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1 Introduction

Tensors [21, 28, 29] are multidimensional arrays that have been used in diverse fields of applica-
tions, including psychometrics [4], image/video and signal processing [10], machine learning [33], and
web link analysis [22]. The compression, sort, analysis, and many other processing of tensor data rely
on the tensor decomposition. Various tensor decompositions under different tensor products such as
the CANDECOMP/PARAFAC [4, 16], higher order singular value decomposition (HOSVD) [11, 35],
T-SVD [19, 20], T-CUR [5], tensor-train [27] and tensor-train rank-1 (TTr1) SVD (TTr1SVD) [2]
have been investigated to extend linear algebra methods to the multilinear context. Among these de-
compositions, the HOSVD algorithm is not orientation dependent and can achieve high compression
ratios if the target rank for the Tucker approximation is small compared to the original dimensions.
By contrast, since the Fourier matrix is independent of the tensor, the T-SVD cannot embody the
data feature and is not suitable for all orientation-dependent data. However, we usually confront
orientation-dependent tensors which have high correlation among frontal slices in applications. Re-
cently, Zeng and Ng [40] proposed a new decomposition for third-order tensors based on the HOSVD
and T-SVD, which is named oriented singular value decomposition (O-SVD). Like the T-SVD, the
O-SVD also aims at tensors with fixed orientations and has been demonstrated to be useful in ap-
proximation and data compression.

While the O-SVD combines the ideas of the HOSVD and T-SVD, it can still be expressed with the
sum of outer product terms. This property is also reminiscent of the TTr1SVD which decomposes an
arbitrary tensor into a finite sum of orthogonal rank-1 outer products. Unlike the O-SVD, one needs to
progressively reshape and compute the SVD of each singular vector to produce the TTr1 decomposition
[2]. Therefore, in this paper, we first consider the acceleration of the computation of the O-SVD by
means of the constructive approach for the TTr1SVD. Then we turn to the numerical approximation
of the O-SVD. A straightforward r-term approximation of the O-SVD has been proposed by keeping
r terms for which singular values are the largest in magnitude and discarding the other terms. We
propose an alternative truncation strategy for better preserving the original structure inherited from
the HOSVD and T-SVD.

In recent years, randomized matrix methods have been used to efficiently and accurately compute
approximate low-rank matrix decompositions and the least squares problem (see [12,15,24,32,38,39]).
These algorithms are easy to implement, and have been extended to the singular value decomposition
of tensors based on different tensor products [6–9, 26, 41]. Specially, Zhang et al. [41] proposed an
algorithm that extends a well-known randomized matrix method to the T-SVD that was called the
RT-SVD, which is more computationally efficient on large data sets. Che and Wei [6] designed random-
ized algorithms for computing the Tucker and tensor train approximations of tensors with unknown
multilinear rank and analyzed their probabilistic error bounds under certain assumptions. Minster
et al. [26] presented randomized algorithms of the HOSVD (RHOSVD) and sequentially truncated
HOSVD (RSTHOSVD) in the Tucker representation and gave a detailed probabilistic error analysis
for both algorithms. They also applied the adaptive randomized algorithm to find a low-rank repre-
sentation satisfying a given tolerance and proposed a structure-preserving decomposition where the
core tensor retains favorable properties of the original tensor. However, the randomized algorithms
mentioned above are not useful for tensors with a fixed orientation involving time series or other or-
dered data that are highly correlated among slices. Hence, we are motivated to design a new type of
randomization strategy corresponding to the O-SVD, and hopefully, this technique can greatly reduce
the computational cost while maintaining the accuracy.

The rest of this paper is organized as follows. In Section 2, we introduce some basic definitions
and preliminaries. In Section 3, we briefly introduce the O-SVD, discuss its connection to TTr1SVD
and present a new truncation strategy for the O-SVD. Thereafter, in Section 4, a randomized tensor
algorithm based on the O-SVD is proposed. We also give an expected error bound and compare the
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computational and memory cost with the RT-SVD and RHOSVD. Section 5 presents numerical results
on the approximation error and the computational complexity of the algorithm, and compares it with
some existing methods. Some conclusions are presented in Section 6.

2 Preliminaries

In this section, we introduce definitions and notation used throughout the paper. Scalars are
denoted by lowercase letters, e.g. a, vectors are denoted by bold-face lowercase letters, e.g. a,
matrices are denoted by bold-face capitals, e.g. A, and tensors are written as calligraphic letters, e.g.
A. The ith entry of a vector a is denoted by ai, and the (i, j, k)th element of a third-order tensor A
is denoted by aijk. For convenience, we sometimes use the MATLAB notation to denote subportions
of a matrix or tensor, (e.g., A(:, :, k) denotes the kth frontal slice of a tensor and A(i, :) the ith row
of a matrix).

A mode-n fiber is a column vector defined by fixing every index but the nth index, and a mode-
(m,n) slice is a matrix defined by fixing every index but the mth index and the nth index. A
mode-(1, 2) slice is also called a frontal slice. The mode-n unfolding of a tensor A ∈ RI1×I2×I3 is
denoted by A(n) and arranges the mode-n fibers to be the columns of the resulting matrix.

Definition 2.1 ( Mode-n product [21]). The mode-n product of a tensor A ∈ RI1×I2×···×IN by a
matrix B ∈ RJn×In, denoted by A×n B, is a tensor C ∈ RI1×···×In−1×Jn×In+1×···×IN with

ci1...in−1jin+1...iN =

In∑
in=1

ai1...in−1inin+1...iN bjin ,

where n = 1, 2, . . . , N .

Definition 2.2 ( Inner product [21]). The inner product of two tensors A, B ∈ CI1×I2×···×IN is defined
as

〈A,B〉 =
∑

i1,i2,...,iN

ai1i2···iN bi1i2...iN .

We call two tensors orthogonal if their inner product is 0. The norm of a tensor is taken to be the
Frobenius norm ‖A‖F = 〈A,A〉1/2.

Definition 2.3 ( Outer product [2]). A third-order rank-1 tensor A can always be written as the outer
product

σ(a ◦ b ◦ c) with components aijk = σaibjck

with σ ∈ R, whereas a, b, and c are vectors of arbitrary lengths. Using the mode-n multiplication,
this outer product can also be written as σ×1a×2b×3c, where σ is now regarded as a 1× 1× 1 tensor.

