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Abstract

We extend the classical primal-dual interior point method from the Euclidean setting to the

Riemannian one. Our method, named the Riemannian interior point method, is for solving Rie-

mannian constrained optimization problems. We establish its local superlinear and quadratic

convergence under the standard assumptions. Moreover, we show its global convergence when

it is combined with a classical line search. Our method is a generalization of the classical frame-

work of primal-dual interior point methods for nonlinear nonconvex programming. Numerical

experiments show the stability and efficiency of our method.
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Keywords: Riemannian manifolds, Riemannian optimization, Nonlinear optimization and
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1 Introduction

In this paper, we consider the following Riemannian Constrained Optimization Problem (RCOP):

min
xPM

fpxq
s.t. hpxq “ 0, and gpxq ď 0,

(RCOP)

whereM is a connected, complete d-dimensional Riemannian manifold and f : M Ñ R, h : M Ñ R
l,

and g : M Ñ R
m are smooth functions. This problem appears in many applications, for instance,

matrix approximation with nonnegative constraints on a fixed-rank manifold [31] and orthogonal
nonnegative matrix factorization on the Stiefel manifold [19]; for more, see [23, 27].

The body of knowledge on (RCOP) without h, g, often called simply Riemannian optimization,
has grown considerably in the last 20 years. The well-known methods in the Euclidean setting,
such as steepest descent, Newton, and trust region, have been extended to the Riemannian setting
[1, 16, 5]. By contrast, research on (RCOP) is still in its infancy. The earliest studies go back
to ones on the optimality conditions. Yang et al. [36] extended the Karush Kuhn Tucker (KKT)
conditions to (RCOP). Bergmann and Herzog [2] considered more Constraint Qualifications (CQs)
on manifolds. Yamakawa and Sato [34] proposed sequential optimality conditions in the Riemannian
case. Liu and Boumal [23] were the first to develop practical algorithms. They extended the
augmented Lagrangian method and exact penalty method to (RCOP). Schiela and Ortiz [30] and
Obara et al. [27] proposed the Riemannian sequential quadratic programming method. However,
to our knowledge, interior point methods have yet to be considered for (RCOP).

The advent of interior point methods in the 1980s greatly advanced the field of optimization
[33, 37]. By the early 1990s, the success of these methods in linear and quadratic programming
ignited interest in using them on nonlinear nonconvex cases [11, 35]. From the 1990s to the first
decade of the 21st century, a large number of interior point methods for nonlinear programming
emerged. They proved to be as successful as the linear ones. A subclass known as primal-dual
interior point methods is the most efficient and practical. As described in [24], the primal-dual

∗An earlier version of this article has been circulated under the title “Superlinear and Quadratic Convergence of
Riemannian Interior Point Methods.”
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approach to linear programming was introduced in [25]: it was first developed as an algorithm in
[20] and eventually became standard for the nonlinear case as well [11, 35].

Contribution. In this paper, we extend the primal-dual interior point algorithms from the
Euclidean setting, i.e., M “ R

d in (RCOP), to the Riemannian setting. We call this extension the
Riemannian Interior Point Method (RIPM). Our contributions are summarized as follows:

1. To our knowledge, this is the first study to apply the primal-dual interior point method to
the nonconvex constrained optimization problem on Riemannian manifolds. One significant
contribution is that we establish many essential foundational concepts for the general interior
point method in the Riemannian context, such as the KKT vector field and its covariant
derivative. In addition, we build the first framework for the Riemannian version of the interior
point method. These contributions will have uses in the future, especially in developing more
advanced interior point methods.

2. We give a detailed theoretical analysis to ensure local and global convergence of RIPM. Consid-
ering that many practical problems involve minimizing a nonconvex function on Riemannian
manifolds, the theoretical counterparts of our method are the early interior point methods for
nonlinear nonconvex programming first proposed by El-Bakry et al. [11].

3. Our numerical experiments1 demonstrate the great potential of RIPM. The method meets the
challenges presented in these experiments with better stability and higher accuracy compared
with the current Riemannian exact penalty, augmented Lagrangian, and sequential quadratic
programming methods.

Organization. The rest of this paper is organized as follows. In Section 2, we review the
notation of Riemannian geometry and explain the Riemannian Newton method. In Section 3, we give
a full interpretation of our RIPM and describe a prototype algorithm of RIPM. We also investigate
the use of Krylov subspace methods to efficiently solve a condensed form of a perturbed Newton
equation. This is particularly important for the numerical implementation of RIPM. Section 4 gives
the necessary preliminaries and auxiliary results needed to prove convergence in our subsequent
sections. In Section 5, we give the proof of local superlinear and quadratic convergence of the
prototype algorithm of RIPM. Section 6 describes a globally convergent version of RIPM with a
classical line search; then, Section 7 proves its global convergence. Section 8 is a collection of
numerical experiments. Section 9 summarizes our research and presents future work.

2 Notation

2.1 Riemannian Geometry

Let us briefly review some concepts from Riemannian geometry, following the notation of [5]. M

denotes a finite-dimensional smooth manifold. Let p P M and TpM be the tangent space at p with
0p being its zero element. We use a canonical identification TpE – E for a vector space E and p P E .
A vector field is a map V : M Ñ TM with V ppq P TpM, where TM :“ Ť

pPM TpM is the tangent
bundle. XpMq denotes the set of all smooth vector fields defined on M. Furthermore, M is a
Riemannian manifold if it is equipped with a Riemannian metric, that is, a choice of inner product
x¨, ¨yp : TpMˆTpM Ñ R for each tangent space at p on M such that for all V,W P XpMq, the map

p ÞÑ xV ppq,W ppqyp (1)

is a smooth function from M to R. Riemannian metric induces the norm }ξ}p :“
a

xξ, ξyp for
ξ P TpM. We often omit the subscript p if it is clear from the context. Throughout this paper, we
assume that all the manifolds involved are connected and complete. Given a curve segment on M,

c : ra, bs Ñ M, the length of c is defined as Lpcq :“
şb
a

} 9cptq}cptqdt, where 9cptq P TcptqM is the velocity
vector of c at t. Since M is connected, there exists a curve segment connecting any pair of points
p, q P M. Indeed, M is a metric space under the Riemannian distance dpp, qq :“ infc Lpcq where the
infimum is taken over all curve segments joining p to q [22, Thm. 2.55]. For two manifolds M1,M2

and a smooth map F : M1 Ñ M2, the differential of F at p P M1 is a linear operator denoted
as DF ppq : TpM1 Ñ TF ppqM2. Let FpMq be the set of all smooth scalar fields (or say real-valued

1The code is freely available at https://doi.org/10.5281/zenodo.10612799
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functions) f : M Ñ R. The Riemannian gradient of f at p, grad fppq, is defined as the unique element
of TpM that satisfies xξ, gradfppqyp “ Dfppqrξs for all ξ P TpM, where Dfppq : TpM Ñ TfppqR – R.
Note that for any f P FpMq, the gradient vector field x ÞÑ grad fpxq is a smooth vector field on
M, i.e., grad f P XpMq. A retraction R: TM Ñ M is a smooth map such that Rp p0pq “ p and
DRp p0pq “ idTpM, i.e., the identity map on TpM, where Rp is the restriction of R to TpM and
DRp p0pq : T0ppTpMq – TpM Ñ TpM is the differential of Rp at 0p. One theoretically perfect type
of retraction is the exponential map, denoted as Exp. Since M is complete, the exponential map
is well-defined on the whole tangent bundle. Let Expp : TpM Ñ M be the exponential map at p;
then t ÞÑ Exppptξq is the unique geodesic that passes through p with velocity ξ P TpM when t “ 0.

2.2 Riemannian Newton Method

The Newton method is a powerful tool for finding the zeros of nonlinear functions in the Euclidean
setting. The generalized Newton method has been studied in the Riemannian setting; it aims to
find a singularity for the vector field F P XpMq, i.e., a point p P M such that,

F ppq “ 0p P TpM. (2)

Let ∇ be the Levi-Civita connection on M, i.e., the unique symmetric connection compatible with
the Riemannian metric. The covariant derivative ∇F assigns each point p P M a linear operator
∇F ppq : TpM Ñ TpM. In particular, the Riemannian Hessian of f P FpMq at p is a self-adjoint
operator on TpM, defined as Hess fppq :“ ∇pgrad fqppq. The Riemannian Newton method for solving
(2) is performed as Algorithm 1.

Algorithm 1: Riemannian Newton Method for (2)

Input: A vector field F P XpMq, an initial point p0 P M and a retraction R on M.
Output: Sequence tpku Ă M such that tpku Ñ p˚ and F pp˚q “ 0p˚ .
Set k Ñ 0;
while Stopping criterion not satisfied do

1. Obtain ξk P Tpk
M by solving the Newton equation (a linear operator equation on

tangent space Tpk
M):

∇F ppkqrξks “ ´F ppkq; (3)

2. Compute the next point as pk`1 :“ Rpk
pξkq;

3. k Ñ k ` 1;

end

3 Description of Riemannian Interior Point Methods

In this section, we will give a comprehensive interpretation of the Riemannian interior point method.
Following common usage in the interior-point literature, big letters denote the associated diagonal
matrix, e.g., Z “ diagpz1, . . . , zmq with z P R

m. e denotes the all-ones vector, and 0 stands for zero
vector/matrix with proper dimensions.

