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Abstract

In this work, we reformulate the problem of existence of maximal elements

for preference relations as a variational inequality problem in the sense of Stam-

pacchia. Similarly, we establish the uniqueness of maximal elements using a vari-

ational inequality problem in the sense of Minty. In both of these approaches,

we use the normal cone operator to find existence and uniqueness results, under

mild assumptions. In addition, we provide an algorithm for finding such maxi-

mal elements, which is inspired by the steepest descent method for minimization.

Under certain conditions, we prove that the sequence generated by this algorithm

converges to a maximal element.

Keywords: Maximal elements, Stampacchia variational inequality, Minty vari-

ational inequality

MSC (2010): 91B16, 49J40, 49J53

1 Introduction

The theory of preference relations is one of the main tools in the study of consumer

demand. A preference relation is described by means of a binary relation, which is

traditionally derived from a utility function when the relation satisfies some properties

(see for instance [7]). In that sense, finding a maximal element is equivalent to solving

the maximization problem of the associated utility function. However, it is well-known

that there are preference relations that are not derived from a utility function, for in-

stance, the lexicographic ordering [10]. We can find in the literature a lot of works

concerning the existence of maximal elements for preference relations, which are not

necessarily transitive nor complete, see for instance [5, 11–13, 16, 18] and the refer-

ences therein. It is interesting to note that many of these results are consequences of

Browder’s theorem [4, Theorem 1].

On the other hand, variational inequalities play an important role in the study of

optimization problems, Nash games, saddle problems, among others, see [9]. Re-

cently, Milasi et al. [12] reformulated the competitive economic equilibrium problem

governed by preference relations as a quasi-variational inequality problem. Later on,

Milasi and Scopelliti [13] reformulated the problem of finding maximal elements for
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preference relations as a suitable variational inequality problem. However, we discov-

ered some inconsistencies in these works, see Remarks 3.3 and 3.10.

In this work, we aim to study the existence and uniqueness of maximal elements by

considering the Stampacchia and Minty variational inequality. Very recently, Donato

and Villanacci [8] also addressed the existence of maximal elements in a similar way.

However, our existence result is not a consequence of their results, see Remark 3.13.

In addition, we present an algorithm to obtain these elements, whenever the preference

relation is defined on the whole space. This algorithm is inspired by the classical

steepest descent method for minimization of quasiconvex functions [14], but instead of

the gradient, we use the so-called Plastria-like normal cone of the strict upper contour.

In Section 2, we present definitions and notations of preference relations. Section 3

deals with the existence and uniqueness of maximal elements by considering the vari-

ational reformulation. Finally, in Section 4 we provide an optimization algorithm for

preference relations that satisfy certain conditions.

2 Preliminaries

Consider X a non-empty set and � a binary relation on X . For each x ∈ X we

consider the sets

U(x) := {y ∈ X : y � x}, L(x) := {y ∈ X : x � y},

Us(x) := {y ∈ X : y ≻ x} and Ls(x) := {y ∈ X : x ≻ y},

where ≻ is the asymmetric part of �, that is, x ≻ y means x � y but not y � x. The

sets U(x) and Us(x) (resp. L(x) and Ls(x)) are called the upper and strictly upper

(resp. lower) contour set.

We recall that a binary relation � [10] is said to be:

• Complete if, for any x, y ∈ X , either x � y or y � x.

• Transitive if, for any x, y, z ∈ X , the following implication holds

(x � y ∧ y � z) ⇒ x � z.

• Reflexive if, for any x ∈ X , we have x � x.

• Rational if, it is complete and transitive.

Definition 2.1. Let m ∈ N. A relation� onX has the m-FIP if, for any x1, x2, . . . , xm ∈
X , there exists x ∈ X such that x � xi, for all i = 1, 2, . . . ,m. If � has the m-FIP,

for all m ∈ N, then it has the finite intersection property.

A few remarks are needed.

Remark 2.2. 1. The relation � has the finite intersection property if, and only if,

the family of sets {U(x)}x∈X has the finite intersection property.

2. If � is complete, then it has the 2-FIP. The converse is not true in general, see

Example 2.5.

Proposition 2.3. Let X be a non-empty set and � be a relation on X . If � is transitive

and has the 2-FIP, then � has the finite intersection property.
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Proof. We prove this by induction. For m = 1, 2 it follows from the 2-FIP of �.

Assume now that the family of sets {U(x)}x∈X satisfies the finite intersection

property for n− 1 elements of X and consider x1, . . . , xn ∈ X . For x1, x2, . . . , xn−1

there exists x ∈ X such that x � xi, for all i ∈ {1, 2, . . . , n − 1}. Thus, again by the

2-FIP of � there exists z ∈ X such that z � xn and z � x. By transitivity of �, it

follows that z � xi for all i ∈ {1, 2, . . . , n}.

In particular, since completeness implies the 2-FIP, we obtain the following corol-

lary.

