
Riemannian Stochastic Variance-Reduced Cubic Regularized
Newton Method for Submanifold Optimization

Dewei Zhang and Sam Davanloo Tajbakhsh∗

{zhang.8705,davanloo.1}@osu.edu

The Ohio State University

July 25, 2022

Abstract

We propose a stochastic variance-reduced cubic regularized Newton algorithm to
optimize the finite-sum problem over a Riemannian submanifold of the Euclidean space.
The proposed algorithm requires a full gradient and Hessian update at the beginning
of each epoch while it performs stochastic variance-reduced updates in the iterations
within each epoch. The iteration complexity of O(ε−3/2) to obtain an (ε,

√
ε)-second-

order stationary point, i.e., a point with the Riemannian gradient norm upper bounded
by ε and minimum eigenvalue of Riemannian Hessian lower bounded by −

√
ε, is estab-

lished when the manifold is embedded in the Euclidean space. Furthermore, the paper
proposes a computationally more appealing modification of the algorithm which only
requires an inexact solution of the cubic regularized Newton subproblem with the same
iteration complexity. The proposed algorithm is evaluated and compared with three
other Riemannian second-order methods over two numerical studies on estimating the
inverse scale matrix of the multivariate t-distribution on the manifold of symmetric
positive definite matrices and estimating the parameter of a linear classifier on the
Sphere manifold.

Keywords— Riemannian optimization, manifold optimization, stochastic optimization, cubic
regularization, variance reduction.

1 Introduction

We study the optimization of the finite-sum problem over a Riemannian manifoldM embedded in
a Euclidean space E as

min
x∈M⊆E

F (x) =
1

N

N∑
i=1

fi(x), (1)

where N is a (possibly very large) positive integer. Manifold optimization has a range of applica-
tions in machine learning, statistics, control and robotics, e.g., in deep learning, low-rank matrix
completion, sparse or nonnegative principal component analysis, or solving large-scale semidefinite
programs – see Hu et al. (2020), Absil & Hosseini (2019) and the references therein. The finite-
sum structure of the objective function in problem (1) specifically finds applications in machine

∗Corresponding author

1

ar
X

iv
:2

01
0.

03
78

5v
3

 [
m

at
h.

O
C

]
 2

1
Ju

l 2
02

2

learning and statistics for parameter estimation, and addition of the manifold constraint could have
problem-specific, computational, or other reasons. Below, we provide two motivational examples
for problem (1).

Example 1 (Parameter estimation of the multivariate Student’s t-distribution)
As an important member of the family of elliptical distributions Domino (2018), the multivari-
ate t-distribution has numerous applications in mathematical finance, survival analysis, biology,
etc. Kotz & Nadarajah (2004). For instance in mathematical finance Szegö (2002), de Melo Mendes
& de Souza (2004), Krzanowski & FHC (1994), the Student’s t copula Cν : [0, 1]p → [0, 1] defined as
Cν(u) = Tν,Σ,µ(T−1

ν (u1), ..., T−1
ν (un)), where Tν,Σ,µ(x) is the multivariate Student’s t cumulative

density function (CDF) and T−1
ν (·) is the inverse of the marginal univariate Student’s t CDF is

used to model or sample from multivariate Student’s t-distribution Krzanowski & FHC (1994). As
one of the core tasks, the maximum likelihood parameter estimation of the multivariate Student’s
t-distribution requires solving

max
Σ∈Sp++,µ∈Rp

1

N

N∑
i=1

log(tν(xi;µ,Σ)), (2)

where tν(x;µ,Σ) denotes the probability density function of the multivariate t-distribution and
ν ∈ N+ is the degrees of freedom which is generally predetermined. Since the scale matrix Σ should
belong to the manifold of positive-definite matrices, problem (2) is an instance of problem (1).

Example 2 (Efficient training of deep neural networks) Training deep neural net-
works could be “notoriously difficult” when the singular values of the hidden-to-hidden weight
matrices deviates from one Arjovsky et al. (2016). In such cases optimization becomes difficult
due to the vanishing or exploding gradient Arjovsky et al. (2016), Wisdom et al. (2016). This
challenge can be circumvented, if the weight matrices are unitary with singular values equal to one.
This can be achieved by requiring hidden-to-hidden weight matrices to belong to Stiefel Manifold
St(p, n) , {X ∈ Rn×p : X>X = Ip} Absil et al. (2009), Boumal (2020) and training the model
using a Riemannian optimization algorithm. The underlying optimization problem is an instance
of (1) over the cartesian product of Stiefel manifolds. The orthonormality of the weight matrices
improves the performance of deep neural networks Bansal et al. (2018), Li et al. (2020), reduces over-
fitting to improve generalization Cogswell et al. (2015), or stabilizes the distribution of activations
over layers Huang et al. (2018). In Sun et al. (2017) and Xie et al. (2017) two convolutional neural
networks are trained with orthonormal weight matrices for phase retrieval and image classification.

1.1 Related Work

Numerous algorithms for standard unconstrained optimization Ruszczynski (2011) have been gen-
eralized to Riemannian manifolds Absil et al. (2009), Udriste (2013), Boumal (2020). Some notable
first-order algorithms include gradient descent method Zhang & Sra (2016), Boumal et al. (2019),
conjugate gradient method Smith (1994), Sato & Iwai (2015), stochastic gradient method Bonnabel
(2013), Zhang et al. (2016), Tripuraneni et al. (2018), accelerated methods Liu et al. (2017), Ahn
& Sra (2020), Zhang & Sra (2018), Criscitiello & Boumal (2020), Alimisis et al. (2021, 2020), prox-
imal gradient methods Ferreira & Oliveira (2002), Bento et al. (2015, 2017), de Carvalho Bento
et al. (2016), Huang & Wei (2021). To guarantee convergence to a second-order stationary point,
Jin et al. (2019) investigates the Riemannian perturbed gradient descent that guarantees second-
order stationarity without using second-order information with Õ(1/ε2) iteration complexity. Other

2

saddle-escape methods over manifolds were also studied in Sun et al. (2019) and Criscitiello &
Boumal (2019).

In the context of second-order algorithms, the Newton method is extended to optimize over
Riemannian manifolds in Luenberger (1972), Gabay (1982), Smith (1993, 1994). Specifically, Smith
(1993) and Smith (1994) establish local quadratic convergence. Similar to the Newton method on
Euclidean space, the Newton method for manifold optimization also suffers from two main draw-
backs: first, it is possible that the Hessian matrix is degenerated at a point; second, it is possible
that the iterates diverge, converge to a saddle point, or even a local maximum. In the Riemannian
setting, the trust region method Absil et al. (2004, 2007), Baker et al. (2008), Boumal (2015),
Boumal et al. (2019) and the cubic regularized Newton method Zhang & Zhang (2018) are exten-
sions of their Euclidean counterparts to address these drawbacks. More specifically, Boumal et al.
(2019) shows that the Riemannian trust region method obtains an (ε, ε)-second-order-stationary
point (see Definition 4.2) in O(1/ε3) which matches its Euclidean counterpart Cartis et al. (2012,
2014). Furthermore, the cubic regularized Newton method on manifolds Zhang & Zhang (2018) is
shown to reach an (ε,

√
ε)-second-order stationary point in O(1/ε1.5). Finally, Agarwal et al. (2018)

extends the daptive cubic regularization method Cartis et al. (2011a) to Riemannian manifolds and
establishes O(1/ε1.5) rate to obtain an (ε,

√
ε)-second-order stationary point – see also Qi (2011),

Hu et al. (2018).
A common issue among second-order algorithms is their high computational cost to calculate

the inverse of the Hessian operator. A Riemannian counterpart of the famous BFGS algorithm
Nocedal & Wright (2006) is proposed in Ring & Wirth (2012) which does not require calculating
the inverse of the Hessian operator.

To optimize functions with the finite-sum structure or those that are known through their ap-
proximate gradient and Hessian, inexact methods including first- and second-order Riemannian
stochastic algorithms and their variance-reduced extensions are proposed in the literature. As a
generalization of Johnson & Zhang (2013), the Riemannian stochastic variance-reduced gradient
descent (SVRG) method was developed in Zhang et al. (2016). Furthermore, an extension of Rie-
mannian SVRG with computationally more efficient retraction and vector transport was developed
in Sato et al. (2019). The paper also establishes global convergence properties of their method
besides its local convergence rate. The Riemannian version of the stochastic recursive gradient
method Nguyen et al. (2017) is proposed in Kasai et al. (2018). Kasai & Mishra (2018) proposes
Riemannian trust region algorithms with inexact gradient and Hessian that allows inexact solution
of the subproblem. Furthermore, a Riemannian stochastic variance-reduce quasi-Newton method
is proposed in Kasai et al. (2017) - see also Roychowdhury (2017). For a recent review of first- and
second-order Riemannian optimization algorithms, we refer the reader to Hosseini & Sra (2020)
and Sato (2021) (specifically, Section 6.1 on stochastic methods).

1.2 Contributions

The major contributions of this paper are as follows: (i) Motivated by Zhou et al. (2018) and Kovalev
et al. (2019) in the Euclidean setting, we propose a stochastic variance-reduced cubic regularized
Newton method (R-SVRC algorithm) to optimize over Riemannian manifolds. (ii) We carefully
analyze the worst-case complexity of the proposed algorithm to find a point that satisfy the first-
and second-order necessary optimality conditions (i.e., a second-order stationarity point) when the
cubic-regularized Newton subproblem is solved exactly - see Theorem 4.1 and Corollary 4.1. (iii)
We performed the analysis of a computationally more appealing version of the algorithm, that

3

allows solving the cubic-regularized Newton subproblem inexactly, and established the same worst-
case complexity bound - see Theorem 4.2 and Corollary 4.2. The assumptions for our analysis are
explicitly discussed in Section 4. Finally, the performance of the proposed algorithm is evaluated
and compared over two applications: 1. Estimating the scale matrix of Student’s t-distribution
over the symmetric positive definite manifold, 2. Learning the parameter of a linear classifier
over a Sphere manifold. The implementation of the proposed algorithm in MATLAB with exact
and inexact subproblem solvers is provided at https://github.com/samdavanloo/R-SVRC. To the
best of our knowledge, this work is the first stochastic Newton method with cubic regularization on
Riemannian manifold.

1.3 Preliminaries and Notation

A Riemannnian manifold (M, g) is a real smooth manifoldM equipped with a Riemannain metric
g. The metric g induces an inner product structure in each tangent space TxM associated with point
x ∈ M. We denote the inner product of u,v ∈ TxM as 〈u,v〉x = gx(u,v), and the norm of u is

defined as ‖u‖ =
√
gx(u,u). Furthermore, the angle between u and v is arccos(〈u,v〉x /(‖u‖‖v‖)).

Given a smooth real-valued function f on a Riemannian manifold M, Riemannian gradient and
Hessian of f at x are denoted by gradf(x) and Hessf(x) (also for simplicity by Hx). For a
symmetric operator, e.g. the Riemannian Hessian H at x ∈M, the operator norm of H is defined
as ‖H‖op = sup{‖Hη‖ : η ∈ TxM, ‖η‖ = 1}. An operator on TxM is positive semidefinite H � 0
if 〈H[η], η〉 ≥ 0, for any η ∈ TxM. A geodesic is a constant speed curve γ : [0, 1] → M that is
locally distance minimizing. An exponential map Expx : TxM → M maps v ∈ TxM to y ∈ M,
such that there is a geodesic γ with γ(0) = x, γ(1) = y, and γ̇(0) = v. For two points x,
y ∈ M, and d(x,y) < inj(M), there is a unique geodesic. The exponential map has an inverse
Exp−1

x :M→ TxM and the geodesic is the unique shortest path with ‖Exp−1
x (y)‖ = ‖Exp−1

y (x)‖
the geodesic distance between x, y ∈ M. Parallel transport Γy

x : TxM → TyM maps a vector
v ∈ TxM to Γy

xv ∈ TyM, while preserving norm, and roughly speaking “direction”. A tangent
vector of a geodesic γ remains tangent if parallel transported along γ. Parallel transport also
preserves inner products, i.e. 〈u,v〉x = 〈Γ(γ)yxu,Γ(γ)yxv〉y. We denote the orthogonal projection
operator onto TxM by Px.

Let (M, g) be a connected Riemannian manifold (see e.g. Absil et al. (2009)) which carries the
structure of a metric space whose distance function is the arc length of a minimizing path between
two points.