3.1 KKT Vector Field and Its Covariant Derivative

The Lagrangian function of (RCOP) is

Lpx, y, zq :“ fpxq `
lÿ

i“1

yihipxq `
mÿ

i“1

zigipxq,

where y P R
l and z P R

m are Lagrange multipliers corresponding to the equality and inequality
constraints, respectively. With respect to the variable x, Lp¨, y, zq is a real-valued function defined
on M, and its Riemannian gradient is

gradx Lpx, y, zq “ gradfpxq `
lÿ

i“1

yi gradhipxq `
mÿ

i“1

zi grad gipxq,

3



where tgradhipxquli“1 and tgrad gipxqumi“1 are the gradients of the component functions of h and g.
The Riemannian KKT conditions (e.g., see [23, Definition 2.3] or [36]) for (RCOP) are given by

gradx Lpx, y, zq “ 0x; hpxq “ 0, gpxq ď 0, z ě 0; Zgpxq “ 0. (4)

The above conditions can be written in terms of slack variables Rm Q s :“ ´gpxq, as

F pwq :“

¨
˚̊
˝

gradx Lpx, y, zq
hpxq
gpxq ` s

ZSe

˛
‹‹‚“ 0w “

¨
˚̊
˝

0x
0
0
0

˛
‹‹‚P TwN , (5)

and pz, sq ě 0, where w :“ px, y, z, sq P N :“ MˆR
l ˆR

m ˆR
m. Here, we have generated a vector

field F in (5) on the product manifold N , i.e., for any w P N , F pwq P TwN – TxMˆR
l ˆR

m ˆR
m.

We will call F : N Ñ TN in (5) above the KKT vector field for (RCOP). Note that for ξ “
pξx, ξy , ξz, ξsq P TwN ,

R̄wpξq :“ pRxpξxq, y ` ξy, z ` ξz , s ` ξsq (6)

is a well-defined retraction on the product manifold N as long as R is a retraction on M.
Now, we aim to find a singularity of the KKT vector field F on N under some nonnegative

constraints pz, sq ě 0. If the Riemannian Newton method is to be applied to (5), we must formulate
the covariant derivative of F at an arbitrary w P N . Before that, we need some new symbols. Fixing
a point x P M, we can define two linear operators Hx : R

l Ñ TxM and Gx : R
m Ñ TxM by

Hxrvs :“
lÿ

i“1

vi gradhipxq, Gxrus :“
mÿ

i“1

ui grad gipxq, (7)

respectively. Then, for Hx, its adjoint operator H
˚
x : TxM Ñ R

l is given by

H˚
xrξs “ pxgradh1pxq, ξyx , ¨ ¨ ¨ , xgradhlpxq, ξyxqT .

Also, G˚
x : TxM Ñ R

m with G˚
x rξs “ pxgrad g1pxq, ξyx , ¨ ¨ ¨ , xgrad gmpxq, ξyxqT .

Now, using the solutions of Exercises 5.4 and 5.13 on covariant derivatives of vector fields on
product manifolds in monograph [5], the following results can be easily derived. Given KKT vector
field F in (5) and w P N , the covariant derivative of F at w is the operator ∇F pwq : TwN Ñ TwN

given by

∇F pwqr∆ws “

¨
˚̊
˝

Hessx Lpwqr∆xs ` Hxr∆ys ` Gxr∆zs
H˚

xr∆xs
G˚
x r∆xs ` ∆s

Z∆s ` S∆z

˛
‹‹‚, (8)

where ∆w “ p∆x,∆y,∆z,∆sq P TwN and Hessx Lpwq is the Riemannian Hessian of real-valued
function Lp¨, y, zq. Indeed, Hessx Lpwq : TxM Ñ TxM satisfies

Hessx Lpwq “ Hess fpxq `
lÿ

i“1

yiHesshipxq `
mÿ

i“1

ziHess gipxq, (9)

where tHesshipxquli“1 and tHess gipxqumi“1 are Hessians of the component functions of h and g.

3.2 Implication of Standard Assumptions

Next, we will discuss an important result about the covariant derivative of the KKT vector field given
in (8). Let Apxq :“ ti | gipxq “ 0u denote the active set at x P M. A prior study on Riemannian
optimality conditions [36, 2] showed that the following assumptions are meaningful. We call them
the standard Riemannian assumptions for (RCOP). Note that the x˚ and w˚ in (A2)-(A4) all refer
to those in (A1).

(A1) Existence. There exists w˚ “ px˚, y˚, z˚, s˚q satisfying the Riemannian KKT conditions (4).
Here, we introduce the slack variables s˚ :“ ´gpx˚q.

(A2) Linear Independence Constraint Qualification (LICQ).

The set tgradhipx˚quli“1

Ť tgrad gipx˚quiPApx˚q is linearly independent in Tx˚M.

4



(A3) Strict complementarity. pz˚qi ą 0 if gipx˚q “ 0 for all i “ 1, ¨ ¨ ¨ ,m.

(A4) Second-order sufficiency. xHessx Lpw˚qrξs, ξy ą 0 for all nonzero ξ P Tx˚M

satisfying xξ, gradhipx˚qy “ 0 for i “ 1, . . . , l, and xξ, grad gipx˚qy “ 0 for i P Apx˚q.

Recall the Riemannian Newton method discussed in Section 2.2. It can be shown that if p˚ is
a solution of equation (2) and the covariant derivative ∇F pp˚q is nonsingular, then Algorithm 1
has the local superlinear convergence [12] and local quadratic convergence [13] under certain mild
conditions on the map p ÞÑ ∇F ppq. Note that the requirement of nonsingularity for the covariant
derivative at the solution point is of primary importance. Therefore, the next theorem motivates us
to use the Riemannian Newton method to solve (5).

Theorem 3.1. If the standard Riemannian assumptions (A1)-(A4) hold at some point w˚, then
the operator ∇F pw˚q in (8) is nonsingular.

Proof. This proof omits all the asterisks of the variables. Define E :“ t1, . . . , lu and I :“ t1, . . . ,mu.
Take some w “ px, y, z, sq P N satisfying (A1)-(A4), then we have si “ ´gipxq and zisi “ 0
for all i P I. For short, let A :“ Apxq Ă I. Suppose that ∇F pwqr∆ws “ 0 for some ∆w “
p∆x,∆y,∆z,∆sq P TwN – TxM ˆ R

l ˆ R
m ˆ R

m. ∆yi denotes the components of the vector ∆y,
as do ∆zi, ∆si. To prove its nonsingularity, we will show that ∆w “ 0. Expanding the equation
∇F pwqr∆ws “ 0 gives

$
’’’’’&
’’’’’%

0 “ Hessx Lpwqr∆xs `
ÿ

iPE

∆yi gradhipxq `
ÿ

iPI

∆zi grad gipxq,

0 “ xgradhipxq,∆xy , for all i P E,

0 “ xgrad gipxq,∆xy ` ∆si, for all i P I,

0 “ zi∆si ` si∆zi, for all i P I.

(10)

Strict complementarity (A3) and the last equalities above imply that ∆si “ 0 for all i P A and
∆zi “ 0 for i P IzA. Substituting those values into the system (10) reduces it to

$
’’’&
’’’%

0 “ Hessx Lpwqr∆xs `
ÿ

iPE

∆yi gradhipxq `
ÿ

iPA

∆zi grad gipxq,

0 “ xgradhipxq,∆xy , for all i P E,

0 “ xgrad gipxq,∆xy , for all i P A,

(11)

and ∆si “ ´ xgrad gipxq,∆xy for all i P IzA. It follows from system (11) that

0 “ xHessx Lpwqr∆xs `
ÿ

iPE

∆yi gradhipxq `
ÿ

iPA

∆zi grad gipxq,∆xy

“ xHessx Lpwqr∆xs,∆xy `
ÿ

iPE

∆yi xgradhipxq,∆xy `
ÿ

iPA

∆zi xgrad gipxq,∆xy

“ xHessx Lpwqr∆xs,∆xy .

Thus, from second-order sufficiency (A4), ∆x must be zero elements. And then ∆si “ 0 for all i P
IzA. Next, substituting ∆x “ 0 into the first equation in (11) yields 0 “ ř

iPE ∆yi gradhipxq `ř
iPA ∆zi grad gipxq. The LICQ (A2) implies that the coefficients ∆yi for i P E and ∆zi for i P A

must be zero. This completes the proof.

