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Abstract
Intrinsic noise in objective function and derivatives evaluations may cause premature
termination of optimization algorithms. Evaluation complexity bounds taking this
situation into account are presented in the framework of a deterministic trust-region
method. The results show that the presence of intrinsic noise may dominate these
bounds, in contrastwithwhat is known formethods inwhich the inexactness in function
and derivatives’ evaluations is fully controllable. Moreover, the new analysis provides
estimates of the optimality level achievable, should noise cause early termination.
Numerical experiments are reported that support the theory. The analysis finally sheds
some light on the impact of inexact computer arithmetic on evaluation complexity.
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1 Introduction

This paper attempts to answer a simple question: how does noise in function values and
derivatives affect the measure of optimality and the evaluation complexity of smooth
optimization? Several contributions [3, 5, 7, 8, 11, 17, 19, 24, 34, 35] indicate how high
accuracy can be reached by optimization algorithms even in the presence of inexact,
but deterministic,1 function and derivatives’ values and rely on the assumption that
the inexactness is controllable, i.e., it can be made arbitrarily small if so required
by the algorithm. But what happens in practical applications where significant noise
is intrinsic and cannot be assumed away? How is the evaluation complexity of the
optimization algorithm altered?

While [31] has addressed the convergence of constrained optimization in the pres-
ence of noise using linesearch,we focus here on trust-regionmethods for unconstrained
problems, a well-known class of algorithms (see [19] for an in-depth coverage and [36]
for a more recent survey), whose complexity was first investigated in [23]. We choose
to base our present developments on the existing analysis of [17] where the evaluation
complexity of trust-region methods with explicit dynamic accuracy is presented. Such
a method is a variant of the classical trust-region algorithm using derivatives of degree
one to q and allows the control of inexactness in objective function and derivatives’
values. Under standard Lipschitz continuity assumptions, a q-th order ε-approximate
minimizer of the objective function is found in O(ε−(q+1)) evaluations of f and its
derivatives.

Our purpose in this paper is to extend these results to the case where such favorable
assumptions on the noise canno longer bemade, in that evaluationof f or its derivatives
may fail if the requested accuracy is too high. In that case, the desired optimality ε may
not be reachable, and our minimization algorithm may be forced to terminate before
approximate convergence can be declared. We investigate which level of optimality is
achieved at termination, as well as which upper bound on the number of evaluations is
required. Since noisy problems often occur in a context where evenmoderate accuracy
is expensive to obtain, we wish our algorithms to preserve the ability of the methods
described in [5, 17], to dynamically adjust accuracy requests in the limits imposed by
noise.

1.1 Contributions

We will present a trust-region method allowing dynamic accuracy control whenever
possible, given the level of noise, and show that termination of this algorithmwill occur

in at mostO
(
min[ϑ−1

f , ϑ−1
d ε−(q+1), ε−(q+1)]

)
evaluations, where ϑ f and ϑd are the

maximum achievable accuracies in f and its derivatives, respectively, ε is the (ideally)
sought optimality threshold, and q ≥ 1 is the sought optimality order. In addition, we
will derive upper bounds on the value of optimalitymeasures at termination that depend
on ϑ f and ϑd . To the best of our knowledge, these results are the first of their kind.

1 Similar results are also known for the stochastic case which is outside the scope of this paper.

123



Journal of Optimization Theory and Applications

Finally, a brief discussion will illustrate our results in the case where intrinsic noise is
caused by computer arithmetic and round-off errors.
Because our development heavily hinges on [17], repeating some material from this
source is necessary to keep our argument understandable. We have, however, done
our best to limit this repetition as much as possible, pushing some of it in “Appendix”
when possible.

Even if the analysis presented below does not depend in any way on the choice of
the optimality order q, the authors are well aware that, while requests for optimality
of orders q ∈ {1, 2} lead to practical, implementable algorithms, this may no longer
be the case for q > 2, at least for now. For high orders of optimality, the methods
discussed in the paper therefore constitute an “idealized” setting (inwhich complicated
subproblems canbe approximately solvedwithout affecting the evaluation complexity)
and thus indicate the limits of currently achievable results.

1.2 Outline

A first section briefly recalls the context and the notion of high-order approximate
minimizers. Section 3 then presents a “noise-aware” inexact trust-region algorithm.
Sections 4 and 5 present the analysis of the achievable optimality level and evalua-
tion complexity. Numerical tests are reported in Sect. 6, while brief conclusions and
perspectives are presented in Sect. 7.

1.3 Basic Notations

Unless otherwise specified, ‖ · ‖ denotes the standard Euclidean norm for vectors and
matrices. For a general symmetric tensor S of order p, we define

‖S‖ def= max‖v‖=1
|S[v]p| = max‖v1‖=···=‖vp‖=1

|S[v1, . . . , vp]|

the induced Euclidean norm. We also denote by ∇ j
x f (x) the j-th order derivative

tensor of f evaluated at x and note that such a tensor is always symmetric for any
j ≥ 2. ∇0

x f (x) is a synonym for f (x). �α� denotes the largest integer not exceeding
α. For symmetric matrices, λmin[M] is the leftmost eigenvalue of M . |S| denotes the
cardinality of the set S.

2 High-Order Taylor Decrements and High-Order Optimality

Throughout this paper, we consider the unconstrained problem given by

min
x∈Rn

f (x), (2.1)

where we assume that the values of the objective function f and its derivatives are
computed inexactly and are subject to noise. Inexact quantities will be denoted by
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an overbar, so that f (s) is an inexact value of f (x) and ∇ j
x f (x) an inexact value of

∇ j
x f (x). We will also consider the assumptions below.

AS.1: the objective function f is q times continuously differentiable in Rn , for some
q ≥ 1.
AS.2: the first q derivative tensors of f are globally Lipschitz continuous, that is, for
each j ∈ {1, . . . , q} there exist a constant L f , j ≥ 0 such that, for all x, y in Rn ,

‖∇ j
x f (x) − ∇ j

x f (y)‖ ≤ L f , j‖x − y‖.

AS.3: the objective function f is bounded below by flow on R
n .

In what follows, we consider algorithms that are able to exploit all available derivatives
of f . As inmanyminimizationmethods,wewould like to build amodel of the objective
function f using the truncatedTaylor expansions (nowof degree j , for j ∈ {1, . . . , q}),
given by

T f , j (x, s)
def= f (x) +

j∑
�=1

1

�!∇
�
x f (x)[s]�, (2.2)

where ∇�
x f (x) is a �-th order symmetric tensor and ∇�

x f (x)[s]� is this tensor applied
to � copies of the vector s. More specifically, we will be interested, at a given point x ,
in finding a step s ∈ R

n which makes the Taylor decrements

�T f , j (x, s)
def= f (x) − T f , j (x, s) = T f , j (x, 0) − T f , j (x, s)

large (note that �T f , j (x, s) is independent of f (x)). When this is possible, we antic-
ipate from the approximating properties of the Taylor expansion that some significant
decrease in f is possible. Conversely, if �T f , j (x, s) cannot be made large in a neigh-
borhood of x , we must be close to an approximate minimizer. More formally, we
define, for some optimality radius δ ∈ (0, 1], the measure

φδ
f , j (x) = max‖d‖≤δ

�T f , j (x, d), (2.3)

that is the maximal decrease in T f , j (x, d) achievable in a ball of radius δ, centered at
x . Then, for some accuracy requests ε = (ε1, . . . , εq) ∈ (0, 1]q , we define x to be a
q-th order (ε, δ)-approximate minimizer if and only if

φδ
f , j (x) ≤ ε j

δ j

j ! , for j ∈ {1, . . . , q}, (2.4)

(see, e.g., [16]). A vector d solving the optimization problem defining φδ
f , j (x) in (2.3)

is called an optimality displacement. In other words, a q-th order (ε, δ)-approximate
minimizer is a point from which no significant decrease in the Taylor expansions of
degree one to q can be obtained in a ball of optimality radius δ. This notion is coherent
with standard optimality measures for low orders2 and has the advantage of being well
defined and continuous in x for every order.

