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Abstract We study MINLO (mixed-integer nonlinear optimization) formulations of
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and y “captures” f (x), which is assumed to be convex and positive on its domain
[`,u], but otherwise y = 0 when x = 0. This model is very useful in nonlinear com-
binatorial optimization, where there is a fixed cost of operating an activity at level x
in the operating range [`,u], and then there is a further (convex) variable cost f (x). In
particular, we study relaxations related to the perspective transformation of a natural
piecewise-linear under-estimator of f , obtained by choosing linearization points for
f . Using 3-d volume (in (x,y,z)) as a measure of the tightness of a convex relaxation,
we investigate relaxation quality as a function of f , `, u, and the linearization points
chosen. We make a detailed investigation for convex power functions f (x) := xp,
p > 1.
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1 Introduction

1.1 Definitions and background

Let f be a univariate convex function with domain [`,u], where 0≤ ` < u. We assume
that f is positive on [`,u]. We are interested in the mathematical-optimization context
of modeling a function, represented by a variable y, that is equal to a given convex
function f (x) on an “operating range” [`,u] and equal to 0 at 0. We do this using
a 0/1 indicator variable z (which conveniently allows for incorporating a fixed cost
for x being in the operating range), and we represent the relevant set disjunctively as
follows. We define

“D f (`,u) :={(0,0,0)}
⋃{

(x,y,1) ∈ R3 : f (`)+ f (u)− f (`)
u−` (x− `)≥ y≥ f (x), u≥ x≥ `

}
.

Notice that for x ∈ {`,u}, we have y = f (x). So, the upper bound on y enables us to
capture the convex hull of the graph of the convex f (x) on [`,u], in the z = 1 plane.

Next, following the notation of [13], we define the perspective relaxation

“S∗f (`,u) := convcl
{
(x,y,z) ∈ R3 :

(
f (`)− f (u)− f (`)

u−` `
)

z+ f (u)− f (`)
u−` x≥ y≥ z f (x/z),

uz≥ x≥ `z, 1≥ z > 0, y≥ 0
}
,

where convcl denotes the convex closure operator. Notice that “perspectivizing” the
convex f (x) produces a more complicated but still convex function z f (x/z), and han-
dling such a function pushes us into the realm of conic programming. On the other
side, perspectivizing the (univariate) linear upper bound on y leads to a (bivariate but
still) linear upper bound on y. Intersecting “S∗f (`,u) with the hyperplane defined by
z = 0, leaves the single point (x,y,z) = (0,0,0), which is only in the set after we take
the closure. In this way, the “perspective and convex closure” construction gives us
exactly the value y = 0 that we want at x = 0. Moreover, “S∗f (`,u) is precisely the
convex closure of “D f (`,u).

We compare convex bodies relaxing “S∗f (`,u) via their volumes, with an eye to-
ward weighing the relative tightness of relaxations against the difficulty of solving
them. Generally, working with “S∗f (`,u) implies using a cone solver (e.g., Mosek),
while relaxations imply the possibility of using more general NLP or even LP solvers;
see [13] for more discussion on this important motivating subject. One key relax-
ation previously studied requires that the domain of f is all of [0,u], f is convex on
[0,u], f (0) = 0, and f is increasing on [0,u]. For example, convex power functions
f (x) := xp with p > 1 have these properties. Assuming these properties, we define
the naïve relaxation

“S0
f (`,u) :=

{
(x,y,z) ∈ R3 :

(
f (`)− f (u)− f (`)

u−` `
)

z+ f (u)− f (`)
u−` x≥ y≥ f (x),

uz≥ x≥ `z, 1≥ z≥ 0
}
.

While the naïve relaxation is weaker than the perspective relaxation, it can be handled
more efficiently and by a wider class of solvers because of its simpler form involving
f (x) rather than z f (x/z).
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1.2 Relation to previous literature

The perspective transformation of a convex function is well known in mathematics
(see [9], for example). Applying it in the context of our disjunction is also well studied
(see [7,6,1], with applications to nonlinear facility location and also mean-variance
portfolio optimization in the style of Markowitz). The idea of using volume to com-
pare relaxations was introduced by [11] (also see [12] and the references therein).
Recently, [14,13] applied the idea of using volumes to evaluate and compare the per-
spective relaxation with other relaxations of our disjunction.

Piecewise linearization is a very well studied and useful concept for handling
nonlinearities (see, for example, [5,15] and also the more recent [19,18] and the many
references therein). It is a natural idea to strengthen a convex piecewise linearization
of a convex univariate function using the perspective idea, and then to evaluate it
using volume computation. This is what we pursue here, concentrating on piecewise-
linear under-estimators of univariate convex functions. We also wish to mention and
emphasize that our techniques are directly relevant for (additively) separable convex
functions (see [8,3], and of course all of the exact global-optimization solvers (which
induce a lot of separability via reformulation using additional variables).

1.3 Our contribution and organization

Our focus is on relaxations related to natural piecewise-linear under-estimators of f .
Piecewise linearization is a standard method for efficiently handling nonlinearities
in optimization. For a convex function, it is easy to get a piecewise-linear under-
estimator. But there are a few issues to consider: the number of linearization points,
how to choose them, and how to handle the resulting piecewise-linearization.

In particular, we look at the behavior of the perspective relaxation associated with
a natural piecewise-linear under-estimator of a convex univariate function, as we vary
the placement and the number of linearization points describing the piecewise-linear
under-estimator.

In §2, we introduce notation for a natural piecewise-linear under-estimator g of f
on [`,u], using linearizations of f (x) at n+1(≥ 2) values of x, namely `=: ξ0 < ξ1 <
· · · < ξn := u, we define the convex relaxation “U∗f (ξξξ ) := “S∗g(`,u), and we describe
an efficient algorithm for determining its volume (Theorem 2.1 and Corollary 2.2).
Armed with this efficient algorithm, any global-optimization software could decide
between members of this family of formulations (depending on the number and place-
ment of linearization points) and also alternatives (e.g., “S∗f (`,u) and “S0

f (`,u), explored
in [13]), trading off tightness of the formulations against the relative ease/difficulty
of working with them computationally.

In §3, we give a more detailed analysis for convex power functions f (x) := xp,
for p > 1. In §3.1, focusing on quadratics (p = 2), we solve the volume-minimization
problem for vol( “U∗f (ξξξ )) when p = 2 (Theorem 3.1), for an arbitrary number of lin-
earization points, thus finding the optimal placement of linearization points for con-
vex quadratics. Further, from this, we recover the associated formula from [13] for
vol(“S∗f (`,u)) (Corollary 3.2), and we demonstrate that the minimum volume is al-
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ways less than the volume of the naïve relaxation when p = 2 (Corollary 3.3). In
§3.2, focusing on non-quadratics (p 6= 2), we first demonstrate with Theorem 3.4 that
all stationary points are strict local minimizer. Next, with Theorem 3.5, we demon-
strate that for p ≤ 2, that the volume function is strictly convex, and so in this case
(Corollary 3.6), we can conclude that it has a unique minimizer. We establish that this
also holds for p > 2 (Theorem 3.9 and Corollary 3.10). We also establish that the op-
timal location of each linearization point is increasing in p on (1,∞) (Theorem 3.11).
Finally, we establish a nice monotone behavior for Newton’s method on our volume
minimization problem (Theorem 3.13). In §3.3, we consider optimal placement of
a single non-boundary linearization point. Furthermore, via a simple transformation,
for the tricky case of minimizing vol( “U∗p(`,ξ1,u)) when p > 2, we can reduce that
problem to maximizing a strictly concave function (Theorem 3.17). Next, we provide
some bounds on the minimizing ξ1 (Theorem 3.18). This can be useful on determin-
ing a reasonable initial point for a minimization algorithm or even for a reasonable
static rule for selecting linearization points. Next, we establish how good our bounds
are in the case of `= 0 (Proposition 3.20).

In §4, we consider several related relaxations that are less computational burden-
some than the perspective relaxation applied to a convex power function or even to a
piecewise-linear under-estimator. To demonstrate the type of results that can be estab-
lished, we focus on convex power functions and ultimately quadratics with equally-
spaced linearization points. In particular, we establish how many linearization points
are needed for various approximations.

2 Piecewise-linear under-estimation and perspective

Piecewise-linear estimation is widely used in optimization. [15] provides some key
relaxations using integer variables, even for non-convex functions on multidimen-
sional (polyhedral) domains. We are particularly interested in piecewise-linear under-
estimation because of its value in global optimization.

Given convex f : [`,u]→ R++, we consider linearization points

`=: ξ0 < ξ1 < · · ·< ξn := u

in the domain of f , and we assume that f is differentiable at these ξi.
At each ξi, we have the tangent line

y = f (ξi)+ f ′(ξi)(x−ξi), (Ti)

for i = 0, . . . ,n. Considering tangent lines Ti and Ti−1 (for adjacent points), we have
the intersection point

(x,y) := (τi, f (ξi)+ f ′(ξi)(τi−ξi)), for i = 1, . . . ,n, (Pi)

where

τi :=
[ f (ξi)− f ′(ξi)ξi]− [ f (ξi−1)− f ′(ξi−1)ξi−1]

f ′(ξi−1)− f ′(ξi)
.
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Finally, we define
(x,y) := (τ0 := `, f (`)) (P0)

and
(x,y) := (τn+1 := u, f (u)). (Pn+1)

It is easy to see that `=: τ0 < τ1 < · · ·< τn+1 := u, and that the piecewise-linear
function g : [`,u]→ R, defined as the function having the graph that connects the Pi,
for i = 0,1, . . . ,n+1, is a convex under-estimator of f (agreeing with f at the ξi; see
Fig. 1. In what follows, g is always defined as above (from f and ξξξ ).

Fig. 1 Piecewise-linear under-estimator

We wish to compute the volume of the set “U∗f (ξξξ ) := “S∗g(`,u). To proceed, we
work with the sequence τ0,τ1, . . . ,τn+1 defined above. Below and later, adet denotes
the absolute value of the determinant.

Theorem 2.1

vol( “U∗f (ξξξ )) =
1
6

n

∑
i=1

adet

 τ0 τi τi+1
g(τ0) g(τi) g(τi+1)

1 1 1

 .

Proof. We wish to compute the volume of the set “U∗f (ξξξ ). This set is a pyramid
with apex (x,y,z) = (0,0,0) and base equal to the intersection of “U∗f (ξξξ ) with the
hyperplane defined by the equation z = 1. The height of the apex over the base is
unity. So the volume of “U∗f (ξξξ ) is simply the area of the base divided by 3. We will
compute the area of the base by straightforward 2-d triangulation. Our triangles are
conv{P0,Pi,Pi+1}, for i = 1, . . . ,n. The area of each triangle is 1/2 of the absolute
determinant of an appropriate 3×3 matrix. The formula follows.