3.3 Prototype Algorithm of RIPM

Applying the Riemannian Newton method directly to the KKT vector field F : N Ñ TN results in
the following Newton equation (see (3) without iteration count k) at each iteration:

∇F pwqr∆ws ` F pwq “ 0. (12)

As with the usual interior point method in the Euclidean setting, once the iterates reach the bound-
ary of the feasible region, they are forced to stick to it [33, P6]. For the iterates to maintain a
sufficient distance from the boundary, we introduce a perturbed complementary equation with some
barrier parameter µ ą 0 and define the perturbed KKT vector field :

Fµpwq :“ F pwq ´ µê, and ê :“ êpwq :“ p0x, 0, 0, eq . (13)

5



Notice that the perturbation term ê, indeed, is a special vector field on N , not a constant, because
0x is essentially dependent on w and/or x. In fact, the covariant derivative of the perturbed KKT
vector field is the same as that of the original. From the linearity of the connection ∇, for any
w P N and any µ ą 0, we have

∇Fµpwq “ ∇F pwq ´ µ∇êpwq “ ∇F pwq, (14)

where the last equity comes from ∇êpwqr∆ws “ p0x, 0, 0, 0q for all ∆w P TwN . Applying the
Riemannian Newton method to perturbed KKT vector field Fµpwq yields the perturbed Newton
equation: ∇Fµpwqr∆ws ` Fµpwq “ 0. From (13) and (14), this equation is equivalent to

∇F pwqr∆ws ` F pwq “ µê, (15)

which reduces to the ordinary Newton equation (12) as µ Ñ 0. At this point, we can describe a
prototype of the Riemannian Interior Point Method (RIPM) in Algorithm 2.

Algorithm 2: Prototype Algorithm of RIPM for (RCOP)

Input: An initial point w0 “ px0, y0, z0, s0q P N with pz0, s0q ą 0 and a retraction R on M.
γ̂ P p0, 1q, µ0 ą 0.

Output: Sequence twku Ă N such that twku Ñ w˚ and w˚ satisfies the KKT conditions
(4).

Set k Ñ 0;
while Stopping criterion not satisfied do

1. Obtain ∆wk “ p∆xk,∆yk,∆zk,∆skq P Twk
N by solving the perturbed Newton

equation on Twk
N :

∇F pwkqr∆wks “ ´F pwkq ` µkê; (16)

2. Choose γk P rγ̂, 1s and compute the step size αk defined by

min

"
1, γk min

i

"
´ pskqi

p∆skqi
| p∆skqi ă 0

*
, γk min

i

"
´ pzkqi

p∆zkqi
| p∆zkqi ă 0

**
; (17)

3. Compute the next point as wk`1 :“ R̄wk
pαk∆wkq, see (6);

4. Choose 0 ă µk`1 ă µk;
5. k Ñ k ` 1;

end

In the step 2 of Algorithm 2, we just wish to compute a step size 0 ă αk ď 1 to ensure new
point wk`1 with pzk`1, sk`1q ą 0. There are many schemes to achieve this purpose. The scheme in
(17) is simple but sufficient to guarantee the local convergence, as will be proved in Section 5.

3.4 Solving Perturbed Newton Equation Efficiently

The challenge of Algorithm 2 is how to solve the Newton equation (16) in an efficient manner.
In this subsection, we will do this in two steps: the first step will be to turn the original full
Newton equation, which is asymmetric and consists of four variables, into a condensed form, which
is symmetric and consists of only two variables. In the second step, an iterative method, namely,
the Krylov subspace method, is used to solve the operator equations directly, avoiding the expensive
computational effort of converting them into the usual matrix equations.

3.4.1 Condensed Form of Perturbed Newton Equation

Let us consider Algorithm 2 and omit the iteration count k. Given the current point w P N with
pz, sq ą 0, for the KKT vector field F pwq in (5), we denote its components by Fx, Fy, Fz, Fs in top-
to-bottom order, namely, Fx :“ gradx Lpwq, Fy :“ hpxq, Fz :“ gpxq ` s, Fs :“ ZSe. By using these
symbols and the formulation of ∇F pwq in (8), the full (perturbed) Newton equation (16) defined
on TwN – TxM ˆ R

l ˆ R
m ˆ R

m is expanded as:
¨
˚̊
˝

Hessx Lpwqr∆xs ` Hxr∆ys ` Gxr∆zs
H˚

xr∆xs
G˚
x r∆xs ` ∆s

Z∆s ` S∆z

˛
‹‹‚“

¨
˚̊
˝

´Fx

´Fy

´Fz

´Fs ` µe

˛
‹‹‚. (18)

6



Not only does this equation contain four variables, but there is no symmetry on the left side of
the equation, so it would be unwise to solve it just like that. By pz, sq ą 0 and the fourth line of
(18), we deduce ∆s “ Z´1 pµe ´ Fs ´ S∆zq . Substituting this ∆s into the third line of (18), we get
G˚
x r∆xs´Z´1S∆z “ ´Z´1µe´gpxq and thus ∆z “ S´1 rZ pG˚

x r∆xs ` Fzq ` µe ´ Fss. Substituting
this ∆z further into the first line of (18) and combining it with the second line of (18) yields the
following condensed Newton equation, which is defined on TxM ˆ R

l:

T p∆x,∆yq :“
ˆ

Awr∆xs ` Hxr∆ys
H˚

xr∆xs

˙
“
ˆ

c

q

˙
. (19)

where
Aw :“ Hessx Lpwq ` GxS

´1ZG˚
x ,

c :“ ´Fx ´ GxS
´1 pZFz ` µe ´ Fsq , q :“ ´Fy.

(20)

Here, c and q are constant vectors. If we defined Θ :“ GxS
´1ZG˚

x , then Aw “ Hessx Lpwq `Θ. Note
that both Θ and Hessx Lpwq are operators from and to TxM.

From the discussion above, for any w P N with pz, sq ą 0, the operator ∇F pwq in (8) is
nonsingular if and only if the newly defined operator T in (19) is nonsingular. Eventually, it is
sufficient for us to solve the equation (19) containing only two variables ∆x and ∆y. In fact, when
we consider the case of only inequality constraints in (RCOP), then ∆y vanishes, and only a linear
equation

Awr∆xs “ c (21)

on TxM needs to be solved. More importantly, the operator T in the left side of (19) is symmetric,
or say self-adjoint (although often indefinite). It is trivial to check that operators Θ and Aw are
self-adjoint on TxM; and thus T is self-adjoint on the product vector space TxM ˆ R

l equipped
with inner product xpξx, ξyq, pηx, ηyqy :“ xξx, ηxyx `ξTy ηy. We can also see that (19) is a saddle point
problem defined on Hilbert spaces form its special structure.

3.4.2 Krylov Subspace Methods on Tangent Space

Next, how to solve (19) efficiently becomes critical. For simplicity, we consider the case of only
inequality constraints in (RCOP), then we will solve operator equation (21) with a self-adjoint oper-
ator Aw : TxM Ñ TxM. Let d :“ dimTxM. Unfortunately, in most cases of practical applications,
the Riemannian situation leaves us with no explicit matrix form available for Aw. This means that
we can only access A (subscript w omitted) by inputting a vector v to return Av.

A general approach is first to find the matrix representation Â for A under some basis of TxM.
In detail, the full process of this approach is as follows:

(Step 1) Obtain d random independent vectors on TxM.

(Step 2) Obtain an orthonormal basis tuiudi“1 of TxM by the modified Gram-Schmidt algorithm.

(Step 3) Compute rÂsij :“ xAuj , uiyx for 1 ď i ď j ď d due to symmetry, then we obtain the

matrix representation Â P R
dˆd.

(Step 4) Compute rĉsi :“ xc, uiyx for 1 ď i ď d, then we obtain the vector representation ĉ P R
d.

(Step 5) Using arbitrary linear solver to get solution ∆x̂ P R
d from matrix equation Â∆x̂ “ ĉ.

(Step 6) Recovery the tangent vector ∆x P TxM by ∆x “ řd
i“1p∆x̂qiui.

In Algorithm 2, at each iteration, x is updated, and thus, the tangent space TxM changes. Thus,
the above six steps need to be done all over again. Obviously, this approach is so expensive that it
is not feasible in practice.

An ideal approach is to use an iterative method, such as the Krylov subspace method (e.g.,
conjugate gradients method [5, Chapter 6.3]), on TxM directly. Such a method does not explicitly
require a matrix representation Â for A. In general, it only needs to call an abstract linear operator
v ÞÑ Av. Since A in (20) is self-adjoint but indefinite, for solving operator equation (21), we will
use the Conjugate Residual (CR) method (see [29, ALGORITHM 6.20]) as stated in Algorithm 3.

A significant feature is that the iterate points vk, conjugate directions pk, and residual vectors
rk :“ Avk ´ c are all contained in TxM. Usually, the initial point v0 is the zero element of TxM;
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Algorithm 3: Conjugate Residual (CR) Method on Tangent Spaces for (21)

Input: Symmetric invertible linear operator A : TxM Ñ TxM, nonzero c P TxM and an
initial point v0 P TxM.

