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Stochastic maximum principle for generalized mean-field
delay control problem *

Hancheng Guo! Jie Xiong! and Jiayu Zheng!

Abstract. In this paper, we first give the existence and uniqueness theorems
for generalized mean-filed delay stochastic differential equations (GMFDS-
DEs) and mean-field anticipated backward stochastic differential equations
(MFABSDESs). Then we study the stochastic maximum principle for gen-
eralized mean-filed delay control problem. Since the state is distribution-
depending, we define the adjoint equation as a MFABSDE, in which, all the
derivatives of coefficients are in Fréchet sense. We deduce the stochastic
maximum principle, and also obtain, under some additional assumptions, a
sufficient condition for the optimality of the control.
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1 Introduction

In this paper we discuss new types of differential equatios which we call
mean-field anticipated backward stochastic differential equations (MFABS-
DEs):

—dY; = E/ [f(tv YZ? Zz{v thl—f—é(t)’ Z£+C(t),Yt, Zy, Yg&—i—&(t)a Zt+§(t))]dt - thBta
telo,T); (1.1)
}/tzgtazt:nta tG[T,T—FK],

where B is a d-dimensional Brownian motion, K is a constant. Precise
assumptions on the coefficient f and the definition of E' are given in the
following sections.

Actually, the above MFABSDE is inspired by the mean-field BSDEs

T T
n:gT+/ E [f(s,n,zs,ys’,zg)] ds—/ ZdBs, te[0,T] (1.2)
t t
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that is studied by [5] and the anticipated BSDEs

Yi=¢+ j;gT f(Sv Ys, Zs, Y:9+6(5)7 Zs—l—((s))ds - j;gT ZsdBs, te [OvT]a
Y =&, te (I, T+ K]; (1.3)
Zy =y, te (T,T + K].

which is investigated by [17].
We consider the stochastic maximum principle for a generalized mean-
field delay control problem, whose state equation is defined as

{ de = b(t,Xf,Xf_é,PXtv,PXZL&,Ut,Ut_(;)dt 4+ odB;, te€ [O,T],

1.4
Xtvzfta UVt = 1, te [_570]7 ( )

where Py is the law of X, § € [0, 7], o has the same structure as b, and the
cost functional is defined as:

T
Jw)=E {/ h(t, X/, PX;J,’Ut,’Ut_(;)dt + O (X7, PX%)} . (1.5)
0

The agent wishes to minimize his cost functional J(v). Namely, an admis-
sible control u € U is said to be optimal if
J(u) = min J(v).

About stochastic maximum principle (SMP), some pioneering works have
been done by Pontryagin et al. [I8], they obtained the Pontryagin’s max-
imum principle by using “spike variation”. Kushner [11] [12] studied the
SMP in the framework when the diffusion coefficient does not depend on
the control variable, and the cost functional consists of terminal cost only.
Haussmann [10] gave a version of SMP when the diffusion of the state does
not depend on control item. Arkin and Saksonov [I], Bensoussan [2] and
Bismut [3], proved different versions of SMP under various setups.

Pardoux and Peng [I4] introduced non-linear backward stochastic dif-
ferential equations (BSDE) in 1990. They showed that under appropriate
assumptions, BSDE admits an unique adapted solution, and the associated
comparison theorem holds. An SMP was obtained by Peng [I5] in the same
year. In that paper, first and second order variational inequalities are intro-
duced, when the control domain need not to be convex, and the diffusion
coefficient contains the control variable. The authors of [5] obtained mean-
field BSDE in a natural way as the limit of some high dimensional system
of forward and backward stochastic differential equations. Li [13] studied
SMP for mean-filed controls, when the domain of the control is assumed to
be convex. Under some additional assumptions, both necessary and suffi-
cient conditions for the optimality of a control were proved.

Buckdahn et al. [4] considered an SMP for SDEs of mean-field type
control problem when the coefficients depend on the state of the solution
process as well as on its expected value. Moreover, the cost functional is
also of mean-field type. Their system is defined as follows:

{ dXt = b(t, Xt, E[Xt], Ut)dt + O'(t, Xt, E[Xt], Ut)dBt,

Xo = . (1.6)



and the cost/payoff functional is defined by:

T
J(v)=E {/0 h(t, Xy, E[X,], v))dt + (I)(XT,E[XT])} , (1.7)

An SMP is derived, specifying the necessary conditions for the optimality.
This maximum principle differs from the classical one in the sense that here
the first order adjoint equation turns out to be a linear mean-field backward
SDE, while the second order adjoint equation remains the same as in Peng’s
SMP. About stochastic delay control problem, Chen and Wu [8] obtain the
maximum principle for the optimal control of this problem by virtue of the
duality method and the anticipated backward stochastic differential equa-
tions. The Authors of [9] develop this theory into classical mean-field type,
which means the coefficients of the state depend on the expectation.

Buckdahn et al. [6] studied generalized mean-field stochastic differential
equations and the associated partial differential equations (PDEs). “Gen-
eralized” means the coefficients depend on both the state process and its
law. They proved that under appropriate regularity conditions on the coef-
ficients, the SDE has the unique classical solution. In this paper, we study
the optimal control when the state equation is in the controlled generalized
mean-filed form.

2 Preliminaries

In this section, for the convenience of the reader, we state some results
of Buckdahn et al. [6] without proofs, which will be used in present work.

Let (2, F, P) be a probability space with filtration F;. Suppose that By is
a Brownian motion belongs to (€2, F, P), where F is the filtration generated
by By, and augmented by all P-null sets. Let P2(R™) be the collection of all
square integrable probability measures over (R", B(R"™)), endowed with the
2-Wasserstein metric W, which is defined as

WP, P,) = int { (B[ = v/2))}.

for all p/,v" € L*(Fy;RY) with Py = P,, P,, = P,. Now let us introduce
the following spaces:

LP(Q, Fr, P;R"™) = {¢ : R"-valued Fr-measurable r.v.;E[|¢[P] < 400},

LY(Q, F, P;R") = {¢ : R"-valued F-measurable random variables} ,

H%(s,r;R™) = { (p1)s<t<r : R"-valued Fi-adapted stochastic process;

E [/ |g0t|2dt} < —l—oo},



S%(s, r;R") = { (p1)s<t<r : R"-valued Fi-adapted stochastic process;

=g ] < 1)

s<t<r
U = HZ%(0,T;U) denotes the set of admissible controls of the following form:

I € H%(0,T;R"), t € [0,T7,
t= VYt t e [—5, 0],

where, v is square integrable on [—4, 0], U is supposed to be a convex subset
of R¥. Given b : [0,T] x R® x R* x Po(R") x Po(R") x U x U —»
R?, o : [0,T] x R" x R® x Po(R") x Po(R") x U x U — R™¥4 h :
0, 7] x R" x Po(R") x U xU — R, &:R" x Py(R") — R.

About the deriavative with respect to measure, the following definition
is taken from Cardaliaguet [7].

Definition 2.1. A function f : P2(R"™) — R is said to be differentiable in
1 € Po(R™) if, the function f : L2(F;R") —s R given by f(b) = f(P,) is
differentiable (in Fréchet sense) at vy, defined by P,, = p, i.e. there exists
a linear continuous mapping D f(vg) : L?(F;R™) — R, such that

f(vo+m) = f(00) = Df(00)(n) + o(|n]r2),
with |n|2 — 0 for n € L2(F;R™).