Definition 2.4 ( Tensor-tensor product [40]). The three-mode product of A ∈ RI1×I2×I3, B ∈ RI2×I4×I3

denoted by A ∗3 B, is of size I1 × I4 × I3, which is given by

(A ∗3 B) (:, :, k) = A(:, :, k)B(:, :, k), k = 1, . . . , I3.

Definition 2.5 ( Transpose). If A is an I1×I2×I3 tensor, then AT is an I2×I1×I3 tensor obtained
by transposing each of the frontal slices, i.e., AT (:, :, i) = A(:, :, i)T , for i = 1, . . . , I3.

We should note that the definition here of a transpose operation for tensors is different from that
in [20]. The following lemma introduces some properties of the mode-n product.
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Lemma 2.1 ( [21,40] ). Let A ∈ RI1×I2×I3 ,M ∈ RJn×In, B = A×n M , n = 1, 2, 3. Then
(1) B(n) = MA(n);

(2) If M (n) is orthonormal for Jn = In, then A = B ×n MT ;

(3) For M1 ∈ RJn×In ,M2 ∈ RJ
′
n×Jn, then (A×n M1)×n M2 = A×n (M2M1).

Definition 2.6 ( Tensor rank [11,19]). Let A ∈ RI1×I2×I3.
(1) The n-rank of A, denoted by rankn(A), is the dimension of the vector space spanned by all mode-n
fibers. For example, rank3(A) = rank(A(3)).

(2) The multirank of A is a mode-3 fiber rankm(A) ∈ RI3 such that rankm(A)(i) is the rank of
(A×3 M) (:, :, i) where M represents different meanings under different tensor products.

The Tucker rank of tensor A is a vector with its elements being the ranks of matrix unfoldings with
respect to the corresponding modes, i.e., (rank1(A), rank2(A), rank3(A)). If M is the left singular
matrix of A(3) with A(3) = U (3)S(3)V (3)T , it is shown in [40] that

max rankm(A) = max {rank((A×3 U
(3)T )(:, :, i))} ≤ min {rank1(A), rank2(A)}.

3 O-SVD

We first review the O-SVD developed by Zeng and Ng [40], which is built on the operations of
tensors introduced in Section 2. In order to better understand the O-SVD and improve its numerical
realization, we show that the outer product form of the O-SVD is in fact the TTr1SVD introduced
in [2]. We then proceed to a type of truncated O-SVD (TO-SVD) in an analogous manner to the
truncated T-SVD (TT-SVD) [20] and develop a rigorous error analysis.

Theorem 3.1 (O-SVD [40]). Let A ∈ RI1×I2×I3 and R3 = rank3(A). There exists an orthogonal
matrix U (3) ∈ RI3×I3, three tensors U ∈ RI1×I1×I3, S ∈ RI1×I2×I3, V ∈ RI2×I2×I3 such that

A = (U ∗3 S ∗3 V)×3 U
(3), (3.1)

where
(1) U(:, :, i), V(:, :, i) are orthogonal and S(:, :, i) is a nonnegative diagonal matrix for i = 1, 2, . . . , R3;
(2) U(:, :, i), V(:, :, i) and S(:, :, i) are all zero matrices for i = R3 + 1, . . . , I3.

The diagonal elements sjji of each frontal slice of S are called the singular values of the pair (A,S).

Theorem 3.2 ( [40] ). Let the core tensor corresponding to the O-SVD of A ∈ RI1×I2×I3 be S. Then
each slice S(:, :, i) ∈ RI1×I2 has the following property:

‖S(:, :, 1)‖F ≥ ‖S(:, :, 2)‖F ≥ · · · ≥ ‖S (:, :, I3)‖F ≥ 0,

where ‖S(:, :, i)‖F = σi with σi being the ith largest singular value of A(3) and

σi ≥ S(1, 1, i) ≥ S(2, 2, i) ≥ · · · ≥ S(r2, r2, i) ≥ 0

for i = 1, 2, . . . , r1, where r1 = min {I3, I1I2}, r2 = min {I1, I2}.

3.1 O-SVD and TTr1SVD

It follows from Theorem 3.1 that there are two steps in the computational procedure of the O-
SVD. The first step is to find a basis of the space spanned by the frontal slices of A. Specifically, one
needs to conduct the “economical” SVD of the I3 × I1I2 matrix A(3)

A(3) = U (3)S(3)V (3)T ,
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where the number of non-zero singular values obtained is equal to the number of the desired basis.
Then, the frontal slices of Ã = A ×3 U (3)T are the basis we are looking for. Motivated by the
observation that

Ã(:, :, i) = σiṼ i = σireshape(V (3)(:, i), [I1, I2]), (3.2)

where the operator reshape returns the I1-by-I2 matrix Ṽ i whose elements are taken columnwise from
V (3)(:, i), we can compute the SVD directly for each matrix Ṽ i

Ṽ i = UiSiV i
T (3.3)

instead of forming Ã first. This procedure is directly inspired by the algorithm of TTr1 decomposition
[2], which requires recursively reshaping the right singular vectors V (3)(:, i), and computing their
SVDs. This algorithm is called TTr1SVD and gives rise to the formation of a tree. Since the first step
of the TTr1SVD algorithm is to expand the tensor along the selected mode, the O-SVD is in fact the
TTr1SVD for the third-order oriented tensors with the processing order ρ = [3, 1, 2]. Let σij denote

the jth largest singular value of Ṽ i where i = 1, 2, . . . , r1, j = 1, 2, . . . , r2. Substituting (3.3) into (3.2),
it is easy to derive that

sjji = σiσij , U(:, :, i) = Ui,V(:, :, i) = V i
T . (3.4)

Since any matrix can be written as a sum of rank-1 terms, we can also rewrite A as

A =

r1∑
i=1

r2∑
j=1

sjji ×1 uij ×2 vij ×3 ui, (3.5)

where ui, uij , vij are the column vectors of U (3), Ui, V i respectively. Consequently, the O-SVD also
has three main features that render it similar to the matrix SVD.