Corollary 2.2 Assuming oracle access to f and f ′, we can compute vol( “U∗f (ξξξ )) in
O(n) time.
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3 Analysis of convex power functions

Convex power functions constitute a broad and flexible class of increasing convex
univariate functions, useful in a wide variety of applications. Additionally, an ability
to handle the power functions xk for integers k≥ 2, already gives us a lower-bounding
method for f (x) := exp(x) by truncating its Maclaurin series ∑

∞
k=1 xk/k!, and working

termwise (on the terms k ≥ 2). More generally, we could approach any univariate
function f : R→ R+ like this, as long as its Maclaurin series has all nonnegative
coefficients; i.e., when all derivatives at 0 are nonnegative. For example, 1/(1− x)k

with integer k ≥ 1 (i.e., the geometric series and its derivatives), sinh(x) and tan(x)
for x < π/2, and arcsin(x) for x < 1. Therefore, analyzing relaxations for power
functions, can have rather broad applicability.

For convenience, let “U∗p(ξξξ ) denote “U∗f (ξξξ ), with f (x) := xp, p > 1.

3.1 Quadratics

We will see that equally-spaced linearization points minimizes the volume of the
relaxation “U∗p(ξξξ ) when p = 2.

Theorem 3.1 Given n ≥ 2, 0 ≤ ξ0 := ` < ξ1 < · · · < ξn−1 < u =: ξn, we have that
ξi := `+ i

n (u−`), for i = 1, . . . ,n−1, is the unique minimizer of vol( “U∗2 (ξξξ )), and the

minimum volume is 1
18 (u− `)3 + (u−`)3

36n2 .

Proof. The intersection points Pi are (
ξi−1+ξi

2 ,ξi−1ξi). We have τi =
ξi−1+ξi

2 for i =
1, . . . ,n+1, and

vol( “U∗2 (ξξξ )) =
1
6

n

∑
i=1

adet

 τ0 τi τi+1
g(τ0) g(τi) g(τi+1)

1 1 1


=

1
12

n

∑
i=1

(ξi+1−ξi−1)(ξi− `)2

=
1

12

[
n

∑
i=1

ξiξi−1(ξi−1−ξi)+u3−2u2`+2u`2− `3

]
,

and

∂ vol( “U∗2 (ξξξ ))
∂ξi

=
1

12
(ξi+1−ξi−1)(2ξi−ξi+1−ξi−1), for i = 1, . . . ,n−1,

∂ 2 vol( “U∗2 (ξξξ ))
∂ξ 2

i
=

1
6
(ξi+1−ξi−1), for i = 1, . . . ,n−1,

∂ 2 vol( “U∗2 (ξξξ ))
∂ξi∂ξi+1

=
1
6
(ξi−ξi+1), for i = 1, . . . ,n−2.
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Therefore, ∇2 vol( “U∗2 (ξξξ )) is a tridiagonal matrix. It is easy to verify that ∇2 vol( “U∗2 (ξξξ ))
is diagonally dominant because (ξi+1−ξi−1)= (ξi+1−ξi)+(ξi−ξi−1), thus ∇2 vol( “U∗2 (ξξξ ))
is positive semidefinite, i.e., vol( “U∗2 (ξξξ )) is convex.

The global minimizer satisfies ∇vol( “U∗2 (ξξξ )) = 0, i.e., 2ξi− ξi+1− ξi−1 = 0 for
i = 1, . . . ,n− 1. Solving these equations gives us the equally-spaced points. Now a
simple calculation gives the minimum volume as

vol( “U∗2 (ξξξ )) =
1
12

(
2
3
(u− `)3 +

1
3n2 (u− `)3

)
=

1
18

(u− `)3 +
(u− `)3

36n2 .

Letting n go to infinity, we recover the volume of the perspective relaxation for
the quadratic “S∗2 := “S∗f (`,u) where f (x) := x2.

Corollary 3.2 ([13]) vol(“S∗2) =
1
18 (u− `)3.

We can also now easily see that by using the perspective of our piecewise-linear
under-estimator, even with only one (well-placed) non-boundary linearization point,
we always outperform the naïve relaxation “S0

2 := “S0
f (`,u), where f (x) := x2.

Corollary 3.3 vol( “U∗2 (ξξξ ))≤ vol(“S0
2), and with equality only if n = 1 and `= 0.

Proof. vol(“S0
2) =

1
18 (u− `)3 +(u3− `3)/36 (see [13]). Notice that

(u− `)3

36n2 ≤ (u− `)3

36
≤ u3− `3

36
.

The first inequality is strict when n > 1, and the second is strict when ` > 0.

3.2 Non-quadratic convex power functions

Considering p 6= 2, even for one non-boundary linearization point, vol( “U∗p(ξξξ )) is not
generally convex in ξ1 for ξξξ = (`,ξ1,u). However, we establish with Theorem 3.4
that any stationary point of vol( “U∗p(ξξξ )) is a strict local minimizer. Therefore, using
any NLP algorithm that can find a stationary point, we are assured that such a point is
a strict local minimizer. Furthermore, we establish with Theorem 3.5 that when 1 <
p≤ 2, we have that vol( “U∗p(ξξξ )) is indeed convex in (ξ1, . . . ,ξn−1). Therefore, for 1 <
p≤ 2, using any NLP algorithm that can find a stationary point, we will in fact find a
global minimum. For p > 2, we simplify the gradient condtion ∇vol( “U∗p(ξξξ )) = 0 and
establish with Theorem 3.9 that the volume function has a unique stationary point.
We also establish with Theorem 3.11 that the optimal location of each linearization
point is increasing in p on (0,∞). Furthermore, we establish with Theorem 3.13 that
the iterates of Newton’s method have monotonic convergence on this function.

Theorem 3.4 For 0 ≤ ` < u, p > 1, and ξξξ := (`,ξ1, . . . ,ξn−1,u) (` < ξ1 < · · · <
ξn−1 < u), if ξξξ satisfies ∇vol( “U∗p(ξξξ )) = 0, then ∇2 vol( “U∗p(ξξξ )) is positive definite.
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Proof. The intersection points Pi are
(

p−1
p

ξ
p
i −ξ

p
i−1

ξ
p−1
i −ξ

p−1
i−1

,(p−1)ξ p−1
i−1 ξ

p−1
i

ξi−ξi−1

ξ
p−1
i −ξ

p−1
i−1

)
.

Let τn+1 := u, and τi := p−1
p

ξ
p
i −ξ

p
i−1

ξ
p−1
i −ξ

p−1
i−1

for i = 1, . . . ,n.

vol( “U∗p(ξξξ )) =
1
6

n

∑
i=1

adet

 τ0 τi τi+1
g(τ0) g(τi) g(τi+1)

1 1 1


=− (p−1)2

6p

n

∑
i=1

(ξ p
i −ξ

p
i−1)

2

ξ
p−1
i −ξ

p−1
i−1

+
1
6
((p−1)up+1−up`+u`p− (p−1)`p)

=− (p−1)2

6p

n

∑
i=1

ξ
p−1
i−1 ξ

p−1
i (ξi−ξi−1)

2

ξ
p−1
i −ξ

p−1
i−1

+
(p−1)

6p
(up+1− `p+1)− 1

6
(up`−u`p).

Therefore, for i = 1, . . . ,n−1,
∂ vol( “U∗p (ξξξ ))

∂ξi
=

−
(p−1)ξ p−2

i
6p

(ξ
p
i +(p−1)ξ p

i+1− pξiξ
p−1
i+1

ξ
p−1
i+1 −ξ

p−1
i

)2

−

(
ξ

p
i +(p−1)ξ p

i−1− pξiξ
p−1
i−1

ξ
p−1
i−1 −ξ

p−1
i

)2
 ,

and for i = 1, . . . ,n−2,
∂ 2 vol( “U∗p (ξξξ ))

∂ξi∂ξi+1
=

− (p−1)2

3p
ξ

p−2
i ξ

p−2
i+1 [(p−1)ξ p

i+1 +ξ
p
i − pξ

p−1
i+1 ξi)][ξ

p
i+1 +(p−1)ξ p

i − pξi+1ξ
p−1
i ]

(ξ p−1
i+1 −ξ

p−1
i )3

.

For simplicity, we denote for i = 0,1, . . . ,n−1,

bi :=
(p−1)2

3p
ξ

p−2
i ξ

p−2
i+1 [(p−1)ξ p

i+1 +ξ
p
i − pξ

p−1
i+1 ξi)][ξ

p
i+1 +(p−1)ξ p

i − pξi+1ξ
p−1
i ]

(ξ p−1
i+1 −ξ

p−1
i )3

.

By Lemma A.1 (See Appendix), we have b0 ≥ 0 and bi > 0, for i = 1,2, . . . ,n− 1.
Then, for i = 1,2, . . . ,n−1,

∂ 2 vol( “U∗p(ξξξ ))

∂ξ 2
i

=
p
ξi

∂ vol( “U∗p(ξξξ ))
∂ξi

+
ξi−1

ξi
bi−1 +

ξi+1

ξi
bi .

If ξξξ satisfies ∇vol( “U∗p(ξξξ )) = 0, then ∇2 vol( “U∗p(ξξξ )) is an (n−1)× (n−1) sym-
metric tridiagonal matrix with off-diagonal elements −b1, . . . ,−bn−2 and diagonal
elements a1, . . . ,an−1 where ai := ξi−1

ξi
bi−1 +

ξi+1
ξi

bi.

Notice that ∇2 vol( “U∗p(ξξξ )) = λe1e>1 +M, where λ = ξ0b0
ξ1
≥ 0, M := PDP>, D :=

diag( ξ2
ξ1

b1,
ξ3
ξ2

b2, . . . ,
ξn

ξn−1
bn−1), and P = [pi j] is a lower-triangular matrix with

pi j :=


1, i = j ;
− ξi−1

ξi
j = i−1 ;

0, otherwise.
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Because M = PDP> is positive definite, and λe1e>1 is positive semidefinite, we have
that ∇2 vol( “U∗p(ξξξ )) is positive definite.

Theorem 3.5 For 0≤ ` < u, 1 < p≤ 2, and ξξξ := (`,ξ1, . . . ,ξn−1,u) (` < ξ1 < · · ·<
ξn−1 < u), vol( “U∗p(ξξξ )) is strictly convex in (ξ1, . . . ,ξn−1).

Remark 3.1 When p > 2, for the single non-boundary linearization point case, we
can demonstrate that vol( “U∗p(ξξξ )) is quasiconvex in ξ1 (Theorem 3.14). However, for
the multiple non-boundary linearization points case, vol( “U∗p(ξξξ )) is no longer guaran-
teed to be quasiconvex (from computation). A necessary condition for the quasicon-
vexity of vol( “U∗p(ξξξ )) is that for all ξξξ (` < ξ1 < · · · < ξn−1 < u), and d ∈ Rn−1, we
have

d>∇vol( “U∗p(ξξξ )) = 0 ⇒ d>∇
2 vol( “U∗p(ξξξ ))d ≥ 0.

(see [4]). This is equivalent to: either ∇vol( “U∗p(ξξξ )) = 0 and ∇2 vol( “U∗p(ξξξ )) positive
semidefinite or ∇vol( “U∗p(ξξξ )) 6= 0 and the matrix[

∇2∇vol( “U∗p(ξξξ )) ∇vol( “U∗p(ξξξ ))
∇vol( “U∗p(ξξξ ))

> 0

]
has exactly one negative eigenvalue. We can easily find examples where this matrix
has more than one negative eigenvalue. For example, for p = 3, n = 3, ξ1 = 0.2,
ξ2 = 0.8, the eigenvalues are approximately −0.03950, −0.00086, and 0.30807.