According to Riesz’ Representation Theorem, there exists a unique ran-

dom variable 6y € L?(F;R") such that Df(vo)(n) = (09,n)r2 = E[fn)], for
all n € L?(F;R™). In [7] it has been proved that there is a Borel function
ho : R — R% such that 6y = ho(vg), a.s.. Then,

f(Py) = f(Pyoy) = E[ho(00)(v — b0)] + o(|o — bo[2),

v € L2(F;R").

We call 0, f (1, y) := ho(y), y € R", the derivative of f: Py(R") — R"
at p.

For mean-field type SDE and BSDE, we introduce the following nota-
tions. Let (', F', P') be a copy of the probability space (Q, F, P). For each
random variable & over (2, F, P) we denote by ¢ a copy of £ defined over
(Y, F,P). E'[] = [, (-)dP" acts only over the variables from (', 7', P’).

Recall that for 2-Wasserstein metric Wa(+,-), we have,

Wa(P,, P,) = inf{(E[|/ — '|?])?},
for all i/,v' € L*(Fp;R?) with P, = P,, P, = P,.

Definition 2.2. We say that f € C’I} 1(Py(R%)) (continuously differen-
tiable over Py(R%) with Lipschitz-continuous bounded derivative), if for all
v € L?(F,R%), there exists a P,-modification of Ouf(Py,-), again denote by



Ouf(Ps,-), such that 9,f : Po(RY) x R? — R? is bounded and Lipschitz
continuous, i.e., there is some real constant C' such that

i) [0uf (1, )] < C,p € Py(RY), 2 € RY,

it) |0 f (1 2) — Ouf (1, ") < C(Walp, ') + & — &), 1, 1’ € Po(RY),
(2.1)
z, 2’ € R% We consider this function O f as the derivative of f.

Let us now consider a complete probability space (€2, F, P) on which,

we define a d-dimensional Brownian motion B = (B!,--- , BY) = (Bt)iejo,>
and T' > 0 denotes an arbitrarily fixed time horizon. We make the following
assumptions:

There is a sub-o-field Fy C F such that

i) the Brownian motion B is independent of Fy, and

ii) o is “rich enough”, i.e., Po(RY) = {P,,0 € L?(Fo; RY)}.
By F = (-’rt)te[O,T} we denote the filtration generated by B, completed and
augmented by Fy.

Given deterministic Lipschitz functions o : R x Py(R?) — R4 and
b: R x Py(RY) — RY, we consider for the initial state (¢,z) € [0,T] x R?
and & € L?(F;RY) the stochastic differential equations (SDEs)

XU = §—|—/t O'(Xrt,’g,PXﬁ,g)dBr —i—/t O'(an’g,PX;z,g)dT, set,T], (22)
and

XbE = g4 / o( X4 Pyie)dB, + / o( X" Pye)dr, s € [t,T).
t " t "

(2.3)

We find out that under the assumptions above, both SDEs have a unique

solution in S?([t, T]; R?), which is the space of F-adapted continuous pro-
cesses Y = (Y5)er,r) With E[supgep 7 [Y5)?] < oo.

Hypothesis 2.1. The couple of coefficient (o,b) belongs to C’; 1(RY x
Po(RY) — R4 x R?), ie., the components oij.bj, 1 < 4,5 < d, sat-
isfy the following conditions:
i) 0 j(z,-),bj(x,-) belong to C;’l(Pg(Rd)), for all z € R?
i) 0;.(-, 1), bj (-, ) belong to CL(RY), for all p € Po(RY)
111) The derivatives 8xai7j,8xbj : Rd X PQ(Rd) — Rd, 8Mai,j,8ubj : Rd X
P2 (R%) x RY — R? are bounded and Lipschitz continuous.
Hypothesis 2.2. The couple of coefficient (o,b) belongs to C’g 1(RY x
Pa(RY) — R4 x RY), e, (0,b) € Cp' (R x Po(RY) — RIXd x RY)
and the components o; ;,b;, 1 <14, j < d, satisfies the following conditions:
i) 0y, 0ij(+5-), 02,05 (-, -) belong to C’,}’I(Rd X Po(RY)), for all 1 < k < d;
ii) 9,075 (- ), 9ubi(- ) belong to CF'(RT x Py(RY) x RY), for all
p1 € Po(RY)
ili) All the derivatives of ¢; j,b;, up to order 2 are bounded and Lipschitz
continuous.



The following theorem is taken from [6]. It gives the It6’s formula related
to a probability measure.

Theorem 2.1. Let ® € C’g’l(Rd x Po(R%)). Then, under Hypothesis 2.2
forall 0 <t < s <T,xeRYLEe L2(F;RY) the Ito formula is satisfied as
follow:

<1>(X“”P5 Pyre) — ®(x, P)

/ Z%@ X P (X Pye)

+ Z e, @ M’P&PX;,s)(Ungk)(XmPgP ¢)
,jk 1
d
FE [ (0u@)i(X T8, Py, (XE) )b (XES), Pyre)
i=1
d
S 0 ((0u9);(X0 ™, Pyre, (X5 ) (05k07.0) (XEE), Pyre)] ) dr
o

+

l\’)l}—t

Q

/ 3 0, (X0 Pie)oi (X Puie)dBl, s € [ T). (24)
1,7=1

For mean-field type SDE and BSDE, we have still to introduce some
notations. Let (Q/,F’,P’) be a copy of the probability space (2, F, P).
For any random variable & over (Q,F, P), we denote by &’ its copy on (V/,
respectively, Which means that they have the same law as £, but defined
over (', F' P’ . = [o(-)dP" act only over the variables from w'.

About stochastlc delay and anticipated differential equations, we would
like to introduce the following lemmas for the convenience of the readers.
Our Lemma[2Tlis Lemma 3.1 of Peng [16]. Lemma[2.2] which is Theorem 3.1
of Buckdahn [5] , is a fundamental result of mean-filed BSDEs: an existence

and uniqueness theorem. Lemma[2.3]is the comparison theorem for solutions
of mean-filed BSDEs that can be found in Buckdahn [5].

Lemma 2.1. For a fixed ¢ € L?(Z7) and go(-) which is an .#;-adapted pro-

cess satisfying E[( fOT |go()]dt)?] < oo, there exists a unique pair of processes
(y.,2.) € HZ(0,T;R1*) satisfying the following BSDE:

T T
ye=¢§ +/ go(s)ds — / zsdWs, t€[0,T].
t t

If go(*) € Lg2(0,1), then (y.,2.) € 52.(0,T) x H%(0,T;R%). We have the
following basic estimate:

o mm | [T (B 2 2) B(s—t)
|y + E Elysl + |25 ) e ds
t

, ] 2pm [ [T .
<27 [ig2e 7] + 267 [ [ (eeti0as] 29



In particular,

T
lyol* + E UO (glys\z + yzs\2> eﬁsds}
T
<efle] + 3| [ lmle)eras (2.0

where 8 > 0 is an arbitrary constant.

The following is a foundamental result for the existence of a unique
solution to mean-filed BSDEs due to Buckdahn [5].(Theorem 3.1)

Lemma 2.2. Under the assumptions (H1) and (H2) of [I7], and ¢, ( satisfy
(C1) and (C2). Then for any terminal conditions & € S% (T, T + K;R™) and
ne L%;(T, T + K;R™*%), the anticipated BSDE (3] has a unique adapted
solution

Vi, Z;) € 8%(0,T + K;R™) x HZ(0,T + K;R™*4).

