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Abstract

In this paper, we consider multi-objective optimization problems with a sparsity
constraint on the vector of variables. For this class of problems, inspired by the
homonymous necessary optimality condition for sparse single-objective optimiza-
tion, we define the concept of L-stationarity and we analyze its relationships with
other existing conditions and Pareto optimality concepts. We then propose two novel
algorithmic approaches: the first one is an iterative hard thresholding method aiming
to find a single L-stationary solution, while the second one is a two-stage algorithm
designed to construct an approximation of the whole Pareto front. Both methods are
characterized by theoretical properties of convergence to points satisfying necessary
conditions for Pareto optimality. Moreover, we report numerical results establishing
the practical effectiveness of the proposed methodologies.
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1 Introduction

Multi-objective optimization (MOO) is a mathematical tool that has received loads of
attention by the research community for the last 25 years. As a matter of fact, MOO

Communicated by Ana Luisa Custodio.

B Pierluigi Mansueto
pierluigi.mansueto @unifi.it

Matteo Lapucci
matteo.lapucci @unifi.it

University of Florence, Via di Santa Marta, 3, 50139 Florence, Italy

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-024-02397-3&domain=pdf
http://orcid.org/0000-0002-1394-0937

324 Journal of Optimization Theory and Applications (2024) 201:323-351

problems turned out to be relevant in different application fields, where objectives that
are in contrast to each other must be taken into account (see, e.g., [11, 13, 25, 44, 46]).

With respect to single-objective optimization (SOO), the multi-objective case
presents an additional complexity: in general, a solution minimizing all the objec-
tives at once does not exist. This fact requires to introduce optimality conditions based
on Pareto’s theory, together with new, nontrivial, optimization schemes. Among the
latter, scalarization [24, 43] and evolutionary [20, 36] approaches are very popular.
Although these two algorithm classes have some appealing features, they also present
important shortcomings. In particular, the scalarization approaches strongly depend on
the problem domain and structure for the weight choices; moreover, even under strong
regularity assumptions, they may lead to unbounded scalar problems for unfortunate
weight selections [26, section 7]. On the other hand, despite excelling at handling very
difficult tasks, convergence properties are hard to prove for evolutionary approaches
[26].

A different branch of MOO algorithms that is receiving increasing attention is that
of the descent algorithms [15, 22, 26, 27, 34]. These methods basically extend the
classic SOO descent methods. For most of them, theoretical convergence properties
have been proved. The earliest developed algorithms of this class were only able to
produce a single Pareto stationary solution; in order to generate an approximation of
the entire Pareto front, they were run multiple times in a multi-start fashion. More
recently, some of these algorithms have been extended to overcome this limitation.
These new approaches (see, e.g., [16—19, 33]) are capable of dealing with sequences
of sets of points and thus producing a Pareto front approximation in an efficient and
effective manner. Inspired by works for SOO [38, 41], front-oriented descent methods
have also been combined with genetic algorithms for MOO (see, e.g., [35]).

A second topic recently investigated by the optimization community concerns prob-
lems where solutions with few nonzero components are required [47]. Solution sparsity
is often induced by the direct introduction of a cardinality constraint on the variables
vector. However, setting an upper bound for the £y pseudo-norm makes the problem
partly combinatorial and thus A/P-hard [8, 42]. For this reason, many approaches
whose aim is to solve this problem approximately have been proposed. We refer the
reader to [47] for a thorough survey of these methods. However, algorithms deal-
ing exactly with the £p pseudo-norm can be found in the literature. In particular,
the iterative hard thresholding (IHT) algorithm [1], the penalty decomposition (PD)
approach [39] and the sparse neighborhood search (SNS) method [32] are designed to
be employable in the most general cases, even without convexity assumptions. With
these methods, problems are tackled by means of continuous local optimization steps
and convergence to solutions satisfying necessary optimality conditions is guaranteed.

Although the two challenges have been thoroughly investigated separately, the
combination of sparsity and multiple objectives has almost not been explored. The the-
oretical foundation for cardinality-constrained MOO was recently laid in [31], where a
penalty decomposition approach was also proposed for sparse MOO tasks along with
its convergence analysis. Moreover, a theoretical study extending the work from [10] to
the MOO case was presented in [28]. The development of high-performing procedures
to deal with this class of problems is beneficial for many real-world applications. For
instance, there are several reasons in machine learning for inducing sparsity within
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classification/regression models (e.g., interpretability [4], robustness [48], lightness
[12]). In addition, there are approaches in the literature where learning tasks can be
tackled from a Pareto-based, multi-objective perspective: Fitting quality and model
complexity are just two examples of conflicting objectives for which a good trade-off
may be useful [29].

In this paper, we continue the theoretical analysis started in [31], introducing new
optimality conditions for MOO problems with cardinality constraints. In particular,
we define the concept of L-stationarity in MOO, which is directly inspired by the
homonymous condition for sparse SOO tasks [1]. Then, we introduce two new algo-
rithms to solve these problems: The first one consists of an extension of the THT
method to the MOO case and it is designed to retrieve an L-stationary solution; we
call this method multi-objective iterative hard thresholding (MOTIHT) and prove that
it is indeed guaranteed to converge to points satisfying the newly introduced neces-
sary optimality condition; and the second algorithm, on the other hand, is a two-stage
approach whose ultimate goal is to approximate the whole Pareto front. This method,
which we call sparse front steepest descent (SFSD), is also analyzed theoretically and
then shown, numerically, to actually reconstruct well the solution sets.

The remainder of the paper is organized as follows. In Sect.2, we first review
the main MOO concepts along with some notions for cardinality-constrained MOO
problems. In Sect.3, we define L-stationarity for the considered class of problems
and state its theoretical relations with Pareto’s theory and other existing optimality
conditions. In Sect. 4, we provide a description of the MOIHT algorithm, along with its
convergence analysis; moreover, in this section we propose the SFSD methodology.
In Sect.5, we report the results of some computational experiments, showing the
goodness of our novel approaches. Finally, in Sect.6, we provide some concluding
remarks.

2 Preliminaries

In this paper, we consider problems of the following form:
;2}%}1 F)=(fi@), ..., fm )" st lxllg <, ey

where F : R"” — R™ is a continuously differentiable vector-valued function, || - ||o
denotes the ¢y pseudo-norm, i.e., the number of nonzero components of a vector, and
s € Nis such that 1 < s < n. In what follows, we indicate with || - || the Euclidean
norm in R”. We denote by 2 = {x € R" | ||x|o < s} the closed and nonempty set
induced by the upper bound on the £( pseudo-norm.

To deal with the multi-objective setting, we need to define a partial ordering in R™:
given u, v € R™, we say that u < v if and only if, forall j € {1,...,m}, u; < vj;
an analogous definition can be stated for the operators <, >, >. Furthermore, given
the objective function F, we say that x dominates y w.r.t. F if F(x) < F(y) and
F(x) # F(y) and we denote it by F(x) S F(y).
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In multi-objective optimization, a solution which simultaneously minimizes all the
objectives is unlikely to exist. In this case, optimality concepts are based on Pareto’s
theory.

