
Journal of Optimization Theory and Applications (2023) 199:805–830
https://doi.org/10.1007/s10957-023-02270-9

A Fast and Simple Modification of Newton’s Method
Avoiding Saddle Points

Tuyen Trung Truong1 · Tat Dat To2,3 · Hang-Tuan Nguyen4 ·
Thu Hang Nguyen5 · Hoang Phuong Nguyen5 ·Maged Helmy1,6

Received: 18 January 2023 / Accepted: 27 June 2023 / Published online: 18 July 2023
© The Author(s) 2023

Abstract
We propose in this paper New Q-Newton’s method. The update rule is conceptually
very simple, using the projections to the vector subspaces generated by eigenvectors
of positive (correspondingly negative) eigenvalues of the Hessian. The main result
of this paper roughly says that if a sequence {xn} constructed by the method from
a random initial point x0 converges, then the limit point is a critical point and not
a saddle point, and the convergence rate is the same as that of Newton’s method. A
subsequent work has recently been successful incorporating Backtracking line search
to New Q-Newton’s method, thus resolving the global convergence issue observed
for some (non-smooth) functions. An application to quickly find zeros of a univariate
meromorphic function is discussed, accompanied with an illustration on basins of
attraction.

Keywords Backtracking line search · Newton-type method · Rate of convergence ·
Roots of univariate meromorphic functions · Saddle points

Mathematics Subject Classification 37N40 · 49M15 · 49M37 · 65Exx · 65Hxx ·
65K05 · 90C26

1 Introduction

In this paper, we consider the unconstrained optimization problem of finding
minx∈Rm f (x) for a function f : Rm → R. This includes, as a special case, the
question of finding solutions to systems of equations. Smale’s famous list of problems

Communicated by Ebrahim Sarabi.

B Tuyen Trung Truong
tuyentt@math.uio.no

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-023-02270-9&domain=pdf
http://orcid.org/0000-0001-9103-0923

806 Journal of Optimization Theory and Applications (2023) 199:805–830

[23] mentions efficient algorithms to solve systems of polynomial equations as impor-
tant for twenty-first century mathematics. Throughout the paper, we assume only that
f is a C2 (for to use the algorithm) or C3 function (to prove some theoretical results),
and do not assume restrictive conditions such as the gradient or the Hessian of the
function f must be Lipschitz continuous.

In general, finding global minima of a function is NP-hard. Hence, finding a (good)
local minimum is the most one can aim for. Moreover, in reality one cannot hope
to find closed-form solutions. Therefore, a common strategy is to design an iterative
method, which from an initial point x0 constructs a sequence {xn}. To be useful, such
a method should possess the following important requirements (for many interesting
and useful cost functions):
Requirement 1: Any cluster point of {xn} is a critical point of f .

Requirement 2: If {xn} has a bounded subsequence, then {xn} itself converges.
Requirement 3: If x0 is randomly chosen and {xn} converges, then the limit point is
not a saddle point.
Requirement 4: The method is easy to implement and works well and stably with
respect to its parameters.

For first-ordermethods, there are several algorithms satisfying all of these 4 require-
ments and work well even in large scale problems like in deep neural networks. A
common theme of these methods is that they incorporate line search, in particular
Armijo’s [4].We refer the readers to [27–29] and references therein for recent progress
and a historical overview.

This paper concerns variants of Newton’s method, which currently has no version
satisfying all Requirements 1–4, even though it has a fast rate of convergence (when
it does converge) and is easy to implement.

Main contributions of this paper We define a new variant of Newton’s method,
named New Q-Newton’s method, which for a cost function on Rm depends on m + 1
random parameters fixed from the beginning. The method is both conceptually simple
and easy to implement. It modifies theHessian of the cost function by a term depending
on the size of the gradient of the function and the abovementionedm+1 parameters. It
then uses the absolute values of the newmatrix’s eigenvalues, and not the eigenvalues
of the new matrix like in Newton’s method. Roughly speaking, this helps to stay away
from negative eigenvalues of the Hessian and hence is good for the purpose of avoiding
saddle points. At the same time, it behaves like Newton’s method near critical points
where the Hessian matrix is positive definite. Additionally, it satisfies Requirements
3 and 4 (see Theorem 3.1). The new method’s advantages are illustrated in Theorem
3.3—the best result so far for finding roots of meromorphic functions in 1 complex
variable.

Related works There are many variants of Newton’s method in the literature, which
makes it impossible to review all of them. Because of limited space, we are only able
to pinpoint a few relevant representative classes.

There are algorithms which are computationally not too expensive, like BFGS
and many quasi-Newton’s methods, but for which no good theoretical guarantees for
general non-convex cost functions are known.

123

Journal of Optimization Theory and Applications (2023) 199:805–830 807

There are algorithms which add a correction into the matrix used in the standard
Newton’s method, so that the final matrix is positive definite. For a direct application
of Newton’s method to a system of equations F = 0, one well-known method is that
of the Levenberg–Marquardt algorithm [3, 9, 17, 18, 33], which adds a positive mul-
tiple of the identity matrix to the main matrix. Another method, that of Regularized
Newton’s method [20, 30, 31], adds a positive multiple of the identity into the Hessian
of the associated cost function f = 1

2 ||F ||2, where the multiple constant is bigger than
the absolute value of the smallest negative eigenvalue of the Hessian matrix. These
methods have a good rate of convergence near the solutions of the system of equation.
There are also Backtracking versions of them [2], which—under some restrictions
(e.g. requiring that the function has compact sublevels and its gradient is Lipschitz
continuous)—have good global convergence (satisfying Requirement 1, Requirement
4, as well as Requirement 2 under some restrictions). On the other hand, there is
no theoretical proof yet concerning whether these methods (and their Backtracking
versions) can avoid saddle points. Experiments in [25] seem to show that, in gen-
eral, these methods do not have global convergence guarantee or cannot avoid saddle
points. These two methods are relevant to New Q-Newton’s method and hence will
be discussed more in Sect. 2.

There are algorithms which mix first- and second-order methods. One method,
which is direction of negative curvature [10, 11], adds into the gradient a negative
multiple of an eigenvector corresponding to a negative eigenvalue of the Hessian
matrix. It behaves like gradient descent near non-degenerate local minima. One more
recent method is that of inertia Newton’s method [6], which is a discretization of a
modification of Newton’s flow. While it is originally of order 2, it is reduced to a
system of order 1. These methods can avoid saddle points, but global convergence
guarantees are only proven under several restrictive assumptions such as the gradient
being Lipschitz continuous (see, for example, Sections 3 in [10, 11]). Moreover, the
rate of convergence of these methods is slower than that of Newton’s method, and
more like first-order methods. For comparison, the Backtracking version of gradient
descent is a variant of gradient descent which works very well and stable under wider
general settings (including deep neural networks), both theoretically and practically.

There are methods which replace calculating the Hessian matrix with a trust region
procedure at each step. One well-known representative is (adaptive) cubic regulariza-
tion [7, 19]. A line search is integrated into adaptive cubic regularization [5], which
under some assumptions—may be difficult to check beforehand, like requiring that
the sequence ‖∇2 f (xn)‖ is uniformly bounded and { f (xn)} and {∇ f (xn)} are uni-
formly continuous—proving only that {∇ f (xn)} converges and not the convergence
of {xn} itself. Moreover, these methods require solving optimization subproblems in
each iterative step, which makes satisfying Requirement 4 extremely difficult (see a
discussion about this in [13], and experiments in this paper and in [25]).

In a subsequent work [25], Armijo’s Backtracking line search [4] is incorporated
into New Q-Newton’s method. This is based on the observation that the final matrix
used in NewQ-Newton’s method is positive definite. The resulting algorithm is named
Backtracking NewQ-Newton’s method, which satisfies—besides Requirements 3 and
4—also Requirements 1 and 2. There, it is found also a more comprehensive analysis
on variants of Newton’s method.

123

808 Journal of Optimization Theory and Applications (2023) 199:805–830

Organization of the paper For the readers’ convenience, in Sect. 2 we provide a
concise review of variants of Newton’s method related to New Q-Newton’s method.
The definition of New Q-Newton’s method and its main theoretical properties are pre-
sented in Sect. 3, where some pictures on basins of attraction are given.After that, some
conclusions are presented. The appendices present details of some technical proofs,
implementation details, experimental settings, as well as some further experimental
results. (Many more can be found in the arXiv version of this paper and in the paper
[25].)

2 A Brief Review on Relevant Variants of Newton’s Method

Let f : Rm → R be a C2 function. We recall some common notations: ∇ f is the
gradient of f , and ∇2 f is the Hessian of f . A point x0 is a critical point of f if
∇ f (x0) = 0. A critical point x0 of f is non-degenerate if the Hessian ∇2 f (x0) is
invertible. A critical point x0 of f is a saddle point if x0 is non-degenerate and∇2 f (x0)
has at least one negative eigenvalue. (Note that this definition is more general than the
usual one, in that it includes also local maxima.) A function f is Morse if all of its
critical points are non-degenerate.

