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Existence of equilibrium solution for
multi-leader-follower games with fuzzy

goals and parameters

Zhenli Liu, Guoling Wang and Guanghui Yang*

Abstract. In this paper, we first propose the model of multi-leader-follower games with
fuzzy goals involving fuzzy parameters and introduce its a-FNS equilibrium. Next, we shift
our attention to the existence of a-FNS equilibrium and prove it by Kakutani’s fixed point
theorem. Finally, we illustrate an example to show that the equilibrium existence result is

valid.

Mathematics Subject Classification. 91A06, 91A07, 91A10.
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1 Introduction

The leader-follower game was first proposed by a German economist Stackelberg [1].
It has developed from the original single-leader-follower with an objective to the current
multi-leader-follower with multiple objectives. In leader-follower games, the leaders own
leadership advantages with a favorable position, the followers follow the leaders’ steps to
make corresponding decisions. Multi-leader-follower games are embodied in economics and
electricity market etc. For example, in economics, we consider the game model proposed
by Yang et al. [2]. There are two types of players, one is the companies which provide
the carsharing to maximize their profits, another one is the travelers which employ the
carsharing to minimize their disutility according to the companies’ profits. For this model,
the companies and the travelers are formulated as leaders and followers respectively. In
electricity power markets [3], there are two kinds of participants, one is the virtual power
plants and they determine the price of electricity selling, the other one is the distribution
companies and they determine the price of electricity purchasing according to the sale price
from the power plants. It is formulated as a multi-leader-follower game with power plants

as leaders and distribution companies as followers.

This study is supported by the Guizhou Provincial Science and Technology Fund (nos. [2019]1067,
[2022]168).



In recent years, a great deal of scholars have devoted to the equilibria for leader-
follower games. Liu [4] designed a genetic algorithm to solve Stackelberg-Nash equilibria
of nonlinear multilevel programming with multiple followers. Yu and Wang [5] gave a sim-
ple proof of equilibrium existence theorem of a two-leader-follower game by Fan-Glicksberg
fixed point theorem. Yang and Pu [6] obtained the equilibrium existence by Fan-Glicksberg
fixed point theorem for multi-leader-follower games under uncertainty. Jia et al. [7] in-
vestigated the existence of weakly Pareto-Nash equilibrium for generalized multiobjective
multi-leader-follower games by Fan-Glicksberg fixed point theorem. Julien and Ludovic [8]
demonstrated the Stackelberg market equilibrium existence of multi-leader-follower nonco-
operative oligopoly model by making certain assumptions on the derived functions of price
and cost functions. Watada and Chen [9] analyzed the Stackelberg behaviors between a
manufacturer and two retailers. Zhang et al. [10] proved the equilibrium existence of Nash-
Stackelberg-Nash games under decision-dependent uncertainties by Kakutani’s fixed point
theorem. The other works about the equilibrium existence of multi-leader-follower games
can be seen in [11-14].

Nevertheless, in many practical decision-making problems, it is an inescapable fact
of imprecise information about the ongoing games due to the indeterminate environment,
inaccurate understanding of status by players etc. In those instances, fuzzy theory put
forward by Zadeh [15] is a powerful tool, and it was firstly applied in game theory and
established noncooperative fuzzy game by Dan [16]. Later, it has been applied abundantly in
game theory with plentiful research achievements. The equilibrium existence in matrix game
involving fuzzy goals were studied in [17-20]. Equilibrium solution and relevant properties
of multi-objective matrix containing fuzzy goals were investigated in [21-26]. Fang et al.
[27] represented the seller and buyers” goals by fuzzy sets in auctions game and investigated
the equilibrium existence and computation. Equilibria existence in matrix games, n-person
noncooperative games and Stackelberg games with fuzzy parameters were studied in [28-32]
respectively. The equilibrium existence in matrix games and n-person noncooperative games
with both fuzzy goals and parameters were considered in [33-36] respectively.

We note that the great majority of the above literatures bring in fuzzy parameters or
fuzzy goals in game models and further investigated their equilibrium existence or calculation
etc. But the results of equilibrium existence for multi-leader-follower games with both fuzzy
parameters and fuzzy goals remain open. Motivated by this idea and Kacher and Larbani
[36], the aim of this paper is to established equilibrium existence for multi-leader-follower
games with both fuzzy parameters and fuzzy goals.

The paper is organized as follows. In Section 2, we present the necessary preliminaries.
Section 3 is the main ingredient of this paper, which devote to the equilibrium existence of
multi-leader-follower games with fuzzy goals and fuzzy parameters. Next, a procedure for

its calculation followed by an illustrative example is given as well. Section 4 concludes this

paper.