Corollary 2.4. Let � be a rational relation on a non-empty set X . Then � has the

finite intersection property.

We now present some examples. Example 2.5 shows that neither completeness nor

transitivity of � are necessary to guarantee the finite intersection property. On the other

hand, Example 2.6 shows that completeness, 2-FIP or transitivity, separately, are not

sufficient to obtain the finite intersection property.

Example 2.5. Consider X = [0, 4] and define the relation � on X as

x � y if, and only if,
y

2
+ 2 ≤ x ≤ 4 and (x, y) 6= (7/2, 2).

Clearly 4 ∈
⋂

x∈X

U(x), hence � has the finite intersection property. However, it is

straightforward to verify that � is neither reflexive, nor complete. It is not transitive

either, because 7/2 � 3 and 3 � 2 but 7/2 6� 2.

Example 2.6. Consider X = [0, 1] and, for j ∈ {a, b}, define the relation �j as

x �j y if, and only if, (x, y) belongs to the graph in Figure 1, item j.

Denote with Uj(x), j ∈ {a, b}, the respective upper contour set of �j . Note that �a is

1

1

1/2

1/2

1

11/2

1/2

a) Complete relation b) Transitive relation

Figure 1

complete (hence, it has the 2-FIP). However it is not transitive, since 0 �a 1 �a 1/2
and 0 6�a 1/2, and it does not have the finite intersection property, because

Ua(0) ∩ Ua(1/2) ∩ Ua(1) = {0, 1/2} ∩ (]0, 1/2] ∪ {1}) ∩ ([0, 1] \ {1/2}) = ∅.

On the other hand, it is straightforward to verify that �b is transitive. Moreover, since

Ub(0) ∩ Ub(1) = ∅, �b does not have the 2-FIP, hence it is not complete nor it has the

finite intersection property.
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We will now recall some definitions dealing with convexity, which will play an

important role later. Let X be a convex set in a vector space, the relation � is called

convex (resp. convexs), if U(x) (resp. Us(x)) is convex, for all x ∈ X . These two

notions coincide whenever the relation � is rational, as it was established without proof

in [12, Proposition 2.2, part (i)]. We present a proof of this fact, to make our work self-

contained.

Proposition 2.7. Assume that X is convex and the relation � is rational. Then � is

convex if, and only if, it convexs.

Proof. If Us(x) = ∅, there is nothing to prove. We now consider Us(x) 6= ∅. Let

y, z ∈ Us(x) and t ∈ [0, 1]. Since � is complete, without loss of generality we can

assume y � z. Thus, y, z ∈ U(z) which is a convex set. This implies ty+(1− t)z � z
and by transitivity we have ty + (1− t)z ≻ x.

Reciprocally, consider y, z ∈ U(x) and t ∈ [0, 1]. If there exists t0 ∈]0, 1[ such

that t0y + (1 − t0)z /∈ U(x) then x ≻ t0y + (1 − t0)z, due to � being complete.

Now, by transitivity of �, we have that y, z ∈ Us(t0y + (1 − t0)z). However, since

Us(t0y + (1− t0)z) is convex we get a contradiction.

The following examples show that the previous result is not true in general when

we drop the rationality.

Example 2.8. Consider X = [0, 1] and � defined as

x � y if and only if x = 0 or y = x.

It is easy to see that U(x) = {0, x}, for any x ∈ X . Thus, � is not convex. However,

Us(x) =

{

∅, x = 0,

{0}, otherwise,

which is a convex set, for all x ∈ X . Hence, it is convexs.

Example 2.9. Consider X = [0, 1] and � defined as

x � y if, and only if, y = 0 or

{

x = y, y ∈]0, 1] \ {1/2},

x = 0, y = 1/2.

It is not difficult to see that

U(x) =











[0, 1], x = 0,

{x}, x ∈]0, 1] \ {0, 1/2},

{0}, x = 1/2,

and Us(x) =

{

∅, x ∈]0, 1],

]0, 1/2[∪]1/2, 1], x = 0.

Thus, � is convex but it is not convexs.

We finish this section with some topological definitions for binary relations and

correspondences. Given X a topological space, a relation � on X is said to be upper

(resp. lower) semicontinuous, if the set Ls(x) (resp. Us(x)) is open, for all x ∈ X .

Moreover, � is continuous, if it is upper and lower semicontinuous. Clearly, if � is

complete; then it is upper (resp. lower) semicontinuous if, and only if, U(x) (resp.

L(x)) is closed, for all x ∈ X .

Let V,W be nonempty sets. A correspondence T : V ⇒ W is an application from

V into P(W ), that is, for v ∈ V , T (v) ⊂ W . We can see that the upper contour U and

the strict upper contour Us as examples of correspondences from X to itself.

Recall that a correspondence T : Rn
⇒ R

m is

4



• lower hemicontinuous at x0 ∈ R
n when, for any sequence (xk)k∈N converging

to x0 and any element y0 of T (x0), there exists a sequence (yk)k∈N converging

to y0 such that yk ∈ T (xk), for any k ∈ N.