Remark 2.1. We emphasize that, due to our notation, the driving coeffi-
cient of ([L.2]) has to be interpreted as followings:

E[f(sYZYZ)]( sYZY()Z(w))]

y L s y L s

i

/ £ .8, Y] (), Z(0), Vo ), Zu(w) P,
The proof of the following comparison theorem for mean filed BSDE can

be found in Buckdahn [5].

Lemma 2.3. Let f,(t,v,2,v',2'),i = 1,2, be two drivers of mean-filed BS-
DEs satisfying the the assumptions (A3) and (A4) of [5]. Moreover, suppose:

(i) Onme of the two coefficients is independent of z’.
(ii) One of the two coefficients is nondecreasing in y'.

Let &1,& € L*(Q, Zr, P) and denote by (Y!, Z1) and (Y2, Z?) the solution
of the mean-field BSDE ([2]) with data (&1, f1) and (&2, f2), respectively.
Then of & > &, P-a.s., and fi < fo, P-a.s., it holds that also Y} < Y2t €
[0,T7], P- a.s.

3 Basic properties of GMFDSDE and MFABSDE

3.1 Existence and uniqueness theorems

Consider equation (I]), where 6(-) and ((-) are two R*-valued continu-
ous functions defined on [0, 7] such that:
(C1) There exists a constant K > 0 such that, for all s € [0, 77,

s+0(s) <TH+K; s+((s) <TH+K,



(C2) There exists a constant L > 0 such that, for all ¢ € [0,7] and for
all nonnegative and integrable g(-),

T T+K
[g@+amng[ g(s)ds:

T T+K
/t g(s +((s))ds < L/t g(s)ds.

The setting of our problem is as follows: to find a pair of .#-adapted pro-
cesses (Y, Z) € S%(0,T + K;R™) x HZ(0, T + K; R™*?) satisfying MFAB-
SDE ().

Assume that for all s € [0,7], f(s,-) : R™ x R™*4 x [2(.%,;R™) x
H?(Fr; R R x R™* A H2 (s R™) x H2(F; R™¥Y) — H2(F5, R™),
where r,7 € [s,T + K|, and f satisfies the following conditions:

(C3) There exists a constant C' > 0, such that for all s € [0, T, y1,y2, ¥}, ¥4 €
R™, 21, 22, 21, 2 € R™*4.0 1,0 5,0 1,60 5 € L% (s, T+K;R™),7.1,7.2,7 1,72 €
L% (s, T + K;R™) 1.7 € [s,T + K], we have

‘f(taylyzlyer,lyfyﬁlyygyziy 7,317'7%,1) - f(t7y2722767“72777,27y57 Zé? 9;’,277;,2)’
<C [|y1 — ol + |21 — 22| + E7* (1001 — Or2| + |7r1 — r2])
+ 1 — yol + |21 — 2| + E7 (|9;,1 — 0ol + 51 — 7%,2|) B

(C4) E[f] 1 £(5,0,0,0,0,0,0,0,0)[?ds] < oo.

the solution to the mean-field anticipated BSDE is .%s-adapted.

The following is the main result of this section: Two existence and
uniqueness theorems for MFABSDEs and GMFDSDE, respectively.

Theorem 3.1. Suppose that f satiesfies (C3) and (C4), and ¢, ¢ satisfy (C1)
and (C2). Then for any given terminal conditions & € S%(T,T + K;R™)
and n. € HZ(T,T + K;R™*4), the mean field anticipated BSDE (II]) has a
unique solution, that is, there exists a unique pair of .#;-adapted processes
(Y,Z) € S5%(0,T+ K;R™) x HZ(0,T + K;R™*) satistying (1))

Proof. We first introduce a norm on the space H}(O,T + K;R™ x R™*d)
which is equivalent to the canonical norm:

T+K .
umwgzmA w2e%ds), B> 0.

The parameter [ will be specified later.

For any (y,z) € H}(O,T;Rm x R™*4)  from Lemma 2.2} there exists a
unique solution (Y, Z) € S%(0,T + K;R™) x HZ(0,T + K;R™*9) to the
following anticipated BSDE:

T
Yi=¢+ / E {f(S, y;7 z;) y;+5(5)7 Z;+<(5)7 Ys, Zs, Y:s+6(s)7 Zs—l—((s)) ds
t



T
—/ Z.dB,, te[0,7]. (3.1)
t

Define a mapping h : H}(O,T%—K;Rm x RMXd) H}(O,T—FK;R’” X
R™*?) such that h[(y., z)] = (Y., Z)). Now we prove that h is a contraction
mapping under the norm || - ||g. For two arbitrary elements (y. 1,2 1) and
(y.2,2.2) in H}(O,T + K;R™ x R™*9) set Y 1,Z1) = hl(y.1,2.1)] and

3]

(Y.2,Z 2) = h[(y.2,2.2)]. Denote their diferences by
(0.2) = (1 =), (21 = 2)), (V. 2) = (V1 = Ya).. (Z1 = Za).).

Then, by appling Ito’s formula to ¢?#|V;|2 and by Fubini Theorem, we get

T T
E |:/ 5€BS|YVS71 — Y;72|2d8:| + E |:/ EBS|ZS71 — ZS,2|2dS
0 0

T
=E / 2658 (}/s,l - }/3,2)E [f <87 yll,sv zi,sv y/175+5(5)7 21754_((5)7 Y1,87 Zl,37 Yi,s+5(s)7
0
Zl,s-‘,—((s) ) - f(37 yé,w Zisa yé73+6(3)7 Zé75+<(3)7 Y2,Sa Z2,57 Y2,s+6(s)7 Z2,s+((s)) ] ds
T
SCE/ 2¢7|Ys 1 — Ys o (|y;71 —Ysol + 1251 — Zool + Vo1 — Yol
0

+1Zs1 = Zs 2l + B Yy g6 — Ysws(syel +E [Zore(s)1 = Zorc(s)2l
+E7 Y o)1 — Yaro(s)2l + E7* | Zotc(o)1 = Zotc(s)2l ) ds

T
< 2CE/ Yy 1 — Yoollys1 — ysolds
0
T
+ QOE/ Y1 — Yiollzsa — 2s2lds
0
T
+ 2CE/O eﬁle&l = YsollYsto(s),1 — Ysta(s),2/ds
. T
+ 2CE/ e |Yor = Yol Zsy — Zsolds + QC]E/ e [Yo1 = Yiof*ds
0 0
T
+ 2CE/ eﬁS]YS,l = Y ollZeqc(s)1 — Zotc(s),2]ds
0
T
+ 2C’E/ Y1 — Yool [Yoto(s)1 — Yoro(s)2lds
0

T
+ 201[*3/0 Va1 = Yeall Zosc(s)1 = Zorc(s) 2lds
=)+ 2)+ @)+ @)+ () +(6)+(7)+(8).