Corollary 3.1 ( [2]). Let (3.5) be the outer product form of the O-SVD of A ∈ RI1×I2×I3, and the
number of rank-1 terms be R = r1r2. Then,
(1) the scalars sjji are the weights of the outer products in the decomposition,
(2) the outer products affiliated with each singular value are tensors of unit Frobenius norm, since each
product vector (or mode vector) is a unit vector, and
(3) each outer product in the decomposition is orthogonal to all the others.

Furthermore, we can obtain a more economical expression, similar to the form of the (Lr, Lr, 1)-
term decomposition [34].

Corollary 3.2. Let (3.1) be the O-SVD of A ∈ RI1×I2×I3. Then

A =

R3∑
r=1

Hr⊗ur, rank (Hr) = Lr > 0 for 1 ≤ r ≤ R3, (3.6)

where Hr= Ã(:, :, r) = U(:, :, r)S(:, :, r)V(:, :, r), ur = U (3)(:, r), and ⊗ is the tensor product defined by
(H⊗u)(i, j, k) = hijuk.

3.2 TO-SVD and its Error Analysis

For an orientation-dependent tensor A ∈ RI1×I2×I3 , the numerical rank of A(3) is usually much
smaller than I3. In this circumstance, we can utilize the truncation strategy to efficiently compute an
approximate O-SVD. The Eckart-Young theorem [13] states that an optimal rank-k approximation to
a matrix can be constructed using the rank-k truncated SVD. Similarly, an r-term approximation for
the O-SVD can be obtained by truncating (3.5) to the first r terms.
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Lemma 3.1 (Approximation [2, 40]). Let A ∈ RI1×I2×I3 and denote σ̃i as the ith singular value of
the pair (A,S) in descending order. Denote by Ar the r-term approximation by the O-SVD. Then we
have

‖A −Ar‖2F =

r1r2∑
i=r+1

σ̃i
2. (3.7)

Notice that the r-term approximation of A requires reordering all the singular values, finding the
outer product corresponding to each singular value and adding them one by one, which is undoubtedly
laborious and time-consuming. At the same time, the original structures of Theorem 3.1 and Corollary
3.2 cannot be maintained.

To overcome this drawback, we adopt an alternative truncation strategy. Recall that the factor
matrix of the truncated HOSVD (THOSVD) [36] is obtained from a truncated SVD of the mode-k
unfolding of the tensor. For the TT-SVD, it consists of transforming the tensor to the Fourier domain
and applying the truncated SVD to each frontal slice of the tensor. Following the procedure of the
O-SVD, we consider a truncation method combining the ideas of TT-SVD and THOSVD. We first

perform a truncated SVD of A(3) to get the approximate matrix U
(3)
k1

of the left singular matrix

U (3), where k1 is the target truncation rank. Secondly, for each frontal slice of A ×3 (U
(3)
k1

)T , we

conduct the economical SVD with different target truncation terms. Let k2 = [k21, . . . , k2k1 ]T be the
target multirank of the second step. Obviously, this kind of truncation leads to different nonzero
blocks in each frontal slice of S, and so do U and V. For the convenience of description, we set
k2 = max{k21, . . . , k2k1}. Now we are ready to summarize the above discussion in the following
definition.

Definition 3.1 (k-term TO-SVD). Given a tensor A ∈ RI1×I2×I3, define the truncation of the O-SVD
to k terms of A as

Ak = (Uk2 ∗3 Sk2 ∗3 Vk2)×3 U
(3)
k1
, (3.8)

where
(1) k = [k1;k2] ∈ Rk1+1 is the target rank vector;
(2) Uk2(:, :, i) ∈ RI1×k2 and VTk2(:, :, i) ∈ RI2×k2 have k2i orthogonal columns for i = 1, 2, . . . , k1.

Sk2(:, :, i) ∈ Rk2×k2 is a nonnegative diagonal matrix for i = 1, 2, . . . , k1;

(3) U
(3)
k1

= U (3)(:, 1 : k1) ∈ RI3×k1.

In Algorithm 1, we show how the TO-SVD can be implemented in combination with the improved
methods mentioned in Subsection 3.1. The error of the TO-SVD is presented in Theorem 3.3.

Algorithm 1 k-term TO-SVD

Input: A ∈ RI1×I2×I3 , target truncation vector k = [k1;k2], k2 = [k21, . . . , k2k1 ]T ,

Output: U
(3)
k1
∈ RI3×k1 , Uk2 ∈ RI1×k2×k1 , Sk2 ∈ Rk2×k2×k1 , Vk2 ∈ Rk2×I2×k1

1: Initialization: Uk2 , Sk2 , Vk2 are zero tensors of appropriate size;

2:

[
U

(3)
k1
,S

(3)
k1
,Vk1

(3)
]

= svds
(
A(3), k1

)
;

3: for i = 1, 2, . . . , k1, do
4: Ṽ i = reshape(Vk1

(3)(:, i), [I1, I2]);

5: [Ui,Si,V i] = svds(Ṽ i, k2i);

6: Uk2(:, 1 : k2i, i) = Ui, Sk2(1 : k2i, 1 : k2i, i) = S
(3)
k1

(i, i)Si, Vk2(1 : k2i, :, i) = V i
T ;

7: end for
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Theorem 3.3. Let Ak be the truncation of the O-SVD to k terms of A ∈ RI1×I2×I3. Then

‖A −Ak‖2F =

k1∑
i=1

r2∑
j=k2i+1

s2
jji +

I3∑
i=k1+1

r2∑
j=1

s2
jji. (3.9)

Proof. Since the Frobenius norm is unitarily invariant, by (3.1) and (3.8), we have

‖A −Ak‖F =
∥∥∥A×3 U

(3)T −Ak ×3 U
(3)T

∥∥∥
F

=
∥∥∥U ∗3 S ∗3 V − (Uk2 ∗3 Sk2 ∗3 Vk2)×3

(
U (3)TU

(3)
k1

)∥∥∥
F
.