Output: Sequence tvnu Ă TxM such that tvnu Ñ v˚ and Av˚ “ c.
Set n Ñ 0, r0 :“ c ´ Av0, p0 :“ r0 and compute Ar0,Ap0 ;
while stopping criterion not satisfied do

1. Update number αn :“ xrn,Arnyx{xApn,Apnyx ; // Step length

2. Set vn`1 :“ vn ` αnpn ; // Iterate point

3. Update rn`1 :“ rn ´ αnApn ; // Residual

4. Compute Arn`1 ; // This is the only call to A in while loop

5. Update number βn :“ xrn`1,Arn`1yx{xrn,Arnyx ;
6. Set pn`1 :“ rn`1 ` βnpn ; // Conjugate direction

7. Compute Apn`1 :“ Arn`1 ` βnApn ; // No need to call A here

8. n Ñ n ` 1;

end

the iteration terminates when the relative residual }rk} {}c} ď ǫ for some threshold ǫ ą 0, or some
maximum number of iterates is reached.

The discussion of the above two approaches can be naturally extended to the case containing
equality constraints in (RCOP), where we consider T on TxM ˆ R

l instead of A on TxM.

4 Preliminaries and Auxiliary Results

This section introduces the useful results that are indispensable to our subsequent discussion.

Remark 4.1. For a retraction R on M and x P M, by DRx p0xq “ idTxM and the inverse function
theorem, there exists a neighborhood V of 0x in TxM such that Rx is a diffeomorphism on V ; thus,
R´1

x pyq is well defined for all y P M sufficiently close to x. In this case, RxpV q Ă M is called a
retractive neighborhood of x. Furthermore, the existence of a totally retractive neighborhood [38,
Theorem 2] shows that for any x̄ P M there is a neighborhood W of x̄ such that R´1

x pyq is well
defined for all x, y P W . In what follows, we will suppose that an appropriate neighborhood has
been chosen by default for the well-definedness of R´1

x pyq.

4.1 Vector Transport and Parallel Transport

Define the Whitney sum TM ‘ TM :“ tpη, ξq : η, ξ P TxM, x P Mu . A smooth map T: TM ‘
TM Ñ TM : pη, ξq ÞÑ Tηpξq, is called a vector transport on M if there exists an associated
retraction R on M such that T satisfies the following properties for all x P M:

1. Associated retraction. Tη pξq P TRxpηqM for all η, ξ P TxM.

2. Consistency. T0x pξq “ ξ for all ξ P TxM.

3. Linearity. Tη paξ ` bζq “ aTη pξq ` bTη pζq for all a, b P R and η, ξ, ζ P TxM.

Thus, fixing any η P TxM, the map Tη : TxM Ñ TRxpηqM : ξ ÞÑ Tηpξq, is a linear operator.
Additionally, T is isometric if xTηpξq,Tηpζqy “ xξ, ζy holds, for all x P M and all ξ, ζ, η P TxM. In
other words, for any η P TxM, the adjoint and the inverse of Tη coincide, i.e., T˚

η “ T´1
η . There

are two important classes of vector transport as follows. Let R be a retraction on M.

(1) The differentiated retraction defined by

Tηpξq :“ DRxpηqrξs, η, ξ P TxM, x P M, (22)

is a valid vector transport [1, equation (8.6)].

(2) Given a smooth curve γ : r0, 1s Ñ M and t0, t1 P r0, 1s, the parallel transport from the tangent
space at γpt0q to the tangent space at γpt1q along γ, is a linear operator Pt1Ñt0

γ : Tγpt0qM Ñ
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Tγpt1qM defined by Pt1Ñt0
γ pξq “ Z pt1q, where Z is the unique parallel vector field such that

Z pt0q “ ξ. Then, for any x P M, η P TxM, then

Tη pξq :“ P1Ñ0
γ pξq (23)

is a valid vector transport [1, equation (8.2)], where Pγ denotes the parallel transport along
the curve t ÞÑ γptq :“ Rx ptηq. We often omit the superscript 1Ñ0 if it is clear from the context.
In particular, parallel transport is isometric.

4.2 Lipschitz Continuity with respect to Vector Transports

Multiple Riemannian versions of Lipschitz continuity have been defined, e.g., [5, Section 10.4]. Here,
we consider Lipschitz continuity with respect to a vector transport. In what follows, let M be a
Riemannian manifold endowed with a vector transport T and an associated retraction R. We first
consider the Lipschitz continuous gradient of scale field f .

Definition 4.2 ([17, Definition 5.2.1]). A function f : M Ñ R is Lipschitz continuously differentiable
with respect to T in U Ă M if it is differentiable and there exists a constant κ ą 0 such that, for all
x, y P U , }gradfpyq ´ Tηrgradfpxqs} ď κ}η}, where η “ R´1

x y.

Going one degree higher, let us now discuss the Lipschitz continuity of Hessian operators.
Throughout this paper, for a linear operator A : E Ñ E 1 between two finite-dimensional normed
vector spaces E and E 1, the (operator) norm of A is defined by }A} :“ sup t}Av}E 1 : v P E , }v}E “ 1 ,
or, }v}E ď 1u . The inverse of Tη is needed in the following definitions, so we can assume that vector
transport T is isometric, e.g., parallel transport in (23). In fact, there are many ways to construct
isometric vector transports; see [18, Section 2.3].

Definition 4.3 ([18, Assumption 3]). A function f : M Ñ R is twice Lipschitz continuously differ-
entiable with respect to T in U Ă M if it is twice differentiable and there exists a constant κ ą 0
such that, for all x, y P U , }Hess fpyq ´ Tη Hess fpxqT´1

η } ď κdpx, yq, where η “ R´1
x y.

Lemma 4.4 ([18, Lemma 4]). If f : M Ñ R is C3, then for any x̄ P M and any isometric
vector transport T, there exists a neighborhood U of x̄ such that f is twice Lipschitz continuously
differentiable with respect to T in U .

If the operator, Hess fpxq, above is replaced by a general covariant derivative ∇F pxq, we can get
the next results in a similar way. Lemma 4.6 can be proven in the same way as Lemma 4.4.

Definition 4.5. Given a vector field F on M. The map x ÞÑ ∇F pxq is Lipschitz continuous with
respect to T in U Ă M if there exists a constant κ ą 0 such that, for all x, y P U , it holds that
}∇F pyq ´ Tη∇F pxqT´1

η } ď κdpx, yq, where η “ R´1
x y.

Lemma 4.6. If F is a C2 vector field, then for any x̄ P M and any isometric vector transport
T, there exists a neighborhood U of x̄ such that the map x ÞÑ ∇F pxq is Lipschitz continuous with
respect to T in U .

4.3 Auxiliary Lemmas

Notice that in the previous subsection on the definitions of Lipschitz continuity, we used }η} with
η “ R´1

x y or dpx, yq to denote the upper bound on the right-hand side. The next lemma shows that
the two are not essentially different. When M “ R

n, both reduce to }x ´ y}.

Lemma 4.7 ([18, Lemma 2]). Let M be a Riemannian manifold with a retraction R and let x̄ P M.
Then,

(i) there exist a0, a1, δa0,a1
ą 0 such that for all x in a sufficiently small neighborhood of x̄ and

all ξ, η P TxM with }ξ}, }η} ď δa0,a1
, one has a0}ξ ´ η} ď dpRxpηq,Rxpξqq ď a1}ξ ´ η}. In

particular, a0}ξ} ď dpx,Rxpξqq ď a1}ξ} when η “ 0;

(ii) there exist a0, a1 ą 0 such that for all x in a sufficiently small neighborhood of x̄, one has
a0}ξ} ď dpx, x̄q ď a1}ξ} where ξ “ R´1

x̄ pxq.

The next lemma is the fundamental theorem of calculus in the Riemannian case.
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Lemma 4.8 ([18, Lemma 8]). Let F be a C1 vector field and x̄ P M. Then there exist a neighborhood
U of x̄ and a constant c1 ě 0 such that for all x, y P U ,

››››P0Ñ1
γ rF pyqs ´ F pxq ´

ż 1

0

P0Ñt
γ ∇F pγptqqPtÑ0

γ rηsdt
›››› ď c1}η}2,

where η “ R´1
x pyq and Pγ is the parallel transport along the curve γptq :“ Rx ptηq. Moreover, if

R “ Exp, then indeed c1 “ 0 above (see [13, equation (2.4)]).

The next lemma is a Riemannian extension of some important estimates, usually used to analyze
Newton methods [8, Lemma 4.1.12].

Lemma 4.9. Let F be a C2 vector field and x̄ P M. Then there exist a neighborhood U of x̄ and a
constant c2 ą 0 such that for all x P U ,

››P0Ñ1
γ rF pxqs ´ F px̄q ´ ∇F px̄qrηs

›› ď c2d
2px̄, xq,

where η “ R´1
x̄ x and Pγ is the parallel transport along the curve γptq :“ Rx̄ptηq.