Since

T+K 8C'
(1) < C’E/O efs <%|Ys1 — Yol + F|ys,1 - ys,2|2> ds

/8 T+K 5 8C2 T+K )
= gE/ Y1 — Yiol?ds + TE/ e |ys1 — ys 2|’ ds,
0 0
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T+K 80
(2) < CE/ e’ (%Ws,l — Yool + 7|2s,1 - zs,2|2> ds
0

B T+K 802 T+K
= gE/ 655|Ys,1 - }/;,2|2d8 + TE/ eﬁs|zs71 — zs,2|2ds,
0 0

K Bs /8 2 8C 2
(3) < C']E/ e @W;J — Yool + —1L |ys1 —ys2|” ) ds
0 B

,8 T+K 802L T+K
= gE |V 1 — Yio|?ds + 3 ]E/ P ys1 — ys2|*ds,
0 0

T+K 1
(4) < CIE/ el <4C|Ys,1 —Yiol* + 101 %51 — Zs,2|2> ds
0

T+K 1 T+K
= 4C2E/ eﬁsn/s’l — Y;72|2d8 + ZE/ 668|Zs’1 — Zs72|2d8,
0 0

T+K SC'L
(6) < C]E/ e’ <%|Ys,1 — Yo + 5 |zs,1 — Zs,2|2> ds
0

T+K 8C2L T+K
= gE/ 668|Ys71 — Ys72|2ds + 5 IE/ eﬁs|zs,1 - 2372|2d8,
0 0

T+K T+K
(7) < C’E/ P5|Ye1 — Yiol?ds + C’LIE/ eP5|Yy 1 — Yiol?ds
0 0

THEK
=C(1+ L)E/ |V, 1 — Yiol|?ds,
0

T
B 1
(8) < CE/ 65 <4CL|}/S,1 — YVS72|2 + —4CL|Z8+C(S)’1 — ZS+<(8)72|2> ds
0

, T+K o , 1 T+K 5 ,
< 4C*LE e ‘Yr&l — Y;,g‘ ds + EE e’°L - ’Z&l — ZS72’ ds
0 0

T+K 1 T+K
= 4C2L]E/ Y1 — Yy of*ds + ZE/ | Zs 1 — Zs o|*ds,
0 0

consequently,

5 T+K )
<§ —20—-4C* - C(1+1L) —402L>E [/ eﬂleslzdS}
0

1 T+K R 2 I T+K
+ §E |:/ 668|Zs|2dS:| < %jl)ﬂﬂ |:/ eﬁs (|st|2 + |23|2) dS] )
0 0

We choose 8 = 32C?L + 32C? + 6C + 2CL + 1, such that

T+K . . 1 T+K
E [/ (yYSF - \ZSF) eﬁsds] < -E [/ (19s* + [25]%) eﬁsds} .
0 2 Lo

Thus, h is a contraction, and hence the conclusions of the theorem follows
from Schauder’s fixed point theorem. O
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In addition to the above existence and uniqueness thoerem for (I.TI),
we need to prove the same theorem for the following generalized mean-field
delay stochastic differential equations(GMFDSDE):

dXt =b (ty Xt7 Xt—(Sy PX;:) PX,:,(S) dt +o (t7 Xt7 Xt—67 PXmPXt,(g) dBt7
tel0,T); (3.2)
X; = gt, te [—(5, 0)
which will be applied to the control problem.
Assume that for all ¢ € [-0,T], b : [-6,T] x R™ x R™ x Py(R™) x
Po(R™) — H?(—6,T;R™), satisfies the following conditions:
(C5) There exists a constant C' > 0, such that for all ¢ € [-4,T],
33733/73357333 S ij Nnu(;nu/au/& € PQ(Rm)a we have

|b(t, @, 25, p, ps) — b (2, x5, 1, 1) |
<O (|z — 2| + |os — @] + Walp, 1) + Walus, 15))

o satisfies the same condition as b.
(C6) sup (|b(t,0,0,0,0)| + |o(t,0,0,0,0)|) < oo
t>—6

Theorem 3.2. Suppose that b and o satiesfies (C5) and (C6), then for any
given delay conditions & € H%(—4,0; R™), the MFDSDE (B.2) has a unique
strong solution.

Proof. For any 8 > 0, we introduce a norm in the Banach space H ’%4«(—5, T;R™):

o= (e[ [ e-ﬁﬂusﬁdt]f

Clearly, it is equivalent to the original norm. We use this norm to construct
a contraction mapping that allow us to apply the fixed point Theorem. Set

Xi =&+ fyb (s, Xo, Xos, Px,, Px,_;) ds+ [; 0 (s, Xs, Xs—s5, Px,, Px,_;) dBs,
te0,T7;
Xt = gty te [_670)

Given z € H% (-6, T;R™), we define

Xt = 50 + fg b (Sax87xs—57 szapxs 5) ds + fos g (87'%87"1:8—57 szapxs 5) dB87
t € [0,T];
Xy =&, t € [-0,0).

Then, X € H%(—6,T;R™). Denote X = ®(x.), now we prove that ® is
a contraction mapping under the norm | - [|[3. For two arbitrary elements
x. and 2'. in H;(—é,T'Rm), set z. = ®(z.), 2/. = ®(a’.). Denote their
differences by T =z — 2/, ® = ®(x) — ®(2'), b = b(¢, xt,xt 5,th,th ) —
b(t,x}, x)_ 5o Puys Puy ),5: o(t,x, x5, Py, , Py, ;)—0(t,x}, @) 5> Py Pur )
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By applying Ito’s formula to eﬁt§? , we have
=2 T —2
P, + / e PP, dt
0
T o T o T
=2 / e PUD,, b)dt + 2 / e PU®, 7)dB; + / e Plir(a,, 7 )dt
0 0 0
Take expectation on both sides, then
T _ T o T
ﬂ]E/ e_ﬁt@tdt:%z/ e_ﬁt(®t,b>dt+E/ e Pl (@, 7)dt,
0 0 0
by Cauchy-Schwartz enequality and condition (C5),
T — T . T
BIE/ e P dt < IE/ e—5t<1>tdt+202E/ e~ Pz, |2dt,
0 0 0

we choose 3 =1+ 4C?, such that
T —9 1 T
E/ e P dt < —IE/ e P 2 dt.
0 2 Jo

Consequently, @ is a strict contraction mapping, which complete the proof.
O

3.2 Comparison theorem for MFABSDEs

Notice that the conditions on the driver f which is needed for the com-
parison theorem for mean-field BSDEs and for the anticipated BSDEs are
stronger than those needed for the existence and uniqueness theorem.

Let f, = (t,y,2,y,2'),i = 1,2, be two drivers of mean-field BSDEs, to
derive the comparison principle for mean-field BSDEs, restrictions are forced
on f,;,i=1,2, in [5] as following:

(i) One of the two coefficients is independent of 2/,
(ii) One of the two coefficients is nondecreasing in y'.

On the other hand, two example in [I7] also given to demonstrate the
comparison principle for the anticipated BSDEs (L3)). Let f; = (t,v,2,6,7),i =
1,2, be two drivers of ([L3]), if

(iii) fy is increasing in the anticipated term of Y.
(iv) f5 indipendent of the anticipated term of Z.

then the comparison theorem holds for anticipated BSDEs.

Now we discuss the comparison principle for mean-filed anticipated BS-
DEs ([IT)), it is naturally to combine all the restrictions above both on f
and f . In addition, we force the other two restrictions on f:
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(v) One of the two coefficients (f1 or f2) is independent of the anticipated
term of 2/,

(vi) f2 is non-decreasing in the anticipated term of Y.

Counterexample are given to show that if the driver f of mean-field
anticipated BSDEs depends on the anticipated term of 2’ we can’t get the
comparison theorem.