In Newton’s method, from x0 ∈ Rm one defines subsequently:

xn+1 = xn − [∇2 f (xn)]−1.∇ f (xn). (1)

Regularized Newton’s method adds c1 max{0,−λmin(∇2 f (xn))}I d into ∇2 f (xn),
where c1 > 1, λmin(.) is the smallest eigenvalue of a square matrix, and I d
is the identity matrix. If f = ||F ||2/2 for a map F = (F1, . . . , Fm′) :
Rm → Rm′

, then another version (historically appearing first) is xn+1 = xn −
[J F(xn)T J F(xn)]−1 J F(xn)T .F(xn), where J F is the Jacobian matrix of F and
(.)T is the transpose of a matrix. Levenberg–Marquardt algorithm adds λn I d into the
matrix J F(xn)T J F(xn), where usually λn is c2||∇ f (xn)||γ for c2, γ > 0. The final
matrices used in both methods are positive semi-definite.

New Q-Newton’s method also adds a term λn I d to the Hessian ∇2 f (xn), but does
not require that the finalmatrix∇2 f (xn)+λn I d is positive definite. Instead,we change
the sign of negative eigenvalues of the matrix ∇2 f (xn) + λn I d. We also simplify the
choice of λn by letting λn = δ j ||∇ f (xn)||γ for δ j in a fixed set of m +1 real numbers.
This turns out to provide the algorithm with very strong theoretical guarantees—in
particular with its Backtracking version in [25]—while also making it straightforward
to implement the algorithm and its variants. A detailed description of this method is
in the next section.

3 NewQ-Newton’s Method

We first describe New Q-Newton’s method, then prove some main theoretical prop-
erties, and apply to finding roots of meromorphic functions (with some pictures for
basins of attraction provided).

123

Journal of Optimization Theory and Applications (2023) 199:805–830 809

3.1 The Algorithm

Here, we introduce NewQ-Newton’s method. An invertible squarematrix A of dimen-
sionm with real coefficients is diagonalizable. That is,we canfind anorthonormal basis
e1, . . . , em of Rm and m nonzero real numbers λ1, . . . , λm such that A.e j = λ j e j for
all j = 1, . . . , m. For a vector v ∈ Rm , we define: prA,+(v) = ∑

i : λi >0 < v, ei > ei

and prA,−(v) = ∑
i : λi <0 < v, ei > ei . If V+ is the vector space generated by {ei }λi >0

and V− is the vector space generated by {ei }λi <0, then V+ and V− are uniquely defined
and are independent of the choice of the vectors e1, ..., em . Then, prA,+ is simply the
orthogonal projection to V+, and prA,− is simply the orthogonal projection to V−.

Algorithm 1: New Q-Newton’s method
Result: Find a critical point of f : Rm → R
Given: � = {δ0, δ1, . . . , δm} (chosen randomly) and α > 0; Initialization:
x0 ∈ Rm ;
for n = 0, 1, 2 . . . do

j = 0
if ‖∇ f (xn)‖ �= 0 then

while det(∇2 f (xn) + δ j‖∇ f (xn)‖1+α I d) = 0 do
j = j + 1

end
end
An := ∇2 f (xn) + δ j‖∇ f (xn)‖1+α I d
vn := A−1

n ∇ f (xn)

wn := prAn ,+(vn) − prAn ,−(vn)

xn+1 := xn − wn
end

Remark 3.1 The choice wn = prAn ,+(vn) − prAn ,−(vn) is to change the sign of the
negative eigenvalues of An . As the proof of the main results and the experiments show,
in Algorithm 1 one does not need to have exact values of the Hessian, its eigenvalues,
and eigenvectors for the algorithm to perform well. The randomness of the parameters
δ0, δ1, . . . , δm is only needed in the proof (see Theorem 3.1) that the algorithm can
avoid saddle points. (For the existence of local Stable—Centre manifolds near saddle
points, this randomness is not needed.) See “Appendix” for implementation details.
See [25] for variants.

A disadvantage of (Backtracking) New Q-Newton’s method is that in higher
dimensions it is very costly to compute the Hessian matrix and its eigenvalues and
eigenvectors. To resolve this issue is beyond the scope of the current paper. We note,
however, that a simpler version, which does not use all negative eigenvalues but only
the smallest negative eigenvalues, has been tested in [25] to perform similarly to Algo-
rithm 1. This suggests that one may reduce the computational cost by using only a few
eigenvalues of the Hessian matrix (which can be efficiently computed, e.g. by using
Lanczos algorithm). Another efficient modification is to use two-way Backtracking
line search, see [28, 29].

123

810 Journal of Optimization Theory and Applications (2023) 199:805–830

3.2 Rate of Convergence and Avoidance of Saddle Points

The main result we obtain is the following.

Theorem 3.1 Let f : Rm → R be C3. Let {xn} be a sequence constructed by New
Q-Newton’s method. Assume that {xn} converges to x∞. Then,

(1) ∇ f (x∞) = 0, that is x∞ is a critical point of f .
(2) If δ0, . . . , δm are chosen randomly, then there is a set A ⊂ Rm of Lebesgue

measure 0, so that if x0 /∈ A, then x∞ cannot be a saddle point of f .
(3) If x0 /∈ A (as defined in part 2) and ∇2 f (x∞) is invertible, then x∞ is a local

minimum and the rate of convergence is quadratic.
(4) More generally, if ∇2 f (x∞) is invertible (but x0 does not need to be random),

then the rate of convergence is at least linear.
(5) If x ′∞ is a non-degenerate local minimum of f , then for initial points x ′

0 close
enough to x ′∞, the constructed sequence {x ′

n} will converge to x ′∞.

Next, we state an interesting immediate consequence of the theorem.

Corollary 3.1 Let f be a C3 function and Morse. Let x0 be a random initial point, and
let {xn} be a sequence constructed by New Q-Newton’s method, where the hyperpa-
rameters δ0, . . . , δm are randomly chosen. If xn converges to x∞, then x∞ is a local
minimum and the rate of convergence is quadratic.

Proof (Of Theorem 3.1)

(1) Since limn→∞ xn = x∞, we have wn = xn+1 − xn → 0. Moreover, ∇2 f (xn) →
∇2 f (x∞). Then, by the definition of An , we have that ||An|| is bounded. Note
that by construction ||wn|| = ||vn|| for all n, and hence limn→∞ vn = 0. Then,
∇ f (x∞) = limn→∞ ∇ f (xn) = limn→∞ Anvn = 0.

(2) For simplicity, we can assume that x∞ = 0. We assume that x∞ is a saddle
point and will arrive at a contradiction. By (1) we have ∇ f (0) = 0, and by the
assumption we have that ∇2 f (0) is invertible. We define A(x) = ∇2 f (x) +
δ(x)||∇ f (x)||1+α I d, and A = ∇2 f (0) = A(0). We look at the following (may
not be continuous) relevant dynamical system on Rm : F(x) = x − w(x), where
w(x) = prA(x),+(v(x))− prA(x),−(v(x)) and v(x) = A(x)−1∇ f (x). The update
rule of New Q-Newton’s method is xn+1 = F(xn).

Then for an initial point x0, the sequence constructed by New Q-Newton’s method
is exactly the orbit of x0 under the dynamical system x
→ F(x). Hence, A(x) is
C1 near x∞, say in an open neighbourhood U of x∞, and at every point x ∈ U , the
matrix A(x) must be one of the m + 1 maps Fj (x) = ∇2 f (x) + δ j ||∇ f (x)||2 I d (for
j = 0, 1, . . . , m), and therefore F(x) must be one of the corresponding m + 1 maps
Fj (x). Since f is assumed to be C3, it follows that all of the corresponding m + 1
maps Fj are locally Lipschitz continuous.

Now, we analyse the map F(x) near the point x∞ = 0. Since ∇2 f (0) is invertible,
near 0 we have A(x) = ∇2 f (x) + δ0||∇ f (x)||1+α I d. Moreover, the maps x
→
prA(x),+(A(x)−1∇ f (x)) and x
→ prA(x),−(A(x)−1∇ f (x)) are C1. [This assertion
is probably well known to experts, in particular in the field of perturbations of linear

123

Journal of Optimization Theory and Applications (2023) 199:805–830 811

operators. Here, for completionwe present a proof, following [15], by using an integral
formula for projections on eigenspaces via the theory of resolvents. Let λ1, . . . , λs

be distinct solutions of the characteristic polynomial of A. By assumption, all λ j

are nonzero. Let γ j ⊂ C be a small circle with positive orientation enclosing λ j

and not other λr ’s. Moreover, we can assume that γ j does not contain 0 on it or
inside it, for all j = 1, . . . , s. Since A(x) converges to A(0), we can assume that
for all x close to 0, all roots of the characteristic polynomial of A(x) are contained
well inside the union

⋃s
j=1 γ j . Then by the formula (5.22) on page 39, see also

Problem 5.9, chapter 1 in [15], we have that Pj (x) = − 1
2π i

∫
γ j

(A(x) − ζ I d)−1dζ

is the projection on the eigenspace of A(x) corresponding to the eigenvalues of A(x)

contained inside γ j . Since A(x) is C1, it follows that Pj (x) is C1 in the variable x
for all j = 1, . . . , s. Then, by the choice of the circle γ j , we have that prA(x),+ =
∑

j : λ j >0 − 1
2π i

∫
γ j

(A(x) − ζ I d)−1dζ is C1 in the variable x . Similarly, prA(x),− =
∑

j : λ j <0 − 1
2π i

∫
γ j

(A(x) − ζ I d)−1dζ is also C1 in the variable x . Since A(x) is C1

in x and f (x)) is C2, the proof of the claim is completed.]
Hence, since x
→ (∇2 f (x) + δ0||∇ f (x)||1+α I d)−1∇ f (x) is C1, it follows that

the map x
→ F(x) is C1. We now compute the Jacobian of F(x) at the point 0.
Since ∇ f (0) = 0, it follows that ∇ f (x) = ∇2 f (0).x + o(||x ||); here, we use the
small-o notation, and hence (∇2 f (x) + δ0||∇ f (x)||1+α I d)−1∇ f (x) = x + o(||x ||).
It follows that w(x) = prA,+(x) − prA,−(x) + o(||x ||), which in turn implies that
F(x) = 2prA,−(x) + o(||x ||). Hence, J F(0) = 2prA,−.