Definition 1.1 (Riemannian metric). An inner product on TxM is a bilinear, symmetric, positive
definitive function 〈·, ·〉x : TxM× TxM → R. It induces a norm for tangent vectors as ‖u‖x =√
〈u, u〉x. The smoothly varying inner product is called the Riemannian metric, i.e., if v, w are

two smooth vector fields on M then the function x 7→ 〈v(x),w(x)〉x is smooth from M to R.

Remark 1. The inner product of two elements ξx and ζx of TxM are interchangeably denoted by
g(ξx, ζx) = gx(ξx, ζx) = 〈ξx, ζx〉 = 〈ξx, ζx〉x.

Definition 1.2 (Injectivity radius Boumal (2020)). The injectivity radius of a Riemannian manifold
M at a point x, denoted by inj(x), is the supremum over radius r > 0 such that Expx is defined
and is a diffeomorphism on the open ball B(x, r) = {v ∈ TxM : ‖v‖x < r}. By the inverse function
theorem, inj(x) > 0. Furthermore, the injectivity radius of a Riemannian manifoldM, i.e., inj(M),
is the infimum of inj(x) over x ∈M (Boumal (2020), Definition 10.14).

4

https://github.com/samdavanloo/R-SVRC

Consider the ball U , B(x, inj(x)) ⊆ TxM in the tangent space at x. Its image U , Expx(U)
is a neighborhood of x in M. By definition, Expx : U → U is a diffeomorphism, with well-defined,
smooth inverse Exp−1

x : U → U . With these choices of domains, v = Exp−1
x (y) is the unique

shortest tangent vector at x such that Expx(v) = y.

Definition 1.3 (Riemannian distance). The Riemannian distance on a connected Riemannian
manifold (M, g) is

d :M×M→ R : d(x,y) , inf
γ∈Γ

L(γ), (3)

where L(γ) =
∫ b
a

√
gγ(t)(γ̇(t), γ̇(t))dt and Γ is the set of all curves in M joining points x and y.

Specifically, if ‖v‖x < inj(x) then d(x,Expx(v)) = ‖v‖x.

Definition 1.4 (Riemannian gradient). Given a smooth real-valued function f on a Riemannian
manifold M, the Riemannian gradient of f at a point x ∈ M, denoted by gradf(x), is defined as
the unique element of TxM that satisfies

〈gradf(x), ξ〉x = Df(x)[ξ], ∀ξ ∈ TxM. (4)

Specifically, when M is a Riemmannian submanifold of the Euclidean space Rm×n,

gradf(x) = Px∇f(x), (5)

where Px is the Euclidean projection onto TxM which is a nonexpansive linear transformation.

Definition 1.5 (Riemannian Hessian). Given a real-valued function f on a Riemannian manifold
M, the Riemannian Hessian of f at a point x ∈ M is the linear mapping Hessf(x) from TxM
onto itself defined as

Hessf(x)[ξ] = ∇ξgradf (6)

for all ξ ∈M, where ∇ is the Riemannian connection on M Absil et al. (2009).

WhenM is a Riemmannian submanifold of the Euclidean space Rm×n, the Riemannian Hessian
of f is written as

Hessf(x)[ξ] = Px(Dgradf(x)[ξ]), (7)

i.e., the classical directional derivatives followed by an orthogonal projection. For more information,
e.g., refer to Proposition 5.3.2 in Absil et al. (2009).

2 Proposed Algorithm

The proposed Riemannian Stochastic Variance-Reduced Cubic Regularization (R-SVRC) method
is presented in Algorithm 1. This algorithm is indeed semi-stochastic, which requires calculation
of full gradient and Hessian at the beginning of each epoch s, i.e., the outer loop in the algorithm.
However, within each epoch, there are T iterations of the inner loop, which require calculation of
stochastic variance-reduced gradient and Hessian by sampling |Ig| and |Ih| components, respectively.

From the computational perspective, the major step of the algorithm is to solve the cubic-
regularized Newton subproblem. Under Assumption 3, the manifold is embedded in Rm×n; hence,
the tangent vectors in TxM are naturally represented by m× n matrices (see Absil et al. (2009)).
Therefore, current solvers for cubic regularized problem in Euclidean space can be adopted Boumal
et al. (2014). Solving this generally nonconvex subproblem is discussed in more details below (27).

5

For computational gain, the paper also considers solving the subproblem inexactly. As long as the
inexact solution satisfies the conditions in Definition 4.4, our analysis guarantees the results of the
exact case.

Algorithm 1 Riemannian Stochastic Variance-Reduced Cubic Regularization (R-SVRC)

Require: batch size parameters bg, bh, cubic penalty parameters σ, number of epochs S,
epoch length T , and a starting point x0.

1: Set x̂1 = x0

2: for s = 1, ..., S do
3: xs0 = x̂s

4: gs = gradF (x̂s) = 1
N

∑N
i=1 gradfi(x̂

s); Hs = HessF (x̂s) = 1
N

∑N
i=1 Hessfi(x̂

s)
5: for t = 0, ..., T − 1 do
6: Sample index set Ig, Ih, s.t. |Ig| = bg, |Ih| = bh
7: Compute η̂st ∈ Tx̂s , s.t. Expx̂s(η̂

s
t) = xst

8: vst = Γ
xst
x̂s (g

s)+ 1
bg

(∑
it∈Ig gradfit (x

s
t)−Γ

xst
x̂s (
∑
it∈Ig gradfit (x̂

s))
)
−Γ

xst
x̂s

(
1
bg

∑
it∈Ig Hessfit (x̂

s)−Hs
)
η̂st

9: hst = argminh∈TxM 〈vst ,h〉+
1
2
〈Us

th,h〉+
σ
6
‖h‖3, where

Us
t = Γ

xst
x̂s ◦H

s ◦ Γ x̂sxst
+ 1
bh

∑
jt∈Ih Hessfjt (x

s
t)−

1
bh

Γ
xst
x̂s ◦ (

∑
jt∈Ih Hessfjt (x̂

s)) ◦ Γ x̂sxst
10: xst+1 = Expxst

(hst)

11: end for
12: x̂s+1 = xs+1

T

13: end for
14: return xout = xst , where s, t are uniformly at random chosen from s ∈ [S] and t ∈ [T]

3 Lipschitzian Smoothness on Riemannian Manifolds

Definition 3.1 (g-smoothness da Cruz Neto et al. (1998), Ferreira et al. (2019)). A differentiable
function f : M → R is said to be geodesically Lg-smooth if its gradient is Lg-Lipschitz, i.e., for
any x, y ∈M with d(x,y) < inj(M),

‖gradf(x)− Γx
ygradf(y)‖x ≤ Lgd(x,y), (8)

where Γx
y is the parallel transport from y to x following the unique minimizing geodesic connecting

x and y.

It can be proven that if f is Lg-smooth, then for any x, y ∈M with d(x,y) < inj(M),

|f(y)− (f(x) +
〈
Exp−1

x (y), gradf(x)
〉
x
)| ≤ Lg

2
d2(x,y) (9)

– see, e.g. Bento et al. (2017), Lemma 2.1.

Definition 3.2 (H-smoothness Agarwal et al. (2020)). A twice differentiable function f :M→ R
is said to be geodesically LH-smooth if its Hessian is LH-Lipschitz, i.e., for any x, y ∈ M with
d(x,y) < inj(M),

‖Hessf(y)− Γy
xHessf(x)Γx

y‖op ≤ LHd(x,y). (10)

6

It is shown in the following lemma that if f is LH -smooth, then for any x,y ∈ M with
d(x,y) < inj(M), we have

|f(y)− (f(x) + 〈η, gradf(x)〉x +
1

2
〈η,Hessf(x)[η]〉x)| ≤ LH

6
d3(x,y) (11)

and

‖gradf(y)− Γy
xgradf(x)− Γy

xHessf(x)η‖y ≤
LH
2
d2(x,y), (12)

where η = Exp−1
x (y).

Lemma 3.1 (Agarwal et al. (2020), Proposition 3.2). If f is H-smooth with constant LH , then
(11) and (12) hold.

The Lipschitz-type conditions above are parallel to the conditions in the Euclidean setting Nes-
terov & Polyak (2006). In general, it is not trivial to verify these conditions, or even determine their
parameters. However, we know there is a broad class of functions on Euclidean space, which satisfy
the Lipschitz continuity-related conditions. We conjectured similar properties as the Euclidean
setting would imply (10), if M is embedded in the Euclidean space. In Absil et al. (2009), it was
proven that if the manifold is compact and the function has Lipschitz continuous gradient, then (8)
holds. Boumal et al. (2019) proved that if the manifold is compact and the function has lipschitz
continuous gradient and Hessian, then (9) and (11) hold. In the following lemma, it is shown that
(10) holds under the same conditions.

Lemma 3.2. If M is a compact submanifold of the Euclidean space E and f(x) has Lipschitz
continuous Hessian in E in the Euclidean sense, then (10) is satisfied.

Proof. Denote the orthogonal projection operator onto TxM, i.e. the tangent space ofM at x, by
Px. Denote the Euclidean gradient and Hessian by ∇f(x) and ∇2f(x) correspondingly. For any y,
such that d(x,y) < inj(M) and any ξ ∈ TyM, s.t. ‖ξ‖ = 1, we have

Hessf(y)[ξ] = Py(D(y→ Py∇f(y))(y)[ξ])

= Py(D(y→ Py)(y)[ξ][∇f(y)]) + Py(∇2f(y)[ξ])

≡ A1 +B1,

The first equality follows from (7) and the second equality comes from the chain rule and the fact
that the projection operator is linear. Similarly, we have

Γy
xHessf(x)[Γx

yξ] = Γy
xPx(D(x→ Px∇f(x))(x)[Γx

yξ])

= Γy
xPx(D(x→ Px)(x)[Γx

yξ][∇f(x)]) + Γy
xPx(∇2f(x)[Γx

yξ])

≡ A2 +B2.

First, to quantify ‖A1 −A2‖, we have,

‖A1 −A2‖ = ‖OA1
[∇f(y) +∇f(x)−∇f(x)]−OA2

[∇f(x)]‖ (13)

= ‖OA1
[∇f(y)−∇f(x)] + (OA1

−OA2
)[∇f(x)]‖ (14)

≤ ‖OA1
[∇f(y)−∇f(x)]‖+ ‖(OA1

−OA2
)[∇f(x)]‖ (15)

≤ ‖OA1
‖op · ‖∇f(y)−∇f(x)‖+ ‖(OA1

−OA2
)[∇f(x)]‖ (16)

7

where OA1 , Py(D(y→ Py)(y)[ξ][·]) and OA2 , Γy
xPx(D(x→ Px)(x)[Γx

yξ][·]).
Due to the smoothness and compactness ofM and ‖ξ‖ = 1, ‖Py(D(y→ Py)(y)[ξ][·])‖op

exists and is uniformly upper bounded, i.e. there exists a finite M1 independent of x, y
and ξ, s.t. ‖Py(D(y→ Py)(y)[ξ][·])‖op ≤M1 for any x, y ∈M and ξ, s.t. ‖ξ‖ = 1.

For any z, such that d(z,y) < inj(M), define Qz,y,ξ , Γy
zPz(D(z → Pz)(z)[Γz

yξ][·]).
Note that OA1 = Qy,y,ξ and OA2 = Qx,y,ξ. For fixed x̃, ỹ and ξ̃, Qz,ỹ,ξ̃[∇f(x̃)] is a
continuously differentiable function of z based on the conditions that the manifold is smooth
and f(x) has Lipschitz continuous Hessian. Since z belongs to a compact set, Qz,ỹ,ξ̃[∇f(x̃)]
is Lipschitz continuous on z, i.e.

‖Qx,ỹ,ξ̃[∇f(x̃)]−Qy,ỹ,ξ̃[∇f(x̃)]‖ ≤Mx̃,ỹ,ξ̃‖x− y‖, ∀x,y ∈M (17)

where Mx̃,ỹ,ξ̃ is a finite constant depending on x̃, ỹ, ξ̃. Especially, due to the smoothness
of manifold and the function f(x) has Lipschitz continuous Hessian, we have a continuous
mapping from x̃, ỹ, ξ̃ to Mx̃,ỹ,ξ̃. Since x̃, ỹ ∈ M, which is a compact set and ‖ξ̃‖ = 1, we

have a finite constant M2, s.t. Mx̃,ỹ,ξ̃ ≤ M2 for all x̃, ỹ, ξ̃. In (17), letting x = x̃, y = ỹ,
we have,

‖Qx̃,ỹ,ξ̃[∇f(x̃)]−Qỹ,ỹ,ξ̃[∇f(x̃)]‖ ≤Mx̃,ỹ,ξ̃‖x̃− ỹ‖ ≤M2‖x̃− ỹ‖. (18)

Due to the arbitrariness of x̃, ỹ and ξ̃, we conclude the second term in (16), ‖(OA1 −
OA2)[∇f(x)]‖ ≤M2‖x− y‖.

