yt j − ỹt j )
2, (17)

where ỹt j are the reported data and yt j is the solution of the model (2) at time t j .
In order to obtain estimates of the model parameters, our goal is to minimize the
following objective function

{
min SSE
subject to system (2).

(18)

We use the fminsearch package in MATLAB to fit these real data. According to the
fitting results shown in Fig. 2, we get a relatively satisfactory fitting effect. All the
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Table 2 Estimated parameters for model (2)

Parameters Descriptions Values Sources

μ Natural death rate 1/77 Assumed

α Contact rate of the addicted users 0.553277 Fitted

β Contact rate of the professional users 0.008748 Fitted

ξ1 Transfer rate from E to I 0.131643 Fitted

ξ2 Transfer rate from E to P 0.017532 Fitted

v1 Transfer rate from I to P 0.000340 Fitted

v2 Percentage of people who temporarily quit in I 0.097332 Fitted

v3 Percentage of people who quit permanently in I 0.040456 Fitted

w1 Percentage of people who temporarily quit in P 0.002685 Fitted

w2 Percentage of people who quit permanently in P 0.220441 Fitted

δ1 Recurrence rate 0.252144 Fitted

δ2 Percentage of people who quit permanently in Q1 0.130325 Fitted

fitted and estimated parameters are given in Table 2. Based on the above results, the
approximate value of the basic reproduction number is R0 ≈ 5.05.

6.2 Stability of Equilibria

By fitting the real data in the previous subsection, R0 = 5.05 was obtained. Theo-
rem 4.2 tells us that when R0 > 1, addiction-present equilibrium (APE) is globally
asymptotically stable. We assume the initial value X0 = (1041152500, 243280000,
30410000, 30410000, 27398750, 27398750), and use ODE45 in MATLAB to simu-
late the change process of each compartment in the system. The results are shown in
Fig. 3.

As can be seen from Fig. 3, the addiction-present equilibrium is stable. If wemodify
the contact rate of addicted usersα to 0.05 inTable 1, other parameters and initial values
X0 remain unchanged, we can get R0 = 0.46 through calculation. From theorem 4.1
we can see that the addiction-free equilibrium D0 is globally asymptotically stable
when R0 is less than 1. Therefore, we simulate the stability of D0 through MATLAB,
and the results are shown in Fig. 4.

Figures 3 and 4 reflect the correctness of the previous theory. From Fig. 3c, we can
also see that, as time goes by, the number of addicted people will continue to increase
in a short period of time, reaching a peak of 370million. This is such a serious situation
that it is necessary to investigate the issue of controlling game addiction.

6.3 The Simulation of Optimal Control

In this section, forward–backward sweep method is used to study the control problem
of online game addiction. For more information on this method and its application,
see references [2, 8, 9, 15, 20, 27, 28, 30]. In the course of the simulation, we select
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Fig. 3 The addiction-present equilibrium D∗ = (277097542, 89933450, 133071278, 6869641, 32799019,
860279067) is globally asymptotically stable, and R0 = 5.05 > 1

A1 = 10, A2 = 10, C1 = 300000000, C2 = 1000000, C3 = 200000000, and
C4 = 35000000. The values of all model parameters are taken as shown in Table 1.
Since the control effect may be affected by many factors during the implementation
of the control measures, it is difficult to achieve the ideal 100% effect. So we set the
upper limit of the control effect as 0.8. The time of the whole control process is set at
30 years.

In the process of exploring the optimal control strategy, we design the following
scenarios to analyze the various combination strategies. Since in the real world, mul-
tiple controls are often implemented simultaneously, we will not consider the single
control scenario here.

Scenario 1: Coupled control strategies
Strategy A: Isolation+Media coverage (u1, u2).
Strategy B: Isolation+Treatment (u1, u3).
Strategy C: Isolation+Family care (u1, u4).
Strategy D: Media coverage+Treatment (u2, u3).
Strategy E: Media coverage+Family care (u2, u4).
Strategy F: Treatment+Family care (u3, u4).

Scenario 2: Threefold control strategies
Strategy G: Isolation+Media coverage+Treatment (u1, u2, u3).
Strategy H: Isolation+Media coverage+Family care (u1, u2, u4).
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Fig. 4 The addiction-free equilibrium D0 = (1400050000, 0, 0, 0, 0, 0) is globally asymptotically stable,
and R0 = 0.46 < 1 when α = 0.05

Strategy I: Isolation+Treatment+Family care (u1, u3, u4).
Strategy J: Media coverage+Treatment+Family care (u2, u3, u4).

Scenario 3: Fourfold control strategies
Strategy K: Isolation+Media coverage+Treatment+Family care (u1, u2, u3, u4).