2 It is easy to verify that, irrespective of δ, (2.4) holds for j = 1 if and only if ‖∇1
x f (x)‖ ≤ ε1 and that, if

‖∇1
x f (x)‖ = 0, λmin[∇2

x f (x)] ≥ −ε2 if and only if φδ
f ,2(x) ≤ ε2.
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Unfortunately, the exact values of f (x) and ∇�
x f (x) may be unavailable, and we

then face several difficulties. The first is thatwe cannot consider the optimalitymeasure
(2.3) anymore, but could replace it by the inexact variant

φ
δ

f , j (x) = max‖d‖≤δ
�T f , j (x, d), (2.5)

where

�T f , j (x, d)
def= T f , j (x, 0) − T f , j (x, d), with

T f , j (x, s)
def= f (x) +

j∑
�=1

∇�
x f (x)[s]�.

However, computing the exact global maximum in (2.5) may also be too expensive,
andwe follow [19, Theorem 6.3.5] and [17] in choosing to use the approximate version
given by �T f , j (x, d), where

ς φ
δ

f , j (x) ≤ �T f , j (x, d), (2.6)

for some displacement d such that ‖d‖ ≤ δ and some constant ς ∈ (0, 1]. Note that
(2.6) does not assume the knowledge of the global maximizer or φ

δ

f , j (x), but merely
that we can ensure (2.6) (see [20, 21, 33] for research in this direction). Note also that,
by definition,

�T f , j (x, d) ≤ ςα implies φ
δ

f , j (x) ≤ α. (2.7)

The second difficulty occurs when computing a step sk which is supposed to make
the exact Taylor decrement�T f , j (xk, sk) large, since we now have to resort to making
the inexact decrement

�T f , j (x, sk)
def= T f , j (xk, 0) − T f , j (xk, sk)

large. It is therefore necessary to ensure, somehow, that the error on this decrement
does not dominate its value. Chosen sk , the theory developed in this paper depends on
making the relative error on �T f , j (xk, sk) smaller than one, namely

|�T f , j (xk, sk) − �T f , j (xk, sk)| ≤ ω�T f , j (xk, sk), (2.8)

for some constant ω ∈ (0, 1) to be specified later. It is clearly not obvious at this point
how to enforce this relative error bound. For now, we simply assume that it can be done
in a finite number of evaluations of {∇�

x f (x)} j�=1, which are inexact approximations

of {∇�
x f (x)} j�=1, preserving the inherent symmetries of the derivative tensors.

The third difficulty arises when assessing the performance of the computed step: is
the predicted decrease �T f , j (xk, sk) significant in view of the (absolute) noise level

123



Journal of Optimization Theory and Applications

in computing f (xk) and f (xk +s)? If not, the obtained decrease is dominated by noise
in f and, thus, unreliable. To avoid this, our algorithm will attempt to require that

| f (xk) − f (xk)| ≤ ω�T f , j (xk, sk), and

| f (xk + sk) − f (xk + sk)| ≤ ω�T f , j (xk, sk), (2.9)

where ω is the parameter occurring in (2.8) and j ∈ {1, . . . , q} is the degree of the
current model.

The fourth, and for our present purpose, most significant difficulty, is that the
desired absolute accuracies on the function and the derivatives approximations in
(2.9) and (2.8) cannot be achieved if they fall below some non-negative absolute noise
levels ϑ f on the function and ϑd on the derivatives. More specifically, we use the
“Explicit Dynamic Accuracy” (EDA), framework already employed in [4, 19, 24],
where accuracies on the function and derivatives values are specified by imposing the
bounds3

| f (x) − f (x)| ≤ ζ f , (2.10)

and

‖∇�
x f (x) − ∇�

x f (x)‖ ≤ ζd , for � ∈ {1, . . . , j}. (2.11)

before the actual computation of f (x) and ∇�
x f (x) take place. Thus, assuming that

ϑ f and ϑd are known, if, for some xk and j ∈ {1, . . . , q}, it is required either

ζ f ≤ ϑ f or ζd ≤ ϑd , for some � ∈ {1, . . . , j}, (2.12)

then the required accuracies are too restrictive, the evaluation of inexact quantities is
infeasible, and the algorithm must terminate.

The EDA framework is applicable for instance to multiprecision computations [25,
27] or to problemswhere the desired values are computed by an iterative processwhose
accuracy can be monitored. In our trust-region algorithm, the thresholds ζ f and ζd
will be adaptively updated in the course of the iterations, but requesting (2.10)–(2.11)
under (2.12) is unreliable.

2.1 Checking the Accuracy of theModel Decrease

The EDA framework adaptively computes the upper bound ζd on the “derivative-by-
derivative” absolute errors in order to ensure (2.8). As it turns out, this request has to
be relaxed somewhat whenever the right-hand side ω�T f , j (xk, sk) is small, as can be
expected near aminimizers, andwehave to replace the relative accuracy bound (2.8) by
an absolute error bound in that case. Let ζd,0 be an initial trial accuracy and γζ ∈ (0, 1).

3 We could obviously use values of ζd andϑd depending on the degree �, butwe prefer the above formulation
to simplify notations. Values of ζd depending on the degree � are used in [17].
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Then, for a given temptative accuracy threshold ζd,iζ , with iζ ≥ 0 and integer, the EDA
procedure checks if (2.8) (or its absolute counterpart when ω�T f , j (xk, sk) is small)
is satisfied. In the negative case, it reduces the accuracy threshold by the factor γζ . The
management of these crucial details is the object of the CHECK algorithm on this page,
whose role is: verify if the current approximated derivatives are sufficiently accurate
and, in the negative case, check if the accuracy threshold reduced by the factor γζ is
larger than ϑd .

To describe this algorithm in a general context, we suppose that Tr (x, v) is the r -th
degree Taylor series of f about x in the direction v and that we have an approximation
T r (x, v) and its decrement �T r (x, v). Because it will always be the case when we
need it, we assume that�T r (x, v) ≥ 0. Moreover, we let ζd,iζ be the current accuracy

requirement and assume that ‖∇�
x f (x) − ∇�

x f (x)‖ ≤ ζd,iζ , for � ∈ {1, . . . , j}. The
integer iζ ≥ 0 counts the number of times the accuracy threshold has been reduced
by the factor γζ , and

ζd,iζ +1 = γζ ζd,iζ . (2.13)

Additionally, we suppose that a bound δ ≥ ‖v‖ is given, and that the constants ω ∈
(0, 1) and ξ > 0 that appear in (2.14) and (2.15) (defining the required relative and
absolute accuracies) are available. The constants ϑ f and ϑd of (2.12) are also assumed
to be known. The outcome of the CHECK algorithm4 is characterized in Lemma 2.1.

Algorithm 2.1: The CHECK Algorithm

accuracy = CHECK
(
δ, �Tr (x, v), ζd,iζ , ξ, ω

)
.

If

�T r (x, v) > 0 and ζd,iζ

r∑
�=1

δ�

�! ≤ ω �T r (x, v), (2.14)

set accuracy to relative.
Otherwise, if

ζd,iζ

r∑
�=1

δ�

�! ≤ ω ξ
δr

r ! , (2.15)

set accuracy to absolute.
Otherwise, if

γζ ζd,iζ > ϑd , (2.16)

set accuracy to insufficient.
Otherwise, set accuracy to terminal.

4 The CHECK algorithm is identical to the VERIFY algorithm of [17] (itself inspired by [4]) whenever
accuracy is either absolute or relative.
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Lemma 2.1 Suppose that AS.1 holds. Let ω ∈ (0, 1) and δ, ξ and ζd,iζ be posi-
tive. Suppose that �T r (x, v) ≥ 0 and (2.11) hold. Then the call accuracy =
CHECK

(
δ,�T r (x, v), ζd,iζ , ξ, ω

)
ensures that

(i) accuracy is either absolute or relative whenever

ζd,iζ

r∑
�=1

δi

i ! ≤ ωξ
δr

r ! ;

(ii) if accuracy is absolute,

max
[
�T r (x, v),

∣∣�T r (x, w) − �Tr (x, w)
∣∣ ] ≤ ξ

δr

r ! ,

for all w with ‖w‖ ≤ δ;
(iii) if accuracy is relative, �T r (x, v) > 0 and

∣∣�T r (x, w) − �Tr (x, w)
∣∣ ≤ ω�T r (x, v), for all wwith‖w‖ ≤ δ;

(iv) if accuracy = insufficient, the new values of the required approxi-
mate derivatives should be computed with the updated accuracy threshold ζd,iζ +1
in (2.13).
If accuracy = terminal, the noise level has been reached.