Therefore, we obtain the existence of local stable-central manifolds for the associ-
ated dynamical systems near saddle points of f (see Theorems III.6 and III.7 in [21]).
We can then using the fact that under the assumptions the hyperparameters δ0, . . . , δm

are randomly chosen, to obtain:

Claim: F(x) is—outside a set E of Lebesgue measure 0—locally invertible.
The relation between Claim and avoidance of saddle points is as follows. Let Aloc

be the union of local stable-central manifolds around all saddle points. Then by the
above arguments, we know thatAloc has Lebesgue measure 0. If x0 is an initial point
such that the constructed sequence xn = F◦n(x0) converges to a saddle point, then
there is some n0 such that Fn0(x0) ∈ Aloc. Choose 0 ≤ m ≤ n0 be the smallest
number such that F◦m(x0) ∈ Aloc ∪ E . Then by Claim, x0 is in the inverse image of
a set of Lebesgue measure zero by a locally invertible map and hence belongs to a set
of Lebesgue measure zero. Taking the union on all n0 and m, we find the setA which
has Lebesgue measure zero which contains x0.

A similar claim has been established for another dynamical system in [27]—for a
version ofBacktracking gradient descent. The idea in [27] is to show that the associated
dynamical system (depending on ∇ f), which is locally Lipschitz continuous, has
locally bounded torsion. The case at hand, where the dynamical system depends on
the Hessian and also orthogonal projections to the eigenspaces of the Hessian, is more
complicated to deal with.

We note that the fact that δ0, . . . , δm should be random to achieve the truth of Claim
has been overlooked in the arXiv version of this paper and has now been corrected in

123

812 Journal of Optimization Theory and Applications (2023) 199:805–830

a new work by the first author [26], under more general settings. Here is a sketch of
how to prove Claim, see [26] for details.

Putting, as above, A(x, δ) = ∇2 f (x) + δ||∇ f (x)||1+α I d. Let C = {x ∈
Rm : ∇ f (x) = 0} be the set of critical points of f . Since det(A(x, δ)) is a polynomial
and is nonzero for x /∈ C, there is a set � ⊂ R of Lebesgue measure 0 so that for a
given δ /∈ �, the set x /∈ C for which A(x, δ) is not invertible has Lebesgue measure
0. One then shows, using that w(x, δ) (that is, the w(x) as above, but now we add
the parameter δ in to make clear the dependence on δ), is a rational function in δ, and
is nonzero (by investigating what happens when δ → ∞). This allows one to show
that there is a set �′ ⊂ R\� of Lebesgue measure 0 so that for all δ /∈ (� ∪ �′) the
matrix A(x, δ) is invertible and the set where the gradient of the dynamical system
F(x) = x − w(x, δ) is, locally outside C, invertible. This proves Claim.

That δ0, . . . , δm are random means that they should avoid the set � ∪ �′.
(3)We can assume that x∞ = 0 and define A = ∇2 f (0). Part 1) and the assumption

that ∇2 f (0) is invertible imply that we can assume, without loss of generality, that
An = ∇2 f (xn) + δ0||∇ f (xn)||1+α I d for all n, and that ∇2 f (xn) is invertible for
all n. Since ∇ f (0) = 0 and f is C3, we obtain by Taylor’s expansion ∇ f (xn) =
A.xn + O(||xn||2). By Taylor’s expansion, we find that

A−1
n = ∇2 f (xn)−1.(I d + δ0||∇ f (xn)||1+α∇2 f (xn))−1

= ∇2 f (xn)−1(I d − δ0||∇ f (xn)||1+α∇2 f (xn)

+(δ0||∇ f (xn)||1+α∇2 f (xn))2 + . . .)

= ∇2 f (xn)−1 + O(||xn||1+α) = A−1 + O(||xn||).

Multiplying A−1
n to both sides of the equation ∇ f (xn) = ∇2 f (0).xn + O(||xn||2),

using the above approximation for A−1
n , we find that

vn = A−1
n ∇ f (xn) = xn + O(||xn||2).

Since we assume that x0 /∈ A, it follows that A is positive definite. Hence, we can
assume, without loss of generality, that An is positive definite for all n. Then from the
construction, we have that wn = vn for all n. Hence, we obtain xn+1 = xn − wn =
xn − vn = O(||xn||2) (quadratic convergence rate).

(4) The proof of part 3 shows that in general we still have vn = xn + O(||xn||2).
Therefore, we have wn = prAn ,+(vn) − prAn ,−(vn) = O(||xn||). Hence, xn+1 =
xn − wn = O(||xn||). (Convergence rate is at least linear.)

(5) This assertion follows immediately from the proof of part 3. ��

3.3 Finding Roots of Meromorphic Functions in 1 Complex Variable

Here, we give an application of the new algorithm to quickly finding roots ofmeromor-
phic functions in 1 complex variable. As far as we know, the result in Theorem 3.3 is
new and strongest among all existing iterative algorithms in contemporary literature.
To illustrate the advantage of the new algorithm, we present some pictures for basins

123

Journal of Optimization Theory and Applications (2023) 199:805–830 813

of attraction taken from [25]. Because of the space limit, many lengthy proofs will be
put in “Appendix A”.

Concerning the direct use of Newton’s method for solving systems of equations,
even for polynomials p(z) of 1 complex variable z of small degrees (e.g. 4), there
is the well-known phenomenon of attracting cycles of at least 2 points. (Hence, as
a consequence, Newton’s method does not converge to a root of p(z).) Among all
previous variants of Newton’s methods, we are aware of only one method which
has theoretical guarantee for convergence to roots [24]. This is the Random damping
Newton’s method, which has the update rule zn+1 = zn −γn p′(zn)/p(zn), where γn is
randomly chosen. However, this method has some disadvantages. First, the theoretical
proof is very complicated. Second, it is not guaranteed when applied to ameromorphic
function like Theorem 3.3, or to higher dimensions. Indeed, our extensive experiments
seem to confirm that this method does not perform well in the more general setting,
and in many instances it behaves like the original Newton’s method.

Let g be a meromorphic function in 1 complex variable z ∈ C. Then, outside a
discrete set (poles of g), g is a usual holomorphic function. To avoid the trivial case,
we can assume that g is non-constant. We write z = x + iy, where x, y ∈ R. We
define u(x, y) = the real part of g, and v(x, y) = the imaginary part of g. Then, we
consider a function f (x, y) = u(x, y)2 + v(x, y)2. A zero z = x + iy of g is a global
minimum of f , at which the function value is 0. Therefore, optimization algorithm can
be used to find roots of g, by applying to the function f (x, y), provided the algorithm
assures convergence to critical points and avoidance of saddle points, and provided
that critical points of f which are not zeros of g must be saddle points of f .

Theorem 3.2 Let f (x, y) be the function constructed from a non-constant meromor-
phic function g(z) as before. Assume that the constant α > 0 in the definition of New
Q-Newton’s method does not belong to the set {(n − 3)/(n − 1) : n = 2, 3, 4, . . .}
(e.g. we can choose α = 1). Let (xn, yn) be a sequence constructed by Backtracking
New Q-Newton’s method from an arbitrary initial point which is not a pole of f .
Then, either limn→∞(x2n + y2n) = ∞, or the sequence {(xn, yn)} converges to a point
(x∗, y∗) which is a critical point of f .

Theorem 3.2 provides the needed convergence to critical points. Its proof will be
given at the end of this subsection, after some preparations.

To prove avoidance of saddle points, we need to first classify critical points of the
function f . This is done in Lemma A.1. For a generic meromorphic function g, the
functions g′ and gg′′ have no common roots. Hence, by Lemma A.1 and Theorem 3.2
(more generally, Theorem A.1), we obtain:

Theorem 3.3 Let g be a generic meromorphic function in 1 complex variable, and let
f (x, y) be the function in 2 real variables constructed from g as above. Let (xn, yn)

be the sequence constructed by applying Backtracking New Q-Newton’s method to f
from a random initial point (x0, y0). Then either

(i) limn→∞(x2n + y2n) = ∞,
or

(ii) (xn, yn) converges to a point (x∞, y∞) so that z∞ = x∞ + iy∞ is a root of g, and
the rate of convergence is quadratic.

123

814 Journal of Optimization Theory and Applications (2023) 199:805–830

Moreover, if g is a polynomial, then f has compact sublevels, and hence, only case
(ii) happens.