Noting that U (3)TU
(3)
k1

=

[
Ik1

0

]
, now let Ũk2 (:, :, i) = Uk2 (:, :, i), S̃k2 (:, :, i) = Sk2 (:, :, i), Ṽk2 (:, :, i) =

Vk2 (:, :, i), for i = 1, 2, . . . , k1 and Ũk2 (:, :, i) = 0, S̃k2 (:, :, i) = 0, Ṽk2 (:, :, i) = 0 of the corresponding
dimension for i = k1 + 1, . . . , I3, from which we can obtain

‖A −Ak‖2F =
∥∥∥U ∗3 S ∗3 V − Ũk2 ∗3 S̃k2 ∗3 Ṽk2∥∥∥2

F

=

I3∑
i=1

∥∥∥U(:, :, i)S(:, :, i)V(:, :, i)− Ũk2(:, :, i)S̃k2(:, :, i)Ṽk2(:, :, i)
∥∥∥2

F

=

I3∑
i=1

∥∥∥∥S(:, :, i)−
[
S̃k2(1 : k2i, 1 : k2i, i)

0

]∥∥∥∥2

F

=

k1∑
i=1

r2∑
j=k2i+1

s2
jji +

I3∑
i=k1+1

r2∑
j=1

s2
jji,

where we used U(:, :, i)T Ũk2(:, :, i) =

[
Ik2i

0

]
and Ṽk2(:, :, i)V(:, :, i)T =

[
Ik2i 0

]
in the third equal-

ity. Finally, observing that S̃k2(1 : k2i, 1 : k2i, i) = S(1 : k2i, 1 : k2i, i) for i = 1, 2, . . . , k1 and sjji is the
jth singular value of S(:, :, i), we get the desired result.

The error will serve as an important reference to compare the accuracy of the randomized O-SVD
with the deterministic one. Comparing Theorem 3.3 with Lemma 3.1, we have

‖A −Ak‖F ≥ ‖A−Ar‖F ,

where r =
∑k1

i=1 k2i. However, the TO-SVD is cheaper to compute and retains the original structure
of the O-SVD.

4 Randomized O-SVD

Randomized algorithms play a key role in low-rank approximations of large matrices. In this
section, the scheme of the matrix randomized SVD (R-SVD) [15, Section 4] is extended to a ran-
domized O-SVD algorithm (RO-SVD). We first review the matrix R-SVD method and its expected
error estimate that we will use later to analyze the error in the RO-SVD method. We also discuss the
computational and memory costs of the proposed randomized algorithm.
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4.1 Randomized SVD

Randomized SVD, popularized by [15], is a computationally efficient way to compute a low-rank
approximation of a matrix. Given a matrix A ∈ Rm×n(m ≤ n), a target rank k, and an oversampling
parameter p, we first multiply the matrix A by a Gaussian random matrix Ω ∈ Rn×(k+p). The matrix
Y = AΩ thus contains random linear combinations of the columns of A. A thin QR of Y is then
computed, so that range(Y ) = range(Q). The idea is if A has rapidly decaying singular values,
the dominant part of the range of A is marked by the first k or so the left singular vectors, that
is, A ≈ QQTA = Â. Then, we compute a thin SVD of much smaller matrix QTA = USkVk

T ,
truncate down to the target rank k, and compute Uk = QU to obtain the low-rank approximation
Â = UkSkVk

T .

The techniques described above work well for matrices whose singular values exhibit some decay,
but they may produce a poor basis when the input matrix has a flat singular spectrum or when the
input matrix is very large. A modified scheme originally proposed in [30], makes use of power iteration
to improve the accuracy of randomized algorithms in these situations. Specifically, the projection step
Y = AΩ is replaced with Y = (AAT )qAΩ for small integer q, where q = 1 or q = 2 usually suffices
in practice. In particular, when q = 0, the algorithm is equivalent to the basic randomized SVD [15].
In our paper, we adopt Algorithm 2, a numerically stable version, which is available in [15, Algorithm
4.4] that alternates the QR factorization with the matrix-matrix products and assume that it can be
invoked as [Uk,Sk,Vk] = rsvd(A,Ω, k, p, q).

Remark 4.1. For Gaussian test matrices, it is adequate to choose the oversampling parameter to be
a small constant, such as p = 5 or p = 10. There is rarely any advantage to select p > k. This
observation, first presented in [25], demonstrates that a Gaussian test matrix results in a negligible
amount of extra computation.

Algorithm 2 R-SVD method with power iteration [15]

Input: A ∈ Rm×n, Gaussian random matrix Ω ∈ Rn×(k+p), target truncation term k, a parameter
q, and oversampling parameter p

Output: Uk∈ Rn×k, Sk ∈ Rk×k, Vk∈ Rn×k

1: Form Y0= AΩ and compute its QR factorization Y0= Q0R0;
2: for j = 1, 2, . . . , q, do
3: Form Ŷj = ATQj−1 and compute its QR factorization Ŷj = Q̂jR̂j ;

4: Form Yj = AQ̂j and compute its QR factorization Yj = QjRj ;
5: end
6: Q = Qq;

7: Form B = QTA ∈ R(k+p)×n;
8: [U ,Sk,Vk] = svds (B, k);
9: Form Uk= QU .

When A is dense and of size n×n, the basic randomized SVD takes O(kn2) flops and Algorithm
2 requires 2q+ 1 times as many matrix-matrix multiplications as the basic randomized SVD. An error
bound for Algorithm 2 in the Frobenius norm is presented below, which can be found in [41].

Theorem 4.1 (Average Frobenius Error for Algorithm 2). Let A ∈ Rm×n and Ω ∈ Rn×(k+p) be a
Gaussian random matrix with p ≥ 2 being the oversampling parameter. Suppose that Q is obtained
from Algorithm 2 and Bk is the rank-k truncated SVD of QTA, then

EΩ

∥∥A−QQTA
∥∥2

F
≤ EΩ ‖A−QBk‖2F ≤

(
1 +

k

p− 1
τ4q
k

)min{m,n}∑
j>k

σ2
j

 , (4.1)

8



where k is a target truncation term, q is the number of iterations, σj is the jth singular value of A,
and τk = σk+1/σk � 1 is the singular value gap.

Remark 4.2. Instead of ‖A−QBk‖2F , we will use
∥∥A−UkUk

TA
∥∥2

F
. It is straightforward to show

the equivalence between the two forms [31, Section 5.3].