Proof. (Theorem 3.5) Recall that ∇2 vol( “U∗p(ξξξ )) is an (n− 1)× (n− 1) symmetric
tridiagonal matrix with off-diagonal elements −b1, . . . ,−bn−2 and diagonal elements

a1, . . . ,an−1 satisfying ai =
p
ξi

∂ vol( “U∗p (ξξξ ))
∂ξi

+
ξi−1

ξi
bi−1 +

ξi+1
ξi

bi, where
∂ vol( “U∗p (ξξξ ))

∂ξi
=

−
(p−1)ξ p−2

i
6p

(ξ
p
i +(p−1)ξ p

i+1− pξiξ
p−1
i+1

ξ
p−1
i+1 −ξ

p−1
i

)2

−

(
ξ

p
i +(p−1)ξ p

i−1− pξiξ
p−1
i−1

ξ
p−1
i−1 −ξ

p−1
i

)2
.

bi =
(p−1)2

3p
ξ

p−2
i ξ

p−2
i+1 [(p−1)ξ p

i+1 +ξ
p
i − pξ

p−1
i+1 ξi)][ξ

p
i+1 +(p−1)ξ p

i − pξi+1ξ
p−1
i ]

(ξ p−1
i+1 −ξ

p−1
i )3

.

To show that ∇2 vol( “U∗p(ξξξ )) is positive definite, we will apply a result from [2] to

prove that ai > 0 and
{

b2
i

aiai+1

}n−2

i=1
is a chain sequence; that is, there exists a parameter

sequence {ci}n−2
i=0 such that b2

i
aiai+1

= ci(1− ci−1) with 0 ≤ c0 < 1 and 0 < ci < 1
for i ≥ 1. Also, we use the fact that if {αi} is a chain sequence, and 0 < βi ≤ αi,
then {βi} is also a chain sequence. Therefore, we only need to show that ai > 0
and find a parameter sequence {ci} such that 0 ≤ c0 < 1, 0 < ci < 1 for i ≥ 1, and

0 <
b2

i
aiai+1

≤ ci(1− ci−1). Let ci := di+1
ai+1

, where

di :=
(p−1)ξ p−2

i
6ξi

(
ξ

p
i +(p−1)ξ p

i−1− pξiξ
p−1
i−1

ξ
p−1
i−1 −ξ

p−1
i

)2

+
ξi−1

ξi
bi−1.
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Thus d1 ≥ 0 and di > 0 for i ≥ 2. Also, letting ti := ξi
ξi+1

, t0 ∈ [0,1), ti ∈ (0,1) for
i≥ 1, we have

ai−di =−
(p−1)ξ p−2

i
6ξi

(
ξ

p
i +(p−1)ξ p

i+1− pξiξ
p−1
i+1

ξ
p−1
i+1 −ξ

p−1
i

)2

+
ξi+1

ξi
bi

=
(p−1)ξ p−2

i
6ξi

(
ξ

p
i +(p−1)ξ p

i+1− pξiξ
p−1
i+1

ξ
p−1
i+1 −ξ

p−1
i

)

×

(
−

ξ
p
i +(p−1)ξ p

i+1− pξiξ
p−1
i+1

ξ
p−1
i+1 −ξ

p−1
i

+
2(p−1)ξ p−1

i+1

p(ξ p−1
i+1 −ξ

p−1
i )

ξ
p
i+1 +(p−1)ξ p

i − pξi+1ξ
p−1
i

ξ
p−1
i+1 −ξ

p−1
i

)

=
(p−1)ξ p−1

i+1 t p−3
i (t p

i +(p−1)− pti)

6p(1− t p−1
i )3

× (p(t p−1
i −1)(t p

i +(p−1)− pti)+2(p−1)((p−1)t p
i +1− pt p−1

i ))

=
(p−1)ξ p−1

i+1 t p−3
i (t p

i +(p−1)− pti)

6p(1− t p−1
i )3

× (pti(t
p−1
i −1)2 +(p−1)[(p−2)(t p

i −1)− p(t p−1
i − ti)]).

By Lemma A.1 and Lemma A.2(i) (See Appendix), we have that ai−di > 0. There-
fore, ai > di ≥ 0, and we have constructed {ci} satisfying 0≤ c0 < 1 and 0 < ci < 1
for i≥ 1. Notice that

di =
(p−1)ξ p−1

i ((p−1)t p
i−1 +1− pt p−1

i−1 )

6p(1− t p−1
i−1 )3

× (p(1− t p−1
i−1 )((p−1)t p

i−1 +1− pt p−1
i−1 )+2(p−1)t p−1

i−1 (t p
i−1 +(p−1)− pti−1)),

b2
i =

(p−1)4

9p2

ξ
2(p−1)
i+1 t2(p−2)

i ((p−1)+ t p
i − pti))2(1+(p−1)t p

i − pt p−1
i )2

(1− t p−1
i )6

.

We have

aiai+1ci(1− ci−1)

b2
i

=
di+1 (ai−di)

b2
i

=
1

4(p−1)2
1

t p−1
i ((p−1)t p

i +1− pt p−1
i )(t p

i +(p−1)− pti)

× (p(1− t p−1
i )2− (p−1)t p−1

i [(p−2)(t p
i −1)− p(t p−1

i − ti)])

× (pti(t
p−1
i −1)2 +(p−1)[(p−2)(t p

i −1)− p(t p−1
i − ti)])

= 1+
1

4(p−1)2
p(1− t p−1

i )2

t p−1
i ((p−1)t p

i +1− pt p−1
i )(t p

i +(p−1)− pti)

× (pti(1− t p−1
i )2− p(p−1)2t p−1

i (1− ti)2+

(p−1)(1− t p
i )[(p−2)(t p

i −1)− p(t p−1
i − ti)])
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=:1+
1

4(p−1)2
p(1− t p−1

i )2

t p−1
i ((p−1)t p

i +1− pt p−1
i )(t p

i +(p−1)− pti)
W (ti).

W ′(t) =−2p(p−1)t p−1[(p−2)(t p−1)− p(t p−1− t)]

+ p2[(1− t p−1)2− (p−1)2t p−2(1− t)2].

By Lemma A.2(i) and Lemma A.3(i) (See Appendix), W ′(t)≤ 0 for t ∈ (0,1). Thus

W (t) ≥W (1) = 0 for t ∈ [0,1). Therefore, ci(1− ci−1) ≥
b2

i
aiai+1

. We conclude that

∇2 vol( “U∗p(ξξξ )) is positive definite, and vol( “U∗p(ξξξ )) is strictly convex.

Remark 3.2 Unlike the p = 2 case (Theorem 3.1), ∇2 vol( “U∗p(ξξξ )) is not guaranteed
to be diagonally dominant. Examples can be easily constructed even for n = 2; for
example, p = 1.5, n = 2, ξ = (0,0.2,0.8,1), ∇2 vol( “U∗p(ξξξ ))≈

[ 0.1366 −0.0621
−0.0621 0.0587

]
. This

is why we brought in the relatively-sophisticated technique of using chain sequences.

We immediately have the following very-useful result.

Corollary 3.6 For 1 < p ≤ 2 and fixed `, u, n, vol( “U∗p(ξξξ )) has a unique minimizer
satisfying ` < ξ1 < · · ·< ξn−1 < u.

Next we are going to establish that vol( “U∗p(ξξξ )) also has a unique minimizer when
p > 2. As mentioned in Remark 3.1, vol( “U∗p(ξξξ )) is not guaranteed to be quasi-
convex when p > 2. But with some efforts, we are going to show that vol( “U∗p(ξξξ ))
has a unique stationary point. For ` < ξ1 < · · · < ξn−1 < u, it is easy to see that
∇vol( “U∗p(ξξξ ))= 0 is equivalent to F(ξξξ )= 0, where F(ξξξ )= [F1(ξξξ ),F2(ξξξ ), . . . ,Fn−1(ξξξ )]

>,

Fi(ξξξ ) :=−
ξ

p
i +(p−1)ξ p

i+1− pξiξ
p−1
i+1

ξ
p−1
i+1 −ξ

p−1
i

+
ξ

p
i +(p−1)ξ p

i−1− pξiξ
p−1
i−1

ξ
p−1
i −ξ

p−1
i−1

.

Lemma 3.7 Assume that ` < ξ1 < · · ·< ξn−1 < u. If either: (i) 1< p< 2 and F(ξξξ )≥
0, or (ii) p > 2, then [F ′(ξξξ )]−1 is nonnegative.

Proof. F ′(ξξξ ) =
[

∂Fi(ξξξ )
∂ξ j

]
i j
∈ R(n−1)×(n−1), where

∂Fi(ξξξ )

∂ξi
=

1
ξi

(
Fi(ξξξ )−ξi−1

∂Fi(ξξξ )

∂ξi−1
−ξi+1

∂Fi(ξξξ )

∂ξi+1

)
(1)

= H(ξi−1,ξi)+H(ξi,ξi+1)−
∂Fi(ξξξ )

∂ξi−1
− ∂Fi(ξξξ )

∂ξi+1
, (2)

H(y,z) =
(yp−1− zp−1)2− (p−1)2yp−2zp−2(y− z)2

(yp−1− zp−1)2 ,

∂Fi(ξξξ )

∂ξi−1
=−

(p−1)ξ p−2
i−1 [(p−1)ξ p

i +ξ
p
i−1− pξ

p−1
i ξi−1]

(ξ p−1
i −ξ

p−1
i−1 )2

,
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∂Fi(ξξξ )

∂ξi+1
=−

(p−1)ξ p−2
i+1 [(p−1)ξ p

i +ξ
p
i+1− pξ

p−1
i ξi+1]

(ξ p−1
i −ξ

p−1
i+1 )2

.

First, by Lemma A.1 (See Appendix), we have that all off-diagonal elements of F ′(ξξξ )
are nonpositive; thus F ′(ξξξ ) is a Z-matrix1 [F ′(ξξξ )]−1 ≥ 0 is one of the equivalent
conditions that F ′(ξξξ ) is an M-matrix2

(i) If 1 < p < 2 and Fi(ξξξ )≥ 0, then from (1) and ∂F1(ξξξ )
∂ξ0

≤ 0, we have

F ′(ξξξ ) = diag
(

F1(ξξξ )

ξ1
,

F2(ξξξ )

ξ2
, . . . ,

Fn−1(ξξξ )

ξn−1

)
− ξ0

ξ1

∂F1(ξξξ )

∂ξ0
e1e>1 +LU ≥ LU,

where

L :=



− ξ2
ξ1

∂F1(ξξξ )
∂ξ2

0 0 . . . 0
∂F2(ξξξ )

∂ξ1
− ξ3

ξ2

∂F2(ξξξ )
∂ξ3

0 . . . 0

0 ∂F3(ξξξ )
∂ξ2

− ξ4
ξ3

∂F3(ξξξ )
∂ξ4

. . . 0
... . . . . . .

. . .
...