If h is a non-constant meromorphic function, then g = h/h′ has only simple zeros
(which are either zeros or poles of h). Hence, they will be non-degenerate global
minima of f . If h is a polynomial, then g = h/h′ has compact sublevels.

Now, we are ready to prove Theorem 3.2.

Proof (Of Theorem 3.2) Let 	 be the complement of the set of poles of f . Then as
mentioned, f is real analytic on 	. Let zn = (xn, yn) be a sequence constructed by
Backtracking New Q-Newton’s method in [25]. Then, since the sequence of function
values { f (zn)} decreases and the value of f is infinity only at the poles of f , if the
initial point is in 	, then the whole sequence stays in 	.

We know by [25] that any cluster point of {zn} is a critical point of f . Hence, it
remains to show that {zn} converges. To this end, by the arguments in [1], it suffices
to show that for every point (x∗, y∗) ∈ 	, if the point zn = (xn, yn) is in a small
open neighbourhood of (x∗, y∗), then there is a constant C > 0 (depending on that
neighbourhood but independent of the point zn) so that

f (zn) − f (zn+1) ≥ C ||zn+1 − zn|| × ||∇ f (zn)||. (2)

Lemma A.2 in “Appendix A”, whose proof is lengthy, then completes the proof of
the theorem. ��

We finish this section with some pictures for basins of attraction in finding roots
of a polynomial of degree 4: P4(z) = (z2 + 1)(z − 2.3)(z + 2.3), which has 4 roots:
z∗
1 = 2.3, z∗

2 = −2.3, z∗
3 = i and z∗

4 = −i . The basins of attraction for Newton’s
method are then fractal. Moreover, there are sets of positive Lebesgue measure where
Newton’s method applied to an initial point in these sets will not converge to any
of the roots. Basins of attraction for Backtracking gradient descent seem to be more
regular than that for Newton’s method, but less regular than that for Backtracking
New Q-Newton’s method. Figure1 is created by choosing the initial point z0 in a
lattice v + (0.1 j, 0.1k), for j, k ∈ [−30, 30], and where v is a randomly chosen point
in [−1, 1] × [−1.1].

4 Conclusions

This paper presented New Q-Newton’s method, a new variant of Newton’s method
which is conceptually simple, easy to implement and can avoid saddle points while
having a fast convergence rate (when it converges). New Q-Newton’s method has
been combined with Backtracking line search, by the first author, to obtain an iter-
ative optimization method which also has the needed convergence guarantee. As an
application, we obtain a new result on finding roots of meromorphic functions in 1
complex variable. Some experimental results, reported in “Appendix B”, show that

123

Journal of Optimization Theory and Applications (2023) 199:805–830 815

Fig. 1 Basins of attraction for the polynomial P4(z) = (z2 + 1)(z − 2.3)(z + 2.3). The left image is for
Newton’s method, the middle image is for gradient descent method with Backtracking line search, and the
right image is for Backtracking New Q-Newton’s method. Blue: initial points z0 for which the constructed
sequence converges to z∗

1. Cyan: similar for the root z∗
2. Green: similar for the root z∗

3. Red: similar for the
root z∗

4. Black: other points

the new algorithm works very well against well-known existing variants of Newton’s
method.

Acknowledgements The first author is supported by Young Research Talents Grant Number 300814 from
the Research Council of Norway. The research of this paper was also facilitated by a travel Grant from the
Trond Mohn Foundation for the first author to visit Torus Actions SAS. We thank Claire McLaughlin for
checking the manuscript, and thank anonymous referees for constructive feedbacks.

Funding Open access funding provided by University of Oslo (incl Oslo University Hospital).

Data Availability Statement Data sharing is not applicable to this article as no datasets were generated or
analysed during the current study.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proofs of some Results

In this “Appendix”, we collect some needed results from [25] and proofs of some
technical results for the readers’ convenience.

Theorem A.1 Let f : Rm → R be a C3 function. Let x0 be an initial point and {xn}
the sequence constructed by Backtracking New Q-Newton’s method

(1) f (xn+1) ≤ f (xn) for all n. Moreover, any cluster point of {xn} is a critical point
of f .

(2) Assume moreover that f is Morse (that is, all its critical points are non-degenerate)
and x0 is randomly chosen. Then, we have two alternatives:

123

http://creativecommons.org/licenses/by/4.0/

816 Journal of Optimization Theory and Applications (2023) 199:805–830

(i) limn→∞ ||xn|| = ∞,
or

(ii) {xn} converges to a local minimum of f , and the rate of convergence is
quadratic.
Moreover, if f has compact sublevels, then only case (ii) happens.

We now discuss properties of critical points of f (x, y) = u(x, y)2 + v(x, y)2,
outside poles of the meromorphic function g(z) = u(z) + iv(z), where z = x + iy.
Recall that by Cauchy–Riemann’s equations, we have

∂u

∂x
= ∂v

∂ y
,

∂u

∂ y
= −∂v

∂x
.

Lemma A.1 Let f (x, y) : R2 → R be associated with a meromorphic function g(z)
as above.

(1) A point (x∗, y∗) is a critical point of f (x, y), iff z∗ = x∗ + iy∗ is a zero of
g(z)g′(z).

(2) If z∗ = x∗ + iy∗ is a zero of g, then (x∗, y∗) is an isolated global minimum of f .
Moreover, if z∗ is not a root of g′, then (x∗, y∗) is a non-degenerate critical point
of f .

(3) If z∗ = x∗ + iy∗ is a zero of g′, but not a zero of gg", then (x∗, y∗) is a saddle
point of f .

Proof We will write ux for ∂u/∂x , uxy for ∂2u/∂x∂ y and so on.
(1) By calculation, we have ∇ f = (2uux + 2vvx , 2uuy + 2vvy). By Cauchy–

Riemann’s equations, a critical point (x∗, y∗) of f satisfies a system of equations

uux − vuy = 0,

uuy + vux = 0,

Consider the above as a system of linear equations in variables ux , uy , we see that if
(x∗, y∗) is not a root of g, then it must be a root of ux , uy . In the latter case, by Cauchy–
Riemann’s equations, (x∗, y∗) is also a root of vx , vy , and hence, z∗ = x∗ + iy∗ is a
root of g′(z).

(2) Since f ≥ 0, and f (x∗, y∗) = 0 iff z∗ = x∗+iy∗ is a root of g, such an (x∗, y∗)
is a global minimum of f . Moreover, since the zero set of g is discrete, (x∗, y∗) is an
isolated global minimum.

For the remaining claim, we need to show that if z∗ is not a root of g′, then
∇2 f (x∗, y∗) is invertible. By calculation, the Hessian of f at a general point is 2
times of:

(
u2

x + v2x + uuxx + vvxx ux uy + vxvy + uuxy + vvxy

ux uy + vxvy + uuxy + vvxy u2
y + v2y + uuyy + vvyy

)

.

123

Journal of Optimization Theory and Applications (2023) 199:805–830 817

At (x∗, y∗), we have u = v = 0, and hence, by Cauchy–Riemann’s equations the
above matrix becomes:

(
u2

x + u2
y 0

0 u2
x + u2

y

)

which is positive definite if z∗ is not a root of g′, as wanted.
(3) Since here (x∗, y∗) is a solution of ux = uy = vx = vy = 0, the Hessian of f

at (x∗, y∗) is 2 times of:

(
uuxx + vvxx uuxy + vvxy

uuxy + vvxy uuyy + vvyy

)

.

Note that by Cauchy–Riemann’s equations we have uxx +uyy = 0 and vxx +vyy = 0.
Therefore, if we put a = uuxx + vvxx and b = uuxy + vvxy , then the above matrix
becomes:

(
a b
b −a

)

.

Since the determinant is −a2 − b2, we conclude that (x∗, y∗) is a saddle point of f ,
except the case where a = b = 0. In the latter case, by Cauchy–Riemann’s equations
we have uxy = vxx and vxy = −uyy , and hence, (x∗, y∗) must be a solution to

uuxx + vvxx = 0,

vuxx − uvxx = 0.

By Cauchy–Riemann’s equations again, we find that this cannot be the case, except
that z∗ is a root of gg′′ = 0. ��
Lemma A.2 Assumptions are as in Theorem 3.2. For every point (x∗, y∗) ∈ 	, if the
point zn = (xn, yn) is in a small open neighbourhood of (x∗, y∗), then there is a
constant C > 0 (depending on that neighbourhood but independent of the point zn)
so that

f (zn) − f (zn+1) ≥ C ||zn+1 − zn|| × ||∇ f (zn)||. (3)

Proof Let us recall that ifwn is the one constructed by New Q-Newton’s method, then
zn+1 = zn − βnwn , where βn is chosen from the Backtracking line search so that
Armijo’s condition

f (zn) − f (zn+1) ≥ 1

2
βn < wn,∇ f (zn) > .

is satisfied.

123

818 Journal of Optimization Theory and Applications (2023) 199:805–830

For a 2 × 2 invertible matrix A, we define sp(A) = max{|λ| : λ is an eigenvalue
of A}, and minsp(A) = min{|λ| : λ is an eigenvalue of A}. Then by the arguments
in [25], we find that

βn < wn,∇ f (zn) > ≥ βn||wn|| × ||∇ f (zn)|| × minsp(An)/sp(An)

= ||zn − zn+1|| × ||∇ f (zn)|| × minsp(An)/sp(An),

where An = ∇2 f (zn) + δ||∇ f (zn)||1+α I d is constructed by New Q-Newton’s
method. Here, recall that δ belongs to a finite set {δ0, . . . , δm}. Hence, to show that (3)
is satisfied, it suffices to show that every point (x∗, y∗) ∈ 	 has an open neighbour-
hood U so that if zn ∈ U , then minsp(An)/sp(An) ≥ C for some constant C > 0
depending only on U .