4.2 RO-SVD and its Error Analysis

The goal of the RO-SVD method is to find a good approximate O-SVD of tensor A with less
storage and time. There are two stages in producing the approximation, which are summarized in
Algorithm 3. The basic RO-SVD method is a specific case of Algorithm 3 that all iteration parameters
are chosen to be 0. In the first stage, setting k1 as the first target rank, a full SVD of A(3) is replaced

with a randomized SVD to find an orthonormal matrix U
(3)
k1

such that

Â = A×3 U
(3)T
k1

. (4.2)

This allows us to express A ≈ Â×3 U
(3)
k1

. Then, the second stage is to connect this low 3-rank tensor

Â representation to a randomized tensor SVD, where we apply the randomized SVD to each frontal
slice of Â with different target truncation term k2i for i = 1, 2, . . . , k1. This means that the target
multirank is a vector k2 whose elements are k2i. For the convenience of notation, we further define
an iteration vector as q = (q1, q2, . . . , qk1)T with employing different iteration count qi and denote k
= [k1; k2]. Thus we find the tensor Uk2 such that

Â ≈ Uk2 ∗3 UT
k2 ∗3 Â = Âk2 . (4.3)

Obviously, the procedure to compute the core tensor Sk2 is similar to the algorithm proposed in
Algorithm 1. Now, the rank-k representation can be written as

Ak = (Uk2 ∗3 Sk2 ∗3 Vk2)×3 U
(3)
k1
. (4.4)

If I3 = 1, then Algorithm 3 reduces to Algorithm 2.

Algorithm 3 RO-SVD with power iterations

Input: A ∈ RI1×I2×I3 , target truncation vector k = [k1;k2], k2 = [k21, . . . k2k1 ]T , oversampling
parameter p, the first iteration parameter q0, and the iteration vector q = (q1, q2, . . . , qk1)

Output: U
(3)
k1
∈ RI3×k1 , Uk2 ∈ RI1×k2×k1 , Sk2 ∈ Rk2×k2×k1 , Vk2 ∈ Rk2×I2×k1

1: Generate k1 + 1 Gaussian random matrices Ω1 ∈ RI1I2×(k1+p) and Ω2i ∈ RI2×(k2i+p);
2: Initialization: Uk2 , Sk2 , Vk2 are zero tensors of appropriate size;

3:

[
U

(3)
k1
,S

(3)
k1
,Vk1

(3)
]

= rsvd
[
A(3),Ω1, k1, p, q0

]
;

4: for i = 1, 2, . . . , k1, do
5: V̂ i = reshape(Vk1

(3)(:, i), [I1, I2]);

6: [U ,S,V ] = rsvd(V̂ i,Ω2i, k2i, p, qi);

7: Uk2(:, 1 : k2i, i) = U , Sk2(1 : k2i, 1 : k2i, i) = S
(3)
k1

(i, i)S, Vk2(1 : k2i, :, i) = V T ;
8: end for

We now present the error analysis for Algorithm 3. There are two major difficulties here in
extending the proofs of Theorem 3.3. For the probabilistic error analysis, it is important to note that
at each step of the cycle, the partially truncated V̂ i is a random matrix. The elements on the diagonal

of S
(3)
k1

are also derived from the R-SVD. Second, since the orthonormal matrix U
(3)
k1

here is generated
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by a randomized method, it no longer has the property U (3)TU
(3)
k1

=

[
Ik1

0

]
as U (3) in Theorem 3.1.

As a consequence, using the orthogonal invariance to deal with the Frobenius norm directly does not
work in deriving the expected error. In fact, we can provide an expected error bound by splitting the
error into two parts.

Theorem 4.2. Let Ak be the output of Algorithm 3 with target truncation parameter k = [k1;k2]
satisfying k1 ≤ r1, k2 ≤ r2, oversampling parameter p ≥ 2, iteration count q0, iteration vector q and

Gaussian random matrices set Ω2 = {Ω21, . . . ,Ω2k1}. Suppose Uk2, U
(3)
k1

are obtained from Algorithm
3. Then, the approximation error in expectation satisfies

EΩ1,Ω2 ‖A −Ak‖F ≤

(1 +
k1

p− 1
τ4q0
k1

) r1∑
i>k1

r2∑
j≥1

s2
jji

 1
2

+

 k1∑
i=1

(
1 +

k2i

p− 1

(
τ

(i)
k2i

)4qi
) r2∑

j≥k2i

s2
jji

 1
2

,

(4.5)

where τk1 is the singular value gap of A(3) and τ
(i)
k2i

is the singular value gap of Ã(:, :, i).

Proof. It is straightforward to show that

EΩ1,Ω2 ‖A −Ak‖F = EΩ1,Ω2

∥∥∥A− [Uk2 ∗3 UT
k2 ∗3

(
A×3 U

(3)T
k1

)]
×3 U

(3)
k1

∥∥∥
F

= EΩ1,Ω2

∥∥∥A−A×3 U
(3)T
k1
×3 U

(3)
k1

+A×3 U
(3)T
k1
×3 U

(3)
k1
−
(
Uk2 ∗3 UT

k2 ∗3 Â
)
×3 U

(3)
k1

∥∥∥
F

≤ EΩ1

∥∥∥A−A×3

(
U

(3)
k1

U
(3)T
k1

)∥∥∥
F

+ EΩ1,Ω2

∥∥∥Â ×3 U
(3)
k1
−
(
Uk2 ∗3 UT

k2 ∗3 Â
)
×3 U

(3)
k1

∥∥∥
F
,

where we have used the fact that the first part does not depend on the second random matrix Ω2. We
tackle two parts separately.
Part I : Using Theorem 4.1 and Hölder’s inequality [18, Theorem 23.10], we can write the expected
error of the first part directly

EΩ1

∥∥∥A−A×3

(
U

(3)
k1

U
(3)T
k1

)∥∥∥
F
≤
(
EΩ1

∥∥∥A×3

(
II3 −U

(3)
k1

U
(3)T
k1

)∥∥∥2

F

) 1
2

=

(
EΩ1

∥∥∥(II3 −U
(3)
k1

U
(3)T
k1

)
A(3)

∥∥∥2

F

) 1
2

≤

(1 +
k1

p− 1
τ4q0
k1

)∑
i>k1

σ2
i

 1
2

.