• upper hemicontinuous at x0 ∈ R
n when, for any neighbourhood W of T (x0),

there exists a neighbourhood V of x0 such that T (x) ⊂ W , for all x ∈ V ;

• lower (respectively upper) hemicontinuous when it is lower (resp. upper) hemi-

continuous at every x0 ∈ R
n;

• closed, if the set graph(T ) := {(x, y) ∈ R
n × R

m : y ∈ T (x)} is a closed

subset of Rn × R
n.

It is well known that if T (Rn) is bounded and T is closed, then it is upper hemicontinu-

ous. We also say that T has open fibres when the set T−1(y) := {x ∈ R
n : y ∈ T (x)}

is open, for all y ∈ R
m. It is easy to verify that if T has open fibres, then it is lower

hemicontinuous. In particular, if the binary relation � on R
n is upper (resp. lower)

semicontinuous then Us : Rn
⇒ R

n (resp. Ls) has open fibres, hence it is lower (resp.

upper) hemicontinuous.

3 A Variational Approach for Maximal Elements

This section is devoted to studying the existence and uniqueness of maximal el-

ements for binary relations. First, we will introduce a normal cone correspondence,

related to the strict upper contours of a binary relation, and establish some of its proper-

ties. Next, we will deal with the variational reformulation and the existence of maximal

elements. Finally, using the Minty variational inequality, we will study the uniqueness

of such maximal elements.

Let � be a binary relation on R
n with asymmetric part ≻, let X be a non-empty

subset of Rn and let x̂ ∈ X . Then

• x̂ is a maximum of X , if x̂ � y, for all y ∈ X ;

• x̂ is a maximal element of X , if there is not y ∈ X such that y ≻ x̂.

We denote by M�(X) and ME �(X) the set of maxima and maximal elements of X ,

respectively. It is not difficult to see that M�(X) ⊂ ME �(X), and the equality holds

under completeness of �. Furthermore, it is clear that

M�(X) =
⋂

x∈X

U(x) ∩X and ME �(X) = {x ∈ X : Us(x) ∩X = ∅}.

3.1 Variational Inequalities and Normal Cones

Consider X a subset of Rn and T : Rn
⇒ R

n a set-valued map. A vector x̂ ∈ X
is said to be a solution of the

• Stampacchia variational inequality problem if there exists x̂∗ ∈ T (x̂), such that

〈x̂∗, y − x̂〉 ≥ 0, ∀ y ∈ X.

• Minty variational inequality problem, if

〈y∗, x̂− y〉 ≤ 0, ∀ y ∈ X, ∀ y∗ ∈ T (y).
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The solution sets of the Stampacchia and Minty variational inequality problems will be

denoted by SVIP(T,X) and MVIP(T,X), respectively.

Given a subset A of Rn and x ∈ R
n, the normal cone of A at x is the set

NA(x) :=

{

{x∗ ∈ R
n : 〈x∗, y − x〉 ≤ 0, ∀y ∈ A}, A 6= ∅,

R
n, A = ∅.

It is usual in the literature to consider the above definition whenever A convex and

closed, and x ∈ A. However, we will not consider such conditions in this work. See

Figure 2 for a geometric interpretation. Note that NA(x) is always non-empty, because

0 ∈ NA(x). Moreover, it is a closed convex cone of Rn.

A

x

NA(x)

Figure 2: The set NA(x)

Let � be a binary relation on R
n. The normal cone correspondenceN : Rn

⇒ R
n,

associated to �, is defined as

6N(x) := NUs(x)(x), (1)

for all x ∈ R
n.

Lemma 3.1. Let � be a complete relation the following equivalence holds:

x∗ ∈ N(x) ⇔ (∀y ∈ R
n, 〈x∗, y − x〉 > 0 ⇒ x � y) .

In the following example, we explicitly calculate the normal cone correspondence

for a certain preference relation.

Example 3.2. Consider the relation � on R defined as

x � y if, and only if, y = x or y = 1.

It is clear that

Us(x) =

{

∅, x 6= 1,

R \ {1}, x = 1,
and N(x) =

{

R, x 6= 1,

{0}, x = 1.

Remark 3.3. Recently, Milasi et al. [12], considered� to be a convexs and non-satiated

relation on X ⊂ R
n and defined M1 : X ⇒ R

n as M1(x) := NUs(x)(x). Clearly, if

X = R
n then M1 coincides with N .

6



Now, Proposition 2.4 in [12] establishes that for all x∗ ∈ M1(x) \ {0}

〈x∗, y − x〉 < 0, for all y ∈ Us(x),

provided that � is lower semicontinuous, convexs and with no maximal elements (this

property is called non-satiated in [12]). However, this result as it is stated is not true.