Definition 2.1 A point x € Q2 is Pareto optimal for problem (1) if there does not exist
any y € Q such that F(y) S F(x). If there exists a neighborhood N (%) such that the
property holds in N N(X), then x is locally Pareto optimal.

Pareto optimality is a strong property, and as a consequence, it is often hard to achieve
in practice. Then, a weaker but more affordable condition can be introduced.

Definition 2.2 A point x € Q2 is weakly Pareto optimal for problem (1) if there does
notexistany y € Q such that F(y) < F(x). If there exists a neighborhood N (x) such
that the property holds in @ N A/ (X), then X is locally weakly Pareto optimal.

We refer to the set of Pareto optimal solutions as the Pareto set; the image of the latter
under F is called Pareto front.

Additional notation: Given an index set S C {I,...,n}, the cardinality of § is
indicated with |S|, while we denote by S = {1,...,n}\ S its complementary set;
we call § a singleton if |S| = 1. Letting x € R", we denote by xg the sub-vector
of x induced by S, i.e., the vector composed by the components x;, with i € ;
S1(x) ={i € {1,...,n} | x; # 0} represents the support set of x, that is, the set of the
indices corresponding to the nonzero components of x; So(x) = {1, ..., n}\ S1(x) is
the S7(x) complementary set. Furthermore, according to [2], we say that an index set
J is a super support set for x if S;(x) € J and |J| = s; the set of all super support
sets at x is denoted by 7 (x) and it is a singleton if and only if ||x||o = s. Finally, we
denote by 1y and Oy, with N € N\ {0}, the N-dimensional vectors of all ones and
all zeros, respectively.

2.1 The Proximal Operator in Multi-objective Optimization

A thorough analysis of proximal methods in the multi-objective setting can be found
in the literature (see, e.g., [9, 45]). For the scope of this work, we refer to the discussion
carried out in [45], where the considered MOO problems are of the form

min (/1 () +g1 (), S () + g o' 2)

For all j € {1,...,m}, f; is assumed to be continuously differentiable, whereas g ;
is lower semi-continuous, proper convex but not necessarily smooth.
Let x; € R". A proximal step at xi can be carried out according to xx 1| = xj +xdk,
where f; is a suitable step size and the descent direction dj is obtained solving
i (Vi Tdte ot d) g o) + 212, @)
min  max i) d+gj (o + gj (xx > .

where L > 0. An optimal solution of problem (2) is such that 0, is solution to (3).
Interestingly and similarly to the scalar case, problem (3) can be seen as a general-
ization of well-known schemes to define the search direction:
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— if, forall j € {1,...,m}, g; = 0, then (3) coincides with the problem of finding
the steepest common descent direction [27];

— if, forall j € {1,...,m}, g; is the indicator function of a convex set C, then (3)
becomes equivalent to the projected gradient direction problem [22].

In the next section, we are going to show that the proximal operator can be used to
handle the nonconvex set €2, in line with the work [1] for scalar optimization.

3 Optimality Conditions

Under differentiability assumptions on the objective function F', a Pareto stationarity
condition was proved in [31] to be necessary for (local) weak Pareto optimality. In
what follows, we report slightly different definition and properties, adapted to problem

(.
Definition 3.1 [31, Definition 3.2] A point ¥ € € is Pareto stationary for (1) if

1
6 (¥) = mi V£EE) d+ = |d)* =0, 4
(X) (i max fi® d+ 3 1Id] “)

where D(X) ={veR" | >0: Xk +tveQVre[0,7]1}={veR"| lus@llo <
s — ||x]|o} is the set of feasible directions at x.

We denote by v(x) the set of optimal solutions of problem (4) at x.

Lemma 3.1 [31, Proposition 3.3] Let x € Q2 be locally weakly Pareto optimal for
problem (1). Then, x is Pareto stationary for (1).

The second lemma states that, assuming the convexity of the objective functions, the
stationarity condition is also sufficient for local weak Pareto optimality.

Lemma 3.2 Assume F is component-wise convex. Let X € Q2 a Pareto stationary point
for problem (1). Then, X is locally weakly Pareto optimal for (1).

Proof See Appendix A. O

Moreover, in [31], the Lu—Zhang first-order optimality conditions for scalar
cardinality-constrained problems [39] have been extended to the multi-objective opti-
mization setting.

Definition 3.2 [31, Definition 3.6] A point X €  satisfies the multi-objective Lu—
Zhang first-order optimality conditions (MOLZ conditions) for (1) if there exists a
super support set J € J(x) such that

1
. . T 2
QJ(x)zérel%Rg}szrr]l)e.l’x”mej(x) d+§||d|| =0 s.t dj=0‘j| (5)

Since problem (5) has a strongly convex objective function and a convex feasible set,
it has a unique optimal solution at x that we indicate with d;(x).
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Lemma 3.3 [31, Proposition 3.7] Let X € Q2 be a Pareto stationary point for problem
(1). Then, x satisfies MOLZ conditions.

As pointed out in [31], the converse is not always true; in order to obtain an equivalence
between the two conditions, we need a stronger requirement.

Lemma 3.4 [31, Proposition 3.10] A point x € Q is a Pareto stationary point for
problem (1) if and only if it satisfies MOLZ conditions for all J € J(x).

The Pareto stationarity condition can be interpreted as a direct extension of the basic
feasibility concept in cardinality-constrained SOO [1, 2]. As such, the limitations of
scalar basic feasibility naturally get transferred to the MOO case; in particular, Pareto
stationarity is only a local optimality condition and it does not allow to obtain infor-
mation about the quality of the current support set. The MOLZ conditions emphasize
this issue even more, being generally less restrictive than Pareto stationarity.

With the above consideration in mind, we are motivated to extend the stronger L-
stationarity condition from [1] to the MOO case. In order to do so, we shall reinterpret
L-stationarity in terms of proximal operators. Specifically, we can employ problem
(3) to define L-stationarity for MOO.

Let us consider the problem

- . T L 2
07 (x) = min max Vf;j(x) d+ 2 ai-, (6)
m

deDy(F) j=l,...,
where Dy (x) = {v € R" | x + v € Q} and let us denote by vy, (x) the set of optimal
solutions at x (since €2 is not a convex set, the solution is not necessarily unique). It is

easy to notice that problem (6) is equivalent to (3) where, forall j € {1,...,m}, g;
is the indicator function of the set €2.

Lemma 3.5 Let x € Q. Then, the following conditions hold:

(1) 0p(x) and vy (x) are well defined;
(i) Op(x) <0;
(iii) the mapping x — 0 (x) is continuous.

Proof (i) The proof is trivial since

— the feasible set Dy (x) is closed and nonempty,
mej()Z)Td + %||a’||2 is strongly convex and continuous in

.....