0 . . . . . .
∂Fn−1(ξξξ )

∂ξn−2
− ξn

ξn−1

∂Fn−1(ξξξ )
∂ξn


,

U :=



1 − ξ1
ξ2

0 . . . 0

0 1 − ξ2
ξ3

. . . 0
... . . .

... . . .
...

... . . . 0 1 − ξn−2
ξn−1

0 . . . . . . 0 1


.

All the diagonal elements of L,U are positive, which implies that LU is an M-matrix.
Thus F ′(ξξξ )≥ LU is also an M-matrix3.

(ii) If p > 2, then by Lemma A.3(ii) (See Appendix), H(y,z) = H(y/z,1)> 0 for
any y 6= z. Therefore, from (2) we have that F ′(ξξξ )1 > 0 where 1 is an all-1 vector,
which implies that F ′(ξξξ ) is an M-matrix.

Lemma 3.8 Assume that ` < ξ1 < · · · < ξn−1 < u. (i) If 1 < p < 2, then Fi(ξξξ ) is
convex; (ii) If p > 2, then Fi(ξξξ ) is concave.

Proof. We have

∂ 2Fi(ξξξ )

∂ξ 2
i

=−ξi−1

ξi

∂ 2Fi(ξξξ )

∂ξi∂ξi−1
− ξi+1

ξi

∂ 2Fi(ξξξ )

∂ξi∂ξi+1
,

1 A square matrix A = [ai j] (not necessary symmetric) is called a Z-matrix if all of its off-diagonal
entries are nonpositive.

2 A Z-matrix A is an M-matrix if it is positive stable, that is, all of its eigenvalues have positive real parts.
In fact, the following conditions are equivalent for a Z-matrix to be an M-matrix: (1) All real eigenvalues
of A are positive; (2) A is nonsingular and A−1 is nonnegative; (3) A = LU where L is lower triangular and
U is upper triangular and all of the diagonal elements of L,U are positive; (4) There exists a vector x > 0
such that Ax > 0; see [10, Theorem 2.5.3].

3 The result follows from: if x̂ > 0 and LUx̂ > 0, then F ′(ξξξ )x̂≥ LUx̂ > 0. (See [10, Theorem 2.5.4].)
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∂ 2Fi(ξξξ )

∂ξ 2
i−1

=− ξi

ξi−1

∂ 2Fi(ξξξ )

∂ξi∂ξi−1
,

∂ 2Fi(ξξξ )

∂ξ 2
i+1

=− ξi

ξi+1

∂ 2Fi(ξξξ )

∂ξi∂ξi+1
,

where

∂ 2Fi(ξξξ )

∂ξi∂ξi−1
=−

(p−1)2ξ
p−2
i−1 ξ

p−2
i [(2− p)(ξ p

i −ξ
p
i−1)− p(ξiξ

p−1
i−1 −ξ

p−1
i ξi−1)]

(ξ p−1
i −ξ

p−1
i−1 )3

,

∂ 2Fi(ξξξ )

∂ξi∂ξi+1
=−

(p−1)2ξ
p−2
i+1 ξ

p−2
i [(2− p)(ξ p

i −ξ
p
i+1)− p(ξiξ

p−1
i+1 −ξ

p−1
i ξi+1)]

(ξ p−1
i −ξ

p−1
i+1 )3

.

Notice that

∇
2Fi(x) =

 1 0 0
− ξi−1

ξi
1 0

0 − ξi
ξi+1

1


−

ξi
ξi−1

∂ 2Fi(ξξξ )
∂ξi∂ξi−1

0 0

0 − ξi+1
ξi

∂ 2Fi(ξξξ )
∂ξi∂ξi+1

0
0 0 0


1 − ξi−1

ξi
0

0 1 − ξi
ξi+1

0 0 1

 .
By Lemma A.2 (See Appendix), we have that ∂ 2Fi(x)

∂ξi∂ξi−1
< 0, ∂ 2Fi(x)

∂ξi∂ξi+1
< 0 (> 0) when

1 < p < 2 (p > 2). Therefore, ∇2Fi(x) (-∇2Fi(x)) is positive semidefinite if 1 < p < 2
(p > 2), which implies that Fi(x) is convex (concave) when 1 < p < 2 (p > 2).

Theorem 3.9 If p > 2, there exists a unique ξξξ
∗ (` < ξ ∗1 < · · ·< ξ ∗n−1 < u) such that

F(ξξξ
∗
) = 0.

Proof. Suppose that F(ξξξ
1
) = F(ξξξ

2
) = 0. By Lemma 3.7 (See Appendix), we have

that [F ′(ξξξ 1
)]−1 and [F ′(ξξξ 2

)]−1 are nonnegative. Also from Lemma 3.8, we have that
Fi(ξξξ ) is concave, which implies that

0 = F(ξξξ
1
)−F(ξξξ

2
)≤ F ′(ξξξ 2

)(ξξξ
1−ξξξ

2
),

0 = F(ξξξ
2
)−F(ξξξ

1
)≤ F ′(ξξξ 1

)(ξξξ
2−ξξξ

1
).

Therefore,

ξξξ
1−ξξξ

2
= [F ′(ξξξ 2

)]−1(F ′(ξξξ 2
)(ξξξ

1−ξξξ
2
))≥ 0,

ξξξ
2−ξξξ

1
= [F ′(ξξξ 1

)]−1(F ′(ξξξ 1
)(ξξξ

2−ξξξ
1
))≥ 0,

which implies ξξξ
1
= ξξξ

2.

We immediately have the following very-useful result.

Corollary 3.10 For p > 2 and fixed `, u, n, vol( “U∗p(ξξξ )) has a unique minimizer
satisfying ` < ξ1 < · · ·< ξn−1 < u.

It is interesting and potentially useful to understand the behavior of the optimal
locations of linearization points as a function of the power p > 1.
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Theorem 3.11 For fixed ` and u, and ` < ξ1 < · · · < ξn−1 < u, suppose that ξξξ =
(`,ξ1, . . . ,ξn−1,u) minimizes vol( “U∗p(ξξξ )). Then ξi (i = 1,2, . . . ,n−1) is increasing in
p on (1,∞).

Proof. By Corollary 3.6 and 3.10, we have that ξξξ is unique and satisfies ∇vol( “U∗p(ξξξ ))=
0 , i.e., F(ξξξ ) = 0, where

Fi(ξξξ ) :=−
ξ

p
i +(p−1)ξ p

i+1− pξiξ
p−1
i+1

ξ
p−1
i+1 −ξ

p−1
i

+
ξ

p
i +(p−1)ξ p

i−1− pξiξ
p−1
i−1

ξ
p−1
i −ξ

p−1
i−1

= 0.

Recall from Lemma 3.7 that when F(ξξξ ) = 0, [F ′(ξξξ )]−1 is nonnegative for p > 1.
Let Fi(p,ξξξ ) := Fi(ξξξ ) to emphasize the dependence p. By the implicit function theo-
rem, there exists a small neighborhood around (p,ξξξ ) and a function ΞΞΞ(p) such that
ΞΞΞ(p) = ΞΞΞ , F(p,ΞΞΞ(p))) = 0, and

∂ΞΞΞ(p)
∂ p

=−
[

∂Fi(p,ΞΞΞ(p))
∂ξ j

]−1
∂F(p,ΞΞΞ(p))

∂ p
.

We claim that ∂F(p,ξξξ )
∂ p is negative when F(p,ξξξ ) = 0. Because [F ′(ξξξ )]−1 is nonnega-

tive, it follows that ∂ΞΞΞ(p)
∂ p > 0.

We only need to prove the above claim.

∂F(p,ξξξ )
∂ p

=
Fi(p,ξξξ )

p

−
p(p−1)ξ p−1

i+1 ξ
p−1
i (ξi+1−ξi) log ξi

ξi+1
+(ξ p

i+1−ξ
p
i )(ξ

p−1
i+1 −ξ

p−1
i )

p(ξ p−1
i+1 −ξ

p−1
i )2

−
p(p−1)ξ p−1

i−1 ξ
p−1
i (ξi−1−ξi) log ξi

ξi−1
+(ξ p

i−1−ξ
p
i )(ξ

p−1
i−1 −ξ

p−1
i )

p(ξ p−1
i−1 −ξ

p−1
i )2

.

Then using Lemma A.4 (See Appendix) and Fi(p,ξξξ ) = 0, we have

∂F(p,ξξξ )
∂ p

<
Fi(p,ξξξ )

p
= 0.

Starting from equally-spaced points, we can numerically compute the minimizer
ξξξ by solving the nonlinear optimality equation F(ξξξ ) = 0 via Newton’s method (see,
e.g. [17]). Illustrating Theorem 3.11, Figure 2 shows the computed ξξξ for varying p,
with n = 5, `= 0, u = 1.

In fact, we can show that Newton’s method behaves very nicely on this function.

Proposition 3.12 For the equally-spaced linearization points ξi := `+ i
n (u− `), we

have F(ξξξ )> 0 when 1 < p < 2, and F(ξξξ )< 0 when p > 2.
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Fig. 2 minimizing ξξξ for varying p (n = 5, `= 0, u = 1).

Proof. We only need to prove the single-linearization-point case, because ξi =
ξi−1+ξi+1

2
for i− 1, . . . ,n− 1. Let ξ̂1(p) be the unique optimal solution for power p. Then
F(ξ̂1(p)) = 0 and ξ̂1(2) = `+u

2 is the equally-spaced linearization point. By Lemma
3.7, we have that F ′(ξ̂1(p))> 0.

For 1 < p < 2, by Theorem 3.11, ξ̂1(p)≤ ξ̂1(2). Therefore,

F(ξ̂1(2))≥ F(ξ̂1(p))+F ′(ξ̂1(p))(ξ̂1(2)− ξ̂1(p))≥ 0,

because of the convexity of F(ξ1) (Lemma 3.8(i)).
For p > 2, by Theorem 3.11, ξ̂1(p)≥ ξ̂1(2). Therefore,

F(ξ̂1(2))≤ F(ξ̂1(p))+F ′(ξ̂1(p))(ξ̂1(2)− ξ̂1(p))≤ 0,

because of the concavity of F(ξ1) (Lemma 3.8(ii)).

Theorem 3.13 Starting from an initial point x0 = (`+ (u−`)
n , . . . , `+ i(u−`)

n , . . . , `+
(n−1)(u−`)

n )>, construct the Newton’s-method sequence {xk} by iterating

xk+1 := xk− [F ′(xk)]−1F(xk).

Then {xk} is monotonically decreasing (increasing) to x∗ when 1 < p < 2 (respec-
tively, p > 2), where x∗ satisfies F(x∗) = 0.

Proof. The result follows from Lemma 3.7, Lemma 3.8 and the “Monotone Newton
Theorem” [17, Theorem 13.3.4]. In the Appendix, we provide a short direct proof.

Remark 3.3 For the case of a single non-boundary linearization point, the result also
directly follows from the facts that F ′(ξ1) 6= 0 and F(ξ1)F ′′(ξ1)> 0 for all ξ1 between
x0 and ξ̂1(p) (See [16]).
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3.3 Optimal placement of a single non-boundary linearization point

It is interesting to make a detailed study of optimal placement of a single non-
boundary linearization point, as it relates to necessary optimality conditions for ξξξ ,
and it can give us a means to carry out a fast parallel coordinate-descent style al-
gorithm. In this direction, we will establish that vol( “U∗p(`,ξ1,u)) has a unique mini-
mizer.