2 Preliminaries

Throughout this paper, R and R™ denote the real field and the n-dimensional Euclidean
space respectively. R = {(uy,u2,- - ,up) € R" | u; > 0,V i = 1,2,--- ,n}, intR} =
{(uy,uz, - ,un) ER" [u; >0,Vi=1,2,--+ ,n}.

Definition 2.1 (see [37] p.44, Definition 2.1.4) Let F be a fuzzy set over R, B = {F'|
g R—[0,1]}, if each F € B meets the following properties:

(i) F is a normal fuzzy set, i.e. 3z € R such that puz(zo) = 1;

(ii) VA € (0,1], Fy = {2 € Rlup(x) > A\, A € (0,1]} is a bounded closed interval.

Then F € B is called a fuzzy number and B is called a fuzzy number set.

The following results of vector-valued functions and set-valued mappings [38] are es-
sential for the context.

Definition 2.2 Let X be a nonempty set in R”, f : X — R is a vector-valued function,
reX.

(1) fis Ri—upper semicontinuous at x (or Ri—lower semicontinuous), if for any open
neighborhood V of 0 in R¥, there exists open neighborhood O(z) of x, such that f(z') €
f(@)+V =R (or f(2') € f(z)+V +RE) for each 2’ € O(x).

(2) fis IR’j_— upper semicontinuous on X (or R¥ -lower semicontinuous), if f is R¥ -upper
semicontinuous at z(or Rﬁ—lower semicontinuous) for each z € X.

(3) fis Ri—continuous on X, if f is both Ri-upper and lower semicontinuous on X.

Lemma 2.1 Let X be a nonempty set in R, f = (f1,---, fx) : X — RF is a vector-
valued function, where f; : X = R, j=1,--- &, then

(1) fis R’i—upper semicontinuous on X if and only if f; is upper semicontinuous on X,
j=1,,k

(2) f is R% -lower semicontinuous on X if and only if f; is lower semicontinuous on X,
j=1,--,k

(3) fis Ri—continuous on X if and only if f; is continuous on X, j=1,--- k.

Definition 2.3 Let X be a nonempty convex set in R”, f : X — R¥ is a vector-valued

function. Then f is Rﬁ—quasiconcave on X if for any x1,x2 € X and any w € (0, 1), it holds
flwzr + (1 —w)as) € fla1) +RYE,

or

flwzr + (1 —w)z2) € fz2) +RE.

Definition 2.4 Let X and Y be two nonempty sets in R™ and R”™ respectively.
F: X — Py(Y) is a set-valued mapping, where Py(Y") denotes all the nonempty subsets of
Y.
(1) F is upper semicontinuous(usc) at x, if for any open set G C Y with G D F(x),
there exists an open neighborhood O(z) of z such that G D F(z') for each 2’ € O(x).
(2) F is lower semicontinuous(lsc) at z, if for any open set G C Y with G F(z) # 0,
there exists an open neighborhood O(x) of = such that G (| F(z') # 0 for each 2’ € O(x).

(3) F is continuous at z, if F' is both usc and lsc at x.



(4) F is continuous (or usc, or lsc) on X, if F' is continuous (or use, or lsc) at each
zc X.

Definition 2.5 Let F' : X — Py(Y) be a set-valued mapping, the graph of F' is denoted
by

graph(F) = {(z,y) € X xY :y € F(x)}.

F is closed, if graph(F) is a closed set in X x Y.

Lemma 2.2 Let Y be a bounded closed set in R™. If F': X — Py(Y) is closed, then F'
is usc on X.

Lemma 2.3 Let F': X — Py(Y) be closed,

(1) IfVap -z € X, Yy, € F(zk), yo >y €Y, then y € F(x);

(2) Vo € X, F(x) is a closed set.

Lemma 2.4(Kakutani’s fixed point theorem) Let X be a nonempty bounded closed
convex set in R™. If F': X — Py(X) is usc with nonempty closed convex set F'(z) for each
x € X, then there exists z* € X such that z* € F(z").

Lemma 2.5(see [39] or [40]) Let X be a nonempty bounded closed convex set in R,
O C X x X, if it holds

(1) {y € X : (z,y) € O} is open in X for each z € X;

(2) {x € X : (z,y) € O} is convex for each y € X;

(3) (z,x) ¢ O for each z € X.

Then there exists y* € X, such that (z,y*) ¢ O for each z € X.