Example 3.1. For d = 1 we consider the mean-field BSDE(LI]) with time
horizon T' = 1, for all ¢ € [0, T], with driver f(¢,y}, 2}, y£+5(t),z£+<(t),yt, 2t Yeto(t)
Zirew) = —z£+c(t) and two different terminal values &;,& € L(S, Fr, P).

Let us denotes the associated solutions by (Y1, Z!) and (Y2, Z?), respec-
tively. Then,

1 1
Y =¢ +/ E[—Zi, (sds —/ ZidW,, 0<t<1,i=12  (3.3)
t t

Let & = —(B;")3, then by the Clark-Ocone formula we have:

1
B =& = B+ /0 E(DE|7.)dW,

1 2 1
= E(¢ +/ stWs:———/ 3(B;")2dWs.
( ) 0 \/% 0 ( 1)
In addition,
. 1 1
YO = (Bl ) / (E(Ds-i-C(s)f) s+¢(s)<1 +E(D1§)18+C(S)>l) ds — /0 ZsdW
3
\/_

Let now & = 0. Then (Y2, Z?) = (0,0) is also a solution of ([33]). Hence,
we have YO1 > YO2 although & < &.

Without loss of generality, we assume that all the restrictions (i) - (vi)
are satisfied by fo. Let (Y.), Z.(D) (V.), Z.(2)) be respectively solutions
of the following two mean-filed anticipated BSDEs:

Y = B 00 A0V 2 O 2, 28
— " Zs Bs, te0,T);
v =W z0 = 0 te (T, T+ KJ;
N =& [TE e i 28 Y YO Y s = [ 27 d
te[0,7T];
Yt(2) _ 52)7 te (T, T+ K|,
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Theorem 3.3. Assume that f, the above restrictions (i)-(vi), £V, €2 ¢
SL(T,T + K), 0, ( satisfies (C1), (C2), and for all t € [0,T], y € R™, z €
Rm” fa(t,y, 2,y ) is increasing, that is, fa(t,y, 2, 6r,3",67) = fa(t, b2 0r.y,0,),

if 6, > 6, and 6. > 6., 6,,0.,0,,0. € H%(t, T+ K),r € [t, T+ K]. Tt &V >
£2)78 S [T7 T+K] and fl(t7y7 Z707‘7/7?7 yl’z/70;,,7%) > f2(t7y7 Z79T7y,797,")77‘7? S
[t,T 4+ K], then

Yt(l) > Yt(2), a.e.,a.s.
Proof. Set
3 _ 3) ) 3 1) 13) (1) By
Y W T (s, v, 2 Yoise Vs Yikses)lds s— J, 2B,
t € [0,T];
Y(3) (2)’ te(T,T + K].

By Lemma 221 we know that there exists a unique pair of .F;-adapted
processes (Y.3), 2.0)) ¢ S%;(O,T + K,R™) x H}(O,T;R’”Xd) that satisfies
the above BSDE. Since f; > fo, y € R™, 2z € R™*¢ by Lemma 3] we
obtain

YO >v® 4

Set
) _ ) @) 13 1(4) 34(3) OF
Y +ft s, Ys " Zs ’Y;—HS(S) Yot s+6(s d _j;t Zs dBs,
te [O,T];
v =@, te (T, T+ K.
Since forallt € [0,T],y € R™, z € R™*4, f5(t,Y;, Z;, -, Y/, Z3 Y 56 L)

is increasing and Yt(l) > Yt(g), by Lemma 23] we know
}/;(3) > 1/;(4)7 a.s.
For n =5,6,- - -, we consider the following mean-field BSDE:

n n n—1 ,(n ,(n—1
Y = + [T E fols, vV, 27 Ys(-i-é(; vt )’Yslia(s)))]ds
— [T zMaB,, te[0,T);

v\ =, te(T,T+ K.
Similarly, we have Yt(4) > Yt(5) > > Yt(n) > -+, a.s. We use [[v(-)| 3 in the
proof of Theorem B.1]as the norm in the Banach space H}(O, T+ K;R™) x

HZ(0,T;R™4). Set V" = y{™ —y(n=V 200 = 70 _ 70D s g
Then by (2.0]), we have

T B R N
[ (o)
0

2 T n n-
SBE [/0 E/|f2(3,Ys(n)aZ( ™) Ys(+5(1; Y/’(n)’YSIiMS)l))
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— Fols, Y, 2Dy (8 vy O e |

1 2 % > n n
A [ (7R 20 4 PP 4 1250 R) as]
0

2 T . R 2 T ~ ~
2y U (172 + 120 p) eﬁsds] L1007y [/ (179 + 120D eﬁsds} ,
B 0 B 0

Set 3 = 60C?L + 60C? + 3. Then

2 T, . N 1 T, . .
2 M2 1 7002) Bogs| < 1 (=12 4 | 512 s
3@[/0 (172 41202 e ds} 3@[/0 (1792 412 D2) ds]

Hence,

T, N 1 n—4
(n)2 (n))2) .Bs < Z )12 Bs
e[ [ (For v izep) ] < () w] [ (9004 1200) as).

It follows that (Y.("))n>4 and (Z.("))n>4
K;R™) x H}(O,T;Rde). Denote their limits by Y. and Z., respectively.
Since H’%?(O,T + K;R™) and H}(O,T;Rde) are both Banach spaces, we
obtain (Y. x Z.) € H%(0,T + K;R™) x H%(0,T;R™*?). Note that for all
te0,7],

are Cauchy sequences in H ’%7(0, T+

T
E [/t E/| fo(s, Y™, z(™ Ys(fé(g Y/,(n)’ysligz 1) fals, YS,Zs,Y:g_;’_é(S)’Y;,}/SJ’_(S )|2 Bsds}

T
<5C’E [/ (Q\YS(") — Y2+ |2 - 2,2+ Ly Y — v 2 4 Lz — Zﬁ) eﬁsds} -0,
0

when n — oo. Therefore, (Y., Z.) satisfies the following mean-field antici-
pated BSDE:

éT + [ E [ fa(5, Y, Zs, Yars(s), Y YL g0 )lds = [ ZedBy, € (0,T);
_gt , te (T,T + KJ.

By Theorem B we know
Y, =Y?, as.
Since Y;(D > Y;(?’) > }/;(4) > Y}, it holds immediately
Yt(l) > Yt(2)’ a.s.

O

4 Formulation of the generalized mean-filed stochas-
tic delay control problem

In this section, we give the formulation of our generalized mean-field
optimal control problem.
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We consider the generalized mean-field delay type optimal control sys-
tem, with the state equation (I4]) and the cost functional (L3]). From The-
orem B.2] we know equation (4] admits a unique solution. Recall that the
agent wishes to minimize his cost functional, namely, an admissible control
u € U is said to be optimal if

J(u) = min J(v).
() = min J(0)
Throughout this paper, we make the following assumptions on the co-
efficients:

Hypothesis 4.1. (1) The given functions b, o, h, ® are differentiable with
respect to (x, Ts, i, fig, v, Vg).

(2) b, o are Lipschitz continuous w.r.t. (z,zs, u, ps), The derivatives of
b, o are Lipschitz continuous and bounded.