(4.6)

By Theorem 3.2, we can replace σ2
i by

∑r2
j≥1 s

2
jji.

Part II : As for the second part, since U
(3)
k1

has orthonormal columns,∥∥∥Â ×3 U
(3)
k1
−
(
Uk2 ∗3 UT

k2 ∗3 Â
)
×3 U

(3)
k1

∥∥∥
F
≤
∥∥∥Â − Uk2 ∗3 UT

k2 ∗3 Â
∥∥∥2

F
.

Then, using Theorem 4.1 (keeping Ω1 fixed) and the linearity of expectation, we have

EΩ2

∥∥∥Â − Uk2 ∗3 UT
k2 ∗3 Â

∥∥∥2

F
=

k1∑
i=1

EΩ2i

∥∥∥(II1 − Uk2(:, :, i)UT
k2(:, :, i)

)
σ̂iV̂ i

∥∥∥2

F

≤
k1∑
i=1

(
1 +

k2

p− 1

(
τ

(i)
k2i

)4qi
) r2∑

j>k2i

(σ̂iσij)
2

 ,
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where σ̂i is the ith singular value of the Â(3).

We recall the definition of Löwner partial ordering [17, Section 7.7]. Let A, B ∈ Rn×n be
Hermitian; A � B means B − A is positive semi-definite. Furthermore, λi(A) ≤ λi(B) for i =

1, 2, . . . , n, where λ is the eigenvalue of the matrix. Notice U
(3)
k1

U
(3)T
k1

is a projector so that

Â
T

(3)Â(3) =
(
U

(3)T
k1

A(3)

)T (
U

(3)T
k1

A(3)

)
� AT

(3)A(3),

and the singular values of Â(3) satisfy

σ̂i ≤ σi, for i = 1, 2, . . . , k1.

Applying Hölder’s inequality gives

EΩ2

∥∥∥Â − Uk2 ∗3 UT
k2 ∗3 Â

∥∥∥
F
≤

 k1∑
i=1

(
1 +

k2i

p− 1

(
τ

(i)
k2i

)4qi
) r2∑

j>k2i

(σiσij)
2)

 1
2

. (4.7)

Combining (4.6), (4.7) and sjji = σiσij gives the conclusion.

4.3 Computational Complexity and Memory Cost

We now discuss the computational cost of Algorithm 1 and Algorithm 3 , and compare them
against the O-SVD, the RT-SVD proposed by Zhang et al. [41, Algorithm 6] and the R-HOSVD
proposed by Minster et al. [26, Algorithm 3.1]. We assume that the tensors are dense and the target
truncation terms k1 and k2 are sufficiently small, i.e., k1 � r1, k2 � r2, so that we can neglect the
computational cost of the QR factorization and the truncation steps of the R-SVD algorithm. The
dominant cost of Algorithm 3 lies in computing a total of k1 +1 R-SVD, while the TO-SVD algorithm
requires to compute the full SVD, which results in an expensive computational cost.

Recall that the RT-SVD algorithm consists of transforming the tensor to the Fourier domain
and applying the R-SVD to each frontal slice of the tensor. The R-HOSVD algorithm has three
main steps including multiplying each mode unfolding with a Gaussian random matrix, computing an
approximation to the column space and then forming the core tensor. The storage and computational
cost of the TO-SVD, RO-SVD, RT-SVD and RHOSVD algorithms are summarized in Table 1. Each
algorithm takes a core tensor S of the same size except the RT-SVD. The table includes the costs
for a general third-order tensor A ∈ RI1×I2×I3 with the first iteration parameter q0 and the iteration
vector q = (q1, q2, . . . qk1) (k1 = I3 for the RT-SVD, target rank k3 = (k2, k2, k1) for the R-HOSVD).
For a more intuitive comparison of the computational cost we assume that k21 = · · · = k2k1 = k2.
Since by assumption k1 � r1, k2 � r2, the RO-SVD is expected to be much faster than all four other
algorithms.

Table 1: Comparison of O-SVD, TO-SVD, RO-SVD, RT-SVD, R-HOSVD

Algorithm Computational Cost Storage Cost

O-SVD O
(
I1I2I

2
3 +R3I1I2I3 +R3I1I

2
2

)
R3(I2I1 + I2I2 + I3 + I2)

TO-SVD O
(
I1I2I

2
3 + k1I1I

2
2

)
k1k2I1 + k1k2I2 + k1I3 + k1k2

RO-SVD O
(

(2q0 + 1)k1I1I2I3 +
∑k1

i=1(2qi + 1)k2I1I2

)
k1k2I1 + k1k2I2 + k1I3 + k1k2

RT-SVD O
(
I1I2I3 log I3 +

∑I3
i=1(2qi + 1)k2I1I2

)
k2(I1I3 + I2I3 + I3)

R-HOSVD O(
∑3

i=1(2qi + 1)k3iI1I2I3 + k1I1I2 + k1k2I2 + k1k
2
2) k1k

2
2 + k2(I1 + I2) + I3k1
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5 Numerical Examples

In order to evaluate Algorithm 1 and Algorithm 3, we present the numerical results by comparing
them with truncation methods such as TT-SVD, THOSVD and the above mentioned randomized
algorithm of tensor singular value decomposition: RT-SVD, RHOSVD. All the computations are
based on the Matlab Tensor Toolbox [1] and Tensor-Tensor Product Toolbox [23]. Our results were
run in Matlab R2020b on a Lenovo computer with AMD Ryzen 5 3500U processor and 12 GB RAM.
We use the HOSVD algorithm to show that the tensor is orientation-dependent. To the best of our
knowledge, there is no specific approach for the selection of all truncation parameters in fixed-rank
random tensor algorithms. The oriented tensors have high correlation among frontal slices and we can
estimate the rank of the orthonormal matrix in the RO-SVD in advance. We could set k1 much smaller
than I3. The optimal value of k1 is the number of a basis in the space spanned by all frontal slices
of the third-order oriented tensor. Since both the TT-SVD and the RT-SVD use the same truncation
parameters k2 for each frontal slice, we also use the same truncation parameters k21 = · · · = k2k1 = k2

for TO-SVD and RO-SVD in the experiments. In addition, the computational time of each method
was measured in seconds. The results of each experiment were averaged three times.