,,,,,

Dy (x), we get the thesis.
(i1i) The proof is identical to the one of Proposition 4 in [22]. The argument is not
spoiled by the set Dy (x) being nonconvex.
O

We are now ready to introduce the definition of L-stationarity in MOO.

Definition 3.3 A point x € Q is L-stationary for problem (1) if 6 (x) = 0.
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Remark 3.1 By simple algebraic manipulations, the problem in (6) can be rewritten
as

T L 2
min max Vf] X' z—x)+—= ||Z — x|~ (7
zeQ j=1,...,

We can now observe that, if m = 1, Definition 3.3 actually coincides with scalar
L-stationarity. Indeed, exploiting (7), 6, (x) is equivalent to

in V@75 + 2z — 5 = min 2z — % + 1Vf('>||2 ! IV £ )12
min — —l|lz — =min —||z — — - — .
g W Tk =g e AT YW 2L *

The minimum in the above problem is attained for z* € Tlg[x — %V f(x)], with
ITg being the (not unique) Euclidean projection onto the nonconvex set 2. We thus
have that 0 (%) = 0if 5z* — %[> + Vf(&) T (z* — ¥) = 0, which is satisfied if
x € [g[x — %Vf(i)], i.e., X is L-stationary according to [1].

In the rest of the section, we analyze the relations between L-stationarity, Pareto
optimality, Pareto stationarity and MOLZ conditions. We begin showing that, for any
L > 0, each L-stationary point is Pareto stationary.

Proposition 3.1 Letx € Q2 be an L-stationary point for problem (1) with L > 0. Then,
X is Pareto stationary for (1).

Proof By contradiction, we assume that x is not Pareto stationary for (1), i.e., there
exists d € D(x) such that

0> _max Vi (x)Td~|— ||d|| > max Vi@ d, ®)
JE

..........

where the second inequality is justified by the nonnegativity of the norm operator.

We now deﬁne the direction d(t) = td. Given the definition of D(x) and the
feasibility of d, we have there exists 7 > 0 such that ¥ + d (t) € QVt €[0,1]. Thus,
by definition of Dy (x), for all ¢ € [0, 1], c?(t) € Dy (x). Let us define the function
0, : R"xR" — Ras O (x,d) = maxji,_n Vfjx)"d+%|d|> By (6), it follows
that 67 (X) = 07 (%, d%), where d& € v (%), and also

0L () <0, (x,d), VYdeDp(%). )

Combining the definitions of c?(t) and éL(x d), we get that §L(x c?(t)) =
tmax;=i,..m ij()c)Td—i-t2 ||d||2 It is easy to see that O (x,d(1)) < Oif

0<t<—-——— max Vfj{X'd, (10)

where the right-hand side is a positive quantity as L > 0 and (8) holds.
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Then, taking into account the feasibility of d(1), (9) and (10), we can define
a direction d(f), with 7 € (0, min{z, —ﬁ max;—i,..m ij(i)Tﬁ}), so that

c?(ﬂ € Dr(x) and 07 (x) < 0y, (x, c?(f)) < 0. We finally get a contradiction since,
by hypothesis, x is an L-stationary point for (1), i.e., 6z (x) = 0. O

The last result also highlights the relation between L-stationarity and MOLZ con-
ditions, which, as stated in Lemma 3.3, are necessary for Pareto stationarity. We
formalize it in the next corollary.

Corollary 3.1 Let x € Q be an L-stationary point for problem (1) with L > 0. Then,
x satisfies the MOLZ conditions.

Given Proposition 3.1 and Lemma 3.2, we can also state that, under convexity

assumptions for F', L-stationarity is a sufficient condition for local weak Pareto opti-
mality.
Corollary 3.2 Assume that F is component-wise convex and let x € 2 be an L-
stationary point for problem (1) with L > 0. Then, X is locally weakly Pareto optimal
for (1).

In order to continue the analysis, we need to introduce a couple of notions. The

first one is an assumption similar to the one used for L-stationarity in [1], while the
second one concerns an adaptation of the descent lemma to MOO.

Assumption1 For all j € {1,...,m}, Vf; is Lipschitz-continuous over R" with
constant L(f;),i.e., [Vfij(x) = Vi < L(f)lx — yll forall x,y € R".

In what follows, we indicate with L(F) € R™ the vector of the Lipschitz constants,
e, L(F) = (L(f1).....L(fu)".
Lemma 3.6 [3, Proposition A.24] Let f}, j =1, ..., m, be a continuously differen-
tiable function satisfying Assumption 1. Then, for all L > L(f;) and any x,d € R",
we have that f;(x +d) < f;(x) + V fj(x)Td + 54|

We are ready to show that, for specific L values, the L-stationarity condition is
necessary for weak Pareto optimality.

Proposition 3.2 Let Assumption 1 hold, x € Q2 be a weakly Pareto optimal point for
problem (1) and L > max—1 ., L(f}). Then, X is L-stationary for (1). Moreover,
we have that vy (x) = {0y}, i.e., the set vy (x) is a singleton.

Proof By contradiction, let us assume that either x is not L-stationary for (1) or
vy, (X)\{0,} # @. Then, there exists a direction d € Dy (x) such that d # 0, and

75, Losno
max Vfj(X) d+ —|d||* <0. (11)
jell,...m} 2

.....

By Lemma 3.6, we have that, forall & € {1, ..., m},

L (fn)

fio(F+4) = fi® + V@ Td+ 11 (12)
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Fig.1 Graphical scheme of the
theoretical relationships among
(local) weak Pareto optimality,
L-stationarity, Pareto
stationarity and MOLZ
conditions. The L-stationarity
properties are displayed with
solid arrows, while the other
ones, stated and proved in [31],
are indicated with dotted arrows

V f; Lipschitz Continuous,

Weak L > maxj—1,....m L(Vf;)

Pareto

Local \...
Weak P.

.....

where the first inequality comes from the definition of maximum operator. Recalling
the hypothesis on L and the nonnegativity of the norm, we combine (12) and the last
result obtaining that

L(fn—-L

L (fp)—maxjeq,..m L (f) TIE
; .

2

fi (¥4+d) = fu®+ 11> < fa)+

Thus, for all h € {l1,...,m} we have f(x + c;') — fa(x) < @(L(fh) —
maxe(1,..m) L(fj)) =< 0, leading to the conclusion that we have found a point
% +d e Q such that F (x + dA) < F(x). This is a contradiction since, by hypoth-
esis, x is weakly Pareto optimal for (1). Thus, we get the thesis. O

All the theoretical relationships stated in this section are shown in a graphical and
compact view in Fig. 1. The analysis on L-stationarity highlights how the choice of
the L value could be crucial: if L is too small, L-stationarity might not be a necessary
optimality condition; on the other hand, if L gets too large, all the Pareto stationary
points also become L-stationary. This behavior can be better noticed with an example.