Figure 5 shows the changes in the number of exposed and infected people in each
strategy under scenario 1. Figure6 shows the strength of the control variables in each
strategy under scenario 1. From Fig. 5, we can see that in strategy A-F under scenario
1, the number of exposed and infected persons in strategy B is the least, and the
corresponding control intensity is shown in Fig. 6(B). Control variables u1 and u3
maintain a maximum control intensity of 0.8 at the beginning and continue until 2038
and 2042, respectively, and then gradually decrease to 0.

The changes in the number of exposed and infected people in each strategy under
scenario 2 are shown in Fig. 7. The control strength of each strategy in scenario 2 is
shown in Fig. 8. From Fig. 7a, b, we can see that the number of exposed and infected
people in strategy G and strategy I is about the same, and is less than that in other
strategies.

In strategyG, the control variables u1 and u3 need to bemaintained at themaximum
strength of 0.8 at the beginning and continue until 2038 and 2042, respectively, then
gradually decrease to 0. The control variable u2 should be kept at 0 at the beginning,
gradually increase by 0.8 in 2046, and decrease to 0 in 2049. In strategy I, u1, u3, and
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Fig. 5 The number of a exposed individuals E(t) and b infected individuals I (t) corresponding to various
strategies in scenario 1
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Fig. 6 Optimal control strategies with two interventions (Scenario 1)

u4 all need to be maintained at their maximum strength of 0.8 at the beginning and
continue until 2037, 2040, and 2026, respectively, and then gradually decrease to 0.

The changes in the number of exposed and infected people under strategy K and
without control are shown in Fig. 9. The control forces in strategy K are shown in
Fig. 10. As can be seen from Fig. 9, under strategy K, the number of exposed people
and infected people will decrease sharply compared with that without control. These
good results are exactly what we want.

We found that there are some good controls in all three scenarios, but it was not
easy to distinguish them graphically. Therefore, we need to further examine these
strategies in terms of specific data indicators. The total infectious individuals (TI)
during the control process is defined as follows.

T I =
∫ t f

0

[
(1 − u1(t))α

S(t)I (t)

N
+ β

S(t)P(t)

N

]
dt .
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strategies in scenario 2
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Fig. 8 Optimal control strategies with three interventions (Scenario 2)

The definition expression of the total averted cases (TA) of strategy A is as follows

T A(A) = T I (0) − T I (A),

where T I (0) denotes the infected users of without control, T I (A) denotes the infected
users of strategy A.

From the IAR data in the last column of Table 3, it can be seen that the imple-
mentation of strategy K enables more people to avoid infection. Therefore, from this
perspective, strategy K is the optimal control strategy we are looking for. Therefore,
we suggest that the four control measures should be implemented simultaneously, as
shown in Fig. 10, so as to minimize the number of infections.

It is worth noting that by comparing the results of strategy G and strategy K, we can
conclude that if we increase the continuous family care for the incomplete recovered
population, this measure can prevent more people from becoming addicted to the
game.
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Fig. 10 Optimal control strategies with four interventions (Scenario 3)

Table 3 Comparison of different strategies

Strategy Total infectious
individuals (TI)

Total averted infec-
tious individuals (TA)

Infection averted
ratio (IAR) (%)

Without control 957415707 – –

Strategy A 317432872 639982835 66.8448

Strategy B 70587639 886828068 92.6273

Strategy C 223665375 733750332 76.6386

Strategy D 341337640 616078067 64.3480

Strategy E 858030717 99384990 10.3805

Strategy F 300099591 657316116 68.6552

Strategy G 68720573 888695134 92.8223

Strategy H 223180568 734235139 76.6893

Strategy I 63435930 893979777 93.3743

Strategy J 299216465 658199242 68.7475

Strategy K 61277926 896137781 93.5997

7 Conclusion

In today’s world, the problem of online game addiction is becoming more and more
serious, and it has also attracted the attention of many countries. Many game addicts
have an important stage of temporary withdrawal in the process of quitting the game,
and they may have a certain possibility of relapse and become addicts again. Based
on these considerations, a new mathematical model of online game addiction was
established in this paper.

First, we analyzed the basic properties of the model. By means of the next gen-
eration matrix, the basic reproduction number with important biological significance
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was obtained. By constructing appropriate Lyapunov functions, the global asymptotic
stability of addiction-free equilibrium and addiction-present equilibriumwere proved,
respectively.

In the process of numerical simulation, we first collected data from the China
Statistical Yearbook, which includes the number of e-sports users in mainland China
from 2010 to 2020. The least squares estimation method was used to estimate the
parameters of the model, and the approximation of the basic reproduction number
R0 ≈ 5.05 was obtained. From this result, we can see that the transmission problem
of game addiction is very serious. Using the obtained parameters, the stability of the
equilibria in the previous theory were verified. Finally, through different combination
strategies, we got the minimum number of infections under each strategy, and found
the optimal control strategy. The results showed that the four control measures should
be implemented simultaneously according to the rule indicated by the optimal control
strategy, so as to minimize the addicted people.

This paper provided a framework for analyzing and controlling the spread of game
addiction, and the results provided a scientific suggestion for the relevant management
departments.
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