On the other hand, the gradient of a twice continuously differentiable function on a
compact manifold is Lipschitz continuous. Therefore, there exists a finite L1, s.t.

‖A1 −A2‖ ≤M1‖∇f(y)−∇f(x)‖+M2‖x− y‖ ≤ (M1 · L1 +M2)‖y − x‖ ≤ (M1 · L1 +M2)d(x,y),
(19)

where d(x,y) is the Riemannian distance between x and y. The third inequality holds
since the manifold is embedded in the Euclidean space.

Second, to quantify ‖B1 −B2‖, we define

Ry,ξ(z) , Γy
zPz(∇2f(z)[Γz

yξ]). (20)

Fixing y,ξ to be ỹ and ξ̃, Rỹ,ξ̃(z) is Lipschitz continuous on z due to the smoothness of

the manifold and ∇2f(z) is Lipschitz continuous. Therefore, there exists a constant Nỹ,ξ̃

depending on ỹ and ξ̃, s.t. ‖Rỹ,ξ̃(x)−Rỹ,ξ̃(y)‖ ≤ Nỹ,ξ̃‖x−y‖ for all x, y ∈M. Especially,

there is a continuous mapping from ỹ, ξ̃ to Nỹ,ξ̃. Since ỹ, ξ̃ are from compact sets, there
exists a finite constant M3, s.t. ‖Rỹ,ξ̃(x)−Rỹ,ξ̃(y)‖ ≤ Nỹ,ξ̃‖x−y‖ ≤M3‖x−y‖ for all x,
y ∈M.

Letting x = x̃, y = ỹ, and due to the arbitrariness of x̃, ỹ and ξ̃, we have

‖B1 −B2‖ = ‖Ry,ξ(y)−Ry,ξ(x)‖ ≤M3‖x− y‖ ≤M3 · d(x,y). (21)

8

Combining (19), (21), there exists a finite L ,M1 · L1 +M2 +M3, s.t.

‖Hessf(y)[ξ]− Γy
xHessf(x)[Γx

yξ]‖ ≤ ‖A1 −A2‖+ ‖B1 −B2‖ ≤ L · d(x,y)

Since ξ is an arbitrary tangent vector, we have,

‖Hessf(y)− Γy
xHessf(x)Γx

y‖op ≤ L · d(x,y).

4 Complexity Analysis of the Proposed Algorithm

Definition 4.1 (Optimal gap). For function F (·) and the initial point x0 ∈M, define

∆F , F (x0)− F ∗, (22)

where F ∗ = infx∈M F (x).

Without loss of generality, we assume ∆F < +∞ throughout this paper.

Definition 4.2 ((ε, δ)-second-order stationary point). x is a second-order stationary point of the
function F :M→ R if ‖gradF (x)‖ ≤ ε and λmin(HessF (x)) ≥ −δ where gradF (x) and HessF (x)
are the Riemannian gradient and Hessian of F at x and λmin(HessF (x)) , infη∈TxM{〈HessF (x)η, η〉x /‖η‖2}.

As in Nesterov & Polyak (2006), we define

µ(x) , max{‖gradF (x)‖3/2,−λ
3
min(HessF (x))

L
3/2
H

}. (23)

In particular, according to the definition (23), µ(x) ≤ ε3/2 holds if and only if

‖gradF (x)‖ ≤ ε, λmin(HessF (x)) ≥ −
√
LHε. (24)

Therefore, in order to find an (ε,
√
LHε)− approximate local minimum of the function defined over

M, it suffices to find x ∈M such that µ(x) ≤ ε3/2.

Assumption 1. We assume that the objective function F is bounded below, and its components
fi, i = 1, · · · , N are twice continuously differentiable and they are g- and H-smooth.

Assumption 2. We assume that either i) functions fi, i = 1, · · · , N are Lipschitz continuous,
or ii) functions fi, i = 1, · · · , N are continuously differentiable and the manifold M is compact.

Remark 2. The g-smoothness of fi, i = 1, · · · , N , in Assumption 1 implies that ‖HessF (x)‖op
is bounded. Furthermore, Assumption 2 implies that ‖gradF (x)‖ is bounded either by Lipschitz
continuity of fi, i = 1, · · · , N, or by the Weierstrass theorem Rudin et al. (1964). Hence, under
Assumptions 1 and 2, and based on the fact that the parallel transport is isometric, there exist two
positive constants cg and cH , such that

‖vst‖ ≤ cg and ‖Ust ‖op ≤ cH . (25)

9

While the above two assumptions are mainly related to the objective function, the following
three assumptions are related to the manifold.

Assumption 3. We assume that M is embedded in a vector space, e.g., Euclidean space. For
the ease of presentation, we assume M⊆ Rm×n.

Remark 3. Under Assumption 3, the Riemannian metric gx(·, ·) on the tangent space TxM is
the restriction of the Euclidean metric. The norm induced by the Riemannian metric ‖ · ‖x is the
Euclidean norm.

Assumption 4. We assume that the manifold has positive injectivity radius, i.e. inj(M) ∈ (0,∞]-
see Definition 1.2.

Remark 4. To provide few examples, the unit sphere has injectivity radius equal to π, Hadamard
manifolds and Euclidean spaces have infinite injectivity radius, and compact Riemannian manifolds
have positive injectivity radius Chavel (2006). Note that the Assumption 4 implies that the manifold
is complete.

Assumption 5. We assume the sectional curvature of the Riemannian manifold M is lower-
bounded by κ - see Lee (2018) for the definition of the sectional curvature.

Remark 5. Some manifolds that satisfy Assumption 5 include rotation group, hyperbolic manifold,
the sphere, orthogonal groups, real projective space, Grassmann manifold, Stiefel manifold and
compact subsets of the cone of positive definite matrices (see Bonnabel (2013), Sra & Hosseini
(2015), Boumal (2020)).

Following the literature of the Newton method with cubic regularization Nesterov & Polyak
(2006), Cartis et al. (2011a), we define

m̃(h) = 〈gradf,h〉+
1

2
〈Hessf [h],h〉+

σ

6
‖h‖3,h ∈ TxM, (26)

which can be regarded as a cubic regularization of locally quadratic approximation of function f
– see Agarwal et al. (2018). From (11), we have f(Expx(η)) ≤ m̃(η), for ∀η ∈ TxM, if σ ≥ LH .
From (26), we define

hst = argmin
h∈TxM

ms
t (h), (27)

where

ms
t (h) , 〈vst ,h〉+

1

2
〈Us

t [h],h〉+
σ

6
‖h‖3 (28)

and vst and Us
t are the approximated Riemannian gradient and Hessian operator of the objective

function. Generally, (27) and (26) are not convex problems. Nesterov & Polyak (2006) proposed
a way to transform these subproblems into convex programs in one variable. Recently, results in
Carmon & Duchi (2019) show that under mild conditions gradient descent approximately finds
the global minimum with the rate of O(ε−1 log(1/ε)). Cartis et al. (2011b) propose a Lanczos-
based method to minimize (26) exactly. The gradient, conjugate gradient and Newton methods to
minimize (26) are available in the software package provided in Boumal et al. (2014).

We first provide some preliminary lemmas. Lemma 4.1 provides three identities that are used
in the proofs of following lemmas. These identities are typical in the cubic regularization litera-
ture Nesterov & Polyak (2006), Cartis et al. (2011a,b). Lemma 4.2 provides an upper bound on

10

‖hts‖ which then provides a (lower) bound on the cubic regularization parameter σ to have the
iterates close enough to the epoch points. Finally, Lemmas 4.3 and 4.4 provide upper bounds on
the norm difference of gradF and HessF with their variance-reduced estimators, and on the inner
products 〈gradF (xst)− vst , η〉 and 〈(HessF (xst)− Ust)[η], η〉 for η ∈ TxstM which are used in the
proofs of the main theorems.

Lemma 4.1. Under Assumptions 3, for the semi-stochastic gradient and Hessian, we have

vst + Us
th

s
t +

σ

2
‖hst‖hst = 0, (29)

Us
t +

σ

2
‖hts‖I � 0, (30)

〈vst ,hst 〉+
1

2
〈Us

th
s
t ,h

s
t 〉+

σ

6
‖hst‖3 ≤ −

σ

12
‖hst‖3. (31)

Proof. (sketch) Under Assumption 3, i.e. the manifold is embedded in the Euclidean space, then
the tangent space TxM in (27) is isomorphic to subspace of the Euclidean space. Hence, the proof
follows, e.g., from that of Lemma 24 in Zhou et al. (2018). Indeed, the proof of (29) directly follows
from the first-order optimality condition for a stationary point of (27). The inequality (30) relies
on the fact that hst is a global minimizer which will not hold when solving (27) inexactly. The proof
of (31) is based on (30) and (29).

Lemma 4.2. Under Assumptions 1-4, given a constant C > 0 and σ >
2(cg+C·cH)

C2 , we have
‖hst‖ < C.

Proof. Multiplying both sides of (29) by hst , we obtain 〈vst ,hst 〉 + 〈Us
th

s
t ,h

s
t 〉 + σ

2 ‖h
s
t‖3 = 0. By

Cauchy–Schwarz inequality, we have σ
2 ‖h

s
t‖3 ≤ ‖vst‖ · ‖hst‖ + ‖Us

t‖op · ‖hst‖2. Dividing both sides
by ‖hst‖ and based on (25), we have σ

2 ‖h
s
t‖2 − cH · ‖hst‖ − cg ≤ 0, which implies

‖hst‖ ≤
cH +

√
c2H + 2σcg
σ

. (32)

Note that the right hand side of (32) is a monotonic decreasing function on σ. Hence, if σ >
2(cg+C·cH)

C2 , the right hand side of (32) is upper bounded by C, which implies ‖hst‖ < C.

Remark 6. In Lemma 4.2 as well as Lemma 4.12, we set C = inj(M)
T , where T is the epoch length

in Algorithm 1. Then, for any epoch s and iteration t ∈ {0, · · · , T − 1}, we have

d(x̂s,xst) ≤
t∑
i=1

d(xsi−1,x
s
i) ≤

t∑
i=1

‖hsi‖ < inj(M). (33)

This inequality guarantees line 7 in Algorithm 1 is attained. In the following, we assume σ is large
enough such that

σ >
2(cgT

2 + inj(M)cHT)

(inj(M))2
, (34)

hence, the distance between the iterate xst and x̂s is smaller than inj(M).

11

In the proof of Lemmas 4.3 and 4.4, the crucial identity is the Lyapunov Inequality in Durrett
(2019) and a couple of matrix concentration inequalities Mackey et al. (2014). Since there is no
essential difference between Lemmas 25-27 in Zhou et al. (2018) and our setting, we refer readers
to Zhou et al. (2018) and references therein.

Lemma 4.3. Under Assumptions 1-4, for the semi-stochastic gradient vst and semi-stochastic
Hessian Us

t , we have

EIg‖gradF (xst)− vst‖3/2 ≤
L

3/2
H

b
3/4
g

‖Exp−1
x̂s (xst)‖3, (35)

EIh‖HessF (xst)−Us
t‖3op ≤ 64L3

H(ρ+ ρ2)3‖Exp−1
x̂s (xst)‖3, (36)

where ρ =
√

2e logmn
bh

.

Lemma 4.4. For any η ∈ TxstM and M > 0, we have

〈gradF (xst)− vst , η〉 ≤
M

27
‖η‖3 +

2‖gradF (xst)− vst‖3/2

M1/2
, (37)

〈(HessF (xst)−Us
t)[η], η〉 ≤ 2M

27
‖η‖3 +

27

M2
‖HessF (xst)−Us

t‖3op. (38)

The following Lemmas 4.5 and 4.6 provide an upper bound on ‖gradF‖ and a lower bound on
λmin(HessF), respectively.