(3) The derivatives of h,® are Lipschitz continuous and bounded by
C(1+ |z| + |zs| + |v] + |vs])-

We will make use of the following notations concerning matrices. We
denote by R™*? the space of real matrices of n x d-type, and by R*™ the
linear space of the vectors of matrices M = (My,--- , My), with M; € R"*"
1 < i < d. Given any a,8 € R*, L,S € R4 ~ € R? and M,N €
R7*", we introduce the following notation: af = > 1" a;f; € R, o x
B = (if)i<ijen; LS = Y4 L;S; € R, where L = (Ly,---,Lg),S =
(S1,-+,8q); ML =" M;L; € R*; May = 0 (Mija)y; € R"; MN =
Z?Zl M;N; € R™™; For simplicity, we use the following notations

O = (X{', Xi' 5 Pxp, Pxp ,ue, up—s)

O = (X)), (X{5)"s Pxp, Pxp s (ur)'s (u—s)").

Let us suppose that « is an optimal control and X" the associated opti-
mal trajectory. Then we introduce the convex perturbed control as follows:

ul = up + 0(v — uy),

where 6 > 0 is sufficiently small, and v, is an arbitrary element of U, X? is
the state under the control u’. The convexity of U guarantee that uf € U,
and obviously,

0< J(u?) — J(u).

Lemma 4.1. Under the Hypothesis 1] we have,

lim B[ sup |X? — X!?] = 0.
6—0 0<t<T

Proof. Note that, for 7 € [0, 7]

E | sup |Xf — X}
0<t<r
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T 2
< CE/ b(t, XZ, X2 5, Pxa, Pxo 6,uf,uf_5) —b(s,0,)| ds
0 5=
! 0 1o 0.0 2
—i—CE/ o(t,Xg, X 5 Pxo, Pxo 6,ut,ut_5) —0(s,0)| ds
0 5=
T ) T
< CE/ sup |X? — X4| dr + 92CE/ [vs — us|* ds. (4.1)
0 0<s<r 0
From Gronwall’s inequality we have the desired result. O

Next, we study the variational process of our state.

Lemma 4.2. Let K; be the solution of the following linear equation:

dK; Z{bx(t, 1)Ky + E' [b(t, 0, (X{) ) (Kp)'| + by (8, 01) Ky —s
+E [bua (t7 O, (Xf—é),)(Kt—cS),] + bv(ta @t)(vt - Ut)

+ bv(; (t, @t)(vt_(; — Ut_(;)}dt

+ {Ux(t, O Ky + E [o,(t, O, (X)) )KL | + 02y, 0) Ki—s
+E [0, (8, O, (X 5) ) (Ki—5)'] + 0 (t, ©1) (v — )
T 0 (1,0 (v ut_5>}dBt, te[0.T],

Ko =0, v¢ = uy, t € [-6,0].

Then we have
X0 - Xy K,

lim E | sup
6—0 0<s<t

for all ¢t € [0, 7).

Proof. From Theorem B2 we know equation (#2]) admits a unique solution
K;. We set

X{— Xy
n = % — K, telo,T].
Then we have
1 t
n = 5/0 [b(t,ngng—éaPXg,PXg)i&,u?,u?_(;) — b(37®8):| ds

1 t
5 / |o(t, X0, X0, Pg. Pyo it uf_s) = o(s,6,)| dB,
0 s—
t
—/ {bx(S, O K+ E [bu(s, O, (XI))EKS)'] + bay(s,05)Ke_s
0
_HE/ [bﬂs (87 @Sv (X;L—(S)/)(Ks—é)/] + bU(S, @s)(vs — us)

+bus (5, 05) (Vs—5 — Us—5) }ds
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+{ax(8, Q) K, +E [0,(s, 05, (X)) (Ks)'| + 00,(s,05) Ko—s
+E [Jua (s, Os, (XS“_(;)/)(KS_(;)’] + ou(s,05)(vs — us)

+0us (37 @s)(vs—é - us—5)}st-

(4.3)
Since for any f € C%1(Py(R%))
1 g
F(P) = 5(B) = [ 255 (Puaian)ia
1
N /0 B [£u(Puo+xns Hto + An) - n]dA, (4.4)

we notice that
6 6 .6
9/ b(t, Xy, X 6’PX§7PX;9767usvus—6)
6
—b(s,X;L,XS_(;,PXg,PXe Jul b 5)|ds

t pl
— //bm(s,X;‘+)\0(ns+Ks),Xf_5,PX§,PX9J,ug,ug_é)
0 JO 5
(ns + Ks)d\ds,

u 6 0
9/ b(t, X, X s5— 6’PX§7PX;9767usvus—6)

—=b(s, X, X5, Pxo, Pxo culul g | ds

= / / :E(;SXU Xu6+)‘9(775 s+ K 5) PX97PX9 7u27u§—6)
(1s + Ks)dAds,

1 t
5/0 [b(thsuv 5— 67PX97PX‘9 7“??“2 6)

—b(s, X', X{' 5, Pxu, PXe o ug,us 5)](13

t rl
_ / 0 0
= /0 /0 E b S X XS 67PXu+)\6(7]5+K.5) Pxﬂ J,US,US kY

(X" 4+ M0(ns + Ky))') (s + Ks)’] dAds,

1 t
5 | [ X P Py i)

—b(s, X¥, X2 5, Pxu, Pxu__,u,ul_ 5)]613

/ / E/ /,1,5 S X Xs 57PXu PXU +)\6(775 6+K.s 5)
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0 0 u / !
Ug, Ug—g, (Xs—(S + M (ns—s + Ks—5)) )(773 + K)'|d)ds,

1 i 0 6
5/ t Xsuv s5— 67PX“ PX“ 7us7us—6)

—b(S X Xs 57PX;‘7PX:757u87u2—5):|d8

= //b (s, X¢, X§ 5, Pxu, Pxu us—l—)\H(vs—us),uz_(;)
(vs — ug)dNds,

1 t
_/ [b(thgv s— 67PX“ PX“ , Us, U g 5)
0 Jo -8
—b(s, XY, X 5, Pxu, Pxs. us,us_g)]ds
= / / bus (5, X', X5, Pxu, Pxu. ,us,ug_5+/\9(vs_5—u5_5))

(Vs—s — us_g)dAds.

Similarly result can be obtained for o. On the other hand, we have
0/ (8, X5, Xos Pxo, Py | yuf, ul_s)
_bqu il (57PXU PXgéug’us 5)]d8
~ [ # s 02y s
0
t 1 0 .0
= /0 /0 E’ [b,u(S,X;L,X;L—(Sa PX;L"')‘Q("S"‘KS)’PXiJ’us’us—éy
(X2 + 2000, + K,))') (1) | drds
/ / E/{ 3 X Xs 5’PX“+>\9(775+K3) PX9 6,ug,ug 5»

(X5 4 200 + K.))) = (5,04, (X27)] (5. fans,

Set
/ / E,{ S, Xu X;L—évPX;‘+>\9(775+Ks)7PX§767ug?“ﬁ—&?
(X2 2001+ K.)Y) — by (5,04, (X2) | (Ks)’}d/\ds.
Then, from LemmaldT] Lipschitz continuity and the definition of 2-Wasserstein

metric, we have

limE| su Ie =0.
0—0 [0<55T| |]
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Therefore, we have

E[ sup ]775\2]
0<s<t
< CE S X +)‘9(778+K) XSG—67PX§7PX0767U27U§—6)

(773) d)\ds
t pl

+CE/ / biy (5, X3, Xig + M (ns—s + Ks—5), Pxo, Pyo_ ,uz,ug 5)
0 Jo

2
(ns)| dAds

+CE/Ot/OlE,[b (5, X¢, XY 5, Pxusno(m,+K,)» Pyo 6,u§,u§ 5 (4.5)
(XY + \0(ns + K, ))’)(ns)’] dAds