Proof. Let LHS :“ }P0Ñ1
γ rF pxqs ´ F px̄q ´ ∇F px̄qrηs}. It follows that

LHS ď
››››P0Ñ1

γ rF pxqs ´ F px̄q ´
ż 1

0

P0Ñt
γ ∇F pγptqqPtÑ0

γ rηsdt
››››

`
››››
ż 1

0

P0Ñt
γ ∇F pγptqqPtÑ0

γ rηsdt ´ ∇F px̄qrηs
››››

ď c1}η}2 `
›››
ż 1

0

`
P0Ñt
γ ∇F pγptqqPtÑ0

γ ´ ∇F px̄q
˘

rηsdt
›››. (by Lemma 4.8)

Let θ :“
›››
ş1
0

`
P0Ñt
γ ∇F pγptqqPtÑ0

γ ´ ∇F px̄q
˘

rηsdt
›››. Note that

θ ď
ż 1

0

››P0Ñt
γ ∇F pγptqqPtÑ0

γ ´ ∇F px̄q
›› }η}dt

ď
ż 1

0

c0dpx̄,Rx̄ptηqq }η} dt (by Lemma 4.6)

ď
ż 1

0

c0a1t}η} }η}dt “ 1

2
c0a1}η}2. (by (i) of Lemma 4.7)

Combining the above results yields

LHS ď pc1 ` 1

2
c0a1q}η}2 ď pc1 ` 1

2
c0a1q{a20d2px̄, xq,

where the last inequality comes from (ii) of Lemma 4.7. Letting c2 :“ pc1 ` 1
2
c0a1q{a20 completes

the proof.

We end this section with the following useful lemmas.

Lemma 4.10 ([12, Lemma 3.2]). Given a vector field F on M. If the map p ÞÑ ∇F ppq is continuous
at p˚ and ∇F pp˚q is nonsingular, then there exist a neighborhood U of p˚ and a constant Ξ ą 0
such that, for all p P U , ∇F ppq is nonsingular and

››∇F ppq´1
›› ď Ξ.

Lemma 4.11 ([14, Lemma 14.5]). Let F be a C2 vector field on M and p˚ P M. If F pp˚q “ 0 and
∇F pp˚q is nonsingular, then there exist a neighborhood U of p˚ and constants c3, c4 ą 0 such that,
for all p P U , c3dpp, p˚q ď }F ppq} ď c4dpp, p˚q.
Lemma 4.12 ([7, Lemma 3.5]). Let u P TpM such that Expppuq exists and v P TpM – Tp pTpMq.
Then xDExpppuqrus,DExpppuqrvsy “ xu, vy. In particular,

››DExpppλuqrus
›› “ }u} holds all λ ě 0.

5 Local Convergence

Here, for any two nonnegative sequences tuku and tvku, we write uk “ Opvkq if there is a constant
M ą 0 such that uk ď Mvk for all sufficiently large k; and we write uk “ opvkq if vk ą 0 and the
sequence of ratios tuk{vku approaches zero. In this section, we will establish local convergence of
our prototype Algorithm 2 of RIPM.
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5.1 Perturbed Damped Riemannian Newton Method

We will rely on an application of the so-called perturbed damped Riemannian Newton method for
solving the singularity problem (2), which can be stated as Algorithm 4.

Algorithm 4: Perturbed Damped Riemannian Newton Method for (2)

Input: A vector field F P XpMq, an initial point p0 P M and a retraction R on M. Set
µ0 ą 0.

Output: Sequence tpku Ă M such that tpku Ñ p˚ and F pp˚q “ 0p˚ .
Set k Ñ 0;
while Stopping criterion not satisfied do

1. Obtain ξk P Tpk
M by solving the perturbed Newton equation:

∇F ppkqrξks “ ´F ppkq ` µkê; (24)

2. Choose a (damped) step size 0 ă αk ď 1;
3. Compute the next point as pk`1 :“ Rpk

pαkξkq;
4. Choose 0 ă µk`1 ă µk;
5. k Ñ k ` 1;

end

In contrast to the standard Riemannian Newton method described in Algorithm 1, the term
“perturbed” means that we solve a Newton equation with a perturbed term µkê, while “damped”
means using αk instead of unit steps. It is well known that Algorithm 1 are locally superlinearly
[12] and quadratically [13] convergent under the following Riemannian Newton assumptions:

(B1) There exists p˚ P M such that F pp˚q “ 0p˚ ;

(B2) The covariant derivative ∇F pp˚q is nonsingular;

(B3) The vector field F is C2.

As the following Proposition 5.1 shows, Algorithm 4 also has the same convergence properties
as Algorithm 1 if we control µk and αk according to the two schemes that Proposition 5.1 gives.
We can see that either scheme will have µk Ñ 0 and αk Ñ 1, which makes Algorithm 4 eventually
reduce to Algorithm 1 when k is sufficiently large.

Proposition 5.1 (Local convergence of Algorithm 4). Consider the perturbed damped Riemannian
Newton method described in Algorithm 4 for the singularity problem (2). Let (B1)-(B3) hold.
Choose parameters µk, αk as follows; then there exists a constant δ ą 0 such that for all p0 P M

with dpp0, p˚q ă δ, the sequence tpku is well defined. Furthermore,

(1) if we choose µk “ op}F ppkq}q and αk Ñ 1, then pk Ñ p˚ superlinearly;

(2) if we choose µk “ Op}F ppkq}2q and 1 ´ αk “ Op}F ppkq}q, then pk Ñ p˚ quadratically.

Proof. By (B2)-(B3), Lemma 4.6 and Lemma 4.10, we can let pk be sufficiently close to p˚ such
that ∇F ppkq is nonsingular, and

››∇F ppkq´1
›› ď Ξ for some constant Ξ. Then, the next iterate

point,
pk`1 :“ Rpk

rαk∇F ppkq´1p´F ppkq ` µkêqs,
is well defined in Algorithm 4, and it follows from p˚ “ Rpk

pηq with η :“ R´1
pk

p˚ and (i) of Lemma
4.7 that

dppk`1, p
˚q ď a1}η ´ αk∇F ppkq´1p´F ppkq ` µkêq}

“ a1}η ` αk∇F ppkq´1pF ppkq ´ µkêq}. (25)

Let rk :“ η ` αk∇F ppkq´1pF ppkq ´ µkêq. Algebraic manipulations show that

rk “ p1 ´ αkqη ` αk∇F ppkq´1r∇F ppkqη ` F ppkq ´ P0Ñ1
γ F pp˚q ´ µkês,
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where Pγ is the parallel transport along the curve γptq “ Rpk
ptηq and F pp˚q “ 0. Thus, using

}η} ď dppk, p˚q{a0 from (ii) of Lemma 4.7 and Lemma 4.9, we have

}rk} ď p1 ´ αkq}η} ` αk}∇F ppkq´1}}P0Ñ1
γ F pp˚q ´ F ppkq ´ ∇F ppkqη}

` αk}∇F ppkq´1}}ê}µk

ď p1 ´ αkqdppk, p˚q{a0 ` αk}∇F ppkq´1}c2d2ppk, p˚q
` αk}∇F ppkq´1}}ê}µk

ď p1 ´ αkqdppk, p˚q{a0 ` Ξc2d
2ppk, p˚q ` Ξ}ê}µk.

Combining the above with (25), we conclude that

dppk`1, p
˚q ď κ1p1 ´ αkqdppk, p˚q ` κ2d

2ppk, p˚q ` κ3µk (26)

for some positive constants κ1, κ2, κ3. On the other hand, by Lemma 4.11, we have

}F ppkq} “ Opdppk, p˚qq. (27)

In what follows, we prove assertions (1) and (2).
(1) Suppose that αk Ñ 1 and µk “ op}F ppkq}q, which together with (27) imply µk “ opdppk, p˚qq.

By (26), we have
dppk`1, p

˚q
dppk, p˚q ď κ1p1 ´ αkq ` κ2dppk, p˚q ` κ3

µk

dppk, p˚q . (28)

We can take δ sufficiently small and k sufficiently large, if necessary, to conclude that dppk`1, p
˚q ă

1
2
dppk, p˚q ă δ. Thus, pk`1 P Bδpp˚q, the open ball of radius δ centered at p˚ on M. By induction,

it is easy to show that the sequence tpku is well defined and converges to p˚. Taking the limit of
both sides of (28) proves superlinear convergence.

(2) Again, we start from (26) and rewrite it as:

dppk`1, p
˚q “ p1 ´ αkqOpdppk, p˚qq ` Opd2ppk, p˚qq ` Opµkq. (29)

Suppose that 1 ´ αk “ Op}F ppkq}q and µk “ Op}F ppkq}2q. Using (27), the above reduces to
dppk`1, p

˚q “ Opd2ppk, p˚qq. This implies that there exists a constant ν such that dppk`1, p
˚q ď

νd2ppk, p˚q, and hence, dppk`1, p
˚q ď νd2ppk, p˚q ď νδ2 ă δ, if δ is sufficiently small. Again, by

induction, tpku converges to p˚ quadratically.

5.2 Local Convergence of Algorithm 2

Next, lemma shows the relationship between the parameter γk and step size αk in Algorithm 2.