Lemma 4.5. Under Assumptions 1-4, if σ ≥ 2LH and also satisfies (34), then for any h ∈ TxstM
such that ‖h‖ < inj(M), we have

‖grad F(Expxst
(h))‖ ≤ σ‖h‖2 + ‖gradF (xst)− vst‖+

1

σ
‖HessF (xst)−Us

t‖2op + ‖∇ms
t (h)‖. (39)

Proof. For simplicity, we denote Expxst
(h) by y, the parallel transport operator Γy

xst
by Γ, and Γ

xst
y

by Γ−1. We have

‖gradF (y)‖ = ‖Γ−1gradF (y)‖

= ‖Γ−1gradF (y)− gradF (xst)−HessF (xst)h + vst + Us
th +

σ‖h‖
2

h

+ (gradF (xst)− vst) + (HessF (xst)−Us
t)h−

σ‖h‖
2

h‖

≤ ‖Γ−1gradF (y)− gradF (xst)−HessF (xst)h‖+ ‖vst + Us
th +

σ‖h‖
2

h‖

+ ‖gradF (xst)− vst‖+ ‖(HessF (xst)−Us
t)h‖+

σ‖h‖2

2
.

Due to the isometric property of Γ and Lemma 3.1, we have

‖Γ−1gradF (y)− gradF (xst)−HessF (xst)h‖ = ‖gradF (y)− ΓgradF (xst)− ΓHessF (xst)h‖

≤ LH
2
‖h‖2 ≤ σ

4
‖h‖2,

12

where the last inequality follows from the condition σ ≥ 2LH . From the definition of ms
t (·)

in (27), we have ‖vst + Us
th + σ‖h‖

2 h‖ = ‖∇ms
t (h)‖. Note that

‖(HessF (xst)−Us
t)h‖ ≤ ‖HessF (xst)−Us

t‖op‖h‖ ≤
1

σ
‖HessF (xst)−Us

t‖2op +
σ

4
‖h‖2,

where the last inequality is due to Young’s inequality. Combining these results, the proof
of (39) is completed.

Lemma 4.6. Under Assumptions 1-4, if σ ≥ 2LH and also satisfies (34), then for any h ∈ TxstM
such that ‖h‖ < inj(M), we have

−λmin(HessF (Expxst
(h)) ≤ σ‖h‖+ ‖HessF (xst)−Us

t‖op +
σ

2
|‖h‖ − ‖hst‖|, (40)

where λmin(HessF (x)) is defined as λmin(HessF (x)) = infη∈TxM{
〈HessF (x)η,η〉

‖η‖ }.

Proof. Denote Expxst
(h) by y and xst by x. Furthermore, let Ix denotes the identity operator at x,

i.e., Ix(η) = η for any η ∈ TxM. We have

Hy � Γy
xHxΓx

y − LH‖h‖Iy
� Γy

xU
s
t Γx

y − ‖Γy
xHxΓx

y − Γy
xU

s
t Γx

y‖opIy − LH‖h‖Iy

� −σ
2
‖hst‖Iy − ‖Hx − Ust ‖opIy − LH‖h‖Iy,

where the first inequality follows from the H-smooth assumption (10), the second inequality follows
from the definition of the operator norm and triangle inequality, and the third inequality follows
from the isometric property of the parallel transport Γ and the following argument. Assume that
Γy
xU

s
t Γx

y � −σ2 ‖h
s
t‖Iy does not hold, then there exists ξ ∈ TyM, s.t.

〈
ξ,Γy

xU
s
t Γx

yξ
〉

+ σ
2 ‖h

s
t‖·‖ξ‖2 <

0. Denote the Γx
yξ by η, we have 〈η,Us

tη〉+ σ
2 ‖h

s
t‖ · ‖η‖2 =

〈
ξ,Γy

xU
s
t Γx

yξ
〉

+ σ
2 ‖h

s
t‖ · ‖ξ‖2 < 0, which

contradicts (30). Therefore, we have

−λmin(Hy) ≤ σ

2
‖hst‖+ ‖Hx − Ust ‖op + LH‖h‖

=
σ

2
(‖hst‖ − ‖h‖) + ‖Hx − Ust ‖op + (LH + σ/2)‖h‖

≤ σ‖h‖+ ‖Hx − Ust ‖op +
σ

2
|‖hst‖ − ‖h‖|,

where the last inequality holds because LH ≤ σ/2.

Combining Lemmas 4.5 and 4.6 and the definition of µ(x) in (23), we have the following result.

Lemma 4.7. Under Assumptions 1-4, setting σ = k̄LH such that k̄ ≥ 2 and σ satisfying (34), then
for any h ∈ TxstM such that ‖h‖ < inj(M), we have

µ(Expxst
(h)) ≤ 9k̄3/2[σ3/2‖h‖3 + ‖gradF (xst)− vst‖3/2 + σ−3/2‖HessF (xst)−Us

t‖3

+ ‖∇ms
t (h)‖3/2 +

σ3/2

8
|‖h‖ − ‖hst‖|3].

13

Proof. The proof follows from that of Lemma 4.14.

Next, We present the following result from Zhang et al. (2016). This inequality extends the
law of cosines from Euclidean space to Riemannian space, which is fundamental to carry out non-
asymptotic analysis for Riemannian optimization. The resulting inequality is used in the proof of
Lemma 4.9.

Lemma 4.8 (Zhang et al. (2016), Lemma 5). If a, b and c are the side lengths of a geodesic triangle
in an Alexandrov space with curvature lower-bounded by κ, and A is the angle between sides b and
c, then

a2 ≤
√
|κ|c

tanh
√
|κ|c

b2 + c2 − 2bc cosA. (41)

Lemmas 4.9 and 4.10 below are used in the proof of the first main result presented in Theo-
rem 4.1.

Lemma 4.9. Let ζ ,
√
|κ|inj(M)/tanh

√
|κ|inj(M) if κ < 0 and ζ , 1, o.w.. Then, under

Assumptions 1-5, for any h ∈ TxstM such that ‖h‖ < inj(M) and T ≥ 2, we have

‖Exp−1
x̂s (Expxst

(h))‖3 ≤ 2(
√
ζ − 1 + 1)3T 2‖h‖3 + (1 +

3

T
)‖Exp−1

x̂s (xst)‖3. (42)

Proof. Let g(t) = t/ tanh t which is non-decreasing on [0,
√
|κ|D] and g(t) ≥ 1. For simplicity,

denote ‖Exp−1
x̂s (Expxst

(h))‖, ‖h‖ and ‖Exp−1
x̂s (xst)‖ by a, b and c, respectively. By Lemma 4.8, we

have

a2 ≤
√
|κ|c

tanh
√
|κ|c

b2 + c2 − 2bc cosA ≤ (b+ c)2 + (ζ − 1)b2 ≤ [(
√
ζ − 1 + 1)b+ c]2.

Therefore,

a3 ≤ [(
√
ζ − 1 + 1)b+ c]3

= (
√
ζ − 1 + 1)3b3 + 3T 1/3(

√
ζ − 1 + 1)2b2

c

T 1/3
+ 3T 2/3(

√
ζ − 1 + 1)b

c2

T 2/3
+ c3

≤ (
√
ζ − 1 + 1)3b3 + 3(

2

3
[T 1/3(

√
ζ − 1 + 1)2b2]3/2 +

1

3

c3

T
) + 3(

1

3
[T 2/3(

√
ζ − 1 + 1)b]3 +

2c3

3T
) + c3

= (
√
ζ − 1 + 1)3(1 + 2

√
T + T 2)b3 + (1 +

3

T
)c3

≤ 2(
√
ζ − 1 + 1)3T 2b3 + (1 +

3

T
)c3,

where the second inequality follows from Young’s inequality and the last inequality follows from the fact
that 1 + 2

√
T + T 2 ≤ 2T 2 when T ≥ 2.

Lemma 4.10. Define the series ct , ct+1(1 + 3/T) + σ[500T 3(
√
ξ − 1 + 1)3]−1 for 0 ≤ t ≤ T − 1

and cT = 0. Then for any 1 ≤ t ≤ T , we have

σ/24− 2ct(
√
ξ − 1 + 1)3T 2 ≥ 0. (43)

14

Proof. Assuming ct+q = p(ct+1 +q), we can derive p = 1+3/T and q = σ[1500T 2(
√
ξ − 1+1)3]−1.

Furthermore, given cT = 0 by induction, we have ct = (pT−t − 1)q. Therefore,

2ct(
√
ξ − 1 + 1)3T 2 = ((1 +

3

T
)T−t − 1)

σ

750
≤ (1 +

3

T
)T

σ

750
≤ σ

24
, (44)

where the last inequality follows from the fact (1 + 3/T)T ≤ 27.

Theorem 4.1 below presents our first main result. It provides the convergence rate of the
R-SVRC algorithm when the cubic regularized Newton subproblem is solved exactly.

Theorem 4.1. Under Assumptions 1-5, suppose that the cubic regularization parameter σ in Al-
gorithm 1 is fixed and satisfies σ = k̄LH , where LH is the Hessian Lipschitz parameter according
to (10), k̄ ≥ 2 and σ satisfies (34). Furthermore, assume that the batch size parameters bg and bh
satisfy

bg ≥
30004/3T 4(

√
ξ − 1 + 1)4

k̄2
, bh ≥

e log d

(
√

k̄
193T (

√
ζ−1+1)

+ 1
8 −

1
2
√

2
)2
, (45)

where T ≥ 2 is the length of the inner loop, e is the Euler’s number and d = mn is the dimension
of the problem. Then, we have

E[µ(xout)] ≤
240k̄2L

1/2
H ∆F

ST
, (46)

where µ(x) is defined in (23).

Proof. First, we upper bound F (xst+1) as follows:

F (xst+1) ≤ F (xst) + 〈gradF (xst),h
s
t 〉+

1

2

〈
Hxst

[hst],h
s
t

〉
+
LH
6
‖hst‖3

= F (xst) + 〈gradF (xst)− vst ,h
s
t 〉+

1

2

〈
(Hxst

−Us
t)[h

s
t],h

s
t

〉
− σ − LH

6
‖hst‖3

+ 〈vst ,hst 〉+
1

2
〈Us

t [h
s
t],h

s
t 〉+

σ

6
‖hst‖3

≤ F (xst) + (
σ

27
‖hst‖3 +

2

σ1/2
‖gradF (xst)− vst‖3/2) +

1

2
(
2σ

27
‖hst‖3 +

27

σ2
‖Hxst

−Us
t‖3op)

− σ − LH
6

‖hst‖3 −
σ

12
‖hst‖3

≤ F (xst) +
2

σ1/2
‖gradF (xst)− vst‖3/2 +

27

2σ2
‖Hxst

−Us
t‖3op −

σ

12
‖hst‖3, (47)

where the first inequality follows from Lemma 3.1 and the second inequality holds due to Lemmas 4.4
and 4.1. Next, we define

Rst = E[F (xst) + ct‖Exp−1
x̂s (xst)‖3], (48)

where ct is defined in Lemma 4.10. By Lemma 4.9, for T ≥ 2, we have

ct+1‖Exp−1
x̂s (Expxst

(hst))‖3 ≤ 2ct+1(
√
ζ − 1 + 1)3T 2‖hst‖3 + ct+1(1 +

3

T
)‖Exp−1

x̂s (xst)‖3. (49)

15

From Lemma 4.7 with h = hst using the condition (29) and the definition of xst+1, we have

µ(xst+1)

240k̄2
√
LH
≤ σ

24
‖hst‖3 +

‖gradF (xst)− vst‖3/2

24
√
σ

+
‖HessF (xst)−Us

t‖3

24σ2
. (50)

From (47), we have

Rst+1 + E[
µ(xst+1)

240k̄2
√
LH

]

= E[F (xst+1) + ct+1‖Exp−1
x̂s (xst+1)‖3 +

µ(xst+1)

240k̄2
√
LH

]

≤ E[F (xst) +
3√
σ
‖gradF (xst)− vst‖3/2 +

14

σ2
‖HessF (xst)−Us

t‖3op]

+ E[ct+1(1 +
3

T
)‖Exp−1

x̂s (xst)‖3 − (
σ

24
− 2ct+1(

√
ξ − 1 + 1)3T 2)‖hst‖3]

≤ E[F (xst) +
3√
σ
‖gradF (xst)− vst‖3/2 +

14

σ2
‖HessF (xst)−Us

t‖3op + ct+1(1 +
3

T
)‖Exp−1

x̂s (xst)‖3],

where the the first inequality follows from (47), (49), (50) and the last inequality follows
from Lemma 4.10.