+CE/ / E’ bus (5, X2 X2 g, Pxu, Pu xa(n, 54K, o)s

g, (X + M + Koog)) ) )| A

+%AA

2
(ns)| dAds

t 1
vee [ f
0o Jo

2
(ns)| dAds

t prl
+CE/0 /0 E/|:O'u S X Xs 5’PXu+)\9(?73+KS) PX0 7u§7u§ N

ou(s, X3+ A0(1s + K;), XI5, Pxo, Pxo ,ul,ul_s)

O-wa S, X Xs 6+)‘9(778 s+ Ko 6) PX97PX9 Ug,ug_a)

(X4 200, + 5)) ) (n.)' | dds
—l—CE/ / E’ Jua S Xgan_(S,PX;%aPX;‘76+)\0(77$,5+K5,5)7

2
W5 (X 5+ A1 + Ks 5)))(775)/] dAds
+CE[ sup |5;]’] (4.6)
0<s<t

where

/ / (s, X%+ N(ns + Ky), Xf_g,PXg,Pngéyugaug_a)

L(t @t)}( K,)d\ds

+/ / [b% 5 X8 XU 5+ M (s + Komg), Pxo, Pyo ulull_y)
0 0
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by, (t, @t)} (Ks)d\ds
/ / E/{ (5 X3 X5, Pxu om0y Pyo s udsuls,

(X8 + 3000+ K)Y) = byt 00, (62 () Jaras

/ / E/{ s 3 , X X5 Pxy,s PX:,5+)‘9(77376+K576)’

us7 ug & (Xs ) + )‘9(775 s+ Ks 5)) ) bMé (t7 ®t7 (Xg—é)/)] (KS),}d)‘dS
/ / (s, X¢' X§ s, Pxu, Pxu us + A0 (vs — us),u’_5)

(vs — us)dAds

/ / vs (s, X', X PX%"PX;Z(WUS?U?—J + A0 (vs—5 — us—s))
(vs—s — us_g)dAds

" / / 05, X2+ M0, + K. Xy Pyo. Peo uluy)
0o Jo =

ot @t)] (K,)d\ds
t 1

+/ / [% 5 XU XU 5+ M0(10-5 + Ka), Pxa, Poulul_s)
0 JO

—oa,(t, @t)] (Ky)d\ds
/ / { S X¢, Xo 67PX“+>\9(775+K5) PX9 é’ug’ug 5

(X5 4 280+ K.)Y) = (8,60, (X)) () f s

/ / E/{ Uué s, X Xs 67PX§L7PX;‘,5+>\9(77575+K375)’

ul ul s (XY 54+ N(ne_s + Ko 5))') — ous(t, @t,(Xz‘_(;)')} (KS)'}d)\ds

/ / ou(s, X', X s, Pxu, Pxu__,us + A(vs —ug),u’_y)
(vs — ug)dAds
/ / ovs (8, X¢, Xi s, Pxu, Pxu us,ug_5 + M (vs—s — us—s))

(vs—s — us_g)dAds
(4.7)

Proceeding as in the estimate of If , we can prove that

hmE[ sup |BY) ]=o.
=0 o<s<T
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Since the derivatives of b, o are bounded, we deduce that

t
E[ sup |773|2] < C’IE/ |ns|2ds+C’E[ sup |5f|2].
0<s<t 0 0<s<t

Finally, by Gronwall’s inequality, we complete the proof. O

Lemma 4.3. Let u be an optimal control and X;* be the corresponding
optimal trajectory. Then, for any control v € U, we get

0 < E{®.(X7, Pxp)(Kr) + E'[®4(X7, Pxy, (X7)) (K1)}
T
+E/ {hx(tu Xtua PX;‘7 U, Ut_5)(Kt) + E, [hu (tu Xtu7 PXZ‘; Uty Ut—§,
0
(X%)/) (Kt)/] + hv(t7 Xﬁ) PXg‘auty ut—5)(vt - ut)

+hU6 (t, Xtu, PXZA s Uty ut_(;)(vt_(; — Ut_(;) }dt (48)

Proof. Since w is an optimal control, we deduce

0 < J(uf) — J(uy)
= E[®(X], Pyg) — ®(XF, Pxy)]

T
+E/ [h(t, X7, Pyo,uf uf_s) — h(t, X{, Pxp,uf,uf_s)|dt
0

T
—l—E/ [h(t X ,PX ut,ut 5) — h(t,Xtu,PXZt,ut,ut_(s)]dt
0
= I1 + 1+ I3. (49)

no= B[ [ e0a o+ 5, P0G + K|
1
+{ [ /[0, (X2, Pgosatnricoy O+ 3000 + K)Y)
0(nr + KT),} CD\},
T 1
I, = E [/ / ha(t, Xi + A0 + Ky), Pyo,uf, uf_s)0 (g + Kt)d)\dt]

+E{/ / E/ t Xt s Pxu i zom+K0)» uf,uy_s,

(X + X0+ m))')em K| arat

I; = [/ / tXt,PXu ug + N0 (vy )uf_5>

Q(Ut — ut)d)\dt]
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-I-E[/OT /01 hos (8, X{, Pxa g, ty—s + A0 (vi—5 — wy—g))
O(vi_5 — ut_(;)d)\dt} . (4.10)
From (4.9)), we get
0 < ELAH%Q$+AwmeﬁmPWxK&m4
1
+E{AIW@M@gJ%HWWHﬁﬁu%+me+KﬂQ
(kY ]an
445[jf j/ (t, X" +»A90h—%lg)<PX91%,ut(Q(BQ)dAd@
+E{/ / E, t Xt s P 04K U U7
(X +20(m + m))') (50| dAdt}

+E[/ / t , Xi' Pxpyue + A0 (v — ug), U?-a)

@—Wmm4

T r1
+E |:/ / hv5 (t, XZL, PXZA,Ut, Up—§ + )\H(Ut_(; — ut_(;))
0 0

(’Ut_(s — ut_(;)d)\dt}
+pf. (4.11)
where
1
) = E [/ O, (Xf + M (nr + Kr), PXG)(UT)d)‘]
0
1
‘HE{ /0 E/ XT7 PXu+>\9(7]T+KT) (X% + )\9(7]T + KT))/>
nTy]dA},
T 1
+E [/f ha(t, X} +»A9(nt-%.BQ),J{Xf,uf,u?_5)(nty1Adt}
0 0

T 1
E{/O /0 E [hu(t7XzL’PX#+>\9(77t+Kt)7u?an_5,

(X2 4 280 + KDY ) ()] arat

_|_
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Since the derivatives of ®, h are bounded and

limE| su 21 =0.
6—0 [OSSET’TIS‘]

llIIl pt — 0.