Example 3.1 Let us consider the following optimization problem:

1 T
min ((x1 —3)2 4+ (02 —2.52 (x1 — D? + (x2 — 0.5)2) s.t. Jlxllg < 1.

xeR2

The Lipschitz constant of the gradient of both objective functions f; is L(f;) = 1.
In Fig.2, the Pareto optimal solutions and the Pareto front are plotted: the problem
has global optimal solutions corresponding to points with x; # 0; the local ones are
characterized by the second component x, # 0. By Lemmas 3.1-3.3, it follows that all
the considered points are Pareto stationary and satisfy the MOLZ conditions. In Fig. 3,
we show which Pareto solutions are L-stationary, considering four different choices
for L. If L is chosen too small (Fig. 3a), some global Pareto solutions do not result to
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. Pareto solutions Pareto front
2.5
O Global
3 Local
2.0 %
2 1.51 %
< “ %
1 101 @
0 0.51 %
0 o
-1 T T T T T T T
-1 0 1 2 3 4 3 4 5 6
X1 fl

Fig.2 Pareto optimal solutions and Pareto front of problem of Example 3.1

be L-stationary. As stated in Proposition 3.2, the L-stationarity condition turns out to
be necessary for Pareto optimality for an L value greater than the Lipschitz constants
(Fig.3b where L = 1.01). On the other hand, a too high value makes the condition
rather weak: in Fig.3c (L = 1.25), even some local Pareto solutions are L-stationary.
The situation is further stressed in Fig. 3d where L = 2 and all Pareto stationary points
are also L-stationary.

4 New Algorithmic Approaches for Sparse MOO Problems

In this section, we propose two procedures to solve cardinality-constrained MOO
problems. The first one can be seen as an extension of the iterative hard thresholding
(IHT) algorithm [1]; the second one is a front approximation approach that takes as
input candidate solutions, possibly associated with different support sets, and then
spans the portions of the Pareto front associated with those supports. We report their
schemes and discuss their properties in separate sections.

4.1 Multi-objective Iterative Hard Thresholding

The first procedure we introduce is the multi-objective iterative hard thresholding
algorithm. In the remainder of the paper, we refer to it as MOIHT. The scheme of the
method is reported in Algorithm 1. At each iteration of MOIHT, the current solution xj
is updated solving problem (13). The execution continues until an L-stationary point
for (1) is found.

Remark 4.1 At each iteration k, the solution x| generated by MOTHT is feasible for
(1). Indeed, the feasibility easily follows by definition of Dy (x).

Remark 4.2 1tis very important to underline that Step 4 is a practical operation that can
be effectively implemented in the general case. Problem (13) can indeed be solved up
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L=0.75 L=1.01
2.5 . 25 .
: @® Global :
. @ Local
2,04 ! . 2.0
: :
154 ° h 15 h
] ' v
104 1.0
05 \ e 05 \ e
(] (]
® ® e
30 35 40 45 50 55 60 65 30 35 40 45 50 55 60 65
f f

L=1.25 L=2.0
2.59 E 25 E
2.01 % 2.0
1.54 * 15
o W
1.04 1.0
:
051 \ T 05 \ Im‘:m:ﬂ:l]:l:lj
o o
® o ® e
30 35 40 45 50 55 60 65 30 35 40 45 50 55 60 65
fi fi

(c) (d)

Fig. 3 L-stationary points in the Pareto front of problem of Example 3.1 (L(F) = [I, I]T) for different
values of L

to global optimality, for example with mixed-integer programming techniques (see,
e.g., [6,7]). Defining a sufficiently large scalar M > 0, the problem can be equivalently
reformulated as

: E 2 T . T
Ir}ilrgt+2||d|| st. Vfix)'d<t Vj=1,...,m, 1,6 <s,

sy

~MS<i+d<Ms, teR deR" §e{0, 1)".

4.1.1 Convergence Analysis
In this section, we analyze the method from a theoretical perspective. Before proving

the main convergence result, we need to state an additional assumption on F and prove
a technical lemma.
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Algorithm 1: Multi-Objective Iterative Hard Thresholding
m} L(fj)-

1 Input: xg € €2, L > max (]
2k=0

3 while xy is not L-stationary for problem (1) do
4 Compute

,,,,,

L
v () = argmin_ max V£ d + < [ld))? (13)
deDL(xk)JE{] ..... m} 2

s | Letdl evp(xp)
6 | xpp1r=x+df
7 | Tletk=k+1

8 return xy

Assumption 2 F has bounded level sets in the multi-objective sense, i.e., the set
Lr(z) ={x € Q| F(x) <z} is bounded for any z € R™.

Lemma 4.1 Let Assumptions 1-2 hold and {x;} be the sequence generated by Algo-
rithm 1 with constant L > maxje(1,...m} L(f}). Then:

,,,,,

(i) forall k, F(xp) — F(xp41) = 3Hlxe — X1 1> (W L — L(F));
(i) forall k, if xx # Xg+1, then F(xp+1) < F(xx);
(iii) forall j € {1, ..., m}, the sequence { f;(xy)} is nonincreasing;
(iv) the sequence {F (xi)} converges;

(V) limg o0 [lXk — X411 1% = 0.

Proof (i) The thesis canbe proved making an argument similar to that of Proposition
3.2 and reminding that x4 = x +dr, with df* € vy (xx) (Step 6 of Algorithm
1).

(ii) Itfollows directly from Point (i), recalling that L > L(f;) forall j € {1, ..., m}
and ||xg — xg+1]l > 0.

(iii) By Point (i) and the hypothesis on L, we have that, forall k and j € {1, ..., m},
fiGiy1) < fj(x). Thus, for all j € {1,...,m}, the sequence {f;(xx)} is
nonincreasing.

(iv) It follows from Assumption 2 and Point (iii).

(v) FromPoint (i), we have that, forallkand j € {1,...,m Xk —Xk+1 1% <

fi(xk) — fj(xk41). Since f; is continuous, we can take the limit for k — oo on

both sides of the inequality: limg_, o L_Lz(f") Xk — Xp+1 ||2 < limy oo f(xx) —

fi (k1) = 0, where the equality comes from Point (iv). By the definition of L
and the nonnegativity of the norm, the statement is proved.

L-L(f))
b=

]

Proposition 4.1 Let Assumptions 1-2 hold and {xy} be the sequence generated by
Algorithm I with constant L > max je(1,....my L(f}). Then, the sequence admits cluster
points, each one being L-stationary for problem (1).
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Proof First, we prove that the sequence admits limit points. By Lemma 4.1, we deduce
that, for all k, F(x;) < F(xxg—1) < --- < F(xp). Moreover, as noted in Remark 4.1,
x; € Q for all k. Thus, we have that x; € Lr(F(xg)) Vk. Since Assumption 2 holds,
we conclude that the sequence {x} is bounded and it thus admits limit points.