Based on Lemma 4.3 and the conditions on bg and bh, it can be verified that

3√
σ
E‖gradF (xst)− vst‖3/2 ≤

3L
3/2
H√

σb
3/4
g

E‖Exp−1
x̂s (xst)‖3 ≤

σ

1000T 3(
√
ζ − 1 + 1)3

E‖Exp−1
x̂s (xst)‖3,

14

σ2
E‖HessF (xst)−Us

t‖3≤
896L3

H(ρ+ ρ2)3

σ2
E‖Exp−1

x̂s (xst)‖3 ≤
σ

1000T 3(
√
ζ − 1 + 1)3

E‖Exp−1
x̂s (xst)‖3,

where ρ =
√

2e logmn
bh

. Therefore, we have

Rst+1 + E[
µ(xst+1)

240k̄2
√
LH

] ≤ E[F (xst) + ‖Exp−1x̂st
(xst)‖3(ct+1(1 + 3/T) +

σ

500T 3(
√
ζ − 1 + 1)3

)]

= E[F (xst) + ct‖Exp−1x̂st
(xst)‖3] = Rst ,

where the first equality comes from the definition of ct in Lemma 4.10. Telescoping the
above inequality from t = 0 to T − 1, we have

Rs0 −RsT ≥ (240k̄2
√
LH)−1

T∑
t=1

E[µ(xst)].

Note that cT = 0 and xs−1T = xs0 = x̂s, then RsT = E[F (xsT)+cT ‖Exp−1x̂st
(xsT)‖3] = EF (x̂s+1)

and Rs0 = E[F (xs0) + c0‖Exp−1x̂s (xs0)‖3] = EF (x̂s), which implies

EF (x̂s)− EF (x̂s+1) = Rs0 −RsT ≥ (240k̄2
√
LH)−1

T∑
t=1

E[µ(xst)].

16

Telescoping the above inequality from s = 1 to S yields

∆F ≥
S∑
s=1

EF (x̂s)− EF (x̂s+1) ≥ (240k̄2
√
LH)−1

S∑
s=1

T∑
t=1

E[µ(xst)].

By the definition of the choice of xout, the proof is completed.

Remark 7. Let K = ST where S and T are the number of epochs and epoch length in Algorithm 1.

Following our discussion below (24) and by Theorem 4.1, setting E[µ(x)] ≤ 240k̄2L
1/2
H ∆F /K ≤ ε3/2,

the algorithm obtains a (ε,
√
ε)-solution in O(ε−3/2) iterations. In other words, the algorithm obtains

a first-order stationary point (i.e., ‖gradF (x)‖ ≤ ε) in O(ε−3/2) iterations and a second-order
stationary point (i.e, λmin(HessF (x)) ≥ −ε) in O(ε−3) iterations.

Definition 4.3 (Second-order oracle). Given an index i and a point x, a second-order oracle (SO)
call returns a triple [fi(x),∇fi(x),∇2fi(x)].

When manifold is embedded in a Euclidean space, calculating the Riemannian gradient and
Hessian (applied to a certain direction) requires the Euclidean gradient and Hessian. Therefore, the
number of SO calls is a reasonable metric to evaluate complexities of different algorithms, stochastic
and deterministic. In numerical studies, we also compare different methods on the number of SO
calls.

Corollary 4.1. Suppose that the cubic regularization parameter σ in Algorithm 1 is fixed and
satisfies σ = k̄LH , where LH is the Hessian Lipschitz parameter according to (10), k̄ ≥ 2 and

σ satisfies (34). Let the epoch length T = N1/5, batch sizes bg = 30004/3N4/5(
√
ζ−1+1)4

k̄2 , bh =
e log d

(

√
k̄

193N1/5(
√
ζ−1+1)

+ 1
8−

1
2
√

2
)2

, and the number of epochs S = max{1, 240k̄2L
1/2
H ∆FN

−1/5ε−3/2}, where

d = mn is the dimension of the problem. Then, under Assumptions 1-5, Algorithm 1 finds an

(ε,
√
LHε)-second-order stationary point in Õ(N + L

1/2
H ∆FN

4/5ε−3/2) second-order oracle calls.

Proof. The parameter setting in Corollary 4.1 satisfies the requirements of Theorem 4.1. The epoch
size S enforce E[µ(xout)] ≤ ε, which implies that xout is an (ε,

√
LHε)-approximate local minimum.

Note that Algorithm 1 requires calculating full gradient ∇F and Hessian ∇2F at the beginning
of each epoch with N SO calls. Inside each epoch, it needs to calculate stochastic gradient and
Hessian with bg + bh SO calls at each iteration. Thus, the total number of SO calls is

SN + (ST)(bg + bh) ≤ N + 240k̄2L
1/2
H ∆FN

4/5ε−3/2 + 240k̄2L
1/2
H ∆F ε

−3/2(bg + bh)

= Õ(N + L
1/2
H ∆FN

4/5ε−3/2),

where the Õ comes from log d in bh.

In practice, finding the exact solution to the cubic-regularized Newton subproblem (27) is not
always computationally desirable Agarwal et al. (2020), Nesterov & Polyak (2006), Cartis et al.
(2011a,b). Instead, we can solve the subproblem inexactly, but yet guarantee theoretical properties
of the algorithm. More specifically, we propose to solve the cubic-regularized Newton subproblem
inexactly, but the one that satisfies the conditions in Definition 4.4 below. It is then proved in
Theorem 4.2 that the complexity of the algorithm with inexact solution to its subproblem is the
same as the original algorithm, except for an O(1) constant.

17

Definition 4.4 (Inexact solution). Given a δ > 0, h̃st is a δ-inexact solution to (27) if it satisfies

ms
t (h̃

s
t) ≤ −

σ

12
‖h̃st‖3 + δ, (51)

‖∇ms
t (h̃

s
t)‖ ≤ (σ)1/3δ2/3, (52)

λmin(∇2ms
t (h̃

s
t)) ≥ −(σ)2/3δ1/3. (53)

The following lemma is parallel to Lemma 4.1 when the subproblem is solved inexactly.

Lemma 4.11. Under Assumption 3, if h̃st is a δ-inexact solution to (27), then〈
vst , h̃

s
t

〉
+

1

2

〈
Us
t h̃

s
t , h̃

s
t

〉
+
σ

6
‖h̃st‖3 ≤ −

σ

12
‖h̃st‖3 + δ, (54)

‖vst + Us
t h̃

s
t + (

σ

2
‖h̃st‖)h̃st‖ ≤ (σ)1/3δ2/3, (55)

Us
t + σ‖h̃st‖I � −(σ)2/3δ1/3I. (56)

Proof. Inequalities (54) and (55) follow from expanding ms
t (h̃

s
t) and ∇ms

t (h̃
s
t) in (51) and (52). To

show (56), note that ∇2ms
t (h̃

s
t) = Us

t + λI + λ(
h̃st
‖h̃st‖

)(
h̃st
‖h̃st‖

)>, where λ =
σ‖h̃st‖

2 . We have

Us
t + 2λI � Us

t + λI + λ(
h̃st

‖h̃st‖
)(

h̃st

‖h̃st‖
)> � −(σ)2/3δ1/3I,

where the first inequality follows from the Cauchy–Schwarz inequality, ‖v‖ ≥ 〈v,h̃
s
t〉

‖h̃st‖
for any v ∈

Rm×n, and the second inequality follows from (56).

Parallel to Lemma 4.2, Lemma 4.12 provides an upper bound on ‖h̃ts‖ which then provides a
required (lower) bound on the cubic regularization parameter σ to have the iterates close enough
to the epoch points - see Remark 8.

Lemma 4.12. Under Assumption 1-4, given a constant C > 0 and σ > [
δ2/3+

√
δ4/3+2C2·(C·cH+cg)

C2]2,

we have ‖h̃st‖ < C.

Proof. Based on (55) and Cauchy–Schwarz inequality, we have〈
vst , h̃

s
t

〉
+
〈
Us
t h̃

s
t , h̃

s
t

〉
+
σ

2
‖h̃st‖3 ≤ (σ)1/3δ2/3 · ‖h̃st‖. (57)

which implies,
σ

2
‖h̃st‖3 ≤ ‖vst‖ · ‖h̃st‖+ ‖Us

t‖op · ‖h̃st‖2 + (σ)1/3δ2/3 · ‖h̃st‖. (58)

Based on (25) and dividing both sides by ‖h̃st‖, we have

σ

2
‖h̃st‖2 − cH · ‖h̃st‖ − (+σ1/3δ2/3) ≤ 0, (59)

which implies

‖h̃st‖ ≤
cH +

√
c2H + 2σ(cg + σ1/3δ2/3)

σ
≤
cH +

√
c2H + 2σ(cg + σ1/2δ2/3)

σ
. (60)

18

Note that the right hand side of (60) is a monotonic decreasing function on σ. After some simple

manipulation, we derive that if σ > [
δ2/3+

√
δ4/3+2C2·(C·cH+cg)

C2]2, then the right hand side of (60) is

upper bounded by C, which implies ‖h̃st‖ < C.

Remark 8. Using Lemma 4.2, setting C = inj(M)/T , where T is the epoch length of the algorithm,
we have

σ > [
T 2δ2/3 +

√
T 4δ4/3 + 2(inj(M))2(inj(M)TcH + cgT 2)

(inj(M))2
]2. (61)

Given the lower bound on σ, for any epoch s and any iteration t inside this epoch, we have

d(x̂s,xst) ≤
t∑
i=1

d(xsi−1,x
s
i) ≤

t∑
i=1

‖hsi‖ < inj(M). (62)

Since it is difficult to quantify the difference of h with the exact solution hst , i.e. |‖h‖ − ‖hst‖|,
we need to establish results similar to Lemmas 4.6 and 4.7 based on (56).

Lemma 4.13. Let h̃st be a δ-inexact solution to (27) with σ ≥ 2LH that satisfies (61), then under
Assumptions 1-4, for any h ∈ Rm×n such that ‖h‖ < inj(M), we have

−λmin(HessF (Expxst
(h)) ≤ 3σ

2
‖h‖+ ‖Hx − Ust ‖op + σ|‖h̃st‖ − ‖h‖|+ (σ)2/3δ1/3, (63)

where λmin(HessF (x)) is defined as λmin(HessF (x)) , infη∈TxM{
〈HessF (x)η,η〉

‖η‖ }.

Proof. Denote Expxst
(h) by y and xst by x. Furthermore, let the identity operator at x be denoted

by Ix, i.e. Ix(η) = η for any η ∈ TxM. We have

Hy � Γy
xHxΓx

y − LH‖h‖Iy
� Γy

xU
s
t Γx

y − ‖Γy
xHxΓx

y − Γy
xU

s
t Γx

y‖opIy − LH‖h‖Iy
� −(σ‖h̃st‖+ (σ)2/3δ1/3)Iy − ‖Hx − Ust ‖opIy − LH‖h‖Iy,

where the first inequality follows from (10), the second inequality follows from the definition of
the operator norm and the triangle inequality, and the third inequality follows from the isometric
property of the parallel transport Γ and (56). Therefore, we have

−λmin(Hy) ≤ (σ‖h̃st‖+ (σ)2/3δ1/3) + ‖Hx − Ust ‖op + LH‖h‖
= σ(‖h̃st‖ − ‖h‖) + ‖Hx − Ust ‖op + (LH + σ)‖h‖+ (σ)2/3δ1/3

≤ 3σ

2
‖h‖+ ‖Hx − Ust ‖op + σ|‖h̃st‖ − ‖h‖|+ (σ)2/3δ1/3,

where the last inequality holds because LH ≤ σ/2.

Recall the µ(x) definition in (23), combining Lemmas 4.5 and 4.13, we have the following result.

Lemma 4.14. Setting σ = k̄LH with k̄ ≥ 2 such that it satisfies (61), under Assumptions 1-4, for
any δ-inexact solution h̃st , we have

µ(Expxst
(h̃st)) ≤ 9(k̄)3/2[

27(σ)3/2

8
‖h̃st‖3 + ‖gradF (xst)− vst‖3/2 + (σ)−3/2‖HessF (xst)−Us

t‖3op + (σ)1/2δ].

19

Proof. Recall µ(x) = max{‖gradF (x)‖3/2,−L−3/2
H λ3

min(HessF (x))}. Next, we apply Lemmas 4.5

and 4.13 to upper bound ‖gradF (x)‖3/2 and −(L
3/2
H)−1[λmin(HessF (x))]3}, respectively.

‖gradF (Expxst
(h̃st))‖3/2

≤ [σ‖h̃st‖2 + ‖gradF (xst)− vst‖+
1

σ
‖HessF (xst)−Us

t‖2op + ‖∇ms
t (h̃

s
t)‖]3/2

≤ 2[(σ)3/2‖h̃st‖3 + ‖gradF (xst)− vst‖3/2 + (σ)−3/2‖HessF (xst)−Us
t‖3op + ‖∇ms

t (h̃
s
t)‖3/2]

≤ 2[(σ)3/2‖h̃st‖3 + ‖gradF (xst)− vst‖3/2 + (σ)−3/2‖HessF (xst)−Us
t‖3op + (σ)1/2δ],

where the first inequality follows from Lemma 4.5, the second inequality holds due to the inequality
(a+ b+ c+ d)3/2 ≤ 2(a3/2 + b3/2 + c3/2 + d3/2), and the third inequality follows from (52).