Consider for instance X = R× {0} ⊂ R
2 and the relation � on X defined as

(x, 0) � (y, 0) if, and only if, x ≥ y.

It is not difficult to see that � is continuous, convexs and without maximal elements

on X . Moreover, for each (x, 0) ∈ X we have

Us(x, 0) =]x,+∞[×{0} and M1(x, 0) = {(x∗, y∗) ∈ R
2 : x∗ ≤ 0}.

Since (0, 1) ∈ M1(x, 0) \ {(0, 0)} we obtain that 〈(0, 1), (y, 0) − (x, 0)〉 = 0, for all

(y, 0) ∈ Us(x, 0).

The following result can be found as Proposition 24 in [8]. However, our definition

of N allows to drop the condition of Us(x) being non-empty.

Lemma 3.4. Let � be a binary relation on R
n and x ∈ R

n. If Us(x) is a convex set,

then N(x) \ {0} 6= ∅.

The following result is a generalization of Proposition 2.3 in [12].

Proposition 3.5. Let � be a relation on R
n. If � is upper semicontinuous, then the

map N is closed.

Proof. Lower semicontinuity of Us is consequence of the upper semicontinuity of �.

Hence the proposition follows from Proposition 25 in [8].

Given a relation � on R
n we define

N∗(x) := {x∗ ∈ R
n : 〈x∗, y − x〉 < 0, ∀ dy ∈ Us(x)},

whenever x /∈ ME �(R
n), and N∗(x) := R

n, otherwise. It is important to note that

N∗(x) is a cone and N∗(x) ⊂ N(x), for all x ∈ X .

Proposition 3.6. Let � be a rational relation on R
n. If N∗(x) 6= ∅ for all x ∈ R

n;

then � is convex.

Proof. Let x ∈ R
n. If U(x) = ∅, there is nothing to prove. Now assume that U(x) 6=

∅, and take any y /∈ U(x). Choosing some y∗ ∈ N∗(y), define the set

H−(y) = {z ∈ R
n : 〈y∗, z − y〉 < 0}.

Clearly, H−(y) is convex and y /∈ H−(y). Since y was taken arbitrarily, we have the

inclusion
⋂

y/∈U(x)

H−(y) ⊂ U(x).

On the other hand, for y /∈ U(x), since � is complete, x ≻ y. We now claim that

U(x) ⊂ H−(y). Indeed, for all z ∈ U(x) we have z � x ≻ y, hence z ≻ y,

by transitivity of �. Thus 〈y∗, z − y〉 < 0, because y∗ ∈ N∗(y), which implies

z ∈ H−(y). Therefore

U(x) =
⋂

y/∈U(x)

H−(y).

The proposition follows.
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The following proposition shows the relation between the operators N and N∗.

Proposition 3.7. Let � be a lower semicontinuous relation on R
n. Then

1. N(x) = N∗(x) ∪ {0}, for all x ∈ R
n.

2. If, in addition, � is convexs, then N∗ is non-empty valued.

Proof. 1. The lower semicontinuity of � implies that Us(x) is open. Since N(x)
is the polar cone of Us(x)\{x}, this item now follows using [17, Exercise 6.22].

2. It follows from item 1. and Lemma 3.4.

The following example shows that it is not possible to drop the lower semicontinu-

ity in the first part of the previous result.

Example 3.8. Consider the relation � on R
2 defined as

(x, y) � (a, b) if, and only if, x ≥ a and y = b = 0.

It is not difficult to verify that

Us(x, y) =

{

∅, y 6= 0,

]x,+∞[×{0}, y = 0.

Thus, the relation � is not lower semicontinuous. Additionally, we can see that

N(x, y) =

{

R
2, y 6= 0,

{(x∗, y∗) ∈ R
2 : x∗ ≤ 0}, y = 0,

and

N∗(x, y) =

{

R
2, y 6= 0,

{(x∗, y∗) ∈ R
2 : x∗ < 0}, y = 0.

Thus, N(x, 0) 6= N∗(x, 0) ∪ {(0, 0)}.

3.2 Reformulation and Existence Results

The following correspondence will allow us to reformulate the problem of find-

ing maximal elements as a Stampacchia variational inequality problem. Consider the

correspondence T : Rn
⇒ R

n defined as

T (x) := conv(N(x) ∩ S[0, 1]), (2)

where N is the correspondence associated to �, defined as in (1), and S[0, 1] denotes

the unit sphere of Rn. For instance, if � and N are defined as in Example 3.2, then

the correspondence T associated to N satisfies T (x) = [−1, 1], when x 6= 1, and

T (1) = ∅.

The following proposition establishes a relation between � and T .

Proposition 3.9. The following implications hold:

1. If � is upper semicontinuous on R
n, then T is closed. In particular T is upper

hemicontinuous.
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2. If � is convexs and lower semicontinuous on R
n, then T is non-empty valued.