Now, we denote as x a limit point, i.e., there exists a subsequence K < {0, 1, ...}
such that

lim x; = x. (14)
k—o00
keK

By Point (v) of Lemma 4.1 and Step 6, we have that limy_, o0 kex ||dkL > = 0, and thus,
dkL — g 0,. Considering this last result and taking the limit for k — o0,k € K in
problem (13), by Point (iii) of Lemma 3.5, Steps 4-5, the continuously differentiability
of F and the continuity of the maximum and norm operators, we get that

i} . . T, Lo
Or(x) = lim 67 (xx) = lim max Vfi(x) di + = dg||I” =0.
kk_e)I%O k—>1<;o je{l,...,m} 2

We conclude that 67 (x) = 0, and then, x is L-stationary for problem (1).
m}

Remark 4.3 By Proposition 4.1 and the continuity of ; (Lemma 3.5) we are guaran-
teed that, for any ¢ > 0, Algorithm 1 will produce a point x; such that 0y, (x;) > —¢
in a finite number of iterations. Thus, we can effectively employ this condition as a
practical stopping criterion for the MOIHT procedure.

4.2 Sparse Front Steepest Descent

In what follows, we describe and analyze the sparse front steepest descent (SFSD)
methodology. The algorithm can be seen as a two phases approach, which is based on
the following consideration: in problems of the form (1), the Pareto front is usually
an irregular set made up of several, distinct smooth parts; each of these nice portions
of the front is typically the image of a set of solutions sharing the same structure,
i.e., associated with the same support set. The rationale of the proposed algorithm is
thus to first define a set of starting solutions; the support sets of these solutions should
ideally be diverse and define a subspace where a portion of the Pareto set lies. Then, an
adaptation of the front steepest algorithm [17, 33] can be run starting from this initial
set of solutions to span the front exhaustively. To the best of our knowledge, SFSD is
the first front-oriented approach for cardinality-constrained MOOQO.

4.2.1 Phase One: Initialization
The first phase of the SFSD procedure deals with the identification of a set of starting

solutions. The most direct way of proceeding would arguably be exhaustive enumer-
ation of the super support sets, selecting for each a solution. However, the number of
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possible supports is high, growing as fast as (’;), but only a small fraction contributes
to the Pareto front. Thus, this strategy is inefficient, up to being totally impractical
with problems of nontrivial size.

A totally random initialization might also appear to be a possible path to take, but,
by similar reasons as above, it would end up being a completely luck-based operation.
Therefore, we suggest to exploit single-point solvers to retrieve Pareto stationary
solutions. Indeed, by the mechanisms of this kind of algorithms, not only the obtained
points are stationary but are usually also good solutions from a global optimization
perspective. We explored the following (not exhaustive) list of options:

— Using the MOTIHT discussed in Sect.4.1 in a multi-start fashion. Since the algo-
rithm finds L-stationary solutions, optimization should be driven avoiding “bad”
supports.

— Using the multi-objective sparse penalty decomposition (MOSPD) method from
[31] in a multi-start fashion; in brief, at each iteration k of MOSPD, a pair
(Xk+1, Yk+1) 1s found such that x4 is (approximately) Pareto stationary for the
penalty function Q4 (x, yk+1) = F(x) + %lmllx - yk+1||2, with 7, — oo for
k — oo. The pair (xx+1, yx+1) is obtained by means of an alternate minimization
scheme. For further details, we refer the reader to [31]. MOSPD is proved to con-
verge to points satisfying the multi-objective Lu—Zhang conditions for problem
(1), that are even weaker than Pareto stationarity; however, penalty decomposition
methods have been shown to retrieve solutions both in the scalar [30] and in the
multi-objective [31] case that are good from a global optimization perspective.

— Combining the strategies of the two preceding points: for each point of a multi-
start random initialization, we can first run the MOSPD procedure to exploit its
exploration capabilities; then, we can use MOIHT in cascade, so that bad Lu—
Zhang points that are not L-stationary can eventually be escaped. We refer to this
approach as MOHyb.

— Solving the scalarized—single-objective—problem for different trade-off param-
eters.

Once the starting set of solutions is obtained by one of the above strategies, a fur-
ther step has to be carried out. Indeed, we need to associate each solution with a super
support set. Now, if a solution has full support, then there is a unique super support
and no ambiguity. However, there might be solutions with incomplete support; these
solutions might be not Pareto stationary (for example, if obtained with MOSPD), in
which case we shall carry out a descent step along the steepest feasible descent direc-
tion; if, on the other hand, we actually have a Pareto stationary point with incomplete
support, we shall associate it with any of the super supports.

Obviously, we can complete this first phase with a filtering operation, where domi-
nated solutions get discarded. To sum up, the result of the first phase of the algorithm
provides a set of starting solutions each one associated with a super support set.

4.2.2 Phase Two: Front steepest descent

In Algorithm 2, we report the scheme of the proposed algorithmic framework (SFSD).
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Algorithm 2: Sparse Front Steepest Descent
1 Input: F: R" - R™, ap > 0,8 € (0, 1),y € (0, 1).
2 X =1nitialize(F)

3k=0
4 while a stopping criterion is not satisfied do
s | Xk =k
6 | forall the (x., Jx.) € X do
7 if (xc, Jy,) € XX then
8 if 6 e (x¢) < 0 then
9 W = max{ood” | F(xe + a8 dy, (xe)) < Flxe) + Inyaoddy,, (o)
10 else
11 Lalg =0
k_ k
12 Ze = Xe +acdy, (xc)
B =2\ [0, 0 e B 1y = 1. FEb s FOJ Uk no)
14 forallthe I C {1,..., m} s.t. 05}( (z’g) <0do
o~ C
15 if (X, Jy,) € XX then
16 al :rhna§{a06h IV (y, Jy) e XK, Jy = Uy, 3j €
14 )
(,..., m} st fj(k +(x05hd§xc @) < f;00)
it d=2 tald) (0
18 XK = XK\ {()’, Iy e Xk | Iy =y, F& 3 F(Y)} U{GE Jxo) }
o | kel Pk
20 ;k =k+1

21 return XK

The method starts working with the starting set of solutions resulting from the
Initialize step, i.e., phase one of the algorithm; the obtained set X is then given
by

XO = {(x, Jx) | Jx € j(-x)}s

i.e., solutions associated with a corresponding super support set. Given any pairs
(x, Jx), (v, Jy) € X0 with J, = Jy, we assume that x and y are mutually nondomi-
nated w.r.t. F.

Basically, the SFSD algorithm employs the instructions of the front steepest descent
algorithm [17], modified as suggested in [33], treating separately points associated with
different super support sets.

Specifically, for any nondominated point x. in the current Pareto front approxi-
mation, a common descent step in the subspace corresponding to the support Jy, is
carried out, doing a standard Armijo-type line search [27]. In other words, the search
direction is thus given by d;, (x.) according to (5). Then, further searches w.r.t. sub-
sets of objectives are carried out from the obtained point, as long as it is not dominated
by any other points y in the set with J, = Jy . These additional explorations are
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carried out along partial descent directions [16, 17] in the reference subspace of the
point at hand. Considering I C {1, ..., m} as a subset of objectives indices, we define
0](¥) = mingepn maxje; Vf;(8)"d + 3|d|* s.t. dj = 0. Similar to (5), the
problem has a unique solution that we denote by d 5 (x).