Proof Lemma 2.1 in [17] ensures the conclusions (i) to (iii). If accuracy =
insufficient, then (2.16) ensures that the accuracy threshold update (2.13) has
been performed safely ((2.12) remains violated), while accuracy = terminal
indicates that this was not the case, suggesting termination. 	


Note that case (ii) is the case where relative accuracy would be excessively requir-
ing and absolute accuracy is preferred. Also note that if �T r (x, v) is zero, then
accuracy can be absolute, insufficient or terminal. Item (ii) of the
above Lemma shows that if �T r (x, v) = 0 and accuracy is absolute, then∣∣�T r (x, w) − �Tr (x, w)

∣∣ ≤ ξ δr

r ! holds.

3 A Trust-Region Algorithmwith Explicit Dynamic Accuracy andNoise

Our trust-region algorithm, called TRqEDAN because it uses the EDA framework and
handles Noise, extends the inexact trust-region algorithm of [17] to the context where
intrinsic noise of function and/or derivatives values (ϑ f andϑd ) is present. Its structure
is relatively standard for trust-region methods. The initialization of the parameters is
followed by a loop, performed until termination, consisting of the steps below.
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1. Test for termination by applying the STEP1 algorithm described in Section 3.1
and formally stated on p. 3.2.

2. Compute a step by applying the STEP2 algorithm described in Section 3.2 and
stated on p. 3.3.

3. Test the new potential iterate for accepting or refusing the step.
4. Update the trust-region radius.

The complete formof TRqEDAN algorithmwill be presented on page 13, after describing
the test for termination and the step computation.

3.1 Testing for Termination: The STEP1 Algorithm

We start by discussing how termination is checked in the TRqEDAN algorithm. Let �k

be the trust-region radius at iteration k, θ ≤ 1 be some constant, δk = min[�k, θ ] be
the optimality radius in (2.5) at kth iteration and ε j be the j th accuracy request.

Sincewe have to rely on∇�
x f (xk), rather than∇�

x f (xk), it is clear that our optimality
measure 2.3 and test 2.4 should be modified to use the inexact values. We could mimic
[17, Algorithm 2.2] and terminate as soon as

�T f , j (xk, dk, j ) ≤
(

ςε j

1 + ω

)
δ
j
k

j ! , for j ∈ {1, . . . , q}, (3.1)

where ω ∈ (0, 1) is the relative accuracy parameter of 2.8 and δk is the optimality
radius at iteration k. In fact, due to 2.7, inequality 3.1 implies

φ
δk
f , j (xk) ≤

(
ε j

1 + ω

)
δ
j
k

j ! .
However, we now have to take into account the fact that noise in the values of the
derivatives may prevent a meaningful computation of�T f , j (xk, dk, j ). Algorithm 3.1
shown shown on the next page therefore not only computes the j-th approximate
optimality measure which is needed in 3.1, but also checks the accuracy of the model
decrease.

Algorithm 3.1 is then used to implement the complete termination test as described
in Algorithm 3.2 on the following page5: an optimality radius δk is first set, the approx-
imate derivatives are then computed and a decision is made on termination.

At termination of the TRqEDAN algorithm, the four flags status, order, delta
andradius are set. These flags denote the type of termination, the order of the Taylor
model �T f , j at termination, the value of the optimality radius at termination and an

5 We keep Algorithms 3.1 and 3.2 distinct for ease of analysis.
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upper bound on the length of the step used at termination, respectively. Not only do
they allow the user to determine the reason of termination but, as we will show in
Sect. 4, they provide the necessary information to derive some qualitative properties
of the point returned.

Algorithm 3.1: Computing �T f , j (xk, dk, j )

The iterate xk , the index j ∈ {1, . . . , q} and the radius δk ∈ (0, 1] are given, as well as constants
γζ ∈ (0, 1) and ς ∈ (0, 1]. The counter iζ , the relative accuracy ω ∈ (0, 1) and the absolute accuracy
bound ζd,iζ are also given.

Step 1.1: If they are not yet available, compute {∇i
x f (xk )} ji=1, satisfying (2.11) for ζd = ζd,iζ .

Step 1.2: Find dk, j , with ‖dk, j‖ ≤ δk such that ςφ
δk
f , j (xk ) ≤ �T f , j (xk , dk, j ), and compute

accuracy j = CHECK
(
δk ,�T f , j (xk , dk, j ), ζd,iζ , 1

2ςε j , ω
)
. (3.2)

Step 1.3: If accuracy j is absolute or relative, return �T f , j (xk , dk, j ).
Step 1.4: If accuracy j is insufficient, reduce ζd,iζ +1 using (2.13), set iζ = iζ + 1
and return to Step 1.1. Otherwise (i.e. if accuracy j is terminal), terminate the TRqEDAN
algorithm with

x̃ = xk ,status = in − noise − phi,order = j and delta = radius = δk .

Algorithm 3.2: STEP1 for the TRqEDAN Algorithm

The iterate xk , the index j ∈ {1, . . . , q} and the radius δk ∈ (0, 1] are given, as well as constants
γζ ∈ (0, 1) and ς ∈ (0, 1] and the vector ε. The counter iζ , the relative accuracy ω ∈ (0, 1) and the
absolute accuracy bound ζd,iζ are also given. Set

δk = min[�k , θ ]. (3.3)

For j = 1, . . . , q,

1. Evaluate ∇ j
x f (xk ) and compute �T f , j (xk , dk, j ) using Algorithm 3.1.

2. If termination of the TRqEDAN algorithm has not happened in Step 1.4 of Algorithm 3.1 and

�T f , j (xk , dk, j ) >

(
ςε j

1 + ω

)
δ
j
k
j ! , (3.4)

exit STEP1with the current value of j and the optimality displacement dk, j associated with φ
δk
f , j (xk ).

Otherwise, consider the next j .

Terminate the TRqEDAN algorithm with

x̃ = xk ,status = approximate − minimizer,order = q and delta = radius = δk .
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3.2 Computing a Step: The STEP2 Algorithm

When termination does not occur, the step sk from iterate k of the TRqEDAN algorithm
to the next is computed by the STEP2 Algorithm on the current page. This algorithm
ensures that sk satisfies ‖sk‖ ≤ �k and approximately minimizes the inexact Taylor
model T f , j (xk, s).

Algorithm 3.3: STEP2 for the TRqEDAN Algorithm

The iterate xk , the relative accuracy ω, the requested accuracy ε j ∈ (0, 1]q , the constant γζ ∈ (0, 1)
the counter iζ and the absolute accuracy threshold ζd,iζ are given. The index j ∈ {1, . . . , q}, the
optimality displacement dk, j resulting from Step 1 and the constant θ ∈ (0, 1], are also given such
that, by (3.4),

�T f , j (xk , dk, j ) >

(
ςε j

1 + ω

)
δ
j
k
j ! . (3.5)

Step 2.1: Step computation. If �k ≤ θ , set sk = dk, j and exit the STEP2 algorithm with

�T f , j (xk , sk ) = �T f , j (xk , dk, j ). Otherwise, find sk such that ‖sk‖ ≤ �k and

�T f , j (xk , sk ) ≥ �T f , j (xk , dk, j ), (3.6)

and compute

accuracys = CHECK
(
‖sk‖, �T f , j (xk , sk ), ζd,iζ ,

ςε j

4(1 + ω)

( θ

max
[
θ, ‖sk‖

]
) j

, ω
)
.

(3.7)

Step 2.2: If accuracys is relative, exit the STEP2 algorithm with the step sk and the
associated Taylor decrement �T f , j (xk , sk ).
Step 2.3: If accuracys is insufficient, reduce ζd,iζ +1 using (2.13) and set iζ = iζ + 1.
Otherwise, if accuracys is terminal, terminate the TRqEDAN algorithm with

x̃ = xk ,status = in − noise − s,order = j,delta = δk and radius = ‖sk‖.