Proof. 1. Consider the correspondence R : R
n

⇒ R
n such that graph(R) =

graph(N) ∩
(

R
n × S[0, 1]

)

. By Proposition 3.5, we deduce that R is closed.

Moreover, it is upper semicontinuous due to the closed graph theorem. Since

T (x) = conv(R(x)), for all x ∈ X , the result follows from Theorem 17.35

in [1].

2. It follows from Proposition 3.7, item 2.

Remark 3.10. Milasi and Scopelliti [13] defined the map M2 : Rn
⇒ R

n as

M2(x) :=

{

NUs(x)(x), x ∈ X,

∅, x /∈ X.

The authors also introduced a correspondence similar to T given in (2). More precisely,

they defined the map G : X ⇒ R
n as

G(x) :=

{

conv(M2(x) ∩ S[0, 1]), Us(x) 6= ∅,

B(0, 1), Us(x) = ∅,

whereB(0, 1) is closed unit ball ofRn. It is clear that T andG coincide whenX = R
n.

Now, part b) of Theorem 3 in [13] establishes that any solution of the variational

inequality problem (in the sense of Stampacchia) associated to G and K ⊂ X is a

maximal element of � on K . However, this is not true as it is stated. Consider for

instance the relation � given in Remark 3.3, and K = [0, 1] × {0} ⊂ X . The map

G : X ⇒ R
2 is given by

G(x, 0) = {(x∗, y∗) ∈ R
2 : x∗ ≤ 0 and (x∗)2 + (y∗)2 ≤ 1}.

Since (0, 0) ∈ G(x, 0) for all x ∈ R, we deduce that the solution set of the variational

inequality problem, associated to G and K , coincides with K . However, the unique

maximal element of K is (1, 0).

Motivated by the previous remark we establish the following result.

Proposition 3.11. Assume that X is a non-empty subset of Rn and let � be lower

semicontinuous relation on R
n. Then SVIP(T,X) ⊂ ME �(X).

Proof. Let x̂ be an element of SVIP(T,X). There exists x̂∗ ∈ T (x̂) satisfying

〈x̂∗, y − x̂〉 ≥ 0, for all y ∈ X. (3)

By definition of T , there are x∗
1, x

∗
2, . . . , x

∗
m ∈ N(x̂) ∩ S[0, 1] and t1, t2, . . . , tm ∈

[0, 1] such that x̂∗ =
∑m

i=1 tix
∗
i and

∑m
i=1 ti = 1. Assume that x̂ is not a maximal

element of � on X . Then there exists y ∈ X such that y ≻ x̂, i.e. y ∈ Us(x̂).
Using inequality (3), we deduce 〈x∗

i , y − x̂〉 ≥ 0 for some i. On the other hand, since

x∗
i ∈ N(x̂)\{0} and Proposition 3.7, item 1., 〈x∗

i , y−x̂〉 < 0, a contradiction.

We now are able to present the main result of this subsection.

Theorem 3.12. Let X be a convex, compact and non-empty subset of Rn, and let �
be a binary relation on R

n. If � is continuous and convexs; then there exists at least a

maximal element for � on X .

9



Proof. From Proposition 3.9, the correspondence T is upper hemicontinuous with

convex, compact and non-empty values. By Theorem 9.9 in [2], there exists x̂ ∈
SVIP(T,X). Therefore, the result follows from Proposition 3.11.

Remark 3.13. It is important to note that in Proposition 3.11 we do not require convexitys

of the relation, contrary to Theorem 28 in [8]. On the other hand, Theorem 3.12 is not

a consequence of Theorem 33 in [8]. Indeed, consider the relation � on R, defined as

x � y if, and only if, x = y = 0.

Clearly, � is continuous and convexs. Moreover, T (x) = [−1, 1], for all x ∈ R.

Hence, for any compact, convex and non-empty subset X of R, by Theorem 3.12,

ME �(X) 6= ∅. However, we cannot apply Theorem 33 in [8], as � allows for empty

strict upper contours.

3.3 On the Uniqueness of Maximal Elements

In this subsection we will show a result concerning the uniqueness of maximal

elements. Before this, we need some previous results. The first result is about necessary

conditions, while the second provides sufficient conditions. Both are related to the

Minty variational inequality problem.

Lemma 3.14. Let X be a subset of Rn and � be a complete relation on R
n. If x̂ ∈

ME �(X), then

〈y∗, x̂− y〉 ≤ 0, for all y ∈ X \ ME �(X) and all y∗ ∈ N(y). (4)

Proof. Since � is complete, for any y ∈ X \ ME �(X), we have x̂ ∈ Us(y). The

result follows from the definition of N(y).

The following example shows that we cannot drop the completeness of Lemma 3.14.

Example 3.15. Consider � on R defined as

x � y if, and only if, (x, y) = (0, 0) ∨ (x ≥ y ∧ x 6= 0),

and let X = R. It is clear that Us(x) =]x,+∞[ for all x 6= 0, and Us(0) = ∅, hence

ME �(R) = {0}. Moreover, we can see that N(x) =] − ∞, 0] for all x 6= 0, and

N(0) = R. However, x̂ = 0 does not satisfy inequality (4).