Since the solutions are compared only if associated with the same super support
set, the subspaces induced by different super support sets are explored separately in
SFSD. As aresult, we basically obtain separate Pareto front approximations, each one
corresponding to a super support set. At the end of the SFSD execution, all the points
can be compared and the dominated ones can finally be filtered out in order to obtain
the final Pareto front approximation for problem (1).

Note that, conceptually, the algorithm can be seen as if multiple, independent runs
of the front steepest descent method were carried out, each time constraining the
optimization process in a particular subspace; however, exploration in SFSD is carried
out “in parallel” throughout different supports, so that the front approximation is
constructed uniformly and we can avoid cases where all the computational budget is
spent for the optimization w.r.t. the first few considered supports.

Remark 4.4 Since each point is considered for search steps only in the subspace
induced by its associated super support set, it easily follows that every new solution
will be feasible for (1).

4.2.3 Algorithm Theoretical Analysis

In this section, we state the convergence property of the SFSD methodology. We refer
the reader to [33] for the proofs of properties inherited by SFSD directly from the
front steepest descent method.

Before proving the convergence result, we need to introduce the set X’} =
{x [3(x,J)e X k} , with J denoting a super support set, and to recall the defini-
tion of linked sequences, firstly introduced in [37].

Definition 4.1 Let {X ’}} be the sequence of sets of nondominated points, associated

with the super support set J, produced by Algorithm 2. We define a linked sequence

J J

as a sequence {x /.k} such that, for all k, the point x i €X ’} is generated at iteration

. . J k—1
k — 1 of Algorithm 2 by the point x; € X~ ".

Jk—1

Remark 4.5 The SFSD methodology also inherits the well-definiteness property from
the front steepest descent method. In particular, the soundness of the line searches
holds by Propositions 3.1, 3.2 and 3.3 stated in [33]. In fact, proofs can be adapted
easily, taking into account that SFSD deals separately with one or multiple sets, each
corresponding to a different super support set J.

Proposition 4.2 Let us assume that X 9 is a set of mutually nondominated points and
there exists x({ € X(} such that the set L (x({) = U;'?:l{x eQ| fix) = f; (x({)} is
compact. Moreover, let {X ]}} be the sequence of sets of nondominated points, asso-

ciated with the super support set J, produced by Algorithm 2, and {lek } be a linked

@ Springer



Journal of Optimization Theory and Applications (2024) 201:323-351 339

sequence. Then, the latter admits accumulation points, each one satisfying the MOLZ
conditions for problem (1).

J
Jk
as a linked sequence generated by applying the front steepest descent algorithm from
[33] to the problem of minimizing F'(x) subject to x ; = 0. Thus, we can follow the

proof of [33, Proposition 3.4] to show that each accumulation point x of the linked

Proof By the instructions of the algorithm, each linked sequence [x ] can be seen

sequence { X ij } is such that 6 (x) = 0, i.e., x satisfies the MOLZ conditions for (1).
O

5 Computational Experiments

In this section, we report the results of some computational experiments aimed at
assessing the numerical potential of the proposed approaches. The code! for the exper-
iments, which was written in Python3, was run on a computer with the following
characteristics: Ubuntu 22.04, Intel Xeon Processor E5-2430 v2 6 cores 2.50 GHz,
16 GB RAM. In order to solve instances of problems like (4)—(5)-(13), the Gurobi
optimizer (version 9.1) was employed.

5.1 Experiments Setup

In our numerical experience, we considered two classes of problems: cardinality-
constrained quadratic problems and sparse logistic regression tasks.

The quadratic MOO problems, which often represent a useful test benchmark in
optimization, have the form

-
mIiRp % (xTle — clTx, x Qax — csz) s.t. lxllo < s,
xeR”

where Q1, Q2 € R"™" are random positive semi-definite matrices and ¢y, ¢c; € R”
are vectors whose values are randomly sampled in the range [—1, 1). In the exper-
iments, we varied the following problem parameters: the size n € {10, 25, 50}; the
condition number of the matrices « € {1, 10, 100}; and the cardinality upper bound
s. In particular, the latter was set in the following way: for n = 10, s € {2, 5, 8};
forn = 25,5 € {5,10,20}; and for n = 50, s € {5, 15, 30}. Moreover, we used
3 different seeds for the pseudorandom number generator, thus leading to a total of
81 quadratic problems. For each instance, Q1 and Q5 are characterized by the same
condition number, i.e., L(f1) = L(f2) = «.

As for the sparse logistic regression problem [5, 14], it is a relevant task in
machine and statistical learning. Given a dataset of N samples with n features
R = (r,...,ry)" € RVN*" and N corresponding labels {t1, ..., fy} belonging

! The implementation code of the methodologies proposed in this paper can be found at https://github.
com/pierlumanzu/cc-moo [40].
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to {—1, 1}, the regularized sparse logistic regression problem is given by:

N
min % Zlog (1 + exp (—t,' (wTri») + % lwl> st Jwlo <s,
i=1

weR"

where A > 0. The logistic loss aims to fit the training data, while the regularization
term helps to avoid overfitting. The two functions are clearly in contrast to each other.
For our experiments, we employed the multi-objective reformulation considered in
[31]:

N T
min (%Zlog(l+exp<—tl-<wTr,->)>, %nwnz) st flwlo < 5.

weR”? £
i=1

For this problem, L(F) = (|RTR|| / N, 1)". The dataset suite we considered is
composed of 7 binary classification datasets from the UCI Machine Learning Repos-
itory [23] (Table 1). We tested the algorithms on instances of the problem with
s € {2,5,8, 12, 20}. For each dataset, the samples with missing values were removed.
Moreover, the categorical variables were one-hot encoded, while the other ones were
standardized to zero mean and unit standard deviation.

In order to evaluate the performance of the algorithms one compared to the others,
we employed the performance profiles [21]. In brief, performance profiles show the
probability that a metric value achieved by a method in a problem is within a factor
T € R of the best value obtained by any of the solvers considered in the comparison.
We refer the reader to [21] for more details. As performance metrics, we used some
classical ones of the multi-objective literature: purity, I'-spread, A-spread [19] and
hyper-volume [49]. Note that, since purity and hyper-volume have increasing values
for better solutions, the performance profiles w.r.t. them were produced based on the
inverse of the obtained values.

Note that, for both classes of problems, in the following we will also consider
solution approaches based on scalarization, i.e., tackling the problem min,cq f1(x)+
Afa(x), where A > 0. In the quadratic case, the problem can be solved by means of
commercial solvers such as Gurobi, exploiting an MIQP reformulation. In the logistic
regression case, we instead use the Greedy Sparse-Simplex (GSS) algorithm [1]. Note
that, opposed to MIQP approach in quadratic problems, GSS is not guaranteed to
produce a Pareto optimal solution.