The STEP2 Algorithm differs from Algorithm 3.2 of [17] in the possibility to ter-
minate in Step 2.3 because accuracys is terminal. Note that setting sk = dk, j
when �k < θ makes sense since dk, j , computed in Step 1.2 in Algorithm 3.1, is
already a (CHECKed) approximate global maximizer of �T f , j (xk, s) in the ball of
radius δk = �k . When termination occurs, the STEP2 Algorithm sets the four flags
status, order, delta and radius , whose meaning was given in Sect. 3.1. We
observe that the complicated form of ‖sk‖ and ε j , occurring in the last argument of the
call to the CHECK6 algorithm in conjunction of (3.4), ensures that accuracys cannot

6 VERIFY in [17].
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be absolute, as we show in the next Lemma 3.1. This then clarifies why this value
of accuracys is not considered in the rest of the algorithm.

Lemma 3.1 [17, Lemma 3.2] Suppose that AS.1 holds and that the TRqEDAN algo-
rithm does not terminate in Step 2.3 of the STEP2 algorithm. Then, the STEP2

algorithm terminates with accuracys being relative and (2.8) holds. More-
over, this outcome must occur if

ζd,iζ ≤ ςωδ
j
k

8 j !(1 + ω)

ε j

max[1,� j
max]

. (3.8)

Note that the bound (3.8) and the linearly decreasing nature of ζd,iζ ensure that
the STEP2 Algorithm can only terminate finitely often with accuracy j being
insufficient.

3.3 The Complete TRqEDAN Algorithm

Having constructed the first two steps of the TRqEDAN algorithm, we are now in position
to specify the algorithm in its entirety (see on the followingpage),making the necessary
changes to handle noise termination in Step 3 along the way.

We recall that δk is given by (3.3) in STEP1 and note the condition �T f , j (xk, sk) >

ϑ f /ω at the beginning of Step 3, which guarantees that intrinsic noise will not prevent
computing f (xk + sk) (and possibly recomputing f (xk) to the required accuracy).
Again, the flags status, order, delta and radius have the same meaning as
in Sect. 3.1. We stress that the values of the Lipschitz constants, whose mere existence
is assumed in AS.2, are not needed to implement the TRqEDAN algorithm.

4 Optimality at Termination

Having defined the algorithm, we now consider its complexity and the level of opti-
mality that can be guaranteed at termination. In order to analyze the latter, we provide
a result on the value of φδk

f , j when Algorithm 3.1 terminates within accuracy j being
absolute or relative (i.e., within Step 1.3). As a by-product, we show that the
loop between Steps 1.4 and 1.1 of Algorithm 3.1 is finite and thus that the procedure
is well defined. The proof follows closely [17, Lemma 2.2], and it is omitted.
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Algorithm 3.4: The TRqEDAN Algorithm

Step 0: Initialisation. A criticality order q, a starting point x0 and an initial trust-region radius
�0 are given, as well as accuracy levels ε ∈ (0, 1)q and an initial bound on absolute derivative
accuracies κζ . The absolute noise values ϑ f , ϑd , appearing in (2.12), are assumed to be known.
The constants ω, ς , θ , η1, η2, γ1, γ2, γ3 and �max are also given and satisfy

θ ∈ [ min
j∈{1,...,q} ε j , 1], �0 ≤ �max, 0 < η1 ≤ η2 < 1, 0 < γ1 < γ2 < 1 < γ3,

ς ∈ (0, 1], ω ∈
(
0,min

[
1
2η1,

1
4 (1 − η2)

])
, κζ > min

j∈{1,...,q} ε
q+1
j and ϑd < κζ .

Choose ϑd ≤ ζd,0 ≤ κζ and set k = 0 and iζ = 0.
Step 1: Termination test. Apply the STEP1 algorithm (p. 10), resulting in either termination, or
a model degree j and the associated displacement dk, j and decrease �T f , j (xk , dk, j ).
Step 2: Step computation. Apply the STEP2 algorithm (p. 11). If accuracy j is
insufficient, return to Step 1. Otherwise, either termination has occurred, or a step sk
has been computed such that �T f , j (xk , sk ) ≥ �T f , j (xk , dk, j ).

Step 3:Accept the new iterate. If�T f , j (xk , sk ) ≤ ϑ f /ω, then terminatewith x̃ = xk ,status
= in-noise-f, order = j , delta = δk and radius= max[δk , ‖sk‖].
Otherwise, compute f (xk + sk ) ensuring that

| f (xk + sk ) − f (xk + sk )| ≤ ω�T f , j (xk , sk ); (3.9)

and ensure (by setting f (xk ) = f (xk−1 + sk−1) or by recomputing f (xk )) that

| f (xk ) − f (xk )| ≤ ω�T f , j (xk , sk ). (3.10)

Then, compute

ρk = f (xk ) − f (xk + sk )

�T f , j (xk , sk )
. (3.11)

If ρk ≥ η1, set xk+1 = xk + sk ; otherwise set xk+1 = xk .
Step 4: Update the trust-region radius. Set

�k+1 ∈
⎧⎨
⎩

[γ1�k , γ2�k ] if ρk < η1,

[γ2�k , �k ] if ρk ∈ [η1, η2),
[�k ,min(�max, γ3�k )] if ρk ≥ η2.

Increment k by one and go to Step 1.
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Lemma 4.1 Suppose that AS.1 holds. If Algorithm 3.1 terminates within Step 1.3
when accuracy j is absolute, then

φ
δk
f , j (xk) ≤ ε j

δ
j
k

j ! . (4.1)

Otherwise, if it terminates with accuracy j being relative, then

(1 − ω)�T f , j (xk, dk, j ) ≤ φ
δk
f , j (xk) ≤

(
1 + ω

ς

)
�T f , j (xk, dk, j ). (4.2)

Moreover, termination with one of these two outcomes must occur if

ζd,iζ ≤ ω

4
ς ε j

δ
j−1
k

j ! . (4.3)

Of course, termination may occur before (4.3) occurs (for instance because of (2.12)
in the call to CHECK in Step 1.2), but the bound (4.3) shows that, if this doesn’t happen,
the accuracy threshold ζd,iζ cannot be reduced infinitely often by the factor γζ and
thus the loop between Steps 1.4 and 1.1 is finite. Note that the rightmost inequality
in (4.2) and (3.1) together also imply (4.1) for order j , justifying our choice of the
scaling by (1 + ω) in the former.

We proceed analyzing what can be said about the current iterate at the end of STEP1.
Here and later, we use the simple observation that, given δ > 0, we have that

min[δ, 1] ≤
j∑

�=1

δ�

�! < 2max[δ, δ j ], (4.4)

for all j ≥ 1, since
∑ j

�=1
δ�

�! ≥ δ ≥ min[δ, 1] and

j∑
�=1

δ�

�! <

⎛
⎝

j∑
�=1

1

�!

⎞
⎠max[δ, δ j ] < (e − 1)max[δ, δ j ] < 2max[δ, δ j ].
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Lemma 4.2 Suppose that AS.1 holds.

(i) Suppose that termination of the TRqEDAN algorithm occurs within STEP1 with
status=approximate-minimizer anddelta= δk . Then, (2.4) holds
and x̃ is a q-th order (ε, δk)-approximate minimizer.

(ii) Suppose that termination of the TRqEDAN algorithm occurs within STEP1 with
status = in-noise-phi, order = j and delta = δk . Then,

φ
δk
f ,i (x̃) ≤ εi

δik

i ! , for i ∈ {1, . . . , j − 1}, and φ
δk
f , j (x̃) <

4ϑd

γζ ω
δk .

(4.5)

(iii) Suppose that termination of the TRqEDAN algorithm does not happen during
execution of STEP1. Then,

�T f , j (xk, dk, j ) ≥ ζd,iζ

ω

j∑
�=1

δ�
k

�! , (4.6)

where the threshold ζd,iζ refers to its value at the end of STEP1. Moreover,

φ
δk
f ,i (xk) ≤ εi

δik

i
, for i ∈ {1, . . . , j − 1}, and (4.7)

φ
δk
f , j (xk) ≤

(
1 + ω

ς

)
φ

δk
f , j (xk).