3 Existence of equilibrium for multi-leader-follower games with fuzzy

goals and parameters

Here, we begin with the model of multi-leader-follower games with n leaders and mul-
tiple followers. In such a game, I = {1,2,--- ,n} is the set of leaders, and Vi € I, X; C R

is the ith leader’s strategy set, let X = [[ X;, X_; = [ Xi;. Y =U; C R? denotes the
i€l e\ {i}
cartesian product of the all followers’ strategy set, and let U_; = [[ U, for each i € I.
1en\{i}
Q={2= (%, ,2m) €eR™ | z; € B, j =1,2,---m}. Denoted by f = (f1, fo, ", fn)s

where f; : X XY x  — R indicates the payoff of the leader i € I.
Let

(I,X,Y,Q, f) (3.1)

denote multi-leader-follower games with fuzzy parameters.

Let the ith leader’ confidence level for fuzzy parameters be of, i.e. Z,:(2) = {z =
(21,22, ,2m) € Q| pz,(z) > ', j=1,--- ,m}. a= I?g}(ai denotes overall confidence
level for fuzzy parameters for game (3.1).

Let

Zo(Z) ={2= (21,20, - y2m) € Q| pz,(25) > a,j =1,--- ,m}.

And

(I, XY, Za(2), f) (3.2)
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denotes multi-leader-follower games with crisp parameters.

Assumption 3.1 For game (3.2), we assume that:

(i) X;, Y are nonempty bounded closed convex sets in R¥ and RP respectively;

(ii) (z,y,2) — fi(z,y,2) is continuous over X x Y x Z,(Z) for each i € I;

(iii) (x—s,y,2) = fi((xs,2-4),y, 2) is not constant over X_; X Y x Z, (%) for each i € T
and z; € X;;

(iv) (z,y) — fi(z,y,2) is convex for each ¢ € I and z € Z,(2).

For each ¢ € I, we define

A; = min min ((t5, T z
¢ t€X; (z,i,y,z)GX,iXYXZ(,(E)fz(( v 1),y7 ),

ﬁi = min max fi((ti,x_i),y,Z),

t€Xs (x_4,y,2)€EX i XY XZq(Z)
X:{x€X|)\-<fi(x y,2) < Bi,V(y,2) €Y x Z,(2),Vi € I},

Xi={w; € X; | (w,v_;) € X}, X, 1 Xx.
_lEI \{i}
Theorem 3.1 Under assumption 3.1, X is a nonempty bounded closed convex set and

then X;, X_; are also nonempty bounded closed convex sets.
Proof: Nonemptiness Obviously, Z,(2) is a nonempty bounded closed set in R™.
Besides, from Assumption 3.1(ii), ¢; — max fi((ti, x—4),y, z) is continuous
(x—iyy,2)EX i XY X Zo(Z)
on X; due to the continuity of f;(z,y,2) on X xY x Z,(Z). And by the boundedness and

closeness of X; C R¥ for each i € I, there exists Z; € X; such that

P = i i tia —1 ’ iy L ) )
ﬂ t?él)rfll (x,i,y,z)el)r(lil?xYxZa(,%)f (( . ) Y% ) (x—s, yz)er)r(laixxYxZ (2 )f ((.23 ) Y.z )
denoted by T = (Z1,To, -+ ,Ty), obviously Z € X.
Then for each i € I and each (y',2') € Y x Z,(2), it holds
>\ - mi i tlv ) < fi _a /a !
Jnin R L S, f(( r_i),y,2) < fi(@,y', 2')
< max fz((% i),y,2) = Bi.

(x—i,y,2)EX i XY X Zq(
Thus Z € X, namely X # .

Boundedness X C X is bounded due to the boundedness of X.

Closeness Let V! € X, 1 =1,2,---,2! — Z, now we prove that z € X.

Since #! € X, it holds \; < f;(2!,y,2) < Bi, Y(y,2) €Y x Zo(3), Vi€ I.

Besides, f; is continuous on X and #! — Z(I — +00), it also holds \; < fi(Z,y,2) <
Bi, Y(y,2) €Y X Zy(2), Vi e I

Then z € X, i.e. X is a closed set.

Convexity For any z!,22 € X, w € (0,1), now we are to prove wr! + (1 —w)2? € X.

Because z',22 € X, then it holds \; < fi(z',y,2) < B; and \; < fi(22,y,2) <
Bi, Y(y,2) €Y x Zy(Z2).

From Assumption 3.1(iv), z — fi(z, v, 2) is convex, then \; < fi((wzl+(1-w)z?,y, 2) <
wfi(z',y,2) + (1 —w)fi(a®y,2) Swbi + (1 —w)B; = Bi.

Thus wz' + (1 —w)z? € X, i.e. X is a convex set.

The above proof shows that X is a nonempty bounded closed convex set.



Let

0, filz,y,2) < A
pr(z,y,2) = %, Ai < filz,y, 2) < Bi
L, fi(z,y,2) > Bi
represent the membership function of the ith leader’s fuzzy goal, piy = (tify, thryy - 5 11, )-

Clearly, ps, holds the same properties as f; and from Assumption 3.1(iii), 5; > A;.