As anticipated in Sect.4.2.1, our SFSD methodology was tested taking as start-
ing solutions the ones generated by the single-point methods mentioned above, i.e.,
MOIHT, MOSPD, MOHyb, MIQP and GSS. Similarly to what is done in [33], we
employed a strategy to limit the number of points used for partial descent searches, in
order to improve the SFSD efficiency and prevent the production of too many, very
close solutions. In detail, we added a condition based on the crowding distance [20]
to determine whether a point should be considered for further exploration after the
common descent step or not.

Every execution had a time limit of 4 min. In particular, each single-point method
was tested in a multi-start fashion: It had to process as many input points as possible
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Table 1 Datasets used for the

experiments on sparse logistic Dataset N "

regression Heart (Statlog) 270 25
Breast Cancer Wisconsin (prognostic) 194 33
QSAR Biodegradation 1055 41
SPECTF heart 267 44
Spambase 4601 57
Optical recognition of handwritten digits 3823 62
Madelon 2000 500

The number of features takes into account one-hot encoding of cate-
gorical ones

within 2 min; in the remaining time, the MOSD procedure was employed as a refiner,
starting at each returned point and keeping fixed its zero variables so that the cardinality
constraint was kept valid. In SFSD, we set a time limit of 2min for both phases of
the algorithm. For MOTHT, MOSPD and MOHyb, we considered 27 initial solutions
randomly sampled from a box ([—2, 2]" for the quadratic problems; [0, 1]" for logistic
regression). In order to be feasible, each initial point is first projected onto 2. These
algorithms were executed 5 times with different seeds for the pseudorandom number
generator to reduce the sensibility from the random initialization. The five generated
fronts were then compared based on the purity metric and only the best and worst ones
were chosen for the comparisons. The scalarization-based approaches were run once
considering 2n values for A, i.e.,, A € {2i+% |i €Z, i €[—n,n)}, and starting at the
initial solution 0,, € Q.

5.2 Quadratic Problems

In this section, we report the results on the cardinality-constrained quadratic problems.
As for the algorithms parameters, based on some preliminary experiments not reported
here for the sake of brevity, we set: ¢ = 10~7, L = 1.1« for MOTHT; Tk+1 = 1.5,
g0 = 1072, gx41 = 0.9g; and |lxx+1 — yrr1ll < 1073 as stopping condition for
MOSPD; the Pareto stationarity approximation degree ¢ = 10~/ for MOSD; ag = 1,
8§ = 0.5and y = 10~ for all Armijo-type line searches. Possible values for the
MOSPD parameter 7o are discussed in the next section. The parameters choices for
MOIHT and MOSPD were also used in MOHyb.

5.2.1 Preliminary Assessment of MOIHT, MOSPD and MOHyb

We start analyzing the effectiveness of MOTHT, MOSPD and MOHyb, comparing them
in Fig. 4 on a selection of quadratic problems. In order to show the differences among
the algorithms as clearly as possible, only for this experiment, we considered a single
run where the methods took as input the same 25 randomly extracted initial points.
Moreover, we set no time limit, so that all the algorithms could process each initial
solution until the respective stopping criteria were met.
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The MOSPD and MOHyb performance was investigated for values for 7o € {1, 100}.
(Results for 7gp = 100 are shown in the left column of the figure, tg = 1 on the right.)
The black dots indicate the reference front: The latter is obtained combining the fronts
retrieved by running SFSD with all the proposed initialization strategies and discarding
the dominated solutions.

In well-conditioned problems (k = 1), the MOIHT algorithm performs well, reach-
ing solutions that belong to the reference front. As for MOSPD, the results with
79 = 100 are worse, with MOSPD obtaining solutions far from the reference front.
The situation is further stressed as the problem dimension n grows. This sounds rea-
sonable, since setting 7p = 100 in penalty decomposition schemes binds the variables
close to the initial feasible solution and, as a consequence, prevents from exploiting
the exploration capabilities of MOSPD. A better choice for 79 (rp = 1) improves
the performance of the algorithm, although MOIHT still performs better. This result
is somewhat in line with the theory: MOIHT generates L-stationary points, whereas
MOSPD converges to solutions only guaranteed to satisfy the (weaker) MOLZ condi-
tions. In this scenario, MOHyb inherits the effectiveness of MOTHT: Regardless of the
value for 7o, it succeeded in getting solutions of the reference front.

In ill-conditioned problems (x > 1), the MOIHT performance gets worse: the
method struggled in reaching the reference front. This might be explained by the larger
values of L that have to be used with these problems (L = 1.1«). As the value of L
grows, the L-stationarity condition does not provide enough information on the quality
of the solution support set. As a consequence, MOIHT can end up in many L-stationary
points with “bad” support, i.e., far from the actual Pareto front of the problem. MOSPD
with 79 = 1 obtained better solutions in these cases. Employing lower values for
70, the approach is initially allowed to search for a good point minimizing F: This
feature can be crucial to avoid a large portion of “bad” L-stationary points and to
reach solutions in the reference front. MOHyb (79 = 1) proved to be effective in these
scenarios too. The hybrid approach, in these ill-conditioned cases, profited from the
exploration capabilities of MOSPD, reaching the same solutions. However, like in the
well-conditioned case, MOHyb also proved to be less sensitive than MOSPD w.r.t. the
value of 7y, taking advantage of the MOIHT mechanisms to reach at least L-stationary
solutions when 7y = 100.

5.2.2 Evaluation of the SFSD Methodology

We start the analysis of the SFSD algorithm performance on the quadratic prob-
lems through Fig.5, where we show how the front descent phase allows to improve
the results of basic multi-start approaches corresponding to phase one, i.e., MOIHT,
MOSPD, MOHyb and MIQP. According to the results of Sect.5.2.1, for MOSPD and
MOHyb, we set tp = 1.

As anticipated in Sect.4.2, in cardinality-constrained MOQO the Pareto fronts are
typically irregular and made up of several smooth parts. The plots in the figure per-
fectly reflect these characteristics: Each front portion can indeed be associated with a
specific support set. Starting from the solutions generated by the single-point methods,
the SFSD methodology proves to be effective in exhaustively spanning each portion
associated with a support set. This feature allowed our novel front-oriented approach
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Fig. 4 Results achieved by MOIHT, MOSPD and MOHyb with 7y € {1, 100}, starting at 25 random initial
solutions, on a selection of quadratic problems. The filled markers denote L-stationary solutions (L = 1.1«).
The small black dots form the reference front
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Fig. 5 Results of SFSD phase two compared to simple MOSD refinement of solutions retrieved in phase
one. We show one example instance for each considered multi-start/phase one strategy

to identify regions of the Pareto front that would have otherwise be hardly covered
with the multi-start strategy.