Proof Case (i) can only occur ifAlgorithm3.1 terminateswithin Step 1.3 and (3.4) fails
for every j ∈ {1, . . . , q}.We then have fromLemma4.1 that, for every j ∈ {1, . . . , q},

φ
δk
f , j (xk) = φ

δk
f , j (x̃) ≤ max

[
ε j

δ
j
k

j ! ,
(
1 + ω

ς

)
�T f , j (xk, dk, j )

]
≤ ε j

δ
j
k

j ! ,

the last inequality resulting from the failure of (3.4). Thus, (2.4) holds. Consider now
case (ii), that iswhen the call CHECK in Step 1.2 ofAlgorithm3.1 returnsaccuracy j =
terminal for some j ∈ {1, . . . , q}. Thus Algorithm 3.1 has terminated within
Step 1.4 and (3.4) has failed for every order of index smaller than j − 1. Applying
the same reasoning as for case (i), we obtain that the first part of (4.5) holds. Now
suppose that, instead of the call (3.2) resulting in accuracy j being terminal, we
had made the hypothetical call

accuracy j = CHECK
(
δk,�T f , j (xk, dk, j ), ζi,iζ ,

ζd,iζ j !
ωδ

j
k

j∑
�=1

δ�
k

�! , ω
)
. (4.8)

Observe first that, since the call (3.2) returned terminal, (2.14) failed on that call,
and thus, since this is independent of the last argument of the call, it also fails for
the call (4.8). However, one easily checks that (2.15) holds as an equality for this
hypothetical call, and thus (4.8) would return accuracy j being absolute. We
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may then use case (ii) in Lemma 2.1 and deduce from the triangular inequality that,
for some d̃ with ‖d̃‖ ≤ δk ,

φ
δk
f , j (x̃)=�Tj (x̃, d̃) ≤ �T j (x̃, d̃) +

∣∣∣�T j (x̃, d̃) − �Tj (x̃, d̃)

∣∣∣ ≤ 2
ζd,iζ j !
ωδ

j
k

⎛
⎝

j∑
�=1

δ�
k

�!

⎞
⎠ δ

j
k

j ! .

Moreover, since the call (3.2) returned terminal, we have that γζ ζd,iζ < ϑd , and
therefore obtain that

φ
δk
f , j (x̃) < 2

ϑd

γζ ω

⎛
⎝

j∑
�=1

δ�
k

�!

⎞
⎠ . (4.9)

The second part of (4.5) then results from this inequality and (4.4), for δ = δk ≤ θ ≤ 1.
Finally, consider case (iii). Suppose that the last value of accuracy j computed

during the execution of STEP1 is absolute. Since ω ∈ (0, 1), this and Lemma 2.1 (ii)
contradict (3.4). As a consequence, the last value ofaccuracy j must berelative,
in which case (2.14) ensures (4.6). The first part of (4.7) again follows from the
reasoning of case (ii) above, for i ∈ {1, . . . , j − 1}. At last, the fact that accuracy j

is relative implies that (4.2) holds in Lemma 4.1, which gives the second part of
(4.7) along with (2.6). 	


We now examine the optimality guarantees which may be obtained, should the
TRqEDAN algorithm terminate in STEP2.

Lemma 4.3 Suppose that AS.1 holds and that, at iteration k, the TRqEDAN algorithm
terminates within STEP2withstatus =in-noise-s,order = j andradius
= ‖sk‖.
Then,

φ
‖sk‖
f , j (x̃) ≤ 4ϑd

γζ ω
max

[‖sk‖, ‖sk‖ j ]. (4.10)

Proof The fact that status = in-noise-s implies that termination occurs in
Step 2.3, and it must be because the call (3.7) returns accuracys equal to
terminal. As in the proof of Lemma 4.2, we consider replacing this call by the
hypothetical call

accuracys = CHECK
(
‖sk‖,�T f , j (xk , sk), ζi,iζ ,

ζd,iζ j !
ω‖sk‖ j

j∑
�=1

‖sk‖�

�! , ω
)
, (4.11)

and verify that this call must returnaccuracys equal toabsolute.We also deduce
from case (ii) in Lemma 2.1, the triangular inequality and the bound γζ ζd,iζ < ϑd

that, for some d̃ with ‖d̃‖ ≤ ‖sk‖,

φ
‖sk‖
f , j (x̃) = �Tj (x̃, d̃) ≤ �T j (x̃, d̃) +

∣∣∣�T j (x̃, d̃) − �Tj (x̃, d̃)

∣∣∣≤2
ϑd

γζ ω

⎛
⎝

j∑
�=1

‖sk‖�

�!

⎞
⎠ ,

and (4.10) follows from (4.4). 	
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We now state our complete result on optimality at termination. In particular, we
provide an upper bound on the value of the exact optimality measure φδ

f , j when
termination occurs because of noise.

Theorem 4.4 Suppose that AS.1 holds. Then, TRqEDAN algorithm terminates with
flags status, order, delta, radius and a point x̃ at which

φδ
f ,i (x̃) ≤ εi

δi

i ! for i ∈ {1, . . . , j − 1}, (4.12)

and
• φδ

f ,i (x̃) ≤ εi
δi

i ! for i ∈ {1, . . . , q}, (4.13)

if status = approximate-minimizer;

• φδ
f , j (x̃) ≤ 4ϑd

γζ ω
δ, (4.14)

if status = in-noise-phi;

• φν
f , j (x̃) ≤ 4ϑd

γζ ω
max

[
ν, ν j ], (4.15)

if status = in-noise-s,

where j = order, δ = delta and ν = radius. If, in addition,

sk = arg max‖s‖≤�k
�T f , j (x̃, s) (4.16)

at iteration k at which termination occurs with status = in-noise-f, then

φν
f , j (x̃) ≤ ϑ f

ς

(
1 + 1

ω

)
, (4.17)

with ν = max[δk, ‖sk‖].

Proof We note that the various flag-dependent optimality guarantees (4.12)–(4.15) are
a simple compilation of the results of Lemmas 4.2 and 4.3. To prove (4.17), observe
that, if termination occurs in Step 3 (as indicated by status = in-noise-f), it
must be because �T f , j (xk, sk) ≤ ϑ f /ω. But (3.3) and (4.16) imply that

φ
δk
f , j (xk) = �T f , j (xk, sk) ≤ ϑ f

ω
if ‖sk‖ ≤ δk,

φ
‖sk‖
f , j (xk) ≤ �T f , j (xk, sk) ≤ ϑ f

ω
if ‖sk‖ > δk .
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Moreover, the fact that Step 3 has been reached ensures that termination did not occur
in either Step 1 or Step 2. Thus, (4.7) in case (iii) in Lemma 4.2 with the definition
radius as max[δk, ‖sk‖] gives (4.17). 	


Observe that condition (4.16) needs only to be enforced if the bound (4.17) is desired
and when termination occurs with status = in-noise-f. Should (4.17) be of
interest, the step may have to be recomputed in the course of the algorithm to ensure
(4.16), whenever�T f , j (xk, sk) < ϑ f /ω. Termination is then declared if this inequal-
ity still holds for the new step, or the algorithm is continued otherwise.

5 Evaluation Complexity

The complexity of the TRqEDAN algorithm crucially depends on the decrease that can
be achieved on the exact objective function at successful iterations. This will in turn
depend on the achievable decrease in inexact values of the objective, which is itself
depending on the decrease �T f , j (xk, sk) on the inexact model. We can call on the
analysis of [17], since such decreases necessarily happen in the TRqEDAN algorithm,
before early termination due to (2.12) possibly occurs.