After the leaders play their strategy (x;,_;) € X and determine the membership
functions of their fuzzy goals, the followers subsequently make their response according to
leaders’ information. Let y; € G(x;,x_;, z), where G(x;,x_;, 2) is the followers’ reaction
mapping for each leader i € I.

Let
<IvX7Y7 Za(g),/lf,G>, (33)

denote multi-leader-follower games where leaders’ payoff functions are the membership func-
tions of their fuzzy goals.

Remark 3.1 If Q@ = 0 or Q = {z}, then game (3.3) is a classical multi-leader-follower
game. If Z,(Z) is an uncertain parameter space, the leaders’ strategy set is still X and puy
is the initial vector-valued payoff f, then game (3.3) is multi-leader-follower game under
uncertainty proposed by Yang (2012).

Definition 3.1 If for each i € I, there exists y € G(z}, z* ,;, 2*) such that the strategy
profile (z},2*,,2*) € X X Z,(Z) holds the following conditions:

(i) Mfi((aj;?7$;k—i)7y;’z*) = - min Mfi(<xi7xti)7yi52*)7
2, €Xi,Yi €G (24,27 ;,2%)

(11) ,uf(m*,y*,z) - /jff(x*ay*72*) ¢ intR’iv Vz € Zoz(g); y* = (yfvy;a to 7y:7,) S H Uz
iel
Then (xf,z*;,2*) is called an N-S equilibrium of game (3.3).
Definition 3.2 For each i € I, if the strategy profile (z},2*;,2*) € X x Z,(2) is an
N-S equilibrium of game (3.3), then it is called an a-FNS equilibrium of game (3.1).
Remark 3.2 If there is only one leader, and the condition (i) of Definition 3.1 be-
comes p¢(z*,y*, 2*) = _ max py(z,y, 2*), the condition (ii) becomes pu¢(z*,y*, 2*) =
z€X,yeG(z,z")
min_pr(x*,y*, z), the followers’ reaction mapping G becomes the a-FNS equilibrium set

;i(ff)i)zs)ed by Kacher and Larbani (2008), then game (3.3) reduces to the single-leader-follower
game with fuzzy goals and parameters.

Theorem 3.2 In addition to Assumption 3.1, suppose that the following conditions
are met in game (3.3):

(T-) Vo € X, y = (y1,Y2,  * »Yn) € [1 Ui, z = f(z,y,2) is Rl -quasiconcave on Zq(%);

(T-ii) G : X x Zo(2) = Py(Y) is usc lafrid G(z, z) is a nonempty bounded closed convex
set for each (z,2) € X x Z,(2);

(T-iil) Vo, € X_;, Vz € Z4(2), t; € X;, for an arbitrary convex combination% w;ti,
it holds =

mo mo
Z wiG(ti, Tr_ji, Z) C G(Z witi, T_;, Z)
=1 =1
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Then game (3.1) possesses at least one a-FNS equilibrium.

Proof: By Definition 3.2, we need to prove that game (3.3) exists an N-S equilibrium.

Based on Definition 3.1, the proof of Theorem 3.2 is divided into three steps. In the
first step, we construct a set-valued mapping H;(x_;,y_4,2) = {x; € X4, y; € G(xs,2_;,2) |
pr (i, 2—4), v, 2) = ulel,v@Igg:Igu@,z . g, ((ui, —5),v;, 2) } for each i € I and prove that H;
isuscon X_; x [ Ui x Z,(Z) with a nonempty closed convex set for each (x_;,y_;,2) €
Xux I U lilga]&i) In the second step, we construct a set-valued mapping Ho(z,y) =
{z € éil(\é{)l}\ pr(z,y,v) — pp(z,y,2) ¢ intR7} and prove that Hy is usc on X x [[ U;
with a nonempty closed convex set for each (z,y) € X x [[ U;. In the third steg)e,lwe
construct a set-valued mapping F : X x [[ U; x Z,(2) — P;%( x [I Ui x Za(2)), that is
F(xy,- @i y1, 0, Yn; 2) = ]_[IHi(z_i,;e_Ii,z) X Ho(z,y) and shov;etjhat game (3.3) exists

ic

an N-S equilibrium.