Lemma 5.2. Consider the Algorithm 2 for solving the problem (RCOP). Let (A1) and (A3) hold
at some w˚ “ px˚, y˚, z˚, s˚q and αk be as in (17). Define a constant,

Π :“ 2max
!
max

i
t1{ps˚qi | ps˚qi ą 0u ,max

i
t1{pz˚qi | pz˚qi ą 0u

)
.

For γk P p0, 1q, if Π }∆wk} ď γk, then 0 ď 1 ´ αk ď p1 ´ γkq ` Π }∆wk} .

Proof. Notice that the fourth line of (18) yields

S´1
k ∆sk ` Z´1

k ∆zk “ µkpSkZkq´1e ´ e,

which is exactly the same as in the usual interior point method in the Euclidean setting. Thus,
the proof entails directly applying [35, Lemma 3 and 4] for the Euclidean case to the Riemannian
case.

Now, let us establish the local convergence of our Algorithm 2 in a way that replicates Proposition
5.1 except for taking account of parameter γk.

Theorem 5.3 (Local convergence of prototype Algorithm 2). Consider the Algorithm 2 for solving
the problem (RCOP). Let (A1)-(A4) hold at some w˚. Choose parameters µk, γk as follows; then
there exists a constant δ ą 0 such that, for all w0 P N with dpw0, w

˚q ă δ, the sequence twku is well
defined. Furthermore,
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(1) if we choose µk “ op}F pwkq}q and γk Ñ 1, then wk Ñ w˚ superlinearly;

(2) if we choose µk “ Op}F pwkq}2q and 1 ´ γk “ Op}F pwkq}q, then wk Ñ w˚ quadratically.

Proof. We only prove (2) because (1) can be proven in the same way. Let wk be such that
dpwk, w

˚q ă δ for sufficiently small δ. From Proposition 3.1, (A1)-(A4) shows that the KKT vec-
tor field F satisfies (B1)-(B3); thus, the discussion in the proof of Proposition 5.1 applies to KKT
vector field F as well, simply by replacing the symbol p with w. Since we choose µk “ Op}F pwkq}2q,
and }F pwkq} “ Opdpwk , w

˚qq by (27), we obtain µk “ Opd2pwk, w
˚qq. Thus,

}∆wk} “
››∇F pwkq´1p´F pwkq ` µkêq

›› (by (16))

ď Ξp}F pwkq} ` µk}ê}q (by Lemma 4.10)

ď Op}F pwkq}q ` Opµkq
“ Opdpwk, w

˚qq ` Opd2pwk, w
˚qq “ Opdpwk, w

˚qq.

Since δ is sufficiently small, from the above inequalities, the condition of Lemma 5.2 is satisfied,
i.e., }∆wk} ď γ̂{Π ď γk{Π for a constant γ̂ P p0, 1q. Hence, by 1 ´ γk “ Op}F pwkq}q, one has
1´αk ď p1´ γkq `Π }∆wk} “ p1´ γkq `Opdpwk, w

˚qq “ Opdpwk, w
˚qq. Finally, from (29), we have

dpwk`1, w
˚q “ p1´αkqOpdpwk , w

˚qq `Opd2pwk, w
˚qq `Opµkq “ Opd2pwk, w

˚qq. This completes the
proof.

Algorithm 2 guaranteed the local convergence, but we are more interested in its globally conver-
gent version (described in the next section). We still provide a simple example of Algorithm 2 online
2, where from (2) of Theorem 5.3, in practice we set parameters µk`1 “ mintµk{1.5, 0.5 }F pwkq}2u;
and γk`1 “ maxtγ̂, 1 ´ }F pwkq}u with γ̂ “ 0.5.

6 Global Algorithm

The globally convergent version of our RIPM uses the classical line search described in [11]. The
following considerations and definitions are needed in order to describe it compactly. For simplicity,
we often omit the subscript of iteration count k.

Given the current point w “ px, y, z, sq and ∆w “ p∆x,∆y,∆z,∆sq, the next iterate is obtained
along a curve on product manifold N , i.e., α ÞÑ wpαq :“ R̄wpα∆wq with some step size α ą 0, see (6)
for R̄w. By introducing wpαq “ pxpαq, ypαq, zpαq, spαqq, we have xpαq “ Rxpα∆xq, ypαq “ y `α∆y,
zpαq “ z ` α∆z, and spαq “ s ` α∆s. For a given starting point w0 P N with pz0, s0q ą 0, let us
set two constants

τ1 :“ minpZ0S0eq{pzT0 s0{mq, τ2 :“ zT0 s0{ }F pw0q} .
As well, define two functions f Ipαq :“ minpZpαqSpαqeq ´ γτ1zpαqT spαq{m, f IIpαq :“ zpαqT spαq ´
γτ2}F pwpαqq}, where γ P p0, 1q is a constant. For i “ I, II, define

αi :“ max
αPp0,1s

 
α : f iptq ě 0, for all t P p0, αs

(
, (30)

i.e., αi are either one or the smallest positive root for the functions f ipαq in p0, 1s.
Moreover, we define the merit function ϕ : N Ñ R by ϕpwq :“ }F pwq}2; accordingly, we have

gradϕpwq “ 2∇F pwq˚rF pwqs, where symbol ˚ means its adjoint operator. Let } ¨ }1, } ¨ }2 be l1, l2
vector norms. Note that }F pwq}2w “ }gradx Lpwq}2x`}hpxq}22`}gpxq`s}22`}ZSe}22 by (5). Moreover,
for any nonnegative z, s P R

m, one has }ZSe}2 ď zT s “ }ZSe}1 ď ?
m }ZSe}2 . Hence,

}ZSe}2 {
?
m ď zT s{

?
m ď }ZSe}2 ď }F pwq}. (31)

Now, using the above definitions, the globally convergent RIPM can be stated as Algorithm 5.
Compared to the prototype Algorithm 2, the global Algorithm 5 involves a more elaborate

choice of step size. Regarding the centrality condition (3a), it does not differ in any way from the
Euclidean setting; thus, references [11, 3, 9] show that ᾱk is well-defined thereby ensuring that zk,
sk are positive. In the following, we focus on the sufficient decrease (Armijo) condition (3b):

ϕpR̄wk
pαk∆wkqq ´ ϕpwkq ď αkβ xgradϕk,∆wky , (33)

2See .../LocalRIPM/PrototypeRIPM.m in https://doi.org/10.5281/zenodo.10612799
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Algorithm 5: Global Convergent Algorithm of RIPM for (RCOP)

Input: An initial point w0 “ px0, y0, z0, s0q P N with pz0, s0q ą 0 and a retraction R on M.
θ P p0, 1q, β P p0, 0.5s, γ´1 P p0.5, 1q.

Output: Sequence twku Ă N such that twku Ñ w˚ and w˚ satisfies the KKT conditions
(4).

Set k Ñ 0;
while Stopping criterion not satisfied do

1. Set σk P p0, 1q, ρk P rzTk sk{m, }F pwkq} {?
ms;

2. Obtain ∆wk “ p∆xk,∆yk,∆zk,∆skq P Twk
N by solving the following linear equation:

∇F pwkqr∆wks “ ´F pwkq ` σkρkê; (32)

3. Step size selection:
(3a) Centrality condition: Set γk P p0.5, γk´1q and ᾱk “ mintαI

k, α
II
k u from (30);

(3b) Sufficient decrease condition: Let αk :“ ᾱk;
while αk does not satisfy the condition ϕpR̄wk

pαk∆wkqq ´ ϕpwkq ď αkβ xgradϕk,∆wky
do

αk :“ θαk;
end
4. Compute the next point as wk`1 :“ R̄wk

pαk∆wkq;
5. k Ñ k ` 1;

end

where gradϕk ” gradϕ pwkq for short. With a slight abuse of notation ϕ, at the current point w

and direction ∆w, we define a real-to-real function α ÞÑ ϕpαq :“ ϕ
`
R̄wpα∆wq

˘
; then, it follows

from the definition of a retraction and the chain rule that

ϕ1p0q “ DϕpR̄wp0qq
“
DR̄wp0qr∆ws

‰
“ Dϕpwqr∆ws “ xgradϕpwq,∆wy.

Hence, ϕ1
kp0q “ xgradϕk,∆wky at the k-th iterate wk; and then the Armijo condition (33) reads

ϕkpαkq ´ ϕkp0q ď αkβϕ
1
kp0q as usual. If ϕ1

kp0q ă 0, the backtracking loop in (3b) of Algorithm 5
will eventually stop [26, Lemma 3.1]. The next lemma shows the condition under which the Newton
direction ∆wk generated by (32) ensures the descent of the merit function.

Lemma 6.1. If the direction ∆wk is the solution of equation (32), then

xgradϕpwkq,∆wky “ 2p´}F pwkq}2 ` σkρkz
T
k skq.

In this case, ∆wk is a descent direction for ϕpwq at wk if and only if ρk ă }F pwkq}2{σkz
T
k sk.