Proposition 3.16. Let � be a binary relation on R
n. If the sets ME �(R

n) and

MVIP(N,Rn) are both non-empty, then ME �(R
n) = MVIP(N,Rn) = {x̂}, for

some x̂ ∈ R
n.

Proof. Let x̂ ∈ MVIP(N,Rn) and y ∈ ME �(R
n) be arbitrary. Since y is maximal,

Us(y) = ∅ and N(y) = R
n. If x̂ 6= y then, there exists y∗ ∈ N(y) = R

n such

that 〈y∗, x̂ − y〉 > 0, a contradiction with x̂ ∈ MVIP(N,Rn). Hence x̂ = y, for all

x̂ ∈ MVIP(N,Rn) and all y ∈ ME �(R
n). This implies the proposition.

We now present the main result of this subsection.

Theorem 3.17. Let � be a complete relation onRn. If ME �(R
n) 6= ∅, then ME �(R

n)
is a singleton if, and only if, ME �(R

n) = MVIP(N,Rn).

10



Proof. First assume that ME �(R
n) = {x̂}, and take y ∈ R

n and y∗ ∈ N(y). If

y 6= x̂, Lemma 3.14 implies 〈y∗, x̂−y〉 ≤ 0, and, when y = x̂, trivially 〈y∗, x̂−y〉 = 0.

Hence x̂ ∈ MVIP(N,Rn) and, by Proposition 3.16, ME �(R
n) = MVIP(N,Rn) =

{x̂} . The converse implication is a direct consequence of Proposition 3.16.

Remark 3.18. 1. Proposition 3.16 implies that if either ME �(R) or MVIP(N,R)
have at least two elements, then the other one must be empty.

2. Example 3.15 also implies that the completeness of � cannot be dropped in

Theorem 3.17. Indeed, for � as in Example 3.15, ME �(R) = {0} but in this

case MVIP(N,R) = ∅.

3. Existence of maximal elements can be guaranteed by assuming that � is com-

plete, has the finite intersection property,
⋂

x∈X U(x) =
⋂

x∈X U(x) and U(x)
is bounded for some x

4 An Algorithm to Find Maximal Elements

This section is divided in two parts: the first one deals with the definition and

properties of a normal cone operator inspired by the Plastria subdifferential [15]. The

second subsection contains an algorithm for finding maximal elements of a binary re-

lation, along with convergence results.

4.1 The Plastria-like Normal Cone

Given a relation � on R
n and a function f : Rn × R

n → R we define

Nf (x) :=

{

{x∗ ∈ R
n : 〈x∗, y − x〉 ≤ f(x, y), ∀ y ∈ Us(x)}, x /∈ ME �(R

n),

R
n, otherwise.

We will call Nf(x) as the Plastria-like normal cone associated to the binary relation �
with respect to the function f . Clearly, if f = 0 then the Plastria-like normal cone Nf

reduces to the classical normal cone defined in (1). It is also clear that Nf (x) is closed

and convex, for all x ∈ R
n. In general, Nf (x) may not be a cone, as it is shown by the

following example.

Example 4.1. Consider � on R as in Example 3.15 and functions f1, f2 : R×R → R

defined as

f1(x, y) = y2 − x2 and f2(x, y) = y − x.

It is not difficult to show that the Plastria-like normal cones of �, with respect to f1
and f2, respectively, are

Nf1(x) =

{

]−∞, 2x], x 6= 0,

R, x = 0,
and Nf2(x) =

{

]−∞, 1], x 6= 0,

R, x = 0.

The following proposition extends Proposition 25 in [8].

Proposition 4.2. Let � be an upper semicontinuous relation onRn and f : Rn×R
n →

R be a function. If f is upper semicontinuous then the Plastria-like normal cone Nf is

closed.
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Proof. Let (xk, x
∗
k) be a sequence converging to (x, x∗) such that xk ∈ R

n and

x∗
k ∈ Nf (xk), for all k ∈ N. If Us(x) = ∅, there is nothing to prove. Now, we

consider that Us(x) 6= ∅ and take any y ∈ Us(x). Since Us is a lower hemicontinuous

correspondence, there exists a sequence (yk) converging to y such that yk ∈ Us(xk).
Thus,

〈x∗
k, yk − xk〉 ≤ f(xk, yk).

Letting k tend to ∞, we obtain 〈x∗, y − x〉 ≤ f(x, y). Since y was arbitrary, we

conclude that x∗ ∈ Nf (x). Therefore, Nf is closed.

Note that Proposition 4.2 coincides with Proposition 3.5, when f = 0. Also, this

proposition holds even if there is no connection between � and f . In the case when f
and � are related, we obtain some other properties, listed in the following propositions.