Lemma 5.1 [17, Lemmas 3.4 and 3.6] Suppose AS.1 and AS.2 hold. At iteration
k, before termination of the TRqEDAN algorithm, define

φ̂ f ,k
def= j ! �T f , j (xk, dk, j )

δ
j
k

, (5.1)

where j is the model’s degree resulting from STEP1 at iteration k. Then,

φ̂ f ,k ≥ ςεmin

1 + ω
, (5.2)

with εmin = min j∈{1,...,q} ε j . Moreover,

�T f , j (xk, sk) ≥ φ̂ f ,k
δ
j
k

j ! and �k ≥ min

{
γ1θ, κr min

i∈{0,...,k} φ̂ f ,i

}
, (5.3)

where L f
def= max[1,max j∈{1,...,q} L f , j ], and

κr
def= γ1(1 − η2)

4max[1, L f ] min

[
θ,

�0 min j=1,...,q δ
j
0

2q(max j=1,...,q ‖∇ i
x f (x0)‖ + κζ )

]
∈ (0, γ1θ).

(5.4)
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Using these results, we provide a crucial lower bound on the model decrease at a
successful iteration k in the noiseless case (ϑd = 0).

Lemma 5.2 Suppose AS.1 and AS.2 hold. At every iteration k of the TRqEDAN

algorithm before termination we have that:

•
�T f , j (xk, sk) ≥ ϑd

ω
ςκδεmin, (5.5)

whenϑd > 0 and letting k be the index of a successful iteration of the TRqEDAN;
•

�T j (xk, sk) ≥ 1

q! (ςκδ)
q+1ε

q+1
min , (5.6)

for every k, when ϑd = 0 (noiseless case).

In both cases, κδ is defined by

κδ
def= κr

1 + ω
, (5.7)

with κr given in Lemma 5.1.

Proof To prove the first point of the statement, observe first that, since iteration k is
successful, the algorithm must have reached the end of Step 3 at this iteration, and
thus termination did not occur in Steps 1 or 2. This means in particular, in view of
(2.16), that

ζd,iζ > ϑd , (5.8)

for all values of the accuracy threshold ζd,iζ encountered during Steps 1 and 2 of
iteration k. Moreover, case (iii) of Lemma 4.2 applies and (4.6) and (5.8) imply that

�T f , j (xk, dk, j ) ≥ ζd,iζ

ω

j∑
�=1

δ�
k

�! ≥ ϑd

ω
δk, (5.9)

again irrespective of the accuracy threshold ζd,iζ encountered during Steps 1 and 2.
We now distinguish two cases, depending on the relative magnitude of �k and θ .

• Suppose first that �k ≤ θ (or, equivalently, that δk = �k). Then, using (5.9), we
obtain that

�T f , j (xk, sk) = �T f , j (xk, dk, j ) ≥ ϑd

ω
δk . (5.10)

Now, since δk = �k ≤ θ , (5.2), the second part (5.3) in Lemma 5.1 and γ1θ > κrεmin
ensure that δk ≥ κrςεmin/(1+ ω). Substituting this latter bound in (5.10) then yields
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�T f , j (xk, sk) ≥ ϑd κr εmin

ω(1 + ω)
,

and (5.5) follows by (5.7).
• Suppose now that �k > θ (or, equivalently, that δk < �k). Then, δk = θ .
Suppose first that ‖sk‖ ≥ δk = θ . Lemma 3.1 ensures that STEP2 terminates with
accuracys being relative and (2.14) holds for x = xk and v = sk . As a conse-
quence, using (5.8) and the fact that κδ < 1 and ςεmin ≤ 1, we obtain

�T f , j (xk, sk) ≥ ζd,iζ

ω

r∑
�=1

δ�
k

�! >
ϑd

ω

r∑
�=1

δ�
k

�! ≥ ϑd

ω
θ ≥ ϑd

ω
ςκδεmin,

again implying (5.5). Suppose finally that ‖sk‖ < δk = θ . Then, we deduce from (5.9)
and (3.6) that

�T f , j (xk, sk) ≥ �T f , j (xk, dk, j ) ≥ ϑd

ω
δk = ϑd

ω
θ ≥ ϑd

ω
ςκδεmin,

and (5.5) also holds in this last case.
The proof of the second point of the statement follows that of [17, Lemma 3.7] and

is based on the use of (5.3) and of (5.2) given in Lemma 5.1. 	


The following useful corollary then follows.

Corollary 5.3 At each successful iteration k of the TRqEDAN algorithm before ter-
mination, we have that

�T f , j (xk, sk) ≥ max

[
ϑd

ω
ςκδεmin,

1

q! (ςκδ)
q+1ε

q+1
min

]
,

irrespective of the value of ϑd .

Let consider the number of iterations of “successful” iterations (those where the
new iterate is accepted in Step 3) and “unsuccessful” ones and define

Sk = {i ∈ {0, . . . , k} | xi+1 = xi + si } = {i ∈ {0, . . . , k} | ρi ≥ η1}.

Wemaynowbound the total number of iterations of the TRqEDAN algorithmas a function
of the number of its succesful ones.
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Lemma 5.4 [17, Lemma 3.1] Suppose that the TRqEDAN algorithm is used and that
�k ≥ �min for some�min ∈ (0,�0]. Then, if k is the index of an iteration before
termination,

k ≤ |Sk |
(
1 + log γ3

| log γ2|
)

+ 1

| log γ2|
∣∣∣∣log

(
�min

�0

)∣∣∣∣ . (5.11)

We are now ready to derive an upper bound on the number of evaluations required by
the TRqEDAN algorithm for termination.

Theorem 5.5 Suppose that AS.1–AS.3 hold and define εmin = mini∈{1,...,q} εi .
Then, there exists positive constants κ A

T RqEDAN , κB
T RqEDAN , κC

T RqEDAN ,

κD
T RqEDAN , κ

E
T RqEDAN and κ S

T RqEDAN such that the TRqEDAN algorithm needs at
most

κ S
T RqDAN

f (x0) − flow
max[ϑ f , ϑdεmin, ε

q+1
min ] + κD

T RqDAN |log (εmin)| + κE
T RqEDAN

= O
(
min

[
ϑ−1
f , (ϑdεmin)

−1, ε
−(q+1)
min

])

(5.12)

evaluations of the (inexact) derivatives {∇�
x f (x)}q�=1, and at most

κ A
T RqEDAN

f (x0) − flow
max

[
ϑ f , ϑdεmin, ε

q+1
min

] + κB
T RqEDAN

∣∣ log(εmin)
∣∣+ κC

T RqEDAN

= O
(
min

[
ϑ−1
f , (ϑdεmin)

−1, ε
−(q+1)
min

])

(5.13)

evaluations of f itself to terminate at a point x̃ at which the optimality guarantees
of Theorem 4.4 hold.

Proof Let k be the index of a successful iteration before termination. Because (3.9)
and (3.10) both hold at every successful iteration before termination, we have that, for
each i ∈ Sk

f (xi ) − f (xi+1) ≥ [ f (xi ) − f (xi+1)] − 2ω�T f , j (xi , si )

≥ (η1 − 2ω)�T f , j (xi , si ).

Combining now this inequality with Corollary 5.3, we obtain that

f (xi ) − f (xi+1) ≥ (η1 − 2ω)max

[
ϑd

ω
ςκδεmin,

1

q! (ςκδ)
q+1ε

q+1
min

]
. (5.14)
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Moreover, the mechanism of Step 3 of the TRqEDAN algorithm implies�T f , j (xi , si ) >
ϑ f
ω

and, therefore,

f (xi ) − f (xi+1) >
η1 − 2ω

ω
ϑ f . (5.15)

From (5.14) and (5.15), we thus deduce that

f (xi ) − f (xi+1) ≥ (η1 − 2ω)max

[
ϑd

ω
ςκδεmin,

1

q! (ςκδ)
q+1ε

q+1
min ,

ϑ f

ω

]
def= � f .

Using now the standard “telescoping sum” argument and AS.3, we obtain that

f (x0) − flow ≥ f (x0) − f (xk+1) =
∑
i∈Sk

[ f (xi ) − f (xi+1)] ≥ |Sk |� f ,

so that the total number of successful iterations before termination is

|Sk | ≤ f (x0) − flow
� f

= κ S
T RqEDAN

f (x0) − flow

max
[
ϑ f , ϑdεmin, ε

q+1
min

] , (5.16)

where

κ S
T RqEDAN

def= 1

(η1 − 2ω)
max

[
1

ω
,
(ςκδ)

q+1

q!
]−1

.