Proof. The iteration count k is omitted. Let ∆w be given by (32). Then, we have xgradϕpwq,∆wy “
x2∇F pwq˚rF pwqs,∆wy “ 2xF pwq,∇F pwqr∆wsy “ 2xF pwq,´F pwq ` σρêy “ 2p´xF pwq, F pwqy `
σρxF pwq, êyq. Then, by definition of ê in (13), xF pwq, êy “ xZSe, ey “ zT s completes the proof.

The next proposition shows that Algorithm 5 can generate the monotonically nonincreasing
sequence tϕku. Note that ϕk`1 ” ϕk pαkq and ϕk ” ϕkp0q ” ϕ pwkq.
Proposition 6.2. If }F pwkq} ‰ 0, then the direction ∆wk generated by Algorithm 5 is a descent
direction for ϕpwq at wk. Moreover, if the Armijo condition (33) is satisfied, then

ϕkpαkq ď r1 ´ 2αkβp1 ´ σkqsϕkp0q.

Thus, the sequence tϕku is monotonically nonincreasing.

Proof. The iteration count k is omitted. Suppose that ρ ď }F pwq} {?
m and ∆w is given by (32),

we have

ϕ1p0q “ xgradϕpwq,∆wy “ 2p´ϕpwq ` σρzT sq (by Lemma 6.1)

ď 2p´ϕpwq ` σ }F pwq} zT s{
?
mq

ď 2p´ϕpwq ` σ }F pwq}2q (by (31))

“ ´2p1 ´ σqϕpwq ă 0. (34)
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Thus, in Algorithm 5, ∆w is a descent direction for the merit function ϕ at w. Alternatively, by
Lemma 6.1, it is sufficient to show that }F pwq}{?

m ă }F pwq}2{σzT s. By σzT s ă zT s ď ?
m}F pwq};

then, 1{?
m ă }F pwq}{σzT s. Multiplying both sides by }F pwq} yields the result.

Moreover, if condition (33) is satisfied, then by (34), we have ϕpαq ď ϕp0q`αβxgradϕpwq,∆wy ď
ϕp0q `αβp´2p1´σqϕp0qq “ r1´ 2αβp1´σqsϕp0q. Note that in Algorithm 5, we set β P p0, 1{2s, σ P
p0, 1q, and α P p0, 1s, which imply that the sequence tϕku is monotonically nonincreasing.

Finally, we need to make the following assumptions. For ǫ ě 0, let

Ωpǫq :“
 
w P N | ǫ ď ϕpwq ď ϕ0,minpZSeq{pzTs{mq ě τ1{2, zT s{}F pwq} ě τ2{2

(
.

(C1) In the set Ωp0q, f, h, and g are smooth functions; tgradhipxquli“1 is linearly independent for
all x; and the map w ÞÑ ∇F pwq is Lipschitz continuous (with respect to parallel transport);

(C2) The sequences txku and tzku are bounded [10, 3];

(C3) In any compact subset of Ωp0q, ∇F pwq is nonsingular.

Given the above assumptions, we can now prove the following statement.

Theorem 6.3 (Global Convergence of RIPM). Let twku be generated by Algorithm 5 with R “ Exp
and tσku Ă p0, 1q be bounded away from zero and one. Let ϕ be Lipschitz continuous on Ωp0q. If
(C1)-(C3) hold, then t}F pwkq}u converges to zero. Moreover, if w˚ is a limit point of sequence
twku, then w˚ satisfies Riemannian KKT conditions (4).

The proof of the above theorem will be given in the next section. Note that although the
exponential map is used in the proof, the numerical experiments indicate that global convergence
may hold for a general retraction R.

7 Proof of Global Convergence

In this section, our goal is to prove the global convergence Theorem 6.3. We will follow the proof
procedure in [11], which discussed Algorithm 5 when M “ R

n in (RCOP), and we call the algorithm
in [11] the Euclidean Interior Point Method (EIPM). In what follows, we will omit similar content
because of space limitations and focus on the difficulties encountered when adapting the proof of
EIPM to RIPM. In particular, we will make these difficulties as tractable as in EIPM by proving a
series of propositions in Subsection 7.1.

7.1 Continuity of Some Special Scalar Fields

To show the boundedness of the sequences generated by Algorithm 5, we need the continuity of
some special scalar fields on manifold M. The claims of this subsection are trivial if M “ R

n, but
they need to be treated carefully for general M.

If we assign a linear operator Ax : TxM Ñ TxM to each x P M, then the map x ÞÑ }Ax} :“
sup t}Axv}x | v P TxM, }v}x “ 1, or, }v}x ď 1u is a scalar field on M; but notice that the operator
norm } ¨ } depends on x. Let Sympdq denote the set of symmetric matrices of order d, and } ¨ }F,
} ¨ }2 denote the Frobenius norm and the spectral norm, respectively, applied to a given matrix.

Lemma 7.1. Let M be an n-dimensional Riemannian manifold. Let x P M and Ax be a linear
operator on TxM. Choose an orthonormal basis of TxM with respect to x¨, ¨yx, and let Âx P R

nˆn

denote the matrix representation of Ax under the basis. Then, }Âx}2, }Âx}F are invariant under a
change of orthonormal basis; moreover, }Ax} “ }Âx}2 ď }Âx}F.

Proof. Suppose that there are two orthonormal bases tEiuni“1, tE1
iuni“1 on TxM. With respect to

them, let P P R
nˆn denote the change-of-basis matrix, i.e., rP skj :“ xE1

j , Ekyx, for 1 ď k, j ď n;

then, P is orthogonal. Let Âx, Â
1
x P R

nˆn denote the matrix representations of Ax under the
two bases, respectively. We have Â1

x “ P´1ÂxP. Then, }Â1
x} “ }P´1ÂxP } “ }Âx} holds for the

Frobenius norm or the spectral norm. Therefore, the values }Âx}2 and }Âx}F are invariant under
a change of orthonormal basis. Now, consider an orthonormal basis tEiuni“1 on TxM. For any
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y P TxM, its vector representation ŷ P R
n is defined by y “

řn
i“1 ŷiEi. Accordingly, we have

yAxy “ Âxŷ, i.e., Axy “ řn
i“1pÂxŷqiEi, and from the orthonormal property of the basis, we have

}Axy}2x “ }
nÿ

i“1

pÂxŷqiEi}2x “
nÿ

i“1

pÂxŷq2i “ }Âxŷ}22.

Thus, }Axy}x “ }Âxŷ}2 for any y P TxM. Finally, we have

}Ax} “ sup
yPTxM,}y}x“1

}Axy}x “ sup
ŷPRn,}ŷ}2“1

}Âxŷ}2 “ }Âx}2.

It is clear that }X}2 ď }X}F for any matrix X .

Yet, we have not clarified the continuity about x ÞÑ }Ax}. The following proposition proves the
continuity of an important case of Ax that appears in (RCOP).

Proposition 7.2. Consider f in (RCOP). Let ˆHessfpxq P Sympdq denote the matrix representation
of Hess fpxq under an arbitrary orthonormal basis of TxM. Then, x ÞÑ } ˆHessfpxq} is a continuous
scalar field on M for } ¨ }F or } ¨ }2. Moreover, x ÞÑ }Hess fpxq} is a continuous scalar field on M.

Proof. Lemma 7.1 shows that x ÞÑ } ˆHessfpxq} is well defined, so it suffices to prove its continuity.
From Corollary 13.8 in [21], for each x̄ P M there is a smooth, orthonormal local frame tEiudi“1

on a neighborhood U of x̄; namely, tE1pxq, . . . , Edpxqu forms an orthonormal basis on TxM for all
x P U . Choose such a local frame tEiudi“1 around x̄; then, the matrix representation of Hess fpxq is

given by r ˆHessfpxqskj :“ xHess fpxqrEjpxqs, Ekpxqy
x

“ xp∇Ej
grad fqpxq, Ekpxqyx for 1 ď k, j ď d.

From the smoothness of the Riemannian metric (1), it follows that x ÞÑ ˆHessfpxq is a continuous
function from U Ă M to Sympdq. Since matrix norms are continuous, } ˆHessfpxq} is continuous on
U Q x̄. This argument holds for any x̄ P M. From Lemma 7.1, } ˆHessfpxq}2 “ }Hess fpxq} for any
x P M, which completes the proof.

The above result can be applied verbatim to the Hessian of constraint functions thiuli“1, tgiumi“1

in (RCOP). The next proposition can be proved similarly, as in Lemma 7.1 and Proposition 7.2.

Proposition 7.3. Consider h, g in (RCOP) and the linear operators Hx, Gx defined in (7). Then,
x ÞÑ }Hx} and x ÞÑ }Gx} are continuous scalar fields on M.