We employ four indices, i.e., the relative error, the compression ratio, the peak-signal-to-noise ratio
(PSNR) and the structural similarity index (SSIM), to evaluate the performance of image compression
algorithm. If A ∈ RI1×I2×I3 is the original tensor and Â is a low-rank approximation of A, then the
relative approximation error and the compression ratio are respectively given by

Err =

∥∥∥A− Â∥∥∥
F

‖A‖F
and Ratio =

I1 × I2 × I3

storage cost
.

The PSNR is given by:

PSNR = 20 log10

max(A)√
MSE

,

where the MSE of tensor A is as follows:

MSE =
‖A − Â‖2F
I1 × I2 × I3

.

According to research, a PSNR value above 40 for the pixel component of an image is an indication
of very good quality (i.e., the restored frame is very close to the original frame). If the PSNR is
between 30 and 40, then the image quality is usually good (i.e., the distortion in the restored image is
noticeable but still acceptable). If it is between 20 and 30 then the image quality is poor, and finally,
images with a PSNR below 20 are not acceptable. SSIM [37] measures the similarity between the
original image and the reconstructed image on structural consistency. The equation of SSIM is below:

SSIM(a, â) =
(2µaµâ + C1) (2σaâ + C2)(

µ2
a + µ2

â + C1

) (
σ2
a + σ2

â + C2

) ,
where µa and µâ are mean intensities, σa and σâ are standard deviations, C1 and C2 are default values.
Covariance σaâ is calculated as follows:

σaâ =
1

I1I2I3 − 1

∑
ijk

(aijk − µa) (âijk − µâ) .

Obviously, the SSIM is a number between 0 and 1. The larger the SSIM, the smaller the difference
between the two images.
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5.1 Hyperspectral Image

In this subsection, we test a hyperspectral image— Salinas [14]. This scene was collected by
the 224-band AVIRIS sensor over Salinas Valley, California, and is characterized by high spatial
resolution (3.7-meter pixels). The area covered comprises 512 lines by 217 samples 224 available
spectral reflectance bands in the wavelength range. Hence, the size of the resulting tensor is 512 ×
217 × 224. Denote by A the tensor of the testing data. Under the relative error tolerance 0.005,
(Matlab command: hosvd (A, 0.005)), the size of the nonzero part of the core tensor is 423× 203× 32.
Hence, this is a well-oriented tensor. And the running time of a full O-SVD is 6.2432s.

We take the first iteration parameter q0 = 1, the target truncation term k2 fixed at 80, the
oversampling parameter p = 5 and the second iteration parameters qi = 1. The relative errors for
varying k1 between 5 and 40 are plotted in Figure 1, where we can see the errors of the RO-SVD are
quite close to the TO-SVD. Since A is a well-oriented tensor, the errors level off after k1 = 30. The
errors of TO-SVD and TT-SVD are very close, indicating that it is possible to compress the third
dimension of A to k1 without being affected. The error of THOSVD is larger for the same size of core
tensor.

Then, we choose k1 to be 35 and allow k2 to vary between 30 and 100 for simplicity. We track
the relative errors of the RO-SVD for the case that the iteration parameters qi (i = 1, 2, . . . , k1)
are equal, i.e., q1 = · · · = qk1 = q. Figure 2 shows that the errors for varying q have similar
convergence trajectories and q = 1 is enough for practical use. Moreover, as q increases, a much more
accurate approximation is yielded. In addition, we give error curves for TT-SVD, THOSVD and their
corresponding randomized algorithms with q = 1. It is shown that under the same conditions, the
tensor singular value decomposition based on the Tucker product has a much larger error than the
other two tensor decompositions, both for the exact and the randomized algorithms.

Figure 3 shows the time, relative error, PSNR and SSIM of the three randomized algorithms
at different compression ratios. We choose k1 to be 35, the oversampling parameter p = 5, all the
iteration parameters q = 1 and k2 varies with the compression ratio. Figure 3 shows that the RO-SVD
outperforms the RT-SVD in all four indices. In Table 2, we record the time, relative error, PSNR
and SSIM of four algorithms (TO-SVD, RO-SVD, RT-SVD, and RHOSVD) at Ratio = 40. From
Figure 3 and Table 2, we find that the proposed randomized algorithm has similar results to the
exact algorithm, illustrating the effectiveness of the RO-SVD. As for the running time, the RO-SVD
is usually much faster than TO-SVD and O-SVD respectively. Compared with other randomized
algorithms, the PSNR and SSIM of RHOSVD and RO-SVD are within the acceptable range, but the
former about 6 times longer than the latter when Ratio = 40. As both the time and relative error of
the RO-SVD are reduced by half compared to the RT-SVD, the RO-SVD is superior to the RT-SVD
at the same compression ratio. This gives us a suggestion for choosing k2: in addition to setting the
value of k2 directly, we can also set the parameter k2 according to the desired compression ratio.

Table 2: Comparison of four algorithms with Ratio = 40

Algorithm time Err PSNR SSIM

RT-SVD 1.6819 0.1926 29.7846 0.9994

RHOSVD 5.1130 0.0322 45.3095 0.9999

TOSVD 2.6429 0.0737 38.1286 0.9999

RO-SVD 0.8886 0.0758 37.8799 0.9999
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Figure 1: Relative errors of four algorithms
with k2 = 80

Figure 2: Relative errors of four algorithms
with k1 = 35

(a) Time (b) Relative errors

(c) PSNR (d) SSIM

Figure 3: Comparison results of four algorithms (TO-SVD, RO-SVD, RT-SVD, and RHOSVD) on
Salinas.
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(a) Time (b) Relative errors

(c) PSNR (d) SSIM

Figure 4: Comparison results of three tensor randomized methods (RO-SVD, RT-SVD, and RHOSVD)
on the video.