Step 1. For any i € I and (z_;,y_4,2) € X_; x [I Ui x Zo(2), we define set-
B lel\{i}
valued mapping Hi(z—i,y-i,2) = {z: € Xiyi € G(zi,x—4,2) | pg,((2i,2-40),9i,2) =
min ) Uiy T_j), Vi 2) }e
u; €X:,v,€G (us,x_4,2) ,ujil (( ) )}

(1.1) Because X x Z,(Z) is a bounded closed set and G(z,z) is a bounded closed
set for each (x,2) € X x Z,(2), then G(x;,x_;,2) = {G(us,v_,2) : u; € X;,Vi € I} is
also a bounded closed set for each (z;,7_;,2) € X x Z,(Z). Besides, uy, is continuous
on X x Y x Z,(%) from the continuity of f; in Assumption 3.1(ii), there exists 7; € X;
and §; € G(&;,x_;, z) such that uy, ((Z;,2-;),%:,2) = _  min pg ((wi, x—5), i, 2).

u; €X 3,0, €G(uj,x_;,2)
Hence (Z;,3;) € Hi(x—i,y—i,2), i.e. Hi(x_;,y—_;,2) is nonempty for any (z_;,y_;,2) €
X_ix JI Ui x Zu(2).

lel\{i} )
(1.2) We next prove H; isuscon X_; x [[ U;xZ,(2) and H;(z_;,y—i, 2) is a closed
lel\{i}
set for each (v_;,y_4,2) € X_; x [I U x Zy(Z). It suffices to prove that the close-
lel\{i}
ness of H;. Namely, for each (z_;;,y—i,,21) € X—i X [ Ui X Za(2), (x—i)sY—i;s21) =

leIN{i}
(T—iyU—i, 2), (w3, y5,) € Hi(x—i,,y—i,» 21), (i, Yi,) — (%4, 7;), we need to prove that (Z;, ;) €

Hi('f—iag—ivg)'
Since (z4,,y,) € Hi(x_4;,y—i;, 21), it holds z;, € X;, vi, € G(xi,,2_4,, 1) and
pp (i i) yins 21) < g ((wis i), 06, 21), Vg € Xy, Yo € Glug, @iy, 21). (*)

Because (v, T, Y—i,>21) — (Zi, T, §J—i,Z) and X; is a bounded closed set, then z;, @; €
X;. In addition, from condition (T-ii) and Lemma 2.3(1), it yields 3; € G(%;,Z_s, Z) and
v; € G(ui, T, 2). Besides, uy, is continuous on X x Y x Z,(Z), then we deduce that the

following inequality from formula (x):
l’(‘fi((x“ ) Yi, 2 ) < be((ul, ) Vi, 2 ) Vu; € Xz7 Yu; € G(ul,x_“z)

Hence (Z;,%;) € H;i(T_;,9_;,%). Namely, H; is closed for each i € I. Because X; x U; is a

bounded closed set, then H; isuscon X _;x [[ U;xZ4(Z) from Lemma 2.2, H;(z_;,y_i, 2)
ler\{i}

7



is closed set for each i € I and (v_;,y_;,2) € X_i x [[ U X Zu(Z) from Lemma 2.3(2).
lel\{i}
(1.3) Now we prove that H;(x_;,y_;, z) is convex. That is, for each (x},y}), (z2,vy2) €

Hi(x_;,y_i,2), w € (0,1), we need to prove that w(z}, y})+(1—w)(22,y?) € Hi(z_i,y—_i, 2)-
Because (z},y}), (22,y2) € Hi(z_i,y_i,2), then z} € X;, y} € G(a},2_;,2), 22 €
Xi, yv? € G(22,2_;,2), and

1 1 .
((z;,7—5),y;,2) = _  min ((ug, x_3),v4, 2),
lufz(( i i) Yi ) uieX,;,vieG(ui,r_i,z)'ufl(( i i)s Vi, 2)

,uf,i((xf,x_i),yf,z) = _ min :U’fi((u’i7x—i)7vi7z)'
u, €X;,0,€G(us,x—;,2)

Thus Vu; € X;, v; € G(us,r_4, 2), it holds

Mfi((leawfi)vyilﬂ Z) = Mfi(($127x*i)7yi27 z) < Mfi((uiv‘rfi%vi’ Z)

Since X; is convex, then wz}! + (1 — w)z? € X;. By the condition (T-ii), wy} + (1 — w)y? €
WGzt x_iy2)+(1—w)G(22,2_;,2) C Glwrl+(1—w)a?,x_;, z). From Assumption 3.1(iv),
we deduce that iy, is convex on X; x U;. Then puy,((wzl + (1 — w)a?, z_;),wyl + (1 —
w)y?,2) < wpp (@, 2-0), 41 2) + (1= w)pp (25, 220), 97, 2) < wpy, (s, 2-3), v, 2) + (1=
W)y, (i, £—5), v, 2) = pg, ((us, x—;),v;, 2). Thus
(ot + (L= it o ol + Q=lfd) = omin s, o)
That is w(z},y}) + (1 — w)(z?,y?) € Hi(x—i,y—i, 2). Hence H;(z_i,y_;,2) is a convex set
for each (z_;,y_i,2) € Xy x ] Ui x Za(3).
NG!
Step 2. For each (z,y) € X x [[ Ui, we define
Ho(z,y) ={z € Za(lg)l | wp(z,y,v) — pp(x,y, 2) ¢ intR7} }.