Proposition 7.4. Given w “ px, y, z, sq P N , consider the operator ∇F pwq in (8). Let tEiudi“1 be
an orthonormal basis of TxM and teiuli“1, t 9eiumi“1 be the standard bases of Rl,Rm, respectively. If
we choose an orthonormal basis of TwN as follows:

tpEi, 0, 0, 0qudi“1 Y tp0x, ei, 0, 0quli“1 Y tp0x, 0, 9ei, 0qumi“1 Y tp0x, 0, 0, 9eiqumi“1 , (35)

then, the matrix representation of ∇F pwq is given by

∇̂F pwq “

¨
˚̊
˝

Q B C 0
BT 0 0 0
CT 0 0 I

0 0 S Z

˛
‹‹‚,

i.e., a matrix of order pd ` l ` 2mq and, where
Q :“ Qpwq P Sympdq is given by rQskj :“ xHessx LpwqrEj s, Eky

x
for 1 ď k, j ď d;

B :“ Bpxq “ r ˆgradh1pxq, ¨ ¨ ¨ , ˆgradhlpxqs P R
dˆl;

C :“ Cpxq “ r ˆgradg1pxq, ¨ ¨ ¨ , ˆgradgmpxqs P R
dˆm and the “hat” symbol above means the corre-

sponding vector representation under the basis tEiudi“1.
In this case, there is a continuous scalar field T : N Ñ R such that for any w, }Qpwq}F ď T pwq.

Moreover, x ÞÑ }Bpxq}F and x ÞÑ }Cpxq}F are continuous scalar fields on M.

Proof. The matrix ∇̂F pwq under the basis (35) is obtained through a trivial process, so we will omit

its description. From relation (9), we have Qpwq :“ ˆHessxLpwq “ ˆHessfpxq ` řl
i“1 yi

ˆHesshipxq `řm
i“1 zi

ˆHessgipxq, under the same basis. Thus,

}Qpwq}F ď } ˆHessfpxq}F `
lÿ

i“1

|yi|} ˆHesshipxq}F `
mÿ

i“1

|zi|} ˆHessgipxq}F “: T pwq.
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From Proposition 7.2, } ˆHessfpxq}F, } ˆHesshipxq}F, and } ˆHessgipxq}F are all continuous with respect
to x, thus, T is continuous. As for x ÞÑ }Bpxq}F, since the basis tEiudi“1 is orthonormal,

}Bpxq}2F “
lÿ

i“1

} ˆgradhipxq}22 “
lÿ

i“1

}gradhipxq}2x ,

which implies continuity by (1). The claim for x ÞÑ }Cpxq}F can be proven similarly.

7.2 Global Convergence Theorem

Now, we are ready to prove the global convergence Theorem 6.3 by following the procedure in [11].
In what follows, we will omit similar content in [11] and focus on the difficulties encountered when
adapting the proof of EIPM to RIPM.

Proposition 7.5 (Boundedness of the sequences). Let twku be a sequence generated by Algorithm
5 and suppose that (C1)-(C3) hold. If ǫ ą 0 and wk P Ωpǫq for all k, then

(a) tzTk sku, tpzkqipskqiu , i “ 1, . . . ,m, are all bounded above and below away from zero;

(b) tzku and tsku are bounded above and component-wise bounded away from zero;

(c) twku is bounded;

(d) t}∇F pwkq´1}u is bounded;

(e) t∆wku is bounded.

Proof. The proofs in [11, Lemma 6.1] and/or [3, Theorem 2 (a)] can be applied verbatim to (a),
(b) and (e).

(c) By (b), it suffices to prove that tyku is bounded. The iteration count k is omitted in what
follows. By using the notation Hx and Gx as defined in (7), we have Hxy “ gradx Lpwq´grad fpxq´
Gxz “: b. By (C1), Hx is an injection; then, there exists a unique solution y to Hxy “ b. Indeed,
we have

y “ rpH˚
xHxq´1

H˚
xs pgradx Lpwq ´ grad fpxq ´ Gxzq . (36)

Define Cx : TxM Ñ R
l as Cx :“ pH˚

xHxq´1
H˚

x . Under an arbitrary orthonormal basis of TxM and
standard basis of Rl, if Ĥx is the matrix corresponding to Hx, then Ĉx “ pĤT

x Ĥxq´1ĤT
x . It is easy

to show that }Cx} “ }Ĉx}2 for any x. We can see that for each x̄ P M there is a neighborhood U of x̄
such that x ÞÑ Ĥx is continuous over U . Then, by function composition, x ÞÑ Ĉx is also continuous
over U . This implies that x ÞÑ }Cx} “ }Ĉx}2 is continuous at each x̄, and hence, on M. Finally, by
Proposition 7.3, }Cx} , }grad fpxq} , and }Gx} are all continuous on M. Because txku is bounded, by
(36) we have }yk} ď }Cxk

} p}gradx Lpwkq} ` }gradfpxkq} ` }Gxk
} }zk}q ď c1

`?
ϕ0 ` c2 ` c3 }zk}

˘
,

for some positive constants c1, c2, c3. Then, tyku is bounded because tzku is bounded.
(d) For each wk, choose an arbitrary orthonormal basis of Twk

N . If the matrix representation

∇̂F pwkq corresponds to ∇F pwkq, then r∇̂F pwkqs´1 corresponds to ∇F pwkq´1. By Lemma 7.1, we
have

››∇F pwkq´1
›› ď }r∇̂F pwkqs´1}F; thus, it is sufficient to show that t}r∇̂F pwkqs´1}Fu is bounded.

For convenience, we will choose the basis of Twk
N given in (35). Then, we have

∇̂F pwkq “

¨
˚̊
˝

Qk Bk Ck 0
BT

k 0 0 0
CT

k 0 0 I

0 0 Sk Zk

˛
‹‹‚.

By Proposition 7.4, there is a continuous scalar field T : N Ñ R such that }Qpwq}F ď T pwq
for all w P N ; and }Bpxq}F, }Cpxq}F are continuous on M. It follows from the boundedness of
txku and twku that for all k, }Qk}F ” }Qpwkq}F ď T pwkq ď c4, }Bk}F ” }Bpxkq}F ď c5, and
}Ck}F ” }Cpxkq}F ď c6, for some positive constants c4, c5, and c6.

On the other hand, whichever basis is used in the form of (35), the structure of ∇̂F pwkq and the
properties of its block submatrices remain unchanged, e.g., symmetry of Qk; full rank of Bk; identity
matrix I in the third row; all zero matrices; diagonal matrices Sk, Zk; etc. This ensures that we can
obtain the desired result by performing an appropriate decomposition of ∇̂F pwkq. Up to this point,
we have created all the conditions needed in the proof of the Euclidean version, namely, EIPM. We
can make the claim that t}r∇̂F pwkqs´1}Fu is bounded by applying the proofs in [11, Lemma 6.2]
and/or [3, Theorem 2 (c)] directly.
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Lemma 7.6 (tᾱku bounded away from zero). Let twku be generated by Algorithm 5 with R “ Exp
and let (C1)-(C3) hold. If ǫ ą 0 and wk P Ωpǫq for all k, tσku is bounded away from zero; then,
tᾱku is bounded away from zero.

Proof. Since ᾱk “ mintαI
k, α

II
k u, it is sufficient to show that tαI

ku and tαII
k u are bounded away from

zero. For αI
k, see [11, Lemma 6.3] and/or [9, Theorem 3.1]. The proofs in those references apply

verbatim to the Riemannian case. On the other hand, for αII
k , we need to adapt the proofs in [11, 9],

since Lipschitz continuity on manifolds is more complicated, see Subsection 4.2.
Let us suppress the subscript k. Recall that wpαq “ ¯Expwpα∆wq. Fix α∆w and let Pγ be the

parallel transport along the geodesic γptq “ ¯Expw ptα∆wq. By Lemma 4.8 where c1 “ 0, we obtain

P0Ñ1
γ rF pwpαqqs “ F pwq ` α∇F pwqr∆ws ´ α∇F pwqr∆ws `

ż 1

0

P0Ñt
γ ∇F pγptqqPtÑ0

γ rα∆wsdt

“ F pwq ` α pσρê ´ F pwqq ` α

ż 1

0

`
P0Ñt
γ ∇F pγptqqPtÑ0

γ ´ ∇F pwq
˘

r∆wsdt

“ p1 ´ αqF pwq ` ασρê ` α

ż 1

0

`
P0Ñt
γ ∇F pγptqqPtÑ0

γ ´ ∇F pwq
˘

r∆wsdt.

Taking the norm on both sides above gives

}F pwpαqq} “
››P0Ñ1

γ rF pwpαqqs
›› (since parallel transport (23) is isometric)

ď p1 ´ αq }F pwq} ` ασρ }ê} ` α

ż 1

0

››P0Ñt
γ ∇F pγptqqPtÑ0

γ ´ ∇F pwq
›› }∆w} dt

ď p1 ´ αq }F pwq} ` ασρ
?
m ` α

ż 1

0

κ2}tα∆w} }∆w} dt

“ p1 ´ αq }F pwq} ` ασρ
?
m ` α2}∆w}2κ{2.

The rest of the proof is the same as [11, Lemma 6.3] and/or [9, Theorem 3.1], so we omit it.

Proof of Theorem 6.3: By Proposition 6.2, we know that t}F pwkq}u is monotonically nonincreasing