Proposition 4.3. Let � be a relation on R
n and f : Rn ×R

n → R be a function such

that f(x, y) < 0 if, and only if, y ∈ Us(x). The following hold:

1. 0 ∈ Nf(x) if, and only if, x ∈ ME �(R
n).

2. If f is upper semicontinuous with respect to its first variable, then � is upper

semicontinuous.

3. If f is upper semicontinuous with respect to its first variable, and (x0, 0) ∈
graph(Nf ), then 0 ∈ Nf (x0).

Proof. 1. Follows directly from the definition of Nf .

2. It is enough to note that upper semicontinuity of f(·, y) implies that the set

Ls(y) = {x : y ≻ x} = {x : f(x, y) < 0}

is open.

3. If x0 ∈ ME �(R
n) there is nothing to prove. Otherwise, there exists x̂ ∈

Us(x0), which implies f(x0, x̂) < 0 and x0 ∈ Ls(x̂). Let (xk, x
∗
k) ∈ graph(Nf ),

such that xk → x0 and x∗
k → 0. Now, item 2 implies that Ls(x̂) is open, there-

fore xk ∈ Ls(x̂), for k large enough. Since x∗
k ∈ Nf(xk), we deduce

〈x∗
k, x̂− xk〉 ≤ f(xk, x̂).

Taking the limit when k → ∞, we obtain 0 ≤ f(x0, x̂) < 0, a contradiction.

Proposition 4.4. Let � be a relation on R
n and f : Rn ×R

n → R be a function such

that the following hold:

1. for all x, y ∈ R
n, if f(x, z) > f(y, z), for some z ∈ R

n, then x ≻ y;

2. there exists L > 0 such that |f(x, y)| ≤ L‖x− y‖, for all x, y ∈ R
n.

Then, for every u∗ ∈ N∗(x0), x
∗
0 :=

Lu∗

‖u∗‖
∈ Nf (x0).
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Proof. If x0 ∈ ME �(R
n), there is nothing to prove. Otherwise, Us(x0) 6= ∅. Take

u∗ ∈ N∗(x0), that is,

〈u∗, x− x0〉 < 0, for all x ∈ Us(x0).

Now we define x∗
0 =

L

‖u∗‖
u∗ and consider the hyperplane H = {z ∈ R

n : 〈u∗, z −

x0〉 = 0}. For each x ∈ Us(x0) we consider x′ ∈ H as the projection of x onto H . It

is not difficult to verify that

〈
u∗

‖u∗‖
, x− x0〉 = −‖x− x′‖.

Since x′ /∈ Us(x0), assumptions 1. and 2. imply f(x0, x) ≥ f(x′, x) ≥ −L‖x− x′‖.

Hence

f(x0, x) ≥ 〈x∗
0, x− x0〉,

and, therefore, x∗
0 ∈ Nf(x0). The proof is complete.

Remark 4.5. In the particular case when � is represented by a utility function u :
R

n → R (in the sense that x � y if, and only if, u(x) ≥ u(y)), we can define the

function fu : Rn × R
n → R, fu(x, y) := u(x) − u(y). Using fu, the Plastria-like

normal cone Nfu(x) coincides with the Plastria lower subdifferential of u at x [15].

On the other hand, Proposition 4.3, item 1., extends Theorem 3.1 in [15] and item 3.

extends Proposition 7 in [14].

Note that, using fu as above, we readily obtain condition 1. in Proposition 4.4.

Moreover, condition 2. is equivalent to the function u be Lipschitz continuous on R
n.

In view of this, Proposition 4.4 extends Theorem 20 in [6].

4.2 The Algorithm

We begin this subsection by recalling the definition of a quasi-Fejér monotone

sequence. A sequence {xk} ⊂ R
n is called quasi-Fejér monotone with respect to

M ⊂ R
n if for every u ∈ M there exists a sequence {εk} ⊂ R+ with

∑

εk < ∞,

such that

‖xk+1 − u‖2 ≤ ‖xk − u‖2 + εk.

We state below an important result concerning quasi-Fejér monotone sequences [3,

Theorem 5.33].

Theorem 4.6. Let {xn} be a sequence in a Hilbert space H and let C be a non-empty

subset of H such that (xn)n∈N is quasi-Fejér monotone with respect to C. Then the

following hold:

1. {xn} is bounded.

2. Suppose that every weak sequential cluster point of {xn} belongs to C. Then

{xn} converges weakly to a point in C.

We are now ready to present an algorithm for finding maximal elements of prefer-

ence relations defined in R
n. In the sequel, we will assume the following conditions:

1. � is convexs,

2. there is a function f : Rn × R
n → R satisfying

13



(a) f(x, y) < 0 if, and only if, y ∈ Us(x);

(b) f(x, y) > 0 if, and only if, x ∈ Us(y);

(c) there is L > 0 such that |f(x, y)| ≤ L‖x− y‖, for all x, y ∈ R
n;

(d) for all x, y ∈ R
n, x ≻ y if, and only if, f(x, z) > f(y, z), for all z ∈ R

n,

if, and only if, f(x, z) > f(y, z), for some z ∈ R
n; and

(e) f is upper semicontinuous with respect to its first variable.