(2.1) We prove that Hy(z,y) # 0 for each (z,y) € X x [ U

V(z,y) € X x H U;, we define O = {(w, 2) € Z,(2) X Zj;) | pr(z,y,w) —pr(x,y,2) €
intR” }, and we pré\E/(Ie that exists z € Z,(2) such that (w, z) ¢ O, that is Hy(z,y) # 0. And
then, we prove that the set O holds the conditions of Lemma 2.5.

(2.1.1) We prove that {z € Z,(2) : (w,z) € O} is open on Z,(Z) for each v € Z,(Z).

Ifwe Z,(2), z € {z € Zo(2) | (w,z) € O}, then there exists open neighborhood V' of
0 in R™ such that

pr(x,y,w) — ps(e,y,z) +V CintR?.

Because iy, is continuous, from Definition 2.2 and Lemma 2.1, there exists open neighbor-
hood U(z) of z in Z,(2), such that Vz' € U(z), it holds

pr(x,y,w) — pp(x,y,2') € py(z,y,w) — py(z,y,2) + V+RE C intR} + R CintR?.
Then {z € Z,(2) | (w,z) € O} is open in Z,(2).

(2.1.2) We prove that {w € Z,(2) : (w, z) € O} is convex for each z € Z,(Z2).

According to condition(T-i), we deduce that z — py(z,y, 2) is R} -quasiconcave. For
any z € Zy(2), wi,ws € {w € Zy(2) | (v,z) € O} and w € (0,1), from Definition 2.3,

without loss of generality, we assume

Mf($7y7ww1 + (1 - W)’UJQ) € Mf(x7yawl> + Ri



And then, it holds

pop (@, y, wwy + (1= w)ws) — pp(w,y,2) € pp(e,y,wr) — pp(r,y, 2) + RY

CintR"} + R?} CintR’.

Thus Vz € Z,(Z), {w € Z4(2) | (w,z) € O} is convex.

(2.1.3 ) Obviously, Vz € Z,(2), (z,2) ¢ O.

Then, from Lemma 2.5, for any w € Z,(Z), exists z € Z,(2) such that (w, z) ¢ O.

That is

py(,y,w) — pyp(z,y, z) ¢intRY V2 € Z,(2).
Thus Ho(z,y) # 0 for each (z,y) € X x [1U:.

(2.2) Now we prove that Hy is usc afrf(ll Hy(x,y) is a nonempty bounded closed convex
set for each (z,y) € X x [[ U;. It suffices to prove Hy is closed. Namely, V(z!,y') €
X x [ Ui, (2%9) — (:2,35)616 X x [[ Ui, 28 € Ho(zh, o), 28 — 2z € Z,(2), we need to
proveliilat zZ € Ho(z,7). “

Argue by contradiction Assuming z ¢ Hy(Z, ), then there exists w € Z,(Z) such
that

p(Z, 5, w) — pp(Z, 9, z) €intRY.

Exists open field V of 0 in R™ such that

pp(Z, g, w) — pp(2,9,2) + V CintR?.
Because jiy, is continuous, then from Definition 2.2 and Lemma 2.1, there exists open
neighborhood U of (z,7,z) in X x [[ U; x Z4(Z), such that V(2',%/, ') € U, it holds
pr(a Y w)—pp(a,y, 2) Elzlf(i, g,w) — py(T,9,2)+V +RY CintR} +R” CintR’ .
And because (2!, 9!, 2!) — (,7, %), exists lo, such that VI > Iy, (z!,9,2!) € U,
g (ot ) — oy (o, 21) intRE.
It is contradictory to 2! € Hy(z!,y!,2!), thus z € Hy(Z,y). Namely, Hy is closed.

Because Z, (%) is a bounded closed set, then Hy is usc on X x Y from Lemma 2.2 and

V(z,y) € X x [[ Ui, Ho(z,y) is a bounded closed set from Lemma 2.3(2).
i€l

(2.3) We prove that V(x,y) € X x [1 Ui, Ho(z,y) is convex. Namely, for any (z,y) €
X x [1Ui, 21,22 € Ho(z,y), w € (0, 1),levslze need to prove that wzy + (1 —w)ze € Ho(x,y).
ii‘gue by contradiction Assuming wz; + (1 — w)zs ¢ Hy(x,y), then there exists
w € Zg(Z) such that
pr(z,y,w) — pp(x,y,wz + (1 —w)zz) €intRY.
In addition, because z — f(x,y,2) is R’} -quasiconcave, then z — ps(x,y,2) is also