Theorem 3.14

(i) If 1 < p≤ 2, then vol( “U∗p(`,ξ1,u)) is strictly convex in ξ1.
(ii) If p > 2, then vol( “U∗p(`,ξ1,u)) is quasiconvex in ξ1.

Proof. (i) follows directly from Theorem 3.5. (ii) follows directly from Theorem 3.4
(when d

dξ1
vol( “U∗p(`,ξ1,u)) = 0, d2

dξ 2
1

vol( “U∗p(`,ξ1,u))> 0).

We immediately have the following very-useful result.

Corollary 3.15 For all p > 1, vol( “U∗p(`,ξ1,u)) has a unique minimizer on (`,u).

Proposition 3.16 For all p > 2, vol( “U∗p(`,ξ1,u)) is convex in ξ1 to the right of the
minimizer, and not convex near `.

Proof.

∂ 2 vol( “U∗p(`,ξ1,u))

∂ξ 2
1

=
p
ξ1

∂ vol( “U∗p(`,ξ1,u))
∂ξ1

+
`

ξ1
b`+

u
ξ1

bu,

where

p
ξ1

∂ vol( “U∗p(`,ξ1,u))
∂ξ1

=−
(p−1)ξ p−2

1
6p

(ξ
p
1 +(p−1)up− pξ1up−1

up−1−ξ
p−1
1

)2

−

(
ξ

p
1 +(p−1)`p− pξ1`

p−1

ξ
p−1
1 − `p−1

)2
 ,

b` =
(p−1)2

3p
ξ

p−2
1 `p−2[(p−1)ξ p

1 + `p− pξ
p−1
1 `)][ξ p

1 +(p−1)`p− pξi`
p−1]

(ξ p−1
1 − `p−1)3

> 0,

bu =
(p−1)2

3p
ξ

p−2
1 up−2[(p−1)ξ p

1 +up− pξ
p−1
1 u)][ξ p

1 +(p−1)up− pξ1up−1]

(up−1−ξ
p−1
1 )3

> 0.

Suppose that ξ ∗1 is the minimizer of vol( “U∗p(`,ξ1,u)). By Theorem 3.17, we have that

∂ loghp(ξ1)

∂ξ1
=− 1

hp(ξ1)

∂ vol( “U∗p(`,ξ1,u))
∂ξ1

is decreasing on (`,u). Therefore,

∂ vol( “U∗p(`,ξ1,u))
∂ξ1

{
< 0, for ξ1 ∈ (`,ξ ∗1 ) ;
> 0, for ξ1 ∈ (ξ ∗1 ,u).
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So
∂ 2 vol( “U∗p (`,ξ1,u))

∂ξ 2
1

> 0 for ξ1 ∈ (ξ ∗1 ,u).

Next, we demonstrate that
∂ 2 vol( “U∗p (`,ξ1,u))

∂ξ 2
1

can be negative near ` when `/u is

small enough. Notice that lim
ξ1→`

b` = 0, and

lim
ξ1→`

∂ vol( “U∗p(`,ξ1,u))
∂ξ1

=− (p−1)`p−2

6p

(
`p +(p−1)up− p`up−1

up−1− `p−1

)2

.

Therefore,

lim
ξ1→`

∂ 2 vol( “U∗p(`,ξ1,u))

∂ξ 2
1

= − (p−1)`p−3

6

(
`p +(p−1)up− p`up−1

up−1− `p−1

)2

+
u
`

lim
ξ1→`

bu

= − (p−1)`p−3[(p−1)up + `p− pup−1`]

6p(up−1− `p−1)3

×
[
(p−1)up−1[(p−2)(up− `p)− pu`(up−2− `p−2)]− p`(up−1− `p−1)2

]
:= − (p−1)`p−3[(p−1)up + `p− pup−1`]

6p(up−1− `p−1)3 u2p−1k1(
`

u
),

where k1(t) := (p− 1)[(p− 2)(1− t p)− p(t − t p−1)]− pt(1− t p−1)2. Notice that

lim
t→0

k1(t)= (p−1)(p−2)> 0, because p> 2. Thus, when `/u tends to 0,
∂ 2 vol( “U∗p (`,ξ1,u))

∂ξ 2
1

is negative.

Even though vol( “U∗p(`,ξ1,u)) is not generally convex in ξ1 for p > 2, through a
simple transformation, we can finds its unique minimizer (which we already know ex-
ists because it is quasiconvex) by equivalently maximizing a related strictly concave
function.

Theorem 3.17 If p > 2, then hp(ξ1) :=C−vol( “U∗p(`,ξ1,u)) is strictly log-concave,
where

C =
((p−1)up + `p− pup−1`)(up +(p−1)`p− pu`p−1)

6p(up−1− `p−1)
.

Proof. hp(ξ1)=
(p−1)2(up−1−`p−1)

6p q1(ξ1)q2(ξ1), where q1(x)=
(

up−`p

up−1−`p−1 − xp−`p

xp−1−`p−1

)
,

and q2(x) =
(

xp−up

xp−1−up−1 − up−`p

up−1−`p−1

)
. We calculate

q′1(x) =−
xp−2[xp− `p− p`p−1(x− `)]

(xp−1− `p−1)2 ;

q′′1(x) =−
(p−1)xp−3`p−1[(p−2)(xp− `p)− p`x(xp−2− `p−2)]

(xp−1− `p−1)3 .
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Similarly,

q′2(x) =
xp−2[xp−up− pup−1(x−u)]

(xp−1−up−1)2 ;

q′′2(x) =
(p−1)xp−3up−1[(p−2)(xp−up)− pux(xp−2−up−2)]

(xp−1−up−1)3 .

Because of Lemma A.1(ii) (See Appendix), q′1(x) < 0, q′2(x) > 0 on (`,u). Thus
q1(x)> q1(u) = 0 and q2(x)> q2(`) = 0. Because of Lemma A.2(ii) (See Appendix),
q′′1(x)< 0, q′′2(x)> 0.

We are going to show that q1(x) and q2(x) is strictly log-concave for p > 2.

(logq1(x))′′ =
q1(x)q′′1(x)− (q′1(x))

2

q1(x)2 < 0.

Note that q′′2(x)> 0 and q2(x)≤ xp−up

xp−1−up−1 −u = xp−1(x−u)
xp−1−up−1 , thus

q2(x)q′′2(x)− (q′2(x))
2

≤ xp−1(x−u)
xp−1−up−1

(p−1)xp−3up−1[(p−2)(xp−up)− pux(xp−2−up−2)]

(xp−1−up−1)3

− x2(p−2)[xp−up− pup−1(x−u)]2

(xp−1−up−1)4

=
x2(p−2)

(xp−1−up−1)4

[
(p−1)up−1(x−u)[(p−2)(xp−up)− pux(xp−2−up−2)]

− [xp−up− pup−1(x−u)]2
]

=
x2(p−2)

(xp−1−up−1)4

[
− (p−1)up−2(x−u)2[up− xp− pxp−1(u− x)]

− x2[(xp−1−up−1)2− (p−1)2up−2xp−2(x−u)2]
]
.

By Lemma A.1(ii) and Lemma A.3(ii) (See Appendix), we have (logq2(x))′′ < 0.

Therefore, hp(x) =
(p−1)2(up−1−`p−1)

6p q1(x)q2(x) is the product of two strictly log-
concave function and is thus strictly log-concave.

Next, we provide some bounds on the minimizing ξ1. This can be useful for de-
termining a reasonable initial point for a minimization algorithm (better than equally
spaced) or even for a reasonable static rule for selecting linearization points. Addi-
tionally, we can see these bounds as necessary conditions for a minimizer.

Theorem 3.18 For fixed ` and u, assume that ξ1 minimizes vol( “U∗p(`,ξ1,u)), then

(i) if p = 2, then ξ1 =
u+`

2 ;
(ii) if 1 < p < 2, then(

up−1 + `p−1

2

) 1
p−1

<
(p−1)(up− `p)

p(up−1− `p−1)
< ξ1 <

(
up− `p

p(u− `)

) 1
p−1

<
u+ `

2
;
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(iii) if p > 2, then

(
up−1 + `p−1

2

) 1
p−1

>
(p−1)(up− `p)

p(up−1− `p−1)
> ξ1 >

(
up− `p

p(u− `)

) 1
p−1

>
u+ `

2
.

Proof. (i) follows directly from Theorem 3.1 when n= 2. We only prove (ii), because
(iii) follows a similar proof. ξ1 satisfies the optimal condition d

dξ1
vol( “U∗p(`,ξ1,u)) =

0, which is equivalent to

F(x) :=
xp +(p−1)`p− p`p−1x

xp−1− `p−1 − xp +(p−1)up− pup−1x
up−1− xp−1 = 0.

First, note that if 1 < p < 2, and x0 satisfies F(x0) < 0, then ξ1 > x0; if x0 satisfies
F(x0)> 0, then ξ1 < x0.

For the lower bound, notice that

F(x) =
xp +(p−1)`p− p`p−1x

xp−1− `p−1 − xp +(p−1)up− pup−1x
up−1− xp−1

=−(xp +(p−1)up− pup−1x)
(

1
up−1− xp−1 −

1
xp−1− `p−1

)
− (p−1)(up− `p)− p(up−1− `p−1)x

xp−1− `p−1 .

Let ξ
1

:= (p−1)(up−`p)
p(up−1−`p−1)

. To show F(ξ
1
)< 0, we only need to show that ξ

p−1
1
−`p−1 >

up−1−ξ
p−1
1

, i.e., ξ
1
>
(

up−1+`p−1

2

) 1
p−1

, which is the first inequality. Then we could

conclude that ξ1 > ξ
1
.

To show the first inequality, we take logarithm on both sides and let t := `
u . Then

the inequality that we are going to prove is

J(t) := log(1− t p)− log(1− t p−1)+ log
p−1

p
− 1

p−1
(log(t p−1 +1)− log2)> 0

Notice that lim
t→1−

J(t) = log p
p−1 + log p−1

p = 0, and

J′(t) =
pt p−1

t p−1
− (p−1)t p−2

t p−1−1
− 1

p−1
(p−1)t p−2

t p−1 +1

=
t p−2((p−2)(1− t p)− pt(1− t p−2))

(t p−1)(t p−1−1)(t p−1 +1)
.

By Lemma A.2(i) (See Appendix), J′(t)< 0 on (0,1). Thus J(t)> 0 for t ∈ (0,1).
For the upper bound, first we claim that for 0 < t < 1, we have

t p +(p−1)− pt
1+(p−1)t p− pt p−1 > t

2−p
3 . (3)
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To prove the claim, let K(t) := t
2−p

3 (1+(p−1)t p− pt p−1)− t p− (p−1)+ pt.

K′(t) =
2− p

3
t−

p+1
3 +(p−1)

2(p+1)
3

t
2p−1

3 − p
2p−1

3
t

2p−4
3 − pt p−1 + p

= t−
p+1

3

(
2− p

3
+

2(p−1)(p+1)
3

t p− p(2p−1)
3

t p−1− pt
4p−2

3 + pt
p+1

3

)
=: t−

p+1
3 K1(t).