From the fact u¢ — u; and Lipschitz continuity of ®,h we obtain the
result.
O

5 Necessary and sufficient conditions for the opti-
mal control

It is well known that there is a duality relationship between the stochas-

tic delay differential equations and the backward anticipated stochastic dif-

ferential equations. In this section, we introduce the adjoint process with

the help of mean-filed backward anticipated stochastic differential equation,

then the variational inequality can be deduced.
Let us consider the following adjoint equation:

—dpy :{b;(t’ ®t)pt + U;(t, @t)% + hm(ta Xtua PX,’tuyut, ut—é)
+ B[, 0, X1) () + 0t O}, X7 (ar)
+ hu(t, (X7, Pxw, (ug) (ut—cs)',Xf)]

+ E” [b;s (t, @t)|t+6pt+6} +E” [0;5 (t, @t)|t+6qt+6] (5.1)

BB 1,000 X0 ()|
+E7 [‘725 (t, ©4, Xf)\t+6(Qt+5)/H }dt — qdBy,

pr =0, (X}, Pxp) + E'[@,((X), (Pxp)'s X)),
Dt :O,QtZO, tG(T7T+5]7

where b* denotes the transpose of b; by, (t,0;)|+s denotes the value of
by, (t,©¢) when ¢ replaced by t+0, other involved terms are defined similarly.

From Theorem Bl (5I) admits a unique adapted solution. Then, we
get the main result of this paper which is stochastic maximum principle for
generalized mean-field delay control problem.

Theorem 5.1. (Necessary Conditions for the Optimal Control). Let u be
an optimal control, and X/ denote the associated optimal trajectory. Let
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(p,q) be the unique solution of equation (G.I]). Then the following integral
stochastic maximum principle holds: for all v € U,

(Hy(t, O, 1, q1), v — ug) + <E]:t [Hyy (t, O, qt)|146) v —ue) >0, (5.2)

where,

H(tv @7p7 q) = b*(t7$7$(57/~%#671}7v5)p + J*(t,:n,:z:(;,u,u(;,v,v(g)q
+h(t7x7uvv7v5)

Proof. By applying Itd’s formula to (p;, K¢), notice that

T
E/ {K:—ab;; (t,00)ps — KB [b3 (¢, 00)]145D14] }dt

T+6

0
T
_ E{ / K7 b7, (1, ©0)pudt — Kf_5b;6(t,®t)ptdt}
0

T+6

5
= E{/ K[ 5b3,(t, O)pedt — Kik—ab;g(ta@t)ptdt}
0 T
0,

and similarly results can be obtained for other terms, then we get

T
E/ { (Hy(t,©4,0t,qt), ve — ug) + (Hys (8, O, D1, 1), Vs — Up—5) }dt
0

= E(®.(X}, Pxyp) +E [0, (X!, (Pxp), X)), K1)

T
‘HE/ <hx(t,XZL,PXZJ,Ut,Ut_5),Kt> dt
0
T
+E / (B [, (XY, Pco, (ue)' (us—g), X)), K dit
0
T
+E/ <hv(t7 (XEL)/, PXEL’X;L7 (ut)/7 (ut—ﬁ)/)y Ut — ut> dt
0

T
+E/ <hv(5 (t7 (X#)lv PX;‘7XZLv (ut),7 (ut—é)/)v Vt—5 — ut—(5> dt
0
> 0. (5.3)

Set

vs, SE[tt+e),
Vg = .
ug, otherwise,

where t € [0,7], v € U. Then (53] leads to

1

t+e
EE/ <Hv(3763,ps,qs),’05 _Us> ds
t

1 t+e+0
+EE/ (Hys (5,05, ps,qs), Vs—5 — us—g) ds > 0. (5.4)
t+6
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That means

1 t+e
EE/ <HU(S7 ®s7p87 qs) + E]:S [HU(S (87 ®s7p87 QS)|S+5] 7’US - Us> dS
t
> 0 (5.5)

Letting € — 0+, by Lebesgue differential theorem, we have
E (Hy(t, O, pr, at) + B [Hy, (8,0, pr, @) |14s] s ve — we) >0 ace..

Now, let v € U be a selected element and A an arbitrary element of
o-algebra F;, set wy = vl + usl gc. Clearly, wy is an admissible control and
for all A € F;, we obtain

E (H,(t,0¢,pt, q) + E7* [Hy, (t, O, 1, q1)|e6) s we — ug )

- E [<Hv(t7 Gtuptu qt) + E]:t [Hv5 (t7 ®t7pt7 qt)’t—l-(ﬂ , U — ’Z,Lt> 1A:|
> 0 a.e.,

which implies

E [<H’U(t7 @t7pt7 Qt) + E]:t [HU5 (t7 Gtapta Qt)‘t+5] , U — ut> ’E]
= (Hy(t,04,pt,q0) + BT [Hyg(t, O, pr, @t legs] v —ug) >0 ace..

Then we study the sufficient conditions.

Theorem 5.2. (Sufficient Conditions for the Optimality of Control). Let
Hypothesis [£1] hold and let u is the control satisfies (5.2]) and (p, ¢) be the
unique solution of (51I). We further assume ®(x, ), H(t, x, x5, 1, f1s5, Pty Gt, U, Vs)
are convex respect to (z, ) and (x, s, i, s, v,vs5). Then u is the optimal
control of our control problem.

Proof. For any v € U, we have

J(v) = J(u)
= E[0(X}, Pxy) — ®(X{, Pxy))]

T
—|—E/ [h(t, Xz), PXZ) , Uty 'Ut_(g) - h(t, Xtu, PX#,Ut, Ut_(;)] dt. (56)
0

Since ® is convex with respect to x. we get

(X7, Pxy) — (X7, Pxx)
> (X7, Pxp)(Xp — X7)
+E' [, (X7, Pxu, (X3)) (X7 — X3)']. (5.7)

Consequently

J(v) = J(u)



27
= E{0u (X7, Pxy)(Xp — X7)
+E' [q>m(X%7 PX%) (X%)/)(X% - X%),] }

T
—|—E/ [h(t, Xz), PXZ) , Uty 'Ut_(g) - h(t, Xtu, PX#,Ut, Ut_(;)] dt. (58)
0

By applying It6’s formula to (p;, X} — X}*) and taking the expectation,
we obtain

J(v) — J(u) (5.9)

T
E/ [H(t,XZ), z)—éyPXfaPXZL&yUtyvt—(%ptv qt) o H(tv @t7pt7qt)] dt
0

Y

T
_E/ { <Hx(t7®t7pt7qt)7Xz)_Xtu>
0
B [(Hy(t, 01, (X2 prvars ), (X7 — X)) }dt
T
_E/o { (Bt [Hog(t, O, 01, at)lers]  X{ — X1
+E [(E7 [Hyug (¢, Or, (X1 s 9 a1 ers] » (XF — X)) }dt (5.10)

Since H is convex with respect to (z, x5, i, pis, v, v5) The use of Clark gen-
eralized gradient of H, evaluated at (X3, X}’ 5, Pxu, Pxu ,ug, up—g), yields

H(t, Xy, Xy 5, Pxy, Pxy v, ve-6,0,qt) — H(t, O, pt, qt)
(Hy(t, O, pry qr), Xy — Xi')

+E [(Hpu(t, 0, (X1 0oy 4t ), (X7 — X1)')]

+ (Hay (t, 00,06, q1), Xi-5 — Xis)

HE [(Hys (8,00, (X2 01y ar), (X — Xits)))

+ (Hy(t, 04,1, 1), v¢ — ug) + (Hys (t, O, pry @), Vs — Ui—s) -

v

Thus, by maximum condition (5.2]), we have
J(v) = J(u)
T
2 ]E/ <Hv(t7@t7pt7qt)7vt _ut> dt
0
T
+E/ <H’U5 (tu @t7pt7 qt); Vi—§ — ut—5> dt
0
> 0. (5.11)

The above equality complete the proof.
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