Now (5.2), the second part of (5.3) and (5.7) implies that

�k ≥ ςκδεmin, (5.17)

so that, invoking now Lemma 5.4, we deduce that the total number of iterations before
termination is bounded above by

nit
def= f (x0) − flow

� f

(
1 + log γ3

| log γ2|
)

+ 1

| log γ2|
∣∣∣∣log

(
ςκδεmin

�0

)∣∣∣∣ .

Since each iteration of the TRqEDAN algorithm inexactly computes the objective func-
tion’s value atmost twice (inStep3),weobtain that the total number of such evaluations
before termination is bounded above by 2nit , yielding (5.13) with

κ A
T RqEDAN

def= 2

η1 − 2ω
min

[
ω,

q!
(ςκδ)q+1

](
1 + log γ3

| log γ2|
)

,

κB
T RqEDAN

def= 2

| log γ2| and κC
T RqEDAN

def= 2

| log γ2|
∣∣∣∣log

(
ςκδ

�0

)∣∣∣∣ .
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To complete the proof, we need to elaborate on (5.16) to derive an upper bound
on the number of derivatives evaluations. While the TRqEDAN algorithm evaluates
{∇�

x f (xk)} j�=1 at least once in Step 1, it may need to evaluate the derivatives also when
CHECK returns insufficient, and this can happen in the loops between Steps 1.4
and 1.1 in Algorithm 3.1 and between Step 2.3 in STEP2 and Step 1 of the TRqEDAN

algorithm. Thus, the total number of derivatives’ evaluations is given by |Sk | plus the
total number of accuracy tightenings (counted by iζ ). The next step is therefore to
establish an upper bound on this latter number. This part of the proof is a variation
on that of Theorem 3.8 in [17], now involving the bounds (4.3) and (3.8), but also
the additional inequality ζd,iζ ≥ ϑd which must hold as long as termination has not
occurred. To summarize the argument, these three bounds ensure a global lower bound
ζd,min on ζd,iζ , while an upper bound is given by κζ . Since each tightening proceeds by
multiplying the accuracy threshold by γζ , one then deduces that the maximum number
of such tightenings isO(| log(ζd,min/κζ )|

)
, which then leads to (5.12). The details are

given in “Appendix.” 	


The results of Theorem 5.5 merit some comments. Firstly, and as expected, we
see in the bounds (5.12) and (5.13) that the total number of evaluations needed for
the TRqEDAN to terminate may be considerably smaller when intrinsic noise is present
(ϑd > 0 and ϑ f > 0) than in the noiseless situation (ϑd = ϑ f = 0), in which case

we recover the bound inO(ε
−(q+1)
min )+O(| log(εmin)|) of [17]. More interestingly, we

note that, for the intrinsic noise to be small enough to let the trust-region algorithm
run its course unimpeded, we need that ϑd = O(ε

q
min) and ϑ f = O(ε

q+1
min ). Since

ϑd and ϑ f are intrinsic to the problem, it means that we expect the algorithm to run
unimpeded (in the worst case) only if

εmin � max

[
ϑ

1
q+1
f , ϑ

1
q
d

]
. (5.18)

To give an example, suppose thatwe are applying the TRqEDAN algorithm to find second-
order approximate minimizers on a machine whose machine precision is 10−15. This
suggest that (in the worst case again), the algorithm could work as if noise where
absent for εmin of order 10−5 and above. Of course, this ignores that some of the
deterministic bounds we have imposed could fail and yet the algorithm could proceed
without trouble.

We also note that the second term in (5.12), which accounts for the additional
evaluations due to inexact but still acceptable evaluations, now involves a term in
| log(ϑd/κζ )| (the magnitude of the accuracy range between its initial value and noise)
along with the term in log(εmin) = log(εqmin) of [17]. This is coherent with our obser-
vation (5.18).

We finally note the difference between the impact of the absolute noise on the
objective function’s values (ϑ f ) and that on the derivatives (ϑd ), the former being
significantly more limitative than the latter. This is reminiscent of similar observations
and assumptions in the stochastic context [2, 6, 9].
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6 Numerical Illustration

In this section, we illustrate the behavior of the TRqEDAN algorithm described on page
12 when applied to the Broyden tridiagonal [10, 28] test problem implemented as
broyden3d in OPM [26]. The problem is to minimize

f (x) =
m∑
i=1

f 2i (x), fi : R → R
n,

in which n = m = 10,

fi (x) = (3 − 2xi )xi − xi−1 − 2xi+1 + 1, 1 ≤ i ≤ n, x0 = xn+1 = 0,

and the starting point is chosen as (−1, . . . ,−1)� ∈ R
n . The optimal value is iden-

tically zero. The TRqEDAN algorithm has been run (in MATLAB with 64 bits) for
q = 2 (hence requiring approximate second-order optimality), the accuracy vector
ε = (10−6, 10−3), and initialized with �0 = 1 and algorithmic parameters set to

ω = 0.025, ς = θ = 1, η1 = 0.01, η2 = 0.9, γ1 = 0.25, γ2 = 0.75, γ3 = 3,

�max = 107, γζ = 0.5, ζd,0 = κζ = 0.1.

Our illustration is in the context of “variable” or “multiple” precision computations, in
which attempts are made to use a computing accuracy (as determined by the number
of bits necessary to represent numbers) as limited as possible, the underlying motiva-
tion being to control energy dissipation in very high-speed processing units. A more
detailed motivation can be found in [25, 27].

In our test, objective function and derivatives values are computed according to four
distinct levels of accuracy. In the “full precision” case, these value are computed with
double-precision machine accuracy (2.22 · 10−16). In all other cases, the precision
level is chosen as the least requiring among double, single, half or quarter precision
in order to enforce an absolute error7 bounded above by 0, 1.19 · 10−7, 3.45 · 10−4 or
1.86 · 10−2, respectively.

Our numerical tests consider five different scenarii, summarized below.

• exact: the TRqEDAN algorithm assumes that all the objective function evaluations
required by the algorithm and the derivatives approximations needed to build the
model are exact (i.e., with full precision absolute accuracy);

• no_noise: the TRqEDAN algorithm specifies the required accuracy for function and
derivatives values, in the absence of limiting intrinsic noise (i.e., ϑd = ϑ f = 0);

• noise_in_f : the TRqEDAN algorithm specifies the required accuracy for function
and derivatives values, but intrinsic noise limits the accuracy of the former (i.e.,
ϑ f = 1.19 · 10−7, corresponding to single precision accuracy, while ϑd = 0);

7 With respect to the “full precision” case. This can be done by making the (known) maximum truncation
error for a given precision level small enough.
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Table 1 Termination status, computed (exact) optimality measures at termination and their theoretical
upper bounds (as specified by (4.12) and one of (4.13)–(4.17)), for the TRqEDAN algorithm on the Broyden
tridiagonal problem

Scenario Termination status Optimality measure Upper bound Ineq.

exact approximate-minimizer φδ
f ,1(x̃) = 4.69 · 10−19 1.07 · 10−11 (4.12)

φδ
f ,2(x̃) = 2.11 · 10−27 5.75 · 10−16 (4.13)

no_noise approximate-minimizer φδ
f ,1(x̃) = 4.66 · 10−19 1.07 · 10−11 (4.12)

φδ
f ,2(x̃) = 2.05 · 10−27 5.75 · 10−16 (4.13)

noise_in_f in-noise-f φν
f ,1(x̃) = 1.92 · 10−6 4.89 · 10−6 (4.17)

noise_in_g in-noise-phi φδ
f ,1(x̃) = 2.23 · 10−6 2.70 · 10−5 (4.14)

noise_in_f_and_g in-noise-f φν
f ,1(x̃) = 3.58 · 10−6 4.89 · 10−6 (4.17)

• noise_in_g: the TRqEDAN algorithm specifies the required accuracy for function
and derivatives values, but intrinsic noise limits the accuracy of the latter (i.e.,
ϑd = 3.45 · 10−4, corresponding to half precision, while ϑ f = 0);

• noise_in_f_and_g: the TRqEDAN algorithm specifies the required accuracy for func-
tion and derivatives values, but intrinsic noise limits the accuracy of both (i.e.,
ϑ f = 1.19 · 10−7 and ϑd = 3.45 · 10−4).