K′1(t) =
d
dt

(
t

p+1
3 K′(t)

)
=

2p(p2−1)
3

t p−1− p(p−1)(2p−1)
3

t p−2− p(4p−2)
3

t
4p−5

3 +
p(p+1)

3
t

p−2
3

=
p
3

t
p−2

3

(
2(p2−1)t

2p−1
3 − (2p−1)(p−1)t

2p−4
3 −2(2p−1)t p−1 +(p+1)

)
=:

p
3

t
p−2

3 K2(t).

K′2(t) =
d
dt

(
3
p

t
2−p

3
d
dt

(
t

p+1
3 K′(t)

))
=2(2p−1)(p−1)t

2p−7
3

(
p+1

3
t− p−2

3
− t

p+1
3

)
=−2(2p−1)(p−1)t

2p−7
3

(
(t

p+1
3 −1)− p+1

3
(t−1)

)
> 0.

The last inequality follows from the strict concavity of function x
p+1

3 when 1< p< 2.
Because K2(1) = 0, we have K2(t) < 0 on (0,1), which implies K1(t) is decreasing
on (0,1). Along with K1(1) = 0, which implies K1(t) > 0 on (0,1). Therefore, K(t)
is increasing on (0,1), and K(t)< K(1) = 0, which proves the claim.

Letting ξ 1 :=
(

up−`p

p(u−`)

) 1
p−1

, and t := `
u , we have

`p− pξ
p−1
1 `= up− pξ

p−1
1 u,

ξ
p−1
1 − `p−1

up−1−ξ
p−1
1

=
p(u− `)(ξ

p−1
1 − `p−1)

p(u− `)(up−1−ξ
p−1
1 )

=
(p−1)t p +1− pt p−1

t p +(p−1)− pt
.

We are going to show that F(ξ 1)> 0. Letting h(x) := xp+(p−1)−px
x(xp−1−1) , we have

h′(x) =
(p−1)((p−1)xp +1− pxp−1)

x2(xp−1−1)2 ,

and

H(t) :=
F(ξ 1)

ξ 1
= h

(
ξ 1
`

)
+h

(
ξ 1
u

)
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= h

((
(t p−1)

pt p−1(t−1)

) 1
p−1
)
+h

((
(t p−1)
p(t−1)

) 1
p−1
)
.

dH(t)
dt

=−h′
(

ξ 1
`

)
1

p−1

(
ξ 1
`

)2−p
t p +(p−1)− pt

pt p(t−1)2

+h′
(

ξ 1
u

)
1

p−1

(
ξ 1
u

)2−p
(p−1)t p +1− pt p−1

p(t−1)2

=− `p−2

p(t−1)2

(
ξ 1
u

)−p
((p−1)ξ

p
1 + `p− pξ

p−1
1 `)(t p +(p−1)− pt)

(ξ
p−1
1 − `p−1)2

+
up−2

p(t−1)2

(
ξ 1
u

)−p
((p−1)ξ

p
1 +up− pξ

p−1
1 u)((p−1)t p +1− pt p−1)

(up−1−ξ
p−1
1 )2

=
`p−2

p(t−1)2

(
ξ 1
u

)−p

((p−1)ξ
p
1 + `p− pξ

p−1
1 `)

×

(
− (t p +(p−1)− pt)

(ξ
p−1
1 − `p−1)2

+
t2−p((p−1)t p +1− pt p−1)

(up−1−ξ
p−1
1 )2

)

=
`p−2

p(t−1)2

(
ξ 1
u

)−p

((p−1)ξ
p
1 + `p− pξ

p−1
1 `)

× (p−1)t p +1− pt p−1

(up−1−ξ
p−1
1 )2

(
t2−p−

(
t p +(p−1)− pt

(p−1)t p +1− pt p−1

)3
)

< 0.

The last inequality follows from (3). Therefore, along with lim
t→1−

H(t) = 0, we have

H(t)> 0 for t ∈ (0,1), which implies F(ξ 1)> 0 and ξ1 < ξ 1.
To show that u+`

2 > ξ 1, we take logarithm on both sides and let t := `
u . Then the

inequality that we are going to prove is

L(t) := log(1− t p)− log(1− t)− log p− (p−1)(log(t +1)− log2)< 0.

Notice that lim
t→1−

L(t) = 0, and

L′(t) =
pt p−1

t p−1
− 1

t−1
− p−1

t +1

=
(p−2)(t p−1)− pt(t p−2−1)

(t p−1)(t2−1)
.

By Lemma A.2(i) (See Appendix), L′(t) > 0 on (0,1). Thus L(t) < 0 for t ∈ (1,∞).
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Just as we determined the optimal location of a linearization point as p varies
(Theorem 3.11), we now determine the behavior of these bounds (Theorem 3.18)
when p varies. Toward this goal, let t := `

u , and let

∆(p, t) :=
ξ 1−ξ

1
u− `

=
1

1− t

((
1− t p

p(1− t)

) 1
p−1
− (p−1)(1− t p)

p(1− t p−1)

)
,

where ξ
1

:= (p−1)(up−`p)
p(up−1−`p−1)

and ξ 1 :=
(

up−`p

p(u−`)

) 1
p−1

. We will demonstrate that the be-
havior of ∆(p, t) can be bounded, in a useful way, by the behavior of ∆(p,0). Then
we will analyze ∆(p,0).

Theorem 3.19

(i) For 1 < p < 2, ∆(p, t) is decreasing in t, implying that 0 < ∆(p, t)≤ ∆(p,0);
(ii) for p > 2, (1− t)∆(p, t) is increasing in t, implying that 0 > (1− t)∆(p, t) ≥

∆(p,0).

Proof. (i) We will demonstrate that the derivative of ∆(p, t) is negative when 1 <
p < 2.

∂∆(p, t)
∂ t

=
1

(1− t)2

[
ξ 1
ξ

1

−
(
(p−1)2t p−2(1− t)2

p(1− t p−1)2 +
p−1

p

)]
.

Let χ(t) := log
(

ξ 1
ξ 1

)
− log

(
(p−1)2t p−2(1−t)2

p(1−t p−1)2 + p−1
p

)
. Then

∂ χ(t)
∂ t

=
(1− t p−1)2− (p−1)2t p−2(1− t)2

(p−1)(1− t)(1− t p−1)(1− t p)
− (p−1)t p−3(1− t)[(p−2)(1− t p)− p(t− t p−1)]

(1− t p−1)[(1− t p−1)2 +(p−1)t p−2(1− t)2]
.

We claim that

0 >
(1− t p−1)2− (p−1)2t p−2(1− t)2

(p−1)(1− t)
>

(p−2)(1− t p)− p(t− t p−1)

2t
.

Then

∂ χ(t)
∂ t

>
(p−2)(1− t p)− p(t− t p−1)

t(1− t p−1)(1− t p)

(
1
2
− (p−1)t p−2(1− t)(1− t p)

(1− t p−1)2 +(p−1)t p−2(1− t)2

)
=

(p−2)(1− t p)− p(t− t p−1)

t(1− t p−1)(1− t p)

(
1
2
− (p−1)t p−2(1− t)(1− t p)

(1− t p−1)2 +(p−1)t p−2(1− t)2

)
.

Notice that (p−2)(1− t p)− p(t− t p−1)< 0, and

(p−1)t p−2(1− t)(1− t p)

(1− t p−1)2 +(p−1)t p−2(1− t)2 >
(p−1)t p−2(1− t)(1− t p)

(p−1)2t p−2(1− t)2 +(p−1)t p−2(1− t)2

=
1− t p

p(1− t)
>

1
p
>

1
2
.



Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions 23

Therefore, ∂ χ(t)
∂ t > 0, and hence χ(t)< limt→1− χ(t) = 0, i.e., ∂∆(p,t)

∂ t < 0.
What remains is to prove the claim. By Lemma A.2(i) and Lemma A.3(i) (See

Appendix), we have that the two terms are both negative on (0,1). Letting

Θ(t) := 2t[(1−t p−1)2−(p−1)2t p−2(1−t)2]−(p−1)(1−t)[(p−2)(1−t p)− p(t−t p−1)],

we have

Θ
′(t) = 2(2p−1)t2p−2− (p2−1)(3p−4)t p +2p(3(p−1)2−2)t p−1

− (p−1)2(3p−2)t p−2−2p(p−1)t +(2p2−4p+4).

Θ
′′(t) = (p−1)[4(2p−1)t2p−3− p(p+1)(3p−4)t p−1 +2p(3(p−1)2−2)t p−2

− (p−1)(3p−2)(p−2)t p−3−2p].

Θ
′′′(t) = (p−1)t p−4[4(2p−1)(2p−3)t p− p(p+1)(3p−4)(p−1)t2

+2p(3(p−1)2−2)(p−2)t− (p−1)(3p−2)(p−2)(p−3)]

= (p−1)t p−4
[
2(p−1)2[6t p− p(p+1)t2 +2p(p−2)t− (p−2)(p−3)]

+ p(p−2)[4t p− (p2−1)t2 +2(p2−2p−1)t− (p−3)(p−1)]
]
.

Let Θ1(t) := 6t p− p(p+ 1)t2 + 2p(p− 2)t − (p− 2)(p− 3), Θ2(t) := 4t p− (p2−
1)t2 +2(p2−2p−1)t− (p−3)(p−1). We first show that t p−1− p(t−1) ≤ (p−
1)(1− t)2. This follows from the fact that

d
dt

(
t p−1− p(t−1)

(1− t)2

)
=

(p−2)(1− t p)− p(t− t p−1)

(1− t)3 < 0 (Lemma A.2(i), See Appendix).

Then we have

Θ1(t) = 6(t p−1− p(t−1))− p(p+1)(1− t)2

≤ 6(p−1)(1− t)2− p(p+1)(1− t)2

=−(p−2)(p−3)(1− t)2 < 0.

Θ
′
2(t) = 4pt p−1−2(p2−1)t +2(p2−2p−1).

Θ
′′
2 (t) = 2(p−1)t p−2(2p− (p+1)t2−p)> 0.

Thus Θ ′2(t) < Θ ′2(1) = 0, which implies Θ2(t) is decreasing and Θ2(t) > Θ2(1) =
0. Because Θ1(t) < 0 and Θ2(t) > 0, we have that Θ ′′′(t) < 0. Therefore, Θ ′′(t) >
Θ ′′(1) = 0, which implies that Θ ′(t) is increasing. Thus Θ ′(t) < Θ ′(1) = 0, which
that implies Θ(t) is decreasing, i.e., Θ(t)>Θ(1)= 0. Then the claim follows directly.

(ii) When p > 2, notice that the derivative of ∆(p, t) at t = 0 is

lim
t→0+

∂∆(p, t)
∂ t

=

(
1
p

) 1
p−1

p−1
p

− p−1
p

.

When p > 6.236, the derivative would become negative. Therefore, we could not
expect that ∆(p, t) is increasing when p > 6.236.
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Instead, we are going to show that the function (1− t)∆(p, t) is increasing. Its
derivative is(

1− t p

p(1− t)

) 1
p−1 (p−1)t p +1− pt p−1

(p−1)(1− t p)(1− t)
− (p−1)t p−2(t p + p−1− pt)

p(1− t p−1)2 .