As mentioned in Sect.4.2, to the best of our knowledge, SFSD is the first
front-oriented approach for cardinality-constrained MOO. In the absence of other
specialized algorithms, it is difficult to quantitatively assess the potential of our algo-
rithm and we need to resort to the visual inspection of the solutions. In the rest of the
section, we then focus our attention on the different options we outlined for the phase
one of the SFSD algorithm, comparing its performance as the initialization strategy
varies. The comparisons were made by means of the performance profiles (Fig. 6) on
the entire benchmark of quadratic problems.

Looking at the purity and the hyper-volume metrics, SFSD resulted to be more
robust with MOHyD as initialization strategy instead of MOIHT and MOSPD. These
results reflect the behavior of the three single-point algorithms already shown in Fig. 4:
while MOTHT resulted to be more effective on the well-conditioned problems, MOSPD,
with a right choice for the value for 7¢, performed better on the (larger) set of ill-
conditioned problems; MOHyb, inheriting the mechanisms of both, managed to obtain
good results on problems of both types. As for I'-spread, MIQP proves to be more
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Fig.6 Performance profiles for SFSD with different initialization strategies, i.e., MOIHT, MOSPD, MOHyb
(best executions w.r.t. purity) and MIQP on the quadratic problems

capable than the other single-point methods in generating solutions in the extreme
regions of the objectives space, and this fact allowed SFSD to get wider front recon-
structions. The performance of our front-oriented approach with MOHyb, MOTHT and
MOSPD employed in the phase one was quite similar in this scenario. Regarding the A-
spread metric, i.e., uniformity of the Pareto front approximation, all the initialization
strategies led to comparable results.

5.3 Logistic Regression
In this last section, we analyze the performance profiles (Fig. 7) on the logistic regres-

sion problems for SFSD with the different possible choices for the first phase of the
algorithm. The values for the parameters of the algorithms were again chosen based
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on preliminary experiments which are not reported for the sake of brevity. In particu-
lar, we set: L = 1.1 max{L(f1), L(f»)} for MOIHT; ¢ = 10~/ for both MOTHT and
MOSD; 7o = 1, Tjq1 = 1.31, 80 = 107>, 541 = 0.9¢; and ||xp41 — yep1ll < 1073
as stopping condition for MOSPD; g = 1,8 = 0.5 and y = 10~ for all Armijo-type
line searches. Again, the parameters for MOIHT and MOSPD were also employed in
MOHyb. Finally, since the objective functions have different scales, similarly to what
is done in [31], when computing the spread metrics we considered the logarithm (base
10) of the f> values and, then, rescaled both f; and f; to have values in [0, 1].

With respect to the purity and the hyper-volume metrics, SFSD resulted to be more
robust with MOTHT, MOSPD and MOHyb as initialization strategies, with MOHyb
appearing to be slightly superior. As for the I'-spread metric, GSS was the best
algorithm for the SFSD phase one. Although SFSD, equipped with this setting, was
effective in reaching remote regions of the objectives space, it struggled to obtain
uniform Pareto front approximations and, thus, to obtain good A-spread values. As
for this last metric, using as initialization strategy MOIHT proved to be a better choice.

Remark 5.1 In the previous sections, we considered the best executions of SFSD
equipped with MOIHT, MOSPD and MOHyb, and we compared them with the deter-
ministic outputs of our front-oriented algorithm when MIQP/GSS was employed in
the phase one. Thus, for the sake of completeness, in Fig. 8 we report the performance
profiles w.r.t. the purity metric obtained considering the worst runs. Comparing these
performance profiles with the ones in Figs. 6a and 7a, we observe only slight decreases
in the performance of the nondeterministic strategies.

6 Conclusions

In this paper, we considered cardinality-constrained multi-objective optimization prob-
lems. Inspired by the homonymous condition for sparse SOO [1], we defined the
L-stationarity concept for MOO and we analyzed its relationships with the main
Pareto optimality concepts and conditions.

Then, we proposed two novel algorithms for the considered class of problems. The
first one is an extension of the iterative hard thresholding method [1] to the MOO
case, called MOTHT: Like the original approach, it aims to generate an L-stationary
point. The second algorithm called sparse front steepest descent (SFSD) is, to the
best of our knowledge, the first front-oriented approach for cardinality-constrained
MOO. Being an adaptation of the front steepest algorithm [17, 33], SFSD aims to
approximate the (typically irregular and fragmented) Pareto front of the problem at
hand. The method depends on suitable initialization strategies, including, e.g., multi-
starting the MOTIHT or the MOSPD [31] algorithms, an hybridization of the two, or a
scalarization approach. From a theoretical point of view, we proved for MOTHT that
the sequence of points converges to L-stationary solutions; for SFSD, on the other
hand, we stated global convergence to points satisfying the MO Lu—Zhang optimality
conditions.
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Fig.7 Performance profiles for SFSD with different initialization strategies, i.e., MOIHT, MOSPD, MOHyb
(best executions w.r.t. purity) and GSS on 35 logistic regression problems

By a numerical experimentation, we also evaluated the performance of the proposed
methodologies on benchmarks of quadratic and logistic regression problems. The
SFSD methodology is thus shown to be successful at spanning the Pareto front in an
exhaustive way, with the multi-start hybrid MOSPD-MOTIHT procedure being the most
promising solution to be used in the first phase of the algorithm.

As for future works, we might extend the theoretical results to handle constraints
other than the cardinality one. Moreover, further researches might be focused on the
performance evaluation of the algorithms on a more extensive set of problems with
more general and possibly nonconvex objective functions.
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A Proof of Lemma 3.2

Proof Since x is a Pareto stationarity point for problem (1), by Definition 3.1, we have
that 0(x) = 0, i.e.,
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max \i (x)Td+—||d||2 >0, VdeD(). (15)
je

Let us suppose, by contradiction, that there exists a direction d € D(X) such that

“max Vfj(®)'d<0. (16)

jell,...,m}

Since (15) holds, we then deduce that 1[|d[> > |maxje(i, m Vfj@)d | > 0.
Now, let us introduce the function 8 : R" x R"” x [0,1] — R as é(x, d,t) =
maxjeqi,.my Vi) (d) + 3ed|* = tmaxjen . Vfj(x)d + f 1> By
(4) and the feamblhty of d, it follows that, for all t e [0,1], td € D(x)
and 0(¥) < 6O(X, d, t). It is easy to see that 6(x, d, 1) < 0if0 < t <
—(2/||d||2) maxe(1,..mj Vfj @7 d, where the right-hand side is a positive quantity
by Equation (16). But, in this case, we would have that 6 (x) < 0(x, d ,1) < 0, which
contradicts the Pareto stationarity of x. Thus, we prove that, if x is Pareto stationary
for problem (1), then max (1w Vfj(X)'d > 0, Yd € D(¥). From this point
forward, we can follow the proof of Proposition 3.5 in [31]. O
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