3. ME �(R
n) is non-empty.

Under these conditions we can write an analog of the classical steepest descent method,

as follows:

Initialization: Take x1 ∈ R
n, arbitrarily.

Iteration: Given xk, calculate the next iterative xk+1 from

xk+1 := xk − θkx
∗
k, k ∈ N,

where θk is some positive real number such that

∑

θk = ∞ and
∑

θ2k < ∞,

and x∗
k ∈ Nf (xk) such that ‖x∗

k‖ ≤ L with L > 0.

Notice that item (d) of assumption 2. in the algorithm implies assumption 1. in Proposi-

tion 4.4. Also, items (b) and (d) of assumption 2. imply the transitivity of �. Moreover,

assumption 2. in the algorithm does not imply the completeness of � as we can see in

the following example.

Example 4.7. Consider � defined as in Remark 3.13, that is, x � y if, and only if,

x = y = 0, which is clearly non-complete. However, choosing f ≡ 0 on R
2, f and �

trivially satisfy conditions 1., 2. and 3. in the algorithm.

It is important to notice that if x∗
k = 0, for some k, then by Proposition 4.3, item 1,

xk is a maximal element. From now on, we assume that the sequence {xk} generated

by the algorithm is infinite, that is x∗
k 6= 0, for all k ∈ N. It is clear that ME �(R

n) ⊂
⋂

k∈N

Us(xk).

Theorem 4.8. The sequence {xk} generated by the Algorithm converges to a point

x̂ ∈ ME �(R
n).

Proof. Notice that

‖xk+1 − xk‖
2 = θ2k‖x

∗
k‖

2 = L2θ2k,

which implies the series
∑

‖xk+1 − xk‖2 is convergent. On the other hand,

‖xk+1 − u‖2 = ‖xk − u‖2 + ‖xk+1 − xk‖
2 + 2θk〈x

∗
k, u− xk〉 (5)

for all k ∈ N and all u ∈ R
n. Taking x̂ ∈ ME �(R

n) in the previous equality we have

‖xk+1 − x̂‖2 ≤ ‖xk − x̂‖2 + ‖xk+1 − xk‖
2.
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Thus, the sequence {xk} is quasi-Fejer monotone with respect to ME �(R
n) with

εk = ‖xk+1 − xk‖2. Moreover, from (5) we obtain

‖xk+1 − x̂‖2 ≤ ‖xk − x̂‖2 + ‖xk+1 − xk‖
2 + 2θkf(xk, x̂),

which in turn implies

−2θkf(xk, x̂) ≤
(

‖xk − x̂‖2 − ‖xk+1 − x̂‖2
)

+ ‖xk+1 − xk‖
2.

Since both series
∑

‖xk+1−xk‖2 and
∑

(

‖xk − x̂‖2 − ‖xk+1 − x̂‖2
)

are convergent,

we obtain
∑

−2θkf(xk, x̂) < ∞.

Hence lim f(xk, x̂) = 0.

Finally, part 1. of Theorem 4.6 implies that {xk} is bounded. Without loss of

generality, we may assume that xk converges to some x0, so, due to the upper semi-

continuity of f(·, x̂), f(x0, x̂) ≥ 0. If x0 is not maximal, there exists z ∈ X such that

z ≻ x0. Thus, f(z, x̂) > f(x0, x̂) ≥ 0, which in turn implies z ≻ x̂ and we get a

contradiction because x̂ is a maximal element. The result now follows from part 2. of

Theorem 4.6.

Remark 4.9. Assume that � is represented by a utility function u : Rn → R, and

consider fu as in Remark 4.5, that is, fu(x, y) := u(x) − u(y). If u is quasiconcave

and Lipschitz, and possesses a maximum on R
n, then fu satisfy assumptions 1., 2. and

3. of our algorithm. In view of this, our algorithm generalizes Algorithm A1 in [14],

as we do not require differentiability of u.

5 Conclusions

In this work, we improved some existence results on maximal elements via a vari-

ational approach. In particular, we compared our results with Proposition 2.4 in [12]

and Theorem 3 in [13]. We have identified a flaw in these results, which we described

in Remarks 3.3 and 3.10. Moreover, we pointed out that our main result is not a conse-

quence of Theorems 28 and 33 in [8]. We also characterized the uniqueness of maximal

elements, by studying the solutions of a certain Minty variational inequality problem.

Finally, we adapted the classical steepest descent method, where we use a new kind

of normal cone, called Plastria-like normal cone, to replace the usual derivative. In this

way, we established an algorithm to find maximal elements. This algorithm extends

Algorithm A1 in [14].
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