We are going to demonstrate that this derivative is positive. Let

Ω(t) := log

((
1− t p

p(1− t)

) 1
p−1 (p−1)t p +1− pt p−1

(p−1)(1− t p)(1− t)

)
− log

(
(p−1)t p−2(t p + p−1− pt)

p(1− t p−1)2

)

= log

((
1− t p

p(1− t)

) 1
p−1
)
− log

(
(p−1)(1− t p)

p(1− t p−1)

)
− log

(
(p−1)t p−2(1− t)(t p + p−1− pt)
(1− t p−1)((p−1)t p +1− pt p−1)

)
.

Ω
′(t) =

(1− t p−1)2− (p−1)2t p−2(1− t)2

(p−1)(1− t)(1− t p−1)(1− t p)
− (p−2)− (p−1)t + t p−1

t(1− t)(1− t p−1)

+
p[(1− t p−1)2− (p−1)2t p−2(1− t)2]

((p−1)t p +1− pt p−1)(t p + p−1− pt)

=
(1− t p−1)2− (p−1)2t p−2(1− t)2

(p−1)(1− t)(1− t p−1)(1− t p)
− t p +(p−1)− pt

t(1− t)((p−1)t p +1− pt p−1)

+
(p−1)((p−1)t p +1− pt p−1)

t(1− t p−1)(t p +(p−1)− pt)

=
p[(1− t p−1)2− (p−1)2t p−2(1− t)2]

(p−1)(1− t)(1− t p)((p−1)t p +1− pt p−1)

− (p−1)((p−2)(1− t p)− p(t− t p−1))

t(1− t p−1)(t p +(p−1)− pt)
.

We claim that

0 <
p[(1− t p−1)2− (p−1)2t p−2(1− t)2]

(p−1)(1− t p)
<

(p−2)(1− t p)− p(t− t p−1)

t
.

Then

Ω
′(t)<

(p−2)(1− t p)− p(t− t p−1)

t(1− t p−1)(1− t)

(
1− t p−1

(p−1)t p +1− pt p−1 −
(p−1)(1− t)

t p +(p−1)− pt

)
=

(p−2)(1− t p)− p(t− t p−1)

t(1− t p−1)(1− t)

(
−t[(1− t p−1)2− (p−1)2t p−2(1− t)2]

((p−1)t p +1− pt p−1)(t p +(p−1)− pt)

)
< 0.

Therefore, Ω(t)> limt→1−Ω(t) = 0, i.e., the derivative of (1− t)∆(p, t) is positive.
We only need to prove the claim. Letting

Φ(t) := pt[(1−t p−1)2−(p−1)2t p−2(1−t)2]−(p−1)(1−t p)[(p−2)(1−t p)− p(t−t p−1)],

we have

Φ
′(t) = p[−2(p−1)(p−2)t2p−1 + p(2p−1)t2p−2− p(p2−1)t p
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+2(p−2)(p2 + p−1)t p−1− p(p−1)2t p−2 + p].

Φ
′′(t) = p(p−1)t p−3[−2(p−2)(2p−1)t p+1 +2p(2p−1)t p− p2(p+1)t2

+2(p−2)(p2 + p−1)t− p(p−1)(p−2)].

Let Φ1(t) := Φ ′′(t)
p(p−1)t p−3 = 2(p−2)(2p−1)t p+1+2p(2p−1)t p− p2(p+1)t2+2(p−

2)(p2 + p−1)t− p(p−1)(p−2). Then

Φ
′
1(t) =−2(p−2)(2p−1)(p+1)t p +2p2(2p−1)t p−1−2p2(p+1)t +2(p−2)(p2 + p−1);

Φ
′′
1 (t) =−2(p−2)(2p−1)(p+1)pt p−1 +2p2(2p−1)(p−1)t p−2−2p2(p+1);

Φ
′′′
1 (t) =−2p(p−2)(2p−1)(p−1)t p−3[(p+1)t− p].

Therefore, we have that Φ ′′1 (t) is increasing on (0, p
p+1 ) and decreasing on ( p

p+1 ,1).

We have Φ ′′1 (t)≤Φ ′′1 (
p

p+1 ) = 2p2(2p−1)
(

p
p+1

)p−2
−2p2(p+1). Letting Φ2(p) :=

(p−2) log
(

p
p+1

)
− log

(
p+1

2p−1

)
, we have

Φ
′
2(p) =

p−2
p

+ log(p)− p−1
p+1

− log(p+1)+
2

2p−1
;

Φ
′′
2 (p) =

(p−2)(8p2 + p−1)
p2(p+1)2(2p−1)2 .

Therefore Φ ′2(p) is increasing on (2,∞). Along with limp→∞ Φ ′2(p) = 0, we have that
Φ ′2(p)< 0 on (2,∞), which implies that Φ2(p)< Φ2(2) = 0. Thus Φ ′′1 (t)< 0. Then
we have that Φ ′1(t) is decreasing on (0,1), which implies that Φ ′1(t) > Φ ′1(1) = 0.
Therefore, we have Φ1(t)< Φ1(1) = 0, i.e., Φ ′′(t)< 0. Then we conclude that Φ ′(t)
is decreasing on (0,1), which implies that Φ ′(t) > Φ(1) = 0. Therefore, Φ(t) is
increasing on (0,1) and Φ(t)< Φ(1) = 0, which proves the claim.

Because of Theorem 3.19, we can focus on the special case `= 0. So we define

∆(p) := ∆(p,0) =
(

1
p

) 1
p−1
− p−1

p
.
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Fig. 3 ∆(p)

From Figure 3, we can see the behavior of ∆(p), which is summarized in the follow-
ing result.

Proposition 3.20 ∆(p) (p > 1) satisfies the following properties:

(i) ∆(p)> 0 when 1 < p < 2; ∆(2) = 0; and ∆(p)< 0 when p > 2;
(ii) lim

p→1
∆(p) = e−1; lim

p→∞
∆(p) = 0;

(iii) ∆(p) is minimized at p0, where p0 ≈ 6.3212;
(iv) 0.3679≈ e−1 ≥ ∆(p)≥ ∆(p0)≈−0.1347.

Proof. (i) follows from Theorem 3.18. For (ii),

lim
p→1

∆(p)= lim
p→1

exp
{
− log p

p−1

}
= exp{−1} ; lim

p→∞
∆(p)= lim

p→∞
exp
{
− log p

p−1

}
−1= 0.

For (iii), we have

∆
′(p) =

(
1
p

) 1
p−1
[
− 1

p(p−1)
+

log p
(p−1)2

]
− 1

p2

=

(
1
p

) 1
p−1 1

p2

[
− p

p−1
+

p2 log p
(p−1)2 − p

1
p−1

]
.

Notice that

d
d p

(
p2+ 1

p−1 ∆
′(p)

)
=

p2−1−2p log p
(p−1)3 − p

1
p−1

(p−1)− p log p
p(p−1)2 > 0.
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This follows from p2−1−2p log p> 0 and (p−1)− p log p> 0 for p> 1. Therefore,

p2+ 1
p−1 ∆ ′(p) is increasing on (1,∞). There exists unique p0 > 1 satisfying

− p0

p0−1
+

p2
0 log p0

(p0−1)2 − p
1

p0−1
0 = 0,

and ∆ ′(p) < 0 for 1 < p < p0, ∆ ′(p) > 0 for p > p0, which implies that ∆(p0) =
minp>1 ∆(p). (iv) follows directly.

4 Lighter relaxations

As we mentioned at the outset, an alternative key relaxation previously studied re-
quires that the domain of f is all of [0,u], f is convex on [0,u], f (0) = 0, and f is
increasing on [0,u]. Assuming these properties, we recall the definition of the naïve
relaxation

“S0
f (`,u) :=

{
(x,y,z) ∈ R3 :

(
f (`)− f (u)− f (`)

u−` `
)

z+ f (u)− f (`)
u−` x≥ y≥ f (x),

uz≥ x≥ `z, 1≥ z≥ 0
}
.

For example, convex power functions f (x) := xp on [`,u], `≥ 0, with p > 1 have the
required properties. We wish to discuss a few different ways to handle functions f
with these properties.

· Naïve Relaxation [NR]: “S0
f (`,u)

· Perspective Relaxation [PR]: “S∗f (`,u)
· Piecewise-Linear under-est. + Perspective Relaxation [PL+PR]: “U∗f (ξξξ ) := “S∗g(`,u)
· linearly Extend to 0 + Naïve Relaxation [E+NR]: “S0

f̄ (`,u)
· Piecewise-Linear under-est. + linearly Extend to 0 + Naïve Relaxation [PL+E+NR]:

“U0
f̄ (ξξξ ) := “S0

ḡ(`,u)

One of the main focuses of [13] was comparing NR and PR, with the idea that
PR is tighter than NR, but PR is more burdensome computationally. So far in this
work, we have extensively investigated PL+PR, again with the motivation that PL+PR
is less burdensome than PR. Because piecewise-linearization requires choosing lin-
earization points, we have put a big emphasis on how to do that. When ` > 0, a simple
way to do something stronger than NR is with E+NR: linearly interpolate on [0, `] be-
fore applying the naïve relaxation — the strict convexity of the power function makes
this stronger than NR. Finally, again when ` > 0, we can consider PL+E+NR: apply-
ing piecewise-linearization on [`,u], linearly interpolating on [0, `], and then applying
the naïve relaxation.

In what follows, we focus on power functions, but the ideas could also be applied
to other functions having the required properties.
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4.1 PL+E+NR

Defining the piecewise-linear g with respect to f having domain [`,u], we can extend
g to the function ḡ, with domain all of [0,u]:

ḡ(x) :=
{ f (`)

` x, x ∈ [0, `);
g(x), x ∈ [`,u].

In this way, ḡ is a piecewise-linear increasing function on all of [0,u], and is convex
on [0,u] as long as f ′(`) ≥ f (`)

` . In fact, ḡ is an under-estimator of the function that
is f on [`,u] and 0 at 0. Next we calculate the volume of the naïve relaxation of the
piecewise-linear under-estimator “U0

f̄ (ξξξ ) := “S0
ḡ(`,u), by applying [13, Thm. 10] to ḡ.

Proposition 4.1 Suppose that f is convex and increasing on [`,u] with f ′(`)≥ f (`)
` .

For ξξξ = (`,ξ1, . . . ,ξn−1,u), where f is differentiable at each coordinate of ξξξ , we can
compute “U0

f̄ (ξξξ ) in O(n) time.

Proof. We define the τi and g from f ,`,u as usual. For x ∈ [`,u], we have

ḡ(x) = g(x) = g(τi)+
g(τi+1)−g(τi)

τi+1− τi
(x− τi), ∀ x ∈ [τi,τi+1], i = 0,1, . . . ,n.