If (x∗, y∗) is not a critical point of f , then by the construction of Backtracking
New Q-Newton’s method, minsp(An) ≥ ||∇ f (zn)||1+α is bounded away from 0 in a
small neighbourhood U of (x∗, y∗), while sp(An) is bounded from above in the same
neighbourhood. Hence, minsp(An)/sp(An) is bounded away from 0 in U as wanted.

Hence, we need to check the wanted property only at the critical points of f . We
saw in Lemma A.1 that (x∗, y∗) is a critical point of f iff z∗ = x∗ + iy∗ is a root of
gg′. Hence, we will consider two separate cases. To simplify the arguments, we can
assume that z∗ = 0 is the concerned root of gg′.

Case 1: z∗ = 0 is a zero of g.
We expand in a small neighbourhood of 0: g(z) = τ zN + h.o.t (here h.o.t. means

terms which converge to 0 quicker than zN), where N ≥ 1 is the multiplicity of
0. We first claim that when z is close to z∗, then the two eigenvalues of ∇2 f (z)
are λ1(z) ∼ (2N 2 − N)|τ |2r2N−2 and λ2(z) ∼ N |τ |2r2N−2, where r = ||z||. For
simplicity, we can assume that τ = 1.

Write z = reiθ . We have, by definition u + iv = zN + h.o.t ., ux + ivx = d
dx (x +

iy)N + h.o.t . and so on. Hence,

u = r N cos(Nθ) + h.o.t .,

v = r N sin(Nθ) + h.o.t .,

ux = Nr N−1 cos((N − 1)θ) + h.o.t .,

vx = Nr N−1 sin((n − 1)θ) + h.o.t .,

uy = −vx = −Nr N−1 sin((N − 1)θ) + h.o.t .,

vy = ux = Nr N−1 cos((N − 1)θ) + h.o.t .,

uxx = N (N − 1)r N−2 cos((N − 2)θ) + h.o.t .,

vxx = N (N − 1)r N−2 sin((N − 2)θ) + h.o.t .,

uyy = −uxx = −N (N − 1)r N−2 cos((N − 2)θ) + h.o.t .,

vyy = −vxx = −N (N − 1)r N−2 sin((N − 2)θ) + h.o.t .,

uxy = vyy = −N (N − 1)r N−2 sin((N − 2)θ) + h.o.t .,

vxy = uxx = N (N − 1)r N−2 cos((N − 2)θ) + h.o.t .

123

Journal of Optimization Theory and Applications (2023) 199:805–830 819

We recall that the Hessian matrix ∇2 f (x, y) is:

(
u2

x + v2x + uuxx + vvxx ux uy + vxvy + uuxy + vvxy

ux uy + vxvy + uuxy + vvxy u2
y + v2y + uuyy + vvyy

)

,

which by Cauchy–Riemann’s equations becomes:

(
u2

x + v2x + uuxx + vvxx uuxy + vvxy

uuxy + vvxy u2
y + v2y + uuyy + vvyy

)

.

The two concerned eigenvalues are the two roots of the characteristic polynomial
of A = ∇2 f (x, y), which is t2 − tr(A)t + det(A). By Cauchy–Riemann’s equations
again, we have

tr(A) = u2
x + v2x + u2

y + v2y = 2N 2r2N−2 + h.o.t .,

det(A) = (u2
x + v2x)(u

2
y + v2y) − (uuxx + vvxx)

2 − (uuxy + vvxy)
2

= (u2
x + v2x)(u

2
y + v2y) − (u2 + v2)(u2

xx + v2xx)

= N 4r4N−4 − N 2(N − 1)2r4N−4 + h.o.t . = N 2(2N + 1)r4N−4 + h.o.t .

From this, it is easy to arrive at the claimed asymptotic values for the two eigenvalues of
∇2 f (x, y): λ1(z) ∼ (2N 2 − N)|τ |2r2N−2 and λ2(z) ∼ N |τ |2r2N−2, where r = ||z||.

Now, we complete the proof that (3) is satisfied in this case where z∗ = 0 is a root
of g(z). We need to estimate minsp(An)/sp(An) when zn = (xn, yn) is close to z∗.
We note that An = ∇2 f (zn)+ δ||∇ f (zn)||1+α . Hence, the two eigenvalues of An are
λ1(zn) + δ||∇ f (zn)||1+α and λ2(zn) + δ||∇ f (zn)||1+α . Note that

||∇ f (zn)||1+α = [(uux + vvx)
2 + (uuy + vvy)

2](1+α)/2

= N 1+αr (2N−1)(1+α) + h.o.t .,

which is of smaller size compared to λ1(zn) and λ2(zn). Therefore, we have
minsp(An)/sp(An) ∼ 1/(2N − 1) for zn near z∗, which is bounded away from
0 as wanted.

Case 2: z∗ = 0 is a root of g′(z).
If z∗ is also a root of g(z), then we are reduced to Case 1. Hence, we can assume

that z∗ is not a root of g(z). Therefore, we can expand, in a small open neighbourhood
of z∗ = 0: g(z) = γ + τ zN + h.o.t ., where γ, τ �= 0.

If N = 1, then z∗ is not a root of gg". Then by Lemma A.1, we obtain that z∗ is a
saddle point of f . Hence, for zn near z∗ we obtain

minsp(An)/sp(An) ∼ minsp(∇2 f (z∗))/sp(∇2 f (z∗)),

which is bounded away from 0, as wanted.
Thus, we can assume that N ≥ 2. Calculating as above we found:

tr(∇2 f (z)) = 2|τ |2N 2r2N−2,

123

820 Journal of Optimization Theory and Applications (2023) 199:805–830

det(∇2 f (z)) = |τ |4N 4r4N−4 − |γ |2|τ |2N 2(N − 1)2r2N−4.

Since N ≥ 2, we have | det(∇2 f (z))| >> |tr(∇2 f (z))|2 near z∗. This means that
the two eigenvalues λ1(z) and λ2(z) of ∇2 f (z) are of the same size ∼ |γ τ |N (N −
1)rn−2/2.

Now, the term ||∇ f (z)||1+α , which is about the size of
|γ |1+α|τ |1+α N 1+αr (N−1)(1+α), is of different size compared to λ1(z) and λ2(z),

thanks to the condition thatα does not belong to the set {(n−3)/(n−1) : n = 2, 3, . . .}.
Therefore, we obtain that minsp(An)/sp(An) ∼ 1 near z∗. ��

B Implementation and Experimental Results

In this “Appendix”, we present some implementation details and experimental results
on New Q-Newton’s method.

B.1 Implementation Details

In this subsection,wepresent somepractical points concerning implementation details,
for the language Python. Source code is in the GitHub link [14].

Indeed, Python has already enough commands to implement New Q-Newton’s
method. There is a package, namednumdifftools,which allows one to compute approx-
imately the gradient and Hessian of a function. This package is also very convenient
when working with a family f (x, t) of functions, where t is a parameter. Another
package, named scipy.linalg, allows one to find (approximately) eigenvalues and the
corresponding eigenvectors of a square matrix. More precisely, given a square matrix
A, the command eig(A) will give pairs (λ, vλ) where λ is an approximate eigenvalue
of A and vλ a corresponding eigenvector.

One point to notice is that even if A is a symmetric matrix with real coefficients, the
eigenvalues computed by the command eig could be complex numbers, and not real
numbers, due to the fact that these are approximately computed. This can be easily
resolved by taking the real part of λ, which is given in Python codes by λ.real. Simi-
larly, we can do this for the eigenvectors. A very convenient feature of the command
eig is that it already computes (approximate) orthonormal bases for the eigenspaces.

Now, we present the coding detail of the main part of New Q-Newton’s method:
Given a symmetric invertiblematrix Awith real coefficients (in our case A = ∇2 f (xn)

+δ j ||∇ f (xn)||1+α), and a vector v, compute w which is the reflection of A−1.v along
the direct sum of eigenspace of negative eigenvectors of A. First, we use the command
eig to get pairs {(λ j , v j)} j=1,...,m , and use the command real to get real parts. If we
write v = ∑m

j=1 a jv j , then a j =< v j , v > (the inner product), which is computed

by the Python command np.dot(v j , v). Then, vinv := A−1v = ∑m
j=1(a j/λ j)v j .

Finally,

w = vinv − 2
∑

j : λ j <0

(a j/λ j)v j .

123

Journal of Optimization Theory and Applications (2023) 199:805–830 821

Remark A.1 (1) We do not need to compute exactly the gradient and the Hessian of
the cost function f , only approximately. Indeed, the proof of Theorem 3.1 shows that
if one wants to stop when ||∇ f (xn)|| and ||xn − x∞|| are smaller than a threshold ε,
then it suffices to compute the gradient and the Hessian up to an accuracy of order ε.

Similarly, we do not need to compute the eigenvalues and eigenvectors of the
Hessian exactly, but only up to an accuracy of order ε, where ε is the threshold to stop.