−L−3/2
H [λmin(HessF (h̃st))]

3 = −(k̄)3/2(σ)−3/2[λmin(HessF (h̃st))]
3

≤ (k̄)3/2(σ)−3/2[
3σ

2
‖h̃st‖+ ‖HessF (xst)−Us

t‖op + (σ)2/3δ1/3]3

≤ 9(k̄)3/2[
27(σ)3/2

8
‖h̃st‖3 + (σ)−3/2‖HessF (xst)−Us

t‖3op + (σ)1/2δ],

where the equality follows from σ = k̄LH , the first inequality follows from Lemma 4.13, and the
last inequality follows from the inequality (a+ b+ c)3 ≤ 9(a3 + b3 + c3). Since 9(k̄)3/2 > 2, we have

µ(Expxst
(h̃st)) = max{‖gradF (Expxst

(h̃st))‖3/2,−L
−3/2
H λ3

min(HessF (Expxst
(h̃st))}

≤ 9(k̄)3/2[
27(σ)3/2

8
‖h̃st‖3 + ‖gradF (xst)− vst‖3/2 + (σ)−3/2‖HessF (xst)−Us

t‖3op + (σ)1/2δ],

which completes the proof.

Theorem 4.2 below provides the convergence rate of the R-SVRC algorithm when the cubic
regularized Newton subproblem is solved inexactly.

Theorem 4.2. Suppose that the cubic regularization parameter σ in Algorithm 1 is fixed and
satisfies σ = k̄LH , where LH is the Hessian Lipschitz parameter according to (10) and k̄ ≥ 2 and
it also satisfies (61). At each iteration, let the cubic subproblem (27) be solved inexactly so that the
results {h̃st} are δ-inexact solutions. Furthermore, suppose that the batch sizes bg and bh satisfy

bg ≥
30004/3T 4(

√
ξ − 1 + 1)4

k̄2
, bh ≥

e log d

(
√

k̄
193T (

√
ξ−1+1)

+ 1
8 −

1
2
√

2
)2
, (64)

where T ≥ 2 is the length of the inner loop of the algorithm and d = mn is the dimension of the
problem. Then, under Assumptions 1-5, the output of the algorithm satisfies

E[µ(xout)] ≤
729k̄2L

1/2
H ∆F

ST
+ 738k̄2

√
LHδ, (65)

where µ(x) is defined in (23).

20

Proof. First, we upper bound F (xst+1) as follows:

F (xst+1) ≤ F (xst) +
〈

gradF (xst), h̃
s
t

〉
+

1

2

〈
Hxst

[h̃st], h̃
s
t

〉
+
LH
6
‖h̃st‖3

= F (xst) +
〈

gradF (xst)− vst , h̃
s
t

〉
+

1

2

〈
(Hxst

−Us
t)[h̃

s
t], h̃

s
t

〉
− σ − LH

6
‖h̃st‖3

+
〈
vst , h̃

s
t

〉
+

1

2

〈
Us
t [h̃

s
t], h̃

s
t

〉
+
σ

6
‖h̃st‖3

≤ F (xst) + (
σ

27
‖h̃st‖3 +

2

σ1/2
‖gradF (xst)− vst‖3/2) +

1

2
(
2σ

27
‖h̃st‖3 +

27

σ2
‖Hxst

−Us
t‖3op)

− σ − LH
6

‖h̃st‖3 −
σ

12
‖h̃st‖3 + δ

≤ F (xst) +
2

σ1/2
‖gradF (xst)− vst‖3/2 +

27

2σ2
‖Hxst

−Us
t‖3op −

σ

12
‖h̃st‖3 + δ,

where the first inequality follows from H-smooth assumption and Lemma 3.1, and the second
inequality holds due to Lemma 4.4 and (54) in Lemma 4.11.

Next, we define
Rst , E[F (xst) + ct‖Exp−1

x̂s (xst)‖3], (66)

where ct is defined in Lemma 4.10. By Lemma 4.9, for T ≥ 2, we have

ct+1‖Exp−1
x̂s (Expxst

(h̃st))‖3 ≤ 2ct+1(
√
ξ − 1 + 1)3T 2‖h̃st‖3 + ct+1(1 +

3

T
)‖Exp−1

x̂s (xst)‖3. (67)

Furthermore, from Lemma 4.14, we have

µ(xst+1)

729k̄2
√
LH
≤ σ

24
‖h̃st‖3 +

‖gradF (xst)− vst‖3/2

81
√
σ

+
‖HessF (xst)−Us

t‖3

81σ2
+

δ

81
. (68)

Combining (66), (67) and (68), we have

Rst+1 + E[
µ(xst+1)

729k̄2
√
LH

]

= E[F (xst+1) + ct+1‖Exp−1
x̂s (xst+1)‖3 +

µ(xst+1)

729k̄2
√
LH

]

≤ E[F (xst) +
3√
σ
‖gradF (xst)− vst‖3/2 +

14

σ2
‖HessF (xst)−Us

t‖3]

+ E[ct+1(1 +
3

T
)‖Exp−1

x̂s (xst)‖3 − (
σ

24
− 2ct+1(

√
ξ − 1 + 1)3T 2)‖h̃st‖3] +

82δ

81

≤ E[F (xst) +
3√
σ
‖gradF (xst)− vst‖3/2 +

14

σ2
‖HessF (xst)−Us

t‖3op + ct+1(1 +
3

T
)‖Exp−1

x̂s (xst)‖3] +
82δ

81
,

where the last inequality follows from Lemma 4.10.

21

Based on Lemma 4.3 and the conditions on the sizes of bg and bh, we have

3√
σ
E‖gradF (xst)− vst‖3/2 ≤

3L
3/2
H√

σb
3/4
g

E‖Exp−1
x̂s (xst)‖3 ≤

σ

1000T 3(
√
ξ − 1 + 1)3

E‖Exp−1
x̂s (xst)‖3,

(69)

14

σ2
E‖HessF (xst)−Us

t‖3≤
896L3

H(ρ+ ρ2)3

σ2
E‖Exp−1

x̂s (xst)‖3 ≤
σ

1000T 3(
√
ξ − 1 + 1)3

E‖Exp−1
x̂s (xst)‖3,

(70)

where ρ =
√

2e logmn
bh

. Therefore, we have

Rst+1 + E[
µ(xst+1)

729k̄2
√
LH

] ≤ E[F (xst) + ‖Exp−1
x̂st

(xst)‖3(ct+1(1 + 3/T) +
σ

500T 3(
√
ξ − 1 + 1)3

)] +
82δ

81

= E[F (xst) + ct‖Exp−1
x̂st

(xst)‖3] +
82δ

81
= Rst +

82δ

81
,

where the first equality is due to the choice of {ct} defined in Lemma 4.10. Telescoping the
above inequality from t = 0 to T − 1, we have Rs0−RsT ≥ (729k̄2

√
LH)−1

∑T
t=1(E[µ(xst)]−

82δ
81). Note that cT = 0 and xs−1T = xs0 = x̂s, then RsT = E[F (xsT) + cT ‖Exp−1x̂st

(xsT)‖3] =

EF (x̂s+1) and Rs0 = E[F (xs0) + c0‖Exp−1x̂s (xs0)‖3] = EF (x̂s), which implies

EF (x̂s)− EF (x̂s+1) = Rs0 −RsT ≥ (729k̄2
√
LH)−1

T∑
t=1

(E[µ(xst)]−
82δ

81
).

Telescoping the above inequality from s = 1 to S yields

∆F ≥
S∑
s=1

EF (x̂s)− EF (x̂s+1) ≥ (729k̄2
√
LH)−1

S∑
s=1

T∑
t=1

(E[µ(xst)]−
82δ

81
).

By the definition of xout, the proof is completed.

Corollary 4.2. For any s and t, let h̃st be an inexact solution of the cubic subproblem ms
t (h),

which satisfies Definition 4.4 with δ = (1500k̄2
√
LH)−1ε3/2. Suppose that the cubic regularization

parameter σ in Algorithm 1 is fixed and satisfies σ = k̄LH , where LH is the Hessian Lipschitz
parameter according to (10) with k̄ ≥ 2, and it also satisfies (61). Let the epoch length T = N1/5,

batch sizes bg = 30004/3N4/5(
√
ζ−1+1)4

k̄2 , bh = e log d

(

√
k̄

193N1/5(
√
ζ−1+1)

+ 1
8−

1
2
√

2
)2

, and the number of epochs

S = max{1, 1500k̄2L
1/2
H ∆FN

−1/5ε−3/2}. Then, under Assumptions 1-5, Algorithm 1 finds an

(ε,
√
LHε)-second-order stationary point in Õ(N+L

1/2
H ∆FN

4/5ε−3/2) number of second-order oracle
calls.

Proof. Under the parameter setting in Corollary 4.2 and Theorem 4.2, we have

E[µ(xout)] ≤
729k̄2L

1/2
H ∆F

ST
+ 738k̄2

√
LHδ ≤

ε3/2

2
+
ε3/2

2
= ε3/2. (71)

22

Thus, xout is an (ε,
√
LHε)-approximate local minimum. Similar to the discussion in Corollary 4.1,

the total number of SO calls is

SN + (ST)(bg + bh) ≤ N + 1500k̄2L
1/2
H ∆FN

4/5ε−3/2 + 1500k̄2L
1/2
H ∆F ε

−3/2(bg + bh)

= Õ(N + L
1/2
H ∆FN

4/5ε−3/2).

5 Numerical Studies

In this section, we conduct numerical experiments to verify our theoretical complexity results for the
R-SVRC algorithm to find a second-order stationary point. Besides different simulation studies,
we compare our algorithm with crude Riemannian cubic regularization Newton method (CRC),
Riemannian adaptive cubic regularization method (ARC), and Riemannian trust region method
(RTR) – see Zhang & Zhang (2018), Agarwal et al. (2020), Absil et al. (2007). Our code is
written in conformance with the Manopt package Boumal et al. (2014), and it is available at
https://github.com/samdavanloo/R-SVRC. All the numerical studies are run on a laptop with 1.4
GHz Quad-Core Intel Core i5 CPU and 8 GB memory.

5.1 Parameter Estimation of Multivariate Student’s t-distribution

The maximum likelihood estimation of the (scale) parameter of the multivariate t-distribution (2)
requires solving

min
X∈Sp++

F (X) =
ν + p

2N

N∑
i=1

log(1 +
aTi Xai
ν

)− 1

2
log det(X), (72)

where the mean is assumed to be zero and X is the inverse of the scale matrix Σ which should
belong to the Symmetric Positive Definite (SPD) manifold. The Euclidean gradient and Hessian of
F can be calculated as

∇F (X) =
ν + p

2N

N∑
i=1

aia
T
i

ν + aTi Xai
− 1

2
X−1, (73)

∇2F (X)[U] =
ν + p

2N

N∑
i=1

−aTi Uai
(ν + aTi Xai)2

aia
T
i +

1

2
X−1UX−1 (74)

= [
ν + p

2N

N∑
i=1

−(aia
T
i)⊗ (aia

T
i)

(ν + aTi Xai)2
+

1

2
X−1 ⊗X−1] · vec(U), (75)

where sym(Y) , 1
2 (Y + Y >), vec(·) denotes vectorization of the input matrix, and ⊗ denotes the

Kronecker product. The Riemannian gradient and Hessian are obtained as (see Bhatia (2009),
Boumal et al. (2014)):

gradF (X) = Xsym(∇F (X))X, (76)

HessF (X)[U] = Xsym(∇2F (X)[U])X + sym(U∇F (X)X). (77)

23

https://github.com/samdavanloo/R-SVRC

While the above equations compute the full gradient and Hessian along certain direction, the
stochastic gradient and Hessian along certain direction also easily follow. For instance, for function

FIh(X) ,
1

bh

∑
i∈Ih

fi(X),

the second term in the formula for Us
t (see Step 9 in Algorithm 1) can be calculated as

∇2FIh(X)[U] = [
ν + p

2bh

∑
i∈Ih

−(aia
T
i)⊗ (aia

T
i)

(ν + aTi Xai)2
+

1

2
X−1 ⊗X−1] · vec(U), (78)

HessFIh(X)[U] = Xsym(∇2FIh(X)[U])X + sym(U∇FIh(X)X). (79)

While computing the Euclidean gradient and Hessian (along certain direction) using (73) and (75)
requires processing N data points, transforming them to their Riemannian counterparts is relatively
simple, in the sense that their computation is independent of N . Therefore, at the beginning of
each epoch, the tensor inside the square bracket in (75) is computed and stored. In the following
within-epoch iterations, to update Us

t (Step 9 in Algorithm 1), only the second and third terms
need to be updated which can be performed efficiently as the batch size is small compared to N .