Table 3: Comparison of RT-SVD , RHOSVD and RO-SVD with k1 = 70 , k2 = 90

Algorithm time Err PSNR SSIM

RT-SVD 49.1988 0.0139 45.5254 0.9993

RHOSVD 23.8538 0.0424 36.5753 0.9953

RO-SVD 8.9908 0.0144 45.0915 0.9993
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(a) Original video (b) RT-SVD

(c) RHOSVD (d) RO-SVD

Figure 5: Comparison results of three tensor randomized methods (RO-SVD, RT-SVD, and RHOSVD)
with the original image
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5.2 Video

The second example is a video. The dataset B is a video from Tencent1, with size 424×726×500
(height×width×frames). See Figure 5(a). Most regions of the frames are stable, while a radish is
growing delicately. Under the relative error tolerance 0.01, the size of the nonzero part of the core
tensor is 198 × 351 × 71, which is a well-oriented tensor. And the running time of a full O-SVD is
58.6212s.

We run three tensor randomized methods (RO-SVD, RT-SVD, and RHOSVD) with increasing
the same target truncation term k2 and oversampling parameter p = 5 while setting the target rank
k1 = 70. Here we only show the results with the power parameter q = 1, as for many applications
this already achieves sufficient accuracy. We compare the time, relative error, PSNR and SSIM of the
RT-SVD, the RHOSVD and the RO-SVD algorithms with different target truncation term k2, which
are shown in Figure 4. In Table 3, we record the results of three algorithms at k2 = 90 from Figure
4. From the results in Figure 4(a) and (b), we see that the RO-SVD algorithms is far superior to
them in terms of time cost while keeping the accuracy and its advantage becomes more apparent with
the increase of k2. Both the RT-SVD and the RO-SVD algorithm perform better than RHOSVD, as
shown in Figure 4(c) and (d). In Table 3, we can see the RO-SVD is about 6 times faster than the
implementation of RT-SVD, and the compression ratio of the former is 7.1 times (21.12 vs. 2.97) better
than that of the latter. Figures 5(b), 5(c) and 5(d) show the results of the RT-SVD, the RHOSVD
and the RO-SVD respectively when the target truncation term k2 = 90. We can see the performance
of the RO-SVD is the best with the same target truncation term k2 while it has significantly lower
computational cost.

5.3 Synthetic Oriented Tensor

For further reflection on the characteristics of the RO-SVD for large-scale oriented tensors, two
kinds of synthetic tensors are tested standing for different distribution patterns of singular values:
• Tensor 1 (slow decay): A = (U ∗3 S ∗3 V)×3 U

(3), where U (3), U(:, :, i) and V(:, :, i)T are randomly
drawn matrices with orthonormal columns, and the diagonal matrix S(:, :, i) has diagonal elements
σjji = 1/(i + j)2. Furthermore, if U (3) is a matrix with far fewer columns than rows, the resulting
tensor A has to be a well-oriented tensor.
• Tensor 2 (fast decay): A is formed just like Tensor 1, but the diagonal elements of S(:, :, i) are given
by σjji = e−j−i/7. It reflects a fast decay of singular values.

For each kind, we first generate a 1000×1000×300 oriented tensor with rank3(A) = 30, for which
we compare the relative errors and time of the proposed techniques for different k2 and q. Let k1 = 30,
p = 5 and k2i be randomly generated positive integers in [0, 20], [20, 40], . . . , [180, 200], respectively.
The results are plotted in Figure 6. We observe that the RO-SVD runs at approximately three times
the speed of the TO-SVD within an acceptable error margin. By the power scheme, the errors of
the RO-SVD can be remarkably reduced. We notice that q = 1 suffices in practice since it produces
indistinguishable results with q = 2.

Then, we compare the performance of the RT-SVD, RHOSVD and RO-SVD algorithms with
equal k2i, oversampling parameter p = 5 and power parameter q = 1 while setting the target rank
k1 = 30, which are shown in Figure 7. It is obvious that the RO-SVD shows advantages in both
accuracy and time cost. Specifically, our algorithm takes roughly one-sixth of the time required for
the other two fixed-rank randomized algorithms. Moreover, the RO-SVD achieves better compression
ratio compared to the RT-SVD with k2i = 80 (62.35 vs 6.24).

Finally, we conduct an experiment to compare the efficiency of the proposed algorithms with

1https://v.qq.com/x/page/v3237ztwzs7.html
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varying sizes. We generate oriented tensors with rank3(A) = I3/10 and summarize the running
time and relative errors of the five algorithms for different dimensions in Table 4. The RO-SVD
shows overwhelming advantages in computational efficiency. Specially, when the tensor size comes
to 1000 × 1000 × 400, all the other existing algorithms lose competitiveness because of timeouts and
memory limits.

Table 4: Comparison of five algorithms for different A
with k1 = I3/10, k2 = 200, q = 1 and p = 5

Algorithm O-SVD TO-SVD RO-SVD RT-SVD RHOSVD

I1 × I2 × I3 time time Err time Err time Err time Err

1000× 1000× 100 11.66 9.60 0.0086 3.17 0.0092 45.25 0.0242 16.24 0.0441

1500× 1500× 100 31.48 26.47 0.0108 7.45 0.0115 102.04 0.0265 41.08 0.0452

2000× 2000× 100 — 67.67 0.0105 27.89 0.0111 168.73 0.0271 95.35 0.0456

1000× 1000× 300 63.44 53.80 0.0125 23.98 0.0133 142.16 0.0337 75.33 0.0923

1000× 1000× 400 — — — 30.33 0.0146 — — — —

6 Conclusion

The contributions of this paper are twofold: we revisit the O-SVD and refine its process from the
viewpoint of the TTr1SVD and a truncated version for the O-SVD is given. Based on recent results
on the randomized SVD template, we design a randomized algorithm for the O-SVD for third-order
oriented tensors. In addition, we give the corresponding probabilistic error analysis of the RO-SVD.
The performance of the RO-SVD is better than the RT-SVD for the same compression ratio and better
than the RHOSVD for the same size core tensor and shows great advantages in time cost if the tensor
is well-oriented.

In the future, we will continue a further study of the adaptive randomized approach for the case
where the target rank is unknown or cannot be estimated in advance. One more potential research
direction is the use of updated SVD algorithms [3] to study dynamic video streaming.
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