In many experiments, we only calculate the Hessian inexactly using the numd-
ifftools package in Python and still obtain good performance.

(2) While theoretical guarantees are proven only when the hyperparameters
δ0, . . . , δm are randomly chosen and fixed from the beginning, in experiments we
have also tried to choose—at each iterate n—randomly a δ. We find that this variant,
which will be named Random New Q-Newton’s method, has a performance similar
to or better than the original version.

(3) Note that similar commands are also available on PyTorch and TensorFlow, two
popular libraries for implementing deep neural networks.

B.2 Some Experimental Results

Here, we present a couple of illustrating experimental results. Additional experiments,
which are quite extensive, are available in the arXiv version of the paper. We use the
python package numdifftools [12] to compute gradients and Hessian, since symbolic
computation is not quite efficient. The experiments here are run on a small personal
laptop. The unit for running time is seconds.

Here, we will compare the performance of New Q-Newton’s method against sev-
eral, including well-known, existing variants of Newton’s method: the usual Newton’s
method, BFGS [32], adaptive cubic regularization [7, 19], as well as Random damping
Newton’s method [24] and Inertial Newton’s method [6].

For NewQ-Newton’smethod, we choose α = 1 in the definition.Moreover, wewill
choose� = {0,±1}, even though for theoretical proofsweneed� to have at leastm+1
elements, where m = the number of variables. The justification is that when running
New Q-Newton’s method it is almost never the case that both ∇2 f (x) and ∇2 f (x) ±
||∇ f (x)||2 I d are not invertible. The experiments are coded in Python and run on a
usual personal computer. For BFGS: we use the function scipy.optimize.fmin_bfgs
available in Python and put gtol = 1e − 10 and maxiter = 1e + 6. For adaptive
cubic regularization for Newton’s method, we use the AdaptiveCubicReg module
in the implementation in [13]. We use the default hyperparameters as recommended
there, and use “exact” for the hessian_update_method. For hyperparameters in Inertial
Newton’s method, we choose α = 0.5 and β = 0.1 as recommended by the authors
of [6]. Source codes for the current paper are available at the GitHub link [14].

Legends We use the following abbreviations: ”ACR” for adaptive cubic regulariza-
tion, “BFGS” for itself, “Rand” for Random damping Newton method, “Newton” for

123

822 Journal of Optimization Theory and Applications (2023) 199:805–830

Newton’s method, “Iner” for Inertial Newton’s method, “NewQ” for NewQ-Newton’s
method, “R-NewQ” for Random New Q-Newton’s method.

Features reported We will report on the number of iterations needed, the function
value, and the norm of the gradient at the last point, as well as the time needed to run.

B.2.1 A Toy Model for Protein Folding

This problem is taken from [22]. Here is a brief description of the problem. The model
has only two amino acids, called A and B, among 20 that occurs naturally. A molecule
with n amino acids will be called an n-mer. The amino acids will be linked together and
determined by the angles of bend θ2, . . . , θn−1 ∈ [0, 2π]. We specify the amino acids
by Boolean variables ξ1, . . . , ξn ∈ {1,−1}, depending on whether the corresponding
one is A or B. The intramolecular potential energy is given by:

Φ =
n−1∑

i=2

V1(θi) +
n−2∑

i=1

n∑

j=i+2

V2(ri, j , ξi , ξ j).

Here, V1 is the backbone bend potential and V2 is the non-bonded interaction, given
by:

V1(θi) = 1

4
(1 − cos(θi)),

r2i, j =
⎡

⎣
j−1∑

k=i+1

cos

(
k∑

l=i+1

θl

)⎤

⎦

2

+
⎡

⎣
j−1∑

k=i+1

sin

(
k∑

l=i+1

θl

)⎤

⎦

2

,

C(ξi , ξ j) = 1

8
(1 + ξi + ξ j + 5ξiξ j),

V2(ri, j , ξi , ξ j) = 4(r−12
i, j − C(ξi , ξ j)r

−6
i, j).

Note that the value of C(ξi , ξ j) belongs to the finite set {1, 0.5,−0.5}.
In the first non-trivial dimension n = 3, we haveΦ = V1(θ2)+ V2(r1,3, ξ1, ξ3) and

r1,3 = 1. Hence,

Φ = 1

4
(1 − cos(θ2)) + 4(1 − C(ξ1, ξ3)).

Therefore, the global minimum (ground state) of Φ is obtained when cos(θ2) = 1,
at which the value of Φ is 4(1 − C(ξ1, ξ3)). In the special case where ξ1 = 1 = ξ3
(corresponding to AXA), the global minimum of Φ is 0. This is different from the
assertion in Table 1 in [22], where the ground state of Φ has value −0.65821 at
θ2 = 0.61866. Our computations for other small dimension cases n = 4, 5 also obtain
values different from that reported in Table 1 in [22]. In [22], results are reported for
dimension ≤ 5, while those for dimensions 6 and 7 are available upon request.

Table 1presents the optimal values for the potential-energy functionΦ formolecules

123

Journal of Optimization Theory and Applications (2023) 199:805–830 823

Table 1 Optimal values for the potential energy function Φ for n-mers, where n = 3, 4, 5

Molecule min Φ θ2/π θ3/π θ4/π Φ(θ∗) in [22]

AAA 0 0 0.3410

AAAA –0.0615 0 0 0.3226

AAAB 6.0322 0 0 6.3763

AABA 5.3417 0 0.6186 5.4681

ABAB 2.0322 0 0 2.3790

ABBA 11.3417 0 −0.6186 12.0995

BBBB 3.9697 0 0 4.3577

AAAAA –1.6763 0 0.6183 0.3392 0.7042

AAAAB 5.4147 0 0.6176 −0.0513 6.3677

AAABA 4.5490 0 0.3326 0.6218 4.6503

AAABB 12.0672 0 0 0 12.4117

AABAA 10.3236 0 0.6183 0.3392 11.2914

AABAB 7.4147 0 0.6176 −0.0513 8.3433

AABBA 16.5490 0 0.3326 0.6218 17.4098

ABAAB 11.3506 0 −0.6176 1.2066 12.3050

ABABA 2.0589 0 0 0 4.5373

ABABB 8.0047 0 0 0 8.3525

ABBAB 13.3506 0 0.6176 −0.0667 14.1068

ABBBA 13.9638 0 −0.4768 −0.4768 14.8761

ABBBB 10.0047 0 0 0 10.9039

BAAAB 12.0617 0 0 0 14.1842

BABAB 4.0617 0 0 0 6.1938

BABBB 9.9992 0 0 0 10.4814

BBABB 13.8602 0 −0.5582 −0.3518 14.1087

BBBBB 5.8602 0 −0.5582 −0.3518 6.1185

To save space, only the cases different from [22] are reported. Here, θ∗ is the point found by the methods
in [22]

n-mer, where n ≤ 5, found by running different optimization methods from many
random initial points. The cases listed here are the same as those in Table 1 in [22].
For comparison, we also compute the function value at the points listed in Table 1 in
[22].

Here, we will perform experiments for two cases: ABBBA (dimension 5) and
ABBBABABAB (dimension 10). The other cases (of dimensions 5 and 10) yield
similar results. We will generate random initial points and report on the performance
of the different algorithms. We observe that the performance of Inertial Newton’s
method and adaptive cubic regularization is less stable, less accurate, or slower than
the other methods.

(1) For ABBBA: In this case, the performance of New Q-Newton’s method and
that of Random New Q-Newton’s method are very similar, so we report only that of
New Q-Newton’s method. We found that the optimal value seems to be about 13.963.

123

824 Journal of Optimization Theory and Applications (2023) 199:805–830

Table 2 Performance of different optimization methods for the toy protein folding problem for the 5-mer
ABBBA at some random initial points

ACR BFGS Newton NewQ Rand Iner

Initial point (−0.0534927, 1.61912758, 2.9567358)

Iterations 7 57 17 31 31 14

f 5e+6 14.058 3e+5 13.963 3e+5 14.255

||∇ f || 1e+8 1e−8 6e−6 5e−12 6e−6 0

Time 0.058 0.843 0.337 0.617 0.594 0.078

Initial point (1.80953527, −1.74233202, 2.45974152)

Iterations 5 26 27 15 51 13

f 14.117 13.963 13.963 13.963 14.463 5e+4

||∇ f || 47.388 6e−11 4e−12 8e−12 4e−10 0

Time 0.114 0.1773 0.541 0.317 1.033 0.084

Initial point (1.07689387, 2.97081771, 0.800213082)

Iterations 19 57 32 48 32 15

f 283.822 13.963 13.963 13.963 13.963 39.726

||∇ f || 3950.996 1e−10 1e−11 5e−10 4e−10 0

Time 2.760 0.398 0.626 0.642 0.928 0.085

The function values at the initial points are, respectively, 2555432869.1351156; 538.020; and
6596446021.145492

We will test for several (random) choices of initial points:

(θ2, θ3, θ4) = (−0.0534927, 1.61912758, 2.9567358),

with function value 2555432869.1351156;

(θ2, θ3, θ4) = (1.80953527,−1.74233202, 2.45974152),

with function value 538.020;
and

(θ2, θ3, θ4) = (1.07689387, 2.97081771, 0.800213082),

with function value 6596446021.145492.
Table 2 lists the performance of different methods (with a maximum number of

5000 iterates, but can stop earlier if ||∇ f (zn)|| < 1e − 10 or ||zn+1 − zn|| < 1e − 20
or there is an unknown error).

(2)ForABBBABABAB: In this case, usuallyNewton’smethod andRandomdamp-
ing Newton’s method encounter the error “Singular matrix”. Hence, we have to take
more special care of them and reduce the number of iterations for them to 50. In this
case, Random New Q-Newton’s method can obtain better performances than New
Q-Newton’s methods, so we report both of them. In this case, it seems that the optimal

123

Journal of Optimization Theory and Applications (2023) 199:805–830 825

Table 3 Performance of different optimization methods for the toy protein folding problem for the 10-mer
ABBBABABAB at several random initial points

ACR BFGS Newton NewQ Rand Iner

Initial point: Point 1

Iterations 1e+4 197 50 35 50 13

f 7e+7 19.707 Err 1.2e+4 Err 2e+7

||∇ f || 1e+10 6e−10 Err 8e−8 Err 0

Time 395.49 14.27 Err 16.20 Err 0.500

Initial point: Point 2

Iterations 66 79 50 70 47 13

f 5e+11 19.596 Err 20.151 20.207 5e+6

||∇ f || 5e+13 5e−8 Err 1e−7 4e−8 0

Time 14.17 4.118 Err 32.76 21.47 0.479

Initial point: Point 3

Iterations 0 176 50 500 50 13

f 1e+13 19.727 Err 20.225 Err 3e+9

||∇ f || 1e+15 7e−9 Err 2e−5 Err 0

Time 0 9.91 Err 380.1 Err 0.484

Initial point: Point 4

Iterations 1 83 50 95 50 14

f 2e+20 19.596 Err 3e+3 Err 7e+4

||∇ f || 1e+7 3e−8 Err 2e−8 Err 0

Time 2.301 4.365 Err 43.55 Err 0.583

The function values at the initial points are, respectively: 4185029.6878152043; 895386751.0677216;
12479713199090.754; and 579425.218039767. For Newton’s method and Random damping Newton’s
method, we often encounter singular matrix error

value is about 19.387061837218972, which is obtained near the point

(θ2, θ3, θ4, θ5, θ6, θ7, θ8)

= (−4.7735907,−0.47766515,−1.02890588,−1.77319053,

−0.02340005, 0.08208585,−1.39102817, 0.27906532).

Remark. We have tested with many random initial points and found that none of
the algorithms here (adaptive cubic regularization, BFGS, Newton’s method, New
Q-Newton’s method, Random Newton’s method, Random New Q-Newton’s method,
and Inertial Newton’s method) as well as Backtracking GD can find the above global
minimum. The above global minimum value has been found by running Backtracking
New Q-Newton’s method with, for example, Point 1 below, with running time about
16.2 s.

We will test with 4 random initial points (see Table 3):

123

826 Journal of Optimization Theory and Applications (2023) 199:805–830

Point 1

(θ2, θ3, θ4, θ5, θ6, θ7, θ8)

= (−3.00156524,−1.5427558, 1.9394472,−2.74672374,

−1.82664375, 1.96928115,−1.26350718, 2.82317321).

The function value at the initial point is 4185029.6878152043.
Point 2:

(θ2, θ3, θ4, θ5, θ6, θ7, θ8)

= (1.50386159,−1.36306552, 2.93979824, 1.01082799,

−1.56261475, 1.61429959,−0.02311273,−1.8108999).

The function value at the initial point is 895386751.0677216.
Point 3:

(θ2, θ3, θ4, θ5, θ6, θ7, θ8)

= (2.89936055, 2.5913901,−1.40975004,−2.76032304,

−3.05060738, 1.09171554, 1.33525563,−1.85212602).

The function value at the initial point is 12479713199090.754.
Point 4:

(θ2, θ3, θ4, θ5, θ6, θ7, θ8)

= (−1.3335047, 2.76782837,−1.89518385, 2.52345111,

−0.33519698,−1.98794015, 0.02088706,−1.09200044).

The function value at the initial point is 579425.218039767.

B.2.2 Finding Roots of Univariate Meromorphic Functions

As discussed in Sect. 3.3, given a non-constant univariate function g(z), we will con-
struct a function f (x, y) = u(x, y)2 + v(x, y)2, where z = x + iy, u = is the real
part of g, and v = is the imaginary part of g. Global minima of f are exactly roots of
g, at which the function value of f is precisely 0. We will apply different optimization
algorithms to f . See Table 4.

We will consider several functions. The first is a tricky polynomial [8], for which
Lehmer’s method [16] encountered errors:

g1(z) = 1250162561z16 + 385455882z15 + 845947696z14 + 240775148z13

+247926664z12 + 64249356z11 + 41018752z10 + 9490840z9

+4178260z18 + 837860z7 + 267232z6 + 44184z5

+10416z4 + 1288z3 + 242z2 + 16z + 2.

123

Journal of Optimization Theory and Applications (2023) 199:805–830 827

Table 4 Performance of different optimization methods for finding roots of meromorphic functions at
random initial points

ACR BFGS Newton NewQ Rand Iner

Function g1
Iterations Err Err 149 149 149 Err

f Err Err 6e−14 6e−14 6e−14 Err

||∇ f || Err Err 9e−11 9e−11 9e−11 Err

Time Err Err 2.076 1.935 1.922 Err

Function g2, Point 1

Iterations 0 25 11 11 33 4

f 6482 1e−23 1e−39 1e−40 8e−22 3e+78

||∇ f || 2900 1e−11 0 0 9e−10 0

Time 0.002 0.107 0.112 0.112 0.331 0.015

Function g2, Point 2

Iterations 4 10 5 9 19 6

f 1e−10 4e−24 1 3e−43 1 2e+160

||∇ f || 4e−5 8e−12 0 0 9e−10 0

Time 0.014 0.062 0.051 0.094 0.188 0.020

Function g3
Iterations Err 1 13 18 Err Err

f Err 0.040 0.387 5e−28 Err Err

||∇ f || Err 0.205 6e−10 3e−14 Err Err

Time Err 16.77 15.43 22.06 Err Err

Function g4
Iterations 46 132 56 56 54 Err

f 2e−9 8e−15 2e−14 2e−14 2e−14 Err

||∇ f || 7e−7 8e−11 2e−11 2e−11 2e−11 Err

Time 0.159 0.558 0.572 0.578 0.547 Err

Function g5
Iterations Err 2 18 46 16 Err

f Err Err 0.9999 1e−30 0.9999 Err

||∇ f || Err Err 2e−11 3e−14 4e−11 Err

Time Err 79.04 23.55 59.94 20.85 Err

See Sect.B.2.2 for more detail. “Err” means some errors encountered

The (randomly chosen) initial point is (x, y) = (6.58202917,−7.93929341), at which
point the function value of f is 4e + 50.

The second is a simple function, for which the point (0, 0) is a saddle point of the
function f :

g2(z) = z2 + 1.

123

828 Journal of Optimization Theory and Applications (2023) 199:805–830

We look at 2 (random initial) points. Point 1: (x, y) = (4.0963223,−8.0935966), at
which point the value of f is 6482. Point 2: (closer to the point (0, 0)): (x, y) =
(0.317,−0.15), at which point the function value of f is 1.171.

The third is a meromorphic function, which is the derivative of the function in
formula (7.4) in [8]:

g3(z) = d

dz

[
1 − 1.005e−z + 0.525e−2z − 0.475e−3z − 0.045e−4z

2.27e−z − 2.19e−2z + 1.86e−3z − 0.38e−4z

]

.

The root of smallest absolute value of g3 is close to 0.3430042 + 1.0339458i . It has
a pole near −0.227 + 1.115i of absolute value just slightly larger than that of this
root, and hence, when one applies the method in [8] one has to be careful. We choose
(randomly) an initial point which is close to the pole of g3: (x, y) = (−0.227, 1.115),
at which point the value of f is 0.0415.

The fourth is a polynomial function with multiple roots:

g4(z) = z(z − 1)2(z − 2)3(z − 5)5.

We consider a (random) initial point (x, y) = (4.48270522, 3.79095724), at which
point the function value is 1e + 14.

The fifth is the 1001-st summand of the series defining Riemann zeta function:

g5(z) =
1001∑

n=1

n−z .

Here, recall that n−z = e−ln(n)z . We choose a (randomly chosen) initial point

(x, y) = (9.76536427,−4.15647151),

at which the function value is 0.9977.

References

1. Absil, P.-A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic
cost functions. SIAM J. Optim. 16(2), 531–547 (2005). https://doi.org/10.1137/040605266

2. Ahookhosh,M., Fleming,R.M.T.,Vuong, P.T.: Finding zeros ofHöldermetrically subregularmappings
via globally convergent Levenberg–Marquardtmethods.Optm.Methods Softw. 37(1), 113–149 (2022).
https://doi.org/10.1080/10556788.2020.1712602

3. Ahookhosh, M., Artacho, F.J.A., Fleming, R.M.T., Vuong, P.T.: Local convergence of the Levenberg–
Marquardt method under Hölder metric subregularity. Adv. Comput. Math. 45, 2771–2806 (2019).
https://doi.org/10.1007/s10444-019-09708-7

4. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J.
Math. 16(1), 1–3 (1966)

5. Bianconcini, T., Sciandrone,M.: A cubic regularization algorithm for unconstrained optimization using
line search and nonmonotone techniques. Optim. Methods Softw. 31(5), 1008–1035 (2016). https://
doi.org/10.1080/10556788.2016.1155213

123

https://doi.org/10.1137/040605266
https://doi.org/10.1080/10556788.2020.1712602
https://doi.org/10.1007/s10444-019-09708-7
https://doi.org/10.1080/10556788.2016.1155213
https://doi.org/10.1080/10556788.2016.1155213

Journal of Optimization Theory and Applications (2023) 199:805–830 829

6. Bolte, J., Castera, C., Pauwels, E., Févotte, C.: An inertial Newton algorithm for deep learning. J.
Mach. Learn. Res. 22(134), 1–31 (2021)

7. Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained opti-
mization. Part 1: motivation, convergence and numerical results. Math. Program. Ser. A 127, 245–295
(2011). https://doi.org/10.1007/s10107-009-0286-5

8. Delves, L.M., Lyness, J.N.: A numerical method for locating the zeros of an analytic function. Math.
Comput. 21, 543–560 (1967)

9. Fan, J.-Y., Yuan, Y.-X.: On the Quadratic convergence of the Levenberg–Marquardt method without
nonsingularity assumption. Computing 74, 23–39 (2005). https://doi.org/10.1007/s00607-004-0083-
1

10. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQP method: global convergence. IMA J.
Numer. Anal. 37(1), 407–443 (2016). https://doi.org/10.1093/imanum/drw004

11. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQP method: superlinear convergence. Math.
Program. 163, 369–410 (2016). https://doi.org/10.1007/s10107-016-1066-7

12. GitHub link for Python’s package numdifftools. https://github.com/pbrod/numdifftools
13. GitHub link for adaptive cubic regularization for Newton’s method. https://github.com/cjones6/cubic_

reg. Accessed 4 Mar 2021
14. GitHub links for Python source codes for New Q-Newton’s method and backtracking new

Q-Newton’s method. https://github.com/hphuongdhsp/Q-Newton-method. https://github.com/
tuyenttMathOslo/New-Q-Newton-s-method-Backtracking. https://github.com/tuyenttMathOslo/
NewQNewtonMethodBacktrackingForSystemEquations

15. Kato, T.: Perturbation Theory for Linear Operators. In: Originally Published as Volume 132 of the
Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1995). https://doi.org/10.1007/
978-3-642-66282-9

16. Lehmer, D.H.: A machine method for solving polynomial equations. J. Assoc. Comput. Mach. 8,
151–162 (1961). https://doi.org/10.1145/321062.321064

17. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl.
Math. 2(2), 164–168 (1944). https://doi.org/10.1090/qam/10666

18. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl.
Math. 11(2), 431–441 (1963). https://doi.org/10.1137/0111030

19. Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Math.
Program. Ser. A 108, 177–205 (2006). https://doi.org/10.1007/s10107-006-0706-8

20. Shen, C., Chen, X., Liang, Y.: A regularizedNewtonmethod for degenerate unconstrained optimization
problems. Optim. Lett. 6, 1913–1933 (2012). https://doi.org/10.1007/s11590-011-0386-z

21. Shub, M.: Global Stability of Dynamical Systems. Springer, Berlin (1987). https://doi.org/10.1007/
978-1-4757-1947-5

22. Stillinger, F.H., Head-Gordon, T., Hirshfeld, C.L.: Toy model for protein folding. Phys. Rev. E 48(2),
1469–1477 (1983). https://doi.org/10.1103/PhysRevE.48.1469

23. Smale, S.: Mathematical problems for the next century. Math. Intell. 20(2), 7–15 (1998). https://doi.
org/10.1007/BF03025291

24. Sumi,H.:Negativity ofLyapunov exponents and convergence of generic randompolynomial dynamical
systems and random relaxed Newton’s method. Commun.Math. Phys. 384, 1513–1583 (2021). https://
doi.org/10.1007/s00220-021-04070-6

25. Truong, T.T.: Backtracking new Q-Newton’s method: a good algorithm for optimizaton and solving
systems of equations. arXiv:2209.05378 (2022)

26. Truong, T.T.: Unconstrained optimisation on Riemannian manifolds. arXiv:2008.11091 (2020)
27. Truong, T.T.: Convergence to minima for the continuous version of backtracking gradient descent.

arXiv:1911.04221 (2019)
28. Truong, T.T., Nguyen, T.H.: Backtracking gradient descent method and some applications to large

scale optimisation. Part 1: theory. Minimax Theory Appl. 7(1), 079–108 (2022)
29. Truong, T.T., Nguyen, T.H.: Backtracking gradient descent method and some applications in large

scale optimisation. Part 2: algorithms and experiments. Appl. Math. Optim. 84, 2557–2586 (2021).
https://doi.org/10.1007/s00245-020-09718-8

30. Ueda, K., Yamashita, N.: A regularized Newton method without line search for unconstrained opti-
mization. Comput. Optim. Appl. 59, 321–351 (2014). https://doi.org/10.1007/s10589-014-9656-
x

123

https://doi.org/10.1007/s10107-009-0286-5
https://doi.org/10.1007/s00607-004-0083-1
https://doi.org/10.1007/s00607-004-0083-1
https://doi.org/10.1093/imanum/drw004
https://doi.org/10.1007/s10107-016-1066-7
https://github.com/pbrod/numdifftools
https://github.com/cjones6/cubic_reg
https://github.com/cjones6/cubic_reg
https://github.com/hphuongdhsp/Q-Newton-method
https://github.com/tuyenttMathOslo/New-Q-Newton-s-method-Backtracking
https://github.com/tuyenttMathOslo/New-Q-Newton-s-method-Backtracking
https://github.com/tuyenttMathOslo/ NewQNewtonMethodBacktrackingForSystemEquations
https://github.com/tuyenttMathOslo/ NewQNewtonMethodBacktrackingForSystemEquations
https://doi.org/10.1007/978-3-642-66282-9
https://doi.org/10.1007/978-3-642-66282-9
https://doi.org/10.1145/321062.321064
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
https://doi.org/10.1007/s10107-006-0706-8
https://doi.org/10.1007/s11590-011-0386-z
https://doi.org/10.1007/978-1-4757-1947-5
https://doi.org/10.1007/978-1-4757-1947-5
https://doi.org/10.1103/PhysRevE.48.1469
https://doi.org/10.1007/BF03025291
https://doi.org/10.1007/BF03025291
https://doi.org/10.1007/s00220-021-04070-6
https://doi.org/10.1007/s00220-021-04070-6
http://arxiv.org/abs/2209.05378
http://arxiv.org/abs/2008.11091
http://arxiv.org/abs/1911.04221
https://doi.org/10.1007/s00245-020-09718-8
https://doi.org/10.1007/s10589-014-9656-x
https://doi.org/10.1007/s10589-014-9656-x

830 Journal of Optimization Theory and Applications (2023) 199:805–830

31. Ueda, K., Yamashita, N.: Convergence properties of the regularized Newton method for the uncon-
strained nonconvex optimization. Appl. Math. Optim. 62, 27–46 (2010). https://doi.org/10.1007/
s00245-009-9094-9

32. Wikipedia page on Quasi-Newton’s method. https://en.wikipedia.org/wiki/Quasi-Newton_method
33. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg–Marquardt method.

Computing 15, 237–249 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Tuyen Trung Truong1 · Tat Dat To2,3 · Hang-Tuan Nguyen4 ·
Thu Hang Nguyen5 · Hoang Phuong Nguyen5 ·Maged Helmy1,6

Tat Dat To
tat-dat.to@imj-prg.fr

Hang-Tuan Nguyen
hnguyen@axon.com

Thu Hang Nguyen
hangntt@torus-actions.fr

Hoang Phuong Nguyen
hphuongdhsp@gmail.com

Maged Helmy
magedaa@ifi.uio.no; office@odimedical.com

1 University of Oslo, Oslo, Norway

2 Ecole Nationale de l’Aviation Civile, Toulouse, France

3 Present Address: Sorbonne University, Paris, France

4 Axon AI Research, Seattle, WA, USA

5 Torus Actions SAS, Toulouse, France

6 ODI Medical AS, Oslo, Norway

123

https://doi.org/10.1007/s00245-009-9094-9
https://doi.org/10.1007/s00245-009-9094-9
https://en.wikipedia.org/wiki/Quasi-Newton_method
http://orcid.org/0000-0001-9103-0923

	A Fast and Simple Modification of Newton's Method Avoiding Saddle Points
	Abstract
	1 Introduction
	2 A Brief Review on Relevant Variants of Newton's Method
	3 New Q-Newton's Method
	3.1 The Algorithm
	3.2 Rate of Convergence and Avoidance of Saddle Points
	3.3 Finding Roots of Meromorphic Functions in 1 Complex Variable

	4 Conclusions

	Acknowledgements
	A Proofs of some Results
	B Implementation and Experimental Results
	B.1 Implementation Details
	B.2 Some Experimental Results
	B.2.1 A Toy Model for Protein Folding
	B.2.2 Finding Roots of Univariate Meromorphic Functions

	References