Table 1 indicates that the optimality bounds (4.14)–(4.17) at termination do indeed
hold for each of these scenarii. In each case, we report the algorithm termination status,
the value of the suitable optimality measure, its associated theoretical upper bound
and the reference of the relevant inequality in Theorem 4.4. As expected, the TRqEDAN

algorithm terminates with a (second-order) approximate minimizer when function and
derivatives estimations can be computed exactly or in absence of intrinsic noise (sce-
narii exact and no_noise). Degraded optimality conditions are satisfied, as predicted,
in the presence of intrinsic noise (scenarii noise_in_f, noise_in_g, noise_in_f_and_g)
In Fig. 1, we also provide, for each of the five scenarii discussed above, plots of
the evolution of the (exact) objective function value, that of the accuracy request on
the objective function (ζ f ) and of the accuracy request on the derivatives (ζd ). We
note that, in the exact scenario shown in the top left panel, the objective function at
termination is of the order of 10−27, while the accuracy requests ζ f , ζd stay at full
precision throughout. When exploitation of variable precision is allowed for f and
the derivatives but no intrinsic noise is present (in the no_noise scenario shown in
the top right panel), a similar final accuracy is obtained for the objective function
but the accuracy requests become more stringent only progressively, allowing inexact
computations for most of the process. As soon as intrinsic noise in present (middle
and bottom panels), the accuracy requests stagnate at the level of this noise, thereby
also limiting the achievable accuracy of the final objective function value. The final
objective function values, optimality order and accuracy requests are given in Table 2.
In these tests, second-order models were used only in the last two iterations in the
exact and no_noise scenarii.
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Fig. 1 Decrease of the objective function (continuous line) and of the absolute accuracy levels ζ f in the
objective function approximations (dashed line) and in the derivatives estimates ζd (dotted line) by the
TRqEDAN algorithm on the Broyden tridiagonal problem
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Table 2 Objective function value f , optimality order j and accuracy levels ζ f and ζd at termination of the
TRqEDAN algorithm applied on the Broyden tridiagonal problem

Scenario f j ζ f ζd

exact 2.11430 · 10−27 2 2.22 · 10−16 2.22 · 10−16

no_noise 2.05010 · 10−27 2 2.22 · 10−16 2.22 · 10−16

noise_in_f 4.53770 · 10−7 1 1.19 · 10−7 2.22 · 10−16

noise_in_g 4.95172 · 10−7 1 2.22 · 10−16 3.45 · 10−4

noise_in_f_and_g 1.06516 · 10−6 1 1.19 · 10−7 3.45 · 10−4

7 Conclusions and Perspectives

Wehave discussed the evaluation complexity of trust-region algorithms in the presence
of intrinsic noise on function and derivatives values, possibly causing early termination
of theminimizationmethod.We have produced an evaluation complexity boundwhich
stresses this dependence and relates it to the complexity bound for the noiseless, albeit
inexact, case. We have also illustrated and validated our theoretical findings numer-
ically, by applying our trust-region algorithm to a simple nonconvex minimization
problem.

In our analysis,wehaveprivileged focus and clarity over generality.Wehave already
mentioned that the noise levels and accuracy thresholds could be made dependent on
the degree of the derivative considered, but other extensions are indeed possible. The
first is to consider constrained problems, where the feasible set is convex (or even
“inexpensive” or “simple,” see [4, 15, 16]). The second is to replace the Lipschitz
continuity required in AS.2 by the weaker Hölder continuity (as in [12–14, 22, 30]).
The minimization of composite function (using techniques of [15, 24, 29]) is another
possibility.

Finally, considering “noise-aware” stochastic minimization algorithm is also of
interest.
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di Ricerca 2019 and 2020. The fourth author was partially supported by INdAM through a GNCS grant and
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Appendix : Details of the Proof of Theorem 5.5

We follow the argument of [17, proof of Theorem 3.8] (adapting the bounds to the new
context) and derive an upper bound on the number of derivatives’ evaluations. This
requires counting the number of additional derivative evaluations caused by successive
tightening of the accuracy threshold ζd,iζ . Observe that repeated evaluations at a given
iterate xk are only needed when the current value of this threshold is smaller than used
previously at the same iterate xk . The {ζd,iζ } are, by construction, linearly decreasing
with rate γζ . Indeed, ζd,iζ is initialized to ζd,0 ≤ κζ in Step 0 of the TRqDAN algorithm,
decreased each time by a factor γζ in (2.13) in the CHECK invoked in Step 1.2 of
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Algorithm 3.1, down to the value ζd,iζ which is then passed to Step 2, and possibly
decreased there further in (2.13) in the CHECK invoked in Step 2.1 of the STEP2 algorithm,
again by successive multiplication by γζ . We now use (4.3) in Lemma 4.1 and (3.8)
in Lemma 3.1 to deduce that, even in the absence of noise, ζd,iζ will not be reduced
below the value

min

[
ω

4
ς ε j

δ
j−1
k

j ! ,
ω

8(1 + ω)max[1,� j
max]

ε j
δ
j
k

j !

]

≥ ς ω

8(1 + ω)max[1,� j
max]

ε j
δ
j
k

j ! (A.1)

at iteration k. Now define

κacc
def= ςω(ςκδ)

q

8(1 + ω)max[1,� j
max]

≤ ςω

8(1 + ω)max[1,� j
max]

(ςκδ)
j

j ! ,

so that (5.17) implies that

κaccε
q+1
min ≤ ςω ε j

8(1 + ω)max[1,� j
max]

δ
j
k

j ! .

We also note that conditions (2.16) and (2.13) in the CHECK algorithm impose that any
reduced value of ζd,iζ (before termination) must satisfy the bound ζd,iζ ≥ ϑd . Hence,
the bound (A.1) can be strengthened to be

max
[
ϑd , κaccε

q+1
min

]
.

Thus, no further reduction of the ζd,iζ , and hence no further approximation of

{∇ j
x f (xk)}qj=1, can possibly occur in any iteration once the largest initial absolute

error ζd,0 has been reduced by successive multiplications by γζ sufficiently to ensure
that

γ
iζ
ζ ζd,0 ≤ γ

iζ
ζ κζ ≤ max[ϑd , κaccε

q+1
min ], (A.2)

the second inequality being equivalent to asking

iζ log(γζ ) ≤ max
[
log(ϑd), (q + 1) log (εmin) + log(κacc)

]− log
(
κζ

)
, (A.3)

where the right-hand side is negative because of the inequalities κacc < 1 and
max[εq+1

min , ϑd ] ≤ κζ (imposed in the initialization step of the TRqEDAN algorithm).
We now recall that Step 1 of this algorithm is only used (and derivatives evaluated)
after successful iterations. As a consequence, we deduce that the number of evalua-
tions of the derivatives of the objective function that occur during the course of the
TRpDAN algorithm before termination is at most
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|Sk | + iζ,max, (A.4)

i.e., the number iterations in (5.16), plus

iζ,max
def=
⌊

1
log(γζ )

max
{
log

(
ϑd
ζd,0

)
, (q + 1) log (εmin) + log

(
κacc
ζd,0

)}⌋

< 1| log(γζ )|
{∣∣∣log

(
ϑd
ζd,0

)∣∣∣+ (q + 1) |log (εmin)| +
∣∣∣log

(
κacc
ζd,0

)∣∣∣
}

+ 1,

the largest value of iζ that ensures (A.3). Adding one for the final evaluation at termi-
nation, this leads to the desired evaluation bound (5.12) with the coefficients

κD
TRqEDAN

def= q + 1

| log γζ | and

κE
TRqEDAN

def= 1

| log(γζ )|
{∣∣∣∣log

(
κacc

ζd,0

)∣∣∣∣+
∣∣∣∣log

(
ϑd

ζd,0

)∣∣∣∣
}

+ 2.
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