R” -quasiconcave. According to Definition 2.3, let’s assume
,Uf(iE, y,wz1 + (1 —w)zg) € ,Uf(ZE, Yy, 21) + RT—:—

Then
pop (@, y,w) — pp(w,y,21) = pp(z,y,w) — pp(e,y,wzr + (1 —w)za)+
pr(x,y,wzr + (1 —w)z2) — py(w,y, 21) €intRY + R} CintR? .
It is contradictory to z; € Ho(z,y). Then
pr(x,y,w) — pp(e,y,wz + (1 —w)ze) ¢HntRY, Yw € Z,(Z2).



That is wz; + (1 —w)ze € Ho(x,y). Thus, Hy(z,y) is convex for each (z,y) € X x [[ Us.

el
Step 3. Defining F : X x [[ U; x Zo(2) = Po(X x [[ Ui x Zo(Z)), where
i€l el
F(Ih s Ty, ayn;z) = HHi(fr—i,y—i,Z) X Ho(ilf,y)
el

Obviously, X x H U; x Z(Z) is a nonempty bounded closed convex set. In addition, from
above proof we izne(iuce that F is usc on X x H U; X Z4(2) from the upper semicontinuity of
H; and Hy, F(x1, - ,Tn;Y1, " ,Yn; 2) 18 alrfénempty closed convex set for each (z,y,2) €
X x [T Ui x Zo(2).

’ZIE‘}Ims7 from Lemma 2.4, there exists (z%,--- ,z%;y5, -,y 2%) € X x H U;xZy(2), sat-
isfying (27, -+, @591,y yn;27) € Faf, - aisyl, -, yn27) e (le) € Hi(z" 4y, 2%)
and z* € Ho(z*,y").

On the one hand, from (z},y;) € H;(z*,;,y*,) we deduce for each ¢ € I, it holds

,L"fi((x;‘kax*—i)ay;(vz*) = - min :uft((‘ria‘rii)ﬂyiaz*)'
2, €X4,Y:i €G (s, ;,2%)

Thus Definition 3.1(i) holds.

On the other hand, from z* € Hy(z*, y*), we obtain

pp(x*, y*, 2) — pp(a*, vy, 2*) ¢intRY, Vz € Z,(2).

Then Definition 3.1(ii) holds.

Thus (xf,z*,, 2*) is an N-S equilibrium of game (3.3) by Definition 3.1. Namely, it is
an a-FNS equilibrium of game (3.1) from Definition 3.2.

The proof is completed.

Procedure 3.1 Under all the conditions of Theorem 3.2.

Step 1: Suppose that the leaders have chosen their confidence lever o’ € (0, 1], then the
overall confidence level is a = max of. Thus Zo(2) = {z € R™ | pz,(z;) > o, j = 1,--- ,m}.

Step 2: Calculating the quantities \;, ;, and determining the leaders’ membership
functions of their fuzzy goals.

Step 3: Determining the set X.

Step 4: Substituting the followers’ reaction mapping into the membership functions of
the leaders’ fuzzy goals.

Step 5: Solving equilibrium.

Example 3-1 Considering the following two-leader-two-follower game with fuzzy pa-

rameters and fuzzy goals
(LX,Y.R™, f(z,9,2)),

where I = {1,2} is the set of two leaders; X; = X5 = [0, 1] are the strategy sets of the
two leaders, Y1 = Y3 = [0, 1] are the two followers’ strategy sets. Let X = X3 x X3, @ =
(r1,272) € X and Y = Y! x Y% y = (y',9?) € Y. Z = (Z,%) is fuzzy parameter
vector. f1(z,y,Z2), f2(z,y, Z) are the payoffs of leader 1 and leader 2 respectively, f(z,y,2) =
(fi(,9,2), folr,y, 2)), where

filz,y,2) = x1 + 22+ y1 +y2 + 21 + 322,
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fo(z,y,2) =x1 + 22+ y1 + Y2 + 21 + 2.

Let

0, z1 <1
2’1—1, 1<z <2
Pz (21) = 1, 2<z1 <3

4—2z, 3<z <4

0, 2124

0, 29 <0

29, 0<z<1
Pz, (22) = 1, 1<2o<3

4—22, 3<2z<4

0, 2224

be the membership functions of the two parameters z;, Z respectively. In order to find
an a-FNS equilibrium of game (3.1), we perform Procedure 3.1.

Step 1: Choosing an overall confidence level a € (0, 1] and determining Z,(2) = {z €
R? | pz, (z;) > o, 2, €B, j=1,2}

Suppose that the leaders have chosen the overall confidence level o = % In this case,
2y(20) = (3.3 and 2 (22) = [3, 31 that s Z,(5) = (3.1 x (3,31

Step 2: Determining the leaders’ membership functions of their fuzzy goal. Firstly,
calculating \; and S;.