5.2 Linear Classifier Over the Sphere Manifold

In this example, we consider a classification problem based on N training examples {ai, bi}Ni=1 where
ai ∈ Rm and bi ∈ {−1, 1} for all i ∈ [N]. We aim to estimate the model parameter x for a linear
classifier f(a) = x>a such that it minimizes a smooth nonconvex loss function Zhao et al. (2010),
Li & Yang (2003)

L(x; {(ai, bi)}Ni=1) =

N∑
i=1

(1− 1

1 + e−bi·x>ai
)2, (80)

over the Sphere manifold, {x ∈ Rm : x>x = 1} Absil et al. (2009). The Euclidean gradient and
Hessian of L are

∇L(x) =

N∑
i=1

− e−2bi(x
>ai)

(1 + e−bi(x>ai))3
ai,

∇2L(x) =

N∑
i=1

(2− e−bix>ai)b2i e−2bi(x
>ai)

(1 + e−bi(x>ai))4
aia
>
i .

The Riemannian gradient and Hessian of L along U (see Proposition 5.3.2 in Absil et al. (2009),
Boumal et al. (2014)) are

gradL(x) = Px(∇L(x)), (81)

HessL(x)[u] = Px(∇2L(x)[u])− (x>∇L(x))u, (82)

where the tangent space projection is Px(y) , y − (x>y)x. The stochastic gradient and Hessian
easily follows by summing the corresponding terms over the minibatch.

The first example above on estimating the inverse scale matrix of the multivariate t-distribution
over symmetric positive definite (SPD) satisfies Assumptions 3-5, and its objective function satisfies

24

Assumptions 1-2 if the minimum eigenvalue of the matrices is bounded away from zero. The second
example on estimating the parameter of the linear classifier over sphere manifold satisfies all of the
assumptions, i.e., the sphere manifold satisfies Assumptions 3-5 and Assumptions 1-2 follows from
continuous differentiability of the objective function and compactness of the sphere manifold.

5.3 Numerical Results

Data Simulation. The first numerical study is to estimate the inverse scale (covariance) matrix
of the multivariate Student’s t-distribution (see problem (72)). Data is simulated from a multivariate
t-distribution with three degrees of freedom and randomly generate scale matrix Σtrue ∈ Sd++ with
d = 10. N = 104 samples are generated from the underlying distribution which are then added
with the Gaussian noise ε sampled from N (0, τ2Id) with τ2 equal to 0.1, 1, 5, and 10.

The second numerical study is to estimate the parameter of a linear classifier over the Sphere
manifold (see problem (80)). To simulate the data, the true parameter xtrue is first generated
from N (0, Id) which is then normalized to belong to the Sphere manifold. Next, ai ∈ Rd×1, i =
1, ..., N are randomly generated from the uniform distribution where d = 20 and N = 105. The
corresponding label bi to ai is set to 1 if x>ai + εi > 0, where εi ∼ N (0, τ2), and −1, otherwise,
where τ2 is chosen to be 0.02, 0.1, 1, and 3.

The proposed R-SVRC algorithm is run 15 times in each numerical study. The shaded plots
discussed in the Results below provide percentile information based on these replicates.

Number of calls to the stochastic oracle. For the R-SVRC method, at the beginning of
each epoch, the SO is called N times. However, within each epoch, each iteration makes (bg + bh)
calls to SO. In the deterministic CRC, ARC and RTR methods, each iteration makes N calls to
SO. The number of SO calls and the CPU runtime are the two performance measures we have used
to compare the proposed method with the other second-order methods.

Parameters and subproblem solver. The g-smoothness and H-smoothness assumptions is
standard in nonasympototic analysis in Riemannian optimization - see, e.g., Absil et al. (2004, 2009),
Boumal et al. (2019), Boumal (2020). However, obtaining the g-smoothness and H-smoothness
constants is not trivial and we defer it to future studies. In the following, we numerically analyze
the effect of different parameters on the performance of Algorithm 1, i.e., epoch size T , cubic
regularization constant σ, batchsize bg and bh. The cubic subproblem (Step 9 of the Algorithm 1)
is solved using the conjugated gradient method using the Manopt solver Boumal et al. (2014).

To estimate the inverse scale matrix of the multivariate t-distribution over the symmetric pos-
itive definite manifold, the default optimization parameter setting for Algorithm 1 is σ = 0.01,
bg = bh = 500 and T = 5. To estimate the parameter of the linear classifier over Sphere manifold,
the default optimization parameter setting for Algorithm 1 is σ = 0.1, bg = bh = 5000 and T = 5.

Results. Figure 1 shows the performance of the R-SVRC algorithm for different levels of noise
ε added to the simulated data (see data simulation above). The top two plots in Figure 1 show the
proposed algorithm successfully approach a second-order stationary point in all scenarios. As the
output of Algorithm 1 is to be sampled uniformly at random for s ∈ [S] and t ∈ [T], we also plot
the averaged µ(xk) sequence (over iterations) in the bottom two plots. These averaged sequences
show E(µ(xk)) decreases with a sublinear rate which is consistent with the first main theorem.

25

Figure 1: Effect of the added noise to the simulated data on the performance of the
proposed R-SVRC algorithm over 15 replicates. (Left) Estimating inverse scale matrix
of multivariate t-distribution over SPD manifold. (Right) Estimating parameter of the
linear classifier over Sphere manifold.

26

Figure 2: Performance of of the proposed R-SVRC algorithm for different optimization pa-
rameter settings over 15 replicates. (Left) Estimating inverse scale matrix of multivariate
t-distribution over SPD manifold. (Right) Estimating parameter of the linear classifier
over Sphere manifold.

27

Figure 2 illustrates the performance of the R-SVRC algorithm for both numerical studies for
different settings of the optimization parameters. Left and right columns corresponds to the first
and second numerical studies, respectively. Most of the plots show a superlinear rate of convergence
to a second-order stationary point using the last iterate as the output of the algorithm. The first row
shows that smaller batch sizes result in slower convergence with early oscillation around the plateau.
Specifically, the top three lines have ascending values of bg while descending values of bh which
implies that the effect of bg is more significant than that of bh. The second row shows that bigger
values of σ can provide smaller objective values but with slower convergence rate. Furthermore,
larger σ values tends to produce a smaller ‖h‖ based on the subproblem (27) which leads to more
stable and smooth sequences shown in the plots. The third row shows that bigger values of T , i.e.,
less frequent full gradient and Hessian calculations, result in slower rate of convergence for a fixed
number of iterations which is also intuitive.

In Figure 3, we compare the proposed R-SVRC method with the other three benchmark meth-
ods, Riemannian adaptive cubic regularization method (ARC), Riemannian trust region method
(RTR) and crude Riemannian cubic regularization method (CRC) Agarwal et al. (2020), Boumal
(2015), Zhang & Zhang (2018) over the number stochastic oracle calls (see Definition 4.3) and also
cpu time. Results show faster decrease by the R-SVRC method compared to the other benchmark
methods.

Finally, Figure 4 visualizes the optimization path obtained by the R-SVRC algorithm over the
Sphere manifold. The generated iterates converge to the optimal solution.

6 Conclusions

We developed the Riemannian stochastic variance-reduced cubic-regularized Newton method (R-
SVRC) for optimization over Riemannian manifolds embedded in a Euclidean space. The proposed
double-loop algorithm requires information on the full gradient and Hessian at the beginning of each
epoch (outer loop) but updates the gradient and Hessian within each epoch in a stochastic variance-
reduced fashion. Each iteration requires solving a cubic-regularized Newton subproblem. Iteration
complexity of the proposed algorithm to find a second-order stationary points is established which
matches the worst-case complexity bounds in the Euclidean setting. Furthermore, a version of the
algorithm which only requires an inexact solution to the cubic regularized Newton subproblem is
proposed which has the same complexity bound as the exact case. Finally, the performance of the
proposed algorithm is evaluated over two numerical studies with symmetric positive definite and
sphere manifolds.

References

Absil, P-A, & Hosseini, Seyedehsomayeh. 2019. A collection of nonsmooth Riemannian optimization
problems. Pages 1–15 of: Nonsmooth Optimization and Its Applications. Springer.

Absil, P-A, Baker, Christopher G, & Gallivan, Kyle A. 2007. Trust-region methods on Riemannian
manifolds. Foundations of Computational Mathematics, 7(3), 303–330.

Absil, P-A, Mahony, Robert, & Sepulchre, Rodolphe. 2009. Optimization algorithms on matrix
manifolds. Princeton University Press.

Absil, Pierre-Antoine, Baker, Christopher G, & Gallivan, Kyle A. 2004. Trust-region methods on
Riemannian manifolds with applications in numerical linear algebra. Pages 5–9 of: Proceed-

28

Figure 3: Performance of the proposed R-SVRC algorithm compared to the three bench-
mark methods. (Left) Estimating inverse scale matrix of multivariate t-distribution over
SPD manifold. (Right) Estimating parameter of the linear classifier over Sphere manifold.

29

Figure 4: The path of the R-SVRC algorithm iterates over the 2-dimensional instance of
the Sphere manifold in the second numerical study.

ings of the 16th International Symposium on Mathematical Theory of Networks and Systems
(MTNS2004), Leuven, Belgium.

Agarwal, Naman, Boumal, Nicolas, Bullins, Brian, & Cartis, Coralia. 2018. Adaptive regularization
with cubics on manifolds.

Agarwal, Naman, Boumal, Nicolas, Bullins, Brian, & Cartis, Coralia. 2020. Adaptive regularization
with cubics on manifolds. Mathematical Programming, 1–50.

Ahn, Kwangjun, & Sra, Suvrit. 2020. From Nesterov’s estimate sequence to Riemannian accelera-
tion. Pages 84–118 of: Conference on Learning Theory. PMLR.

Alimisis, Foivos, Orvieto, Antonio, Bécigneul, Gary, & Lucchi, Aurelien. 2020. A continuous-
time perspective for modeling acceleration in Riemannian optimization. Pages 1297–1307 of:
International Conference on Artificial Intelligence and Statistics. PMLR.

Alimisis, Foivos, Orvieto, Antonio, Bécigneul, Gary, & Lucchi, Aurelien. 2021. Momentum Improves
Optimization on Riemannian Manifolds. Pages 1351–1359 of: International Conference on
Artificial Intelligence and Statistics. PMLR.

Arjovsky, Martin, Shah, Amar, & Bengio, Yoshua. 2016. Unitary evolution recurrent neural net-
works. Pages 1120–1128 of: International Conference on Machine Learning.

Baker, Christopher G, Absil, P-A, & Gallivan, Kyle A. 2008. An implicit trust-region method on
Riemannian manifolds. IMA journal of numerical analysis, 28(4), 665–689.

Bansal, Nitin, Chen, Xiaohan, & Wang, Zhangyang. 2018. Can we gain more from orthogonality
regularizations in training deep CNNs? arXiv preprint arXiv:1810.09102.

30

Bento, GC, Ferreira, OP, & Oliveira, PR. 2015. Proximal point method for a special class of
nonconvex functions on Hadamard manifolds. Optimization, 64(2), 289–319.

Bento, Glaydston C, Ferreira, Orizon P, & Melo, Jefferson G. 2017. Iteration-complexity of gradient,
subgradient and proximal point methods on Riemannian manifolds. Journal of Optimization
Theory and Applications, 173(2), 548–562.

Bhatia, Rajendra. 2009. Positive definite matrices. Princeton university press.

Bonnabel, Silvere. 2013. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions
on Automatic Control, 58(9), 2217–2229.

Boumal, N., Mishra, B., Absil, P.-A., & Sepulchre, R. 2014. Manopt, a Matlab Toolbox for Opti-
mization on Manifolds. Journal of Machine Learning Research, 15(42), 1455–1459.

Boumal, Nicolas. 2015. Riemannian trust regions with finite-difference Hessian approximations are
globally convergent. Pages 467–475 of: International Conference on Geometric Science of
Information. Springer.

Boumal, Nicolas. 2020. An introduction to optimization on smooth manifolds. Available online,
Aug.

Boumal, Nicolas, Absil, Pierre-Antoine, & Cartis, Coralia. 2019. Global rates of convergence for
nonconvex optimization on manifolds. IMA Journal of Numerical Analysis, 39(1), 1–33.

Carmon, Yair, & Duchi, John. 2019. Gradient descent finds the cubic-regularized nonconvex Newton
step. SIAM Journal on Optimization, 29(3), 2146–2178.

Cartis, Coralia, Gould, Nicholas IM, & Toint, Philippe L. 2011a. Adaptive cubic regularisation
methods for unconstrained optimization. Part I: motivation, convergence and numerical re-
sults. Mathematical Programming, 127(2), 245–295.

Cartis, Coralia, Gould, Nicholas IM, & Toint, Philippe L. 2011b. Adaptive cubic regularisa-
tion methods for unconstrained optimization. Part II: worst-case function-and derivative-
evaluation complexity. Mathematical programming, 130(2), 295–319.

Cartis, Coralia, Gould, Nicholas IM, & Toint, Ph L. 2012. Complexity bounds for second-order
optimality in unconstrained optimization. Journal of Complexity, 28(1), 93–108.

Cartis, Coralia, Gould, Nicholas IM, & Toint, Philippe L. 2014. On the complexity of finding
first-order critical points in constrained nonlinear optimization. Mathematical Programming,
144(1), 93–106.

Chavel, Isaac. 2006. Riemannian geometry: a modern introduction. Vol. 98. Cambridge university
press.

Cogswell, Michael, Ahmed, Faruk, Girshick, Ross, Zitnick, Larry, & Batra, Dhruv. 2015.
Reducing overfitting in deep networks by decorrelating representations. arXiv preprint
arXiv:1511.06068.

Criscitiello, Chris, & Boumal, Nicolas. 2020. An accelerated first-order method for non-convex
optimization on manifolds. arXiv preprint arXiv:2008.02252.

Criscitiello, Christopher, & Boumal, Nicolas. 2019. Efficiently escaping saddle points on manifolds.
Pages 5987–5997 of: Advances in Neural Information Processing Systems.

da Cruz Neto, JX, De Lima, LL, & Oliveira, PR. 1998. Geodesic algorithms in Riemannian geom-
etry. Balkan J. Geom. Appl, 3(2), 89–100.

31

de Carvalho Bento, Glaydston, da Cruz Neto, João Xavier, & Oliveira, Paulo Roberto. 2016. A
new approach to the proximal point method: convergence on general Riemannian manifolds.
Journal of Optimization Theory and Applications, 168(3), 743–755.

de Melo Mendes, Beatriz Vaz, & de Souza, Rafael Martins. 2004. Measuring financial risks with
copulas. International Review of Financial Analysis, 13(1), 27–45.

Domino, Krzysztof. 2018. Selected Methods for non-Gaussian Data Analysis. arXiv preprint
arXiv:1811.10486.

Durrett, Rick. 2019. Probability: theory and examples. Vol. 49. Cambridge university press.

Ferreira, OP, & Oliveira, PR. 2002. Proximal point algorithm on Riemannian manifolds. Optimiza-
tion, 51(2), 257–270.

Ferreira, Orizon P, Louzeiro, Mauricio S, & Prudente, LF4018420. 2019. Gradient method for
optimization on Riemannian manifolds with lower bounded curvature. SIAM Journal on
Optimization, 29(4), 2517–2541.

Gabay, Daniel. 1982. Minimizing a differentiable function over a differential manifold. Journal of
Optimization Theory and Applications, 37(2), 177–219.

Hosseini, Reshad, & Sra, Suvrit. 2020. Recent advances in stochastic Riemannian optimization.
Handbook of Variational Methods for Nonlinear Geometric Data, 527–554.

Hu, Jiang, Milzarek, Andre, Wen, Zaiwen, & Yuan, Yaxiang. 2018. Adaptive quadratically regu-
larized Newton method for Riemannian optimization. SIAM Journal on Matrix Analysis and
Applications, 39(3), 1181–1207.

Hu, Jiang, Liu, Xin, Wen, Zai-Wen, & Yuan, Ya-Xiang. 2020. A brief introduction to manifold
optimization. Journal of the Operations Research Society of China, 8(2), 199–248.

Huang, Lei, Liu, Xianglong, Lang, Bo, Yu, Adams Wei, Wang, Yongliang, & Li, Bo. 2018. Orthogo-
nal weight normalization: Solution to optimization over multiple dependent Stiefel manifolds
in deep neural networks. In: Thirty-Second AAAI Conference on Artificial Intelligence.

Huang, Wen, & Wei, Ke. 2021. Riemannian proximal gradient methods. Mathematical Program-
ming, 1–43.

Jin, Chi, Netrapalli, Praneeth, Ge, Rong, Kakade, Sham M, & Jordan, Michael I. 2019. Stochastic
gradient descent escapes saddle points efficiently. arXiv preprint arXiv:1902.04811.

Johnson, Rie, & Zhang, Tong. 2013. Accelerating stochastic gradient descent using predictive
variance reduction. Advances in neural information processing systems, 26, 315–323.

Kasai, Hiroyuki, & Mishra, Bamdev. 2018. Inexact trust-region algorithms on Riemannian mani-
folds. Pages 4254–4265 of: NeurIPS.

Kasai, Hiroyuki, Sato, Hiroyuki, & Mishra, Bamdev. 2017. Riemannian stochastic quasi-
Newton algorithm with variance reduction and its convergence analysis. arXiv preprint
arXiv:1703.04890.

Kasai, Hiroyuki, Sato, Hiroyuki, & Mishra, Bamdev. 2018. Riemannian stochastic recursive gradient
algorithm. Pages 2516–2524 of: International Conference on Machine Learning. PMLR.

Kotz, Samuel, & Nadarajah, Saralees. 2004. Multivariate t-distributions and their applications.
Cambridge University Press.

Kovalev, Dmitry, Mishchenko, Konstantin, & Richtárik, Peter. 2019. Stochastic Newton
and Cubic Newton Methods with Simple Local Linear-Quadratic Rates. arXiv preprint
arXiv:1912.01597.

32

Krzanowski, Wojtek J, & FHC, Marriott. 1994. Multivariate analysis. Wiley.

Lee, John M. 2018. Introduction to Riemannian manifolds. Springer.

Li, Fan, & Yang, Yiming. 2003. A loss function analysis for classification methods in text cate-
gorization. Pages 472–479 of: Proceedings of the 20th international conference on machine
learning (ICML-03).

Li, Jun, Fuxin, Li, & Todorovic, Sinisa. 2020. Efficient Riemannian optimization on the Stiefel
manifold via the Cayley transform. arXiv preprint arXiv:2002.01113.

Liu, Yuanyuan, Shang, Fanhua, Cheng, James, Cheng, Hong, & Jiao, Licheng. 2017. Accelerated
First-order Methods for Geodesically Convex Optimization on Riemannian Manifolds. Pages
4868–4877 of: NIPS.

Luenberger, David G. 1972. The gradient projection method along geodesics. Management Science,
18(11), 620–631.

Mackey, Lester, Jordan, Michael I, Chen, Richard Y, Farrell, Brendan, Tropp, Joel A, et al. 2014.
Matrix concentration inequalities via the method of exchangeable pairs. The Annals of Prob-
ability, 42(3), 906–945.

Nesterov, Yurii, & Polyak, Boris T. 2006. Cubic regularization of Newton method and its global
performance. Mathematical Programming, 108(1), 177–205.

Nguyen, Lam M, Liu, Jie, Scheinberg, Katya, & Takáč, Martin. 2017. Stochastic recursive gradient
algorithm for nonconvex optimization. arXiv preprint arXiv:1705.07261.

Nocedal, Jorge, & Wright, Stephen. 2006. Numerical optimization. Springer Science & Business
Media.

Qi, Chunhong. 2011. Numerical optimization methods on Riemannian manifolds. Ph.D. thesis,
Florida State University.

Ring, Wolfgang, & Wirth, Benedikt. 2012. Optimization methods on Riemannian manifolds and
their application to shape space. SIAM Journal on Optimization, 22(2), 596–627.

Roychowdhury, Anirban. 2017. Accelerated stochastic quasi-Newton optimization on Riemann
manifolds. arXiv preprint arXiv:1704.01700.

Rudin, Walter, et al. 1964. Principles of mathematical analysis. Vol. 3. McGraw-hill New York.

Ruszczynski, Andrzej. 2011. Nonlinear optimization. Princeton university press.

Sato, Hiroyuki. 2021. Riemannian Optimization and Its Applications. Springer Nature.

Sato, Hiroyuki, & Iwai, Toshihiro. 2015. A new, globally convergent Riemannian conjugate gradient
method. Optimization, 64(4), 1011–1031.

Sato, Hiroyuki, Kasai, Hiroyuki, & Mishra, Bamdev. 2019. Riemannian stochastic variance reduced
gradient algorithm with retraction and vector transport. SIAM Journal on Optimization,
29(2), 1444–1472.

Smith, Steven T. 1994. Optimization techniques on Riemannian manifolds. Fields institute com-
munications, 3(3), 113–135.

Smith, Steven Thomas. 1993. Geometric optimization methods for adaptive filtering. Harvard
University.

Sra, Suvrit, & Hosseini, Reshad. 2015. Conic geometric optimization on the manifold of positive
definite matrices. SIAM Journal on Optimization, 25(1), 713–739.

33

Sun, Yifan, Zheng, Liang, Deng, Weijian, & Wang, Shengjin. 2017. Svdnet for pedestrian retrieval.
Pages 3800–3808 of: Proceedings of the IEEE international conference on computer vision.

Sun, Yue, Flammarion, Nicolas, & Fazel, Maryam. 2019. Escaping from saddle points on Rieman-
nian manifolds. Pages 7276–7286 of: Advances in Neural Information Processing Systems.

Szegö, Giorgio. 2002. Measures of risk. Journal of Banking & finance, 26(7), 1253–1272.

Tripuraneni, Nilesh, Flammarion, Nicolas, Bach, Francis, & Jordan, Michael I. 2018. Averaging
stochastic gradient descent on Riemannian manifolds. Pages 650–687 of: Conference On
Learning Theory. PMLR.

Udriste, Constantin. 2013. Convex functions and optimization methods on Riemannian manifolds.
Vol. 297. Springer Science & Business Media.

Wisdom, Scott, Powers, Thomas, Hershey, John, Le Roux, Jonathan, & Atlas, Les. 2016. Full-
capacity unitary recurrent neural networks. Pages 4880–4888 of: Advances in neural infor-
mation processing systems.

Xie, Di, Xiong, Jiang, & Pu, Shiliang. 2017. All you need is beyond a good init: Exploring better
solution for training extremely deep convolutional neural networks with orthonormality and
modulation. Pages 6176–6185 of: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.

Zhang, Hongyi, & Sra, Suvrit. 2016. First-order methods for geodesically convex optimization.
Pages 1617–1638 of: Conference on Learning Theory. PMLR.

Zhang, Hongyi, & Sra, Suvrit. 2018. Towards Riemannian accelerated gradient methods. arXiv
preprint arXiv:1806.02812.

Zhang, Hongyi, Reddi, Sashank J, & Sra, Suvrit. 2016. Riemannian SVRG: Fast stochastic op-
timization on Riemannian manifolds. Pages 4592–4600 of: Advances in Neural Information
Processing Systems.

Zhang, Junyu, & Zhang, Shuzhong. 2018. A Cubic Regularized Newton’s Method over Riemannian
Manifolds. arXiv preprint arXiv:1805.05565.

Zhao, Lei, Mammadov, Musa, & Yearwood, John. 2010. From convex to nonconvex: a loss function
analysis for binary classification. Pages 1281–1288 of: 2010 IEEE International Conference
on Data Mining Workshops. IEEE.

Zhou, Dongruo, Xu, Pan, & Gu, Quanquan. 2018. Stochastic variance-reduced cubic regular-
ized Newton methods. Pages 5990–5999 of: International Conference on Machine Learning.
PMLR.

34

	1 Introduction
	1.1 Related Work
	1.2 Contributions
	1.3 Preliminaries and Notation

	2 Proposed Algorithm
	3 Lipschitzian Smoothness on Riemannian Manifolds
	4 Complexity Analysis of the Proposed Algorithm
	5 Numerical Studies
	5.1 Parameter Estimation of Multivariate Student's t-distribution
	5.2 Linear Classifier Over the Sphere Manifold
	5.3 Numerical Results

	6 Conclusions