Applying [13, Thm. 10] to ḡ, we have

“S0
ḡ(`,u) =

∫ g(u)

g(`)

(
g−1(y)− g−1(y)2

2u

)
dy

− `

2
(g(u)−g(`))− u− `

6u
(ug(u)− `g(`))− u− `

6
(g(u)−g(`))

=
n

∑
i=0

∫ g(τi+1)

g(τi)

(
g−1(y)− g−1(y)2

2u

)
dy

− `

2
( f (u)− f (`))− u− `

6u
(u f (u)− ` f (`))− u− `

6
( f (u)− f (`))

=
n

∑
i=0

∫
τi+1

τi

(
w− w2

2u

)
g(τi+1)−g(τi)

τi+1− τi
dw

− u+2`
6

( f (u)− f (`))− u− `

6u
(u f (u)− ` f (`))

=
n

∑
i=0

(
τ2

i+1− τ2
i

2
−

τ3
i+1− τ3

i

6u

)
f ′(ξi)

− u+2`
6

( f (u)− f (`))− u− `

6u
(u f (u)− ` f (`))

The result follows.

Next, we consider the case of convex power functions f (x) := xp on [`,u], with
p > 1. To emphasize that the calculations are for power functions with exponent p
(>1), we will write “U0

p̄(ξξξ ) rather than “U0
f̄ (ξξξ ).
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Corollary 4.2 For ξξξ = (`,ξ1, . . . ,ξn−1,u), we can compute “U0
p̄(ξξξ ) in O(n) time.

For quadratics and equally-spaced linearization points, we get a simple expression.

Corollary 4.3 For p = 2, and the equally-spaced points ξi = `+ i
n (u− `), for i =

1, . . . ,n−1,

“U0
2̄ (ξξξ ) =

(u− `)2(u2 + `2)

12u
+

(u− `)4

24n2u
.

Proof.

vol( “U0
2̄ (ξξξ )) =

n

∑
i=0

(
− 1

6u
(τ3

i+1− τ
3
i )+

1
2
(τ2

i+1− τ
2
i )

)
2ξi

− u+2`
6

(u2− `2)− u− `

6u
(u3− `3)

=
3
4
(u3− `3)+

1
4

n

∑
i=1

ξiξi−1(ξi−1−ξi)+

− 7
24u

(u4− `4)− 1
12u

n

∑
i=1

ξi−1ξi(ξ
2
i−1−ξ

2
i )

− u+2`
6

(u2− `2)− u− `

6u
(u3− `3)

=
(u− `)2(u2 + `2)

12u
+

(u− `)4

24n2u
.

Remark 4.1 Letting n go to infinity in Corollary 4.3, we obtain Corollary 11 of [13]
with p = 2.

4.2 E+NR

Continuing this idea, but without piecewise-linearization on its domain [`,u], we can
extend f to the function f̄ , with domain [0,u],

f̄ (x) :=
{ f (`)

` x, x ∈ [0, `);
f (x), x ∈ [`,u].

Applying the naïve relaxation to f̄ , we write “S0
f̄ (`,u). It is clear that ḡ (as defined

above) is a lower bound on f̄ , so the naïve relaxations associated with these functions
are nested: “S0

f̄ (`,u) ⊂ “U0
f̄ (ξξξ ) := “S0

ḡ(`,u). We are naturally interested in how many

linearization points are sufficient to get vol( “U0
f̄ (ξξξ )) to be close to “S0

f̄ (`,u). We can
give an answer to this in the case of the quadratic. In what follows, we will write
“U0

2̄ (ξξξ ) for “U0
f̄ (ξξξ ), to emphasize the special case.
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Proposition 4.4 For equally-spaced points ξi := `+ i
n (u− `), for i = 1, . . . ,n−1, if

n >
(u− `)2
√

24uφ
, then vol( “U0

2̄ (ξξξ )\“S0
2̄(`,u))< φ .

Proof. Applying Corollary 11 of [13] with p = 2, we find that

vol(“S0
2̄(`,u)) =

(u− `)2(u2 + `2)

12u
.

As noted above, “S0
2̄(`,u)⊆ “U0

2̄ (ξξξ ), and by Corollary 4.3,

vol( “U0
2̄ (ξξξ )\“S0

2̄(`,u)) = vol( “U0
2̄ (ξξξ ))−vol(“S0

2̄(`,u)) =
(u− `)4

24n2u
.

The lower bound on n to obtain vol( “U0
2̄ (ξξξ )\“S0

2̄(`,u))< φ follows easily.

The result above found how many linearization points are sufficient to get the
naïve volumes of E+NR and PL+E+NR close for quadratics. We can do the same for
the volumes of PR and PL+PR. The perspective case is especially nice because we
know that choosing equally-spaced linearization points is optimal.

Proposition 4.5 For equally-spaced points ξi := `+ i
n (u− `), for i = 1, . . . ,n−1, if

n >
1
6

√
(u− `)3

φ
, then vol( “U∗2 (ξξξ )\“S∗2(`,u))< φ .

Proof. By Corollary 3.2,

vol(“S∗2(`,u)) =
(u− l)3

18
,

and by Theorem 3.1,

vol( “U∗2 (ξξξ )) =
(u− l)3

18
+

(u− l)3

36n2 .

Clearly “S∗2(`,u)⊂ “U∗2 (ξξξ ) and

vol( “U∗2 (ξξξ )\“S∗2(`,u)) = vol( “U∗2 (ξξξ ))−vol(“S∗2(`,u)) =
(u− `)3

36n2 .

The lower bound on n to obtain vol( “U∗2 (ξξξ ))\vol(“S∗2(`,u))< φ follows easily.

Remark 4.2 It is interesting to compare Propositions 4.4 and 4.5. Proposition 4.4 tells
us that if we want to “φ -approximate” E+NR with PL+E+NR (i.e., using piecewise
linearization), then we can do this using a certain number of equally-spaced lineariza-
tion points, n1. Similarly, if we want to φ -approximate PR with PL+PR (i.e., using
piecewise linearization), then we can do this using a certain number of equally-spaced
linearization points, n2. It is easy to check that, for all φ , we have that

n1

n2
=

√
3
2

(
1− `

u

)
.
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So the number of equally-spaced linearization points in the former case is more
than in the latter case, if and only if `

u < 1
3 , and the factor n1

n2
is never more than√

3
2 ≈ 1.225.
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Appendix

Lemma A.1 For x ∈ (0,1)∪ (1,∞), p > 1,

xp +(p−1)− px > 0, (p−1)xp +1− pxp−1 > 0.

Proof. xp +(p−1)− px = xp−1− p(x−1)> 0 because of the strict convexity of xp on (0,∞) for p > 1.
(p− 1)xp + 1− pxp−1 = 1− xp − pxp−1(1− x) > 0 because of the strict convexity of xp on (0,∞) for
p > 1.

Lemma A.2 Letting h(x) := (p−2)(xp−1)− p(xp−1− x), we have

(i) if 1 < p < 2, then h(x)> 0 for x ∈ (0,1);
(ii) if p > 2, then h(x)< 0 for x ∈ (0,1).

Proof. We have

h′(x) = (p−2)pxp−1− p(p−1)xp−2 + p

h′′(x) = (p−2)(p−1)pxp−3(x−1)

(i) If 1 < p < 2, then h′′(x) > 0 on (0,1), which implies that h′(x) is increasing. Thus h′(x) < h′(1) = 0,
which implies that h(x) is decreasing. Therefore, h(x)> h(1) = 0. (ii) Similarly, we could prove that h(x)
is increasing and h(x)< 0 on (0,1).

Remark A.1 Notice that h(x) =−xph(1/x), we have h(x)< 0 on (1,∞) when 1 < p < 2, and h(x)> 0 on
(1,∞) when p > 2.

Lemma A.3 Letting δ (x) := (xp−1−1)2− (p−1)2xp−2(x−1)2, we have

(i) if 1 < p < 2, then δ (x)< 0 on (0,1)∪ (1,∞);
(ii) if p > 2, then δ (x)> 0 on (0,1)∪ (1,∞).

Proof. Notice that δ (x) = x2p−2δ (1/x), we only need to show the results on (0,1). Letting

ϕ(x) := 1− xp−1− (p−1)x
p−2

2 (1− x),

we have
ϕ
′(x) =−(p−1)x

p−4
2

(
x

p
2 −1− p

2
(x−1)

)
.

(i) ϕ ′(x) > 0 because of the strict concavity of xp/2 when 1 < p < 2. Along with ϕ(1) = 0, we obtain
that ϕ(x) < 0 on (0,1). (ii) Similarly, because of the strict convexity of xp/2 when p > 2, we obtain that
ϕ(x)> 0 on (0,1).

Lemma A.4 For x ∈ (0,1)∪ (1,∞),

φ(x) := p(p−1)(1− x)xp−1 logx+(xp−1−1)(xp−1)> 0.
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Proof. We have

φ
′(x) = p(p−1)((p−1)xp−2− pxp−1) logx+ p(p−1)(1− x)xp−2

+(p−1)xp−2(xp−1)+ pxp−1(xp−1−1).

φ ′(x)
xp−2 = ((p−1)− px)p(p−1) logx+ p(p−1)(1− x)

+(p−1)(xp−1)+ p(xp− x).

d
dx

(
φ ′(x)
xp−2

)
=−p2(p−1) logx+

p(p−1)2

x
− p3 + p(2p−1)xp−1

= p2(xp−1−1− logxp−1)+ p(p−1)
(

p−1+ xp− px
x

)
.

By Lemma A.1 and the inequality t − 1 ≥ log t, we have d
dx

(
φ ′(x)
xp−2

)
> 0. Because φ ′(1) = 0, we have

φ ′(x) < 0 for x ∈ (0,1) and φ ′(x) > 0 for x ∈ (1,∞). Combined with φ(1) = 0, we obtain φ(x) > 0 for
x ∈ (0,1)∪ (1,∞), which proves the lemma.

Proof of Theorem 3.13. For p > 2, we know that for k ≥ 0,

F(xk+1)≤ F(xk)+F ′(xk)(xk+1− xk) = 0,

because of the concavity of Fi(x) from Lemma 3.8 (ii). Along with F(x0) ≤ 0 (Proposition 3.12) and
[F ′(xk)]−1 ≥ 0 from Lemma 3.7 (ii), we know that xk+1 ≥ xk for k ≥ 0. Also by concavity, we have

0≤ F(u1)−F(xk)≤ F ′(xk)(u1− xk),

which implies xk ≤ u1 because [F ′(xk)]−1 is nonnegative. Therefore the increasing bounded sequence {xk}
has a limit x∗ = limk→∞ xk and F(x∗) = 0.

For 1 < p < 2, similarly, we know that for k ≥ 0,

F(xk+1)≥ F(xk)+F ′(xk)(xk+1− xk) = 0,

because of the convexity of Fi(x) from Lemma 3.8 (i). Along with F(x0)≥ 0 (Proposition 3.12), we know
that [F ′(xk)]−1 ≥ 0 from Lemma 3.7 (i). we know that xk+1 ≤ xk for k ≥ 0. Also by convexity, we have

0≥ F(`1)−F(xk)≥ F ′(xk)(`1− xk),

which implies xk ≥ `1 because [F ′(xk)]−1 is nonnegative. Therefore the decreasing bounded sequence {xk}
has a limit x∗ = limk→∞ xk and F(x∗) = 0.
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