A1 = min min)fl((xl,xg),y,z) =3, fBi1= n;lln (ag{%?i) fil(z1,22),y,2) = 17,

z1 (22,y,2

A2 =min min fo((z1,22),y,2) =2, P2 =min max fo((x1,2z2),y,2) = 10.
T2 (x1,Y,2) 2 (21,y,2

Then the membership functions of the two leaders’ fuzzy goals are

Oa fl(‘ray7z)<3
Mf1($,y,2) = %, 3 < fl(ac,y7z) <17
1a fl(mayvz)217
O’ f2(1’,y72’)<2
pr (@, y,2) = Q LELA2 09 < £ (2,y,2) < 10

]-7 fQ(xayvz)Zlo

Step 3: Determining the set X.
X={zeX|\N<filr,y,2)<Bi, Vyey, ZEZ%(Z), Viel}.

11



It suffices to solve the system of inequalities

ngl((xlaxQ)vyaz)Sl’?a V(y,Z)EYXZ%(E)
2§f2((zlax2)ayaz) S 107 V(y,z) GYXZ%(’%)
z e [0,1] x [0,1].

We obtain the following system:

T1 + 12 <1,
1+ 220 >0

0<z21<1,0< 2y < 1.

Thus X = {(I17x2) € [07 1] X [Oa 1] | 0 S T+ X2 S 1}

Assuming the followers’ reaction mapping is (y',%?) = G(x1, 22, 21,20) = (2 — L
R R A R T )l

Step 4: Substituting followers’ reaction mappings into the membership functions of the

two leaders’ fuzzy goals, we obtained

Oa fl(x7yaz) <3
/lfl(I,y,Z): %}[’322_2, 3§f1(.’L',y,Z)<17

1’ fl(:r’ayaz) > 17

0, f2($7yaz) <2
,U’fz(xvyvz): %’W, 2§f1<$,y72) < 10

17 fQ(x7yaZ) > 10

Step 5: Solving equilibrium.
Let ((xf,23), (27, z3)) be the equilibrium of such game, then

* * * % * * * * % ] — I e
! 7y2 )7(21722)) _Mfl(($17$2)7(y1 ﬂyQ )7(21722)) = 114 <0,Vz; € Xy,

/~Lf1((x41<7$§>7(y
Ty — X2
8
/’Lfl((x:l’xQ)’ (y1*7y2*)7 (Zlv 32))7 ,Uf2(($(:’1k, C53)7 (91*7?/2*)7 (Zh 22))) - (:uf1((x}1k= C53)7 (91*7?/2*)7

* % * ok * % * % —z]+3(z0—25 — 2t zo—23 .
21 ZZ))aMfz((xlax2)’(ylayQ)’(z17Z2))) :(Zl = 14(Z2 Z2)7Z1 21822 22) ¢1nﬂRa_,V(zl’z2) €

< O,VZ'Q c XQ

,LLfQ((.%T,SL';), (yl*,yZ*)’ (ZT’ZS)) - /sz((mikaxQ)’ (yl*’y2*)’ (zika Z;)) =

). Then
((xTva)v(Zlsz)) = ((0,0), (%v%))v and then yl* = i’ y2* = %
And
e 6 T
O7Oa77777a7 =5= _ min U,O,’U,*7* )
P00 (5D Geg) =5 = om0 (G 5))
13, 77 3 (e
O7Oa s g0 o =7 = _ i Oa ) s\ a2l
P00, (5D Gy = 5= i ((O)va (5 5))

Thus ((0,0), (%, Z)) meets condition (i) of Definition 3.1.
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:uf((oa 0)7 (%7 %)’ (215 22)) - :uf((oa 0)7 (%7 %)’ (2T7 Z;)) ¢intRi'
Thus ((0,0), (%, Z)) meets condition (ii) of Definition 3.1.
Then according to definition 3.1, we deduce that ((z],23), (27, 23)) = ((0,0),(Z, 1)) is

an a-FNS equilibrium of game (3.1).
4 Conclusion

Firstly, an a-FNS equilibrium of multi-leader-follower games with fuzzy goals and pa-
rameters is proposed. Next, the existence theorem of such an equilibrium is established by
Kakutani’s fixed point theorem. Finally, a procedure for the computation of the equilibrium
is given and an example(Example 3-1) is illustrated to show the existence theorem is feasible.
The model is a significant extension under inaccurate information of those classical ones and
more in line with the real life. We further are going to apply such an existence theorem in

practical problems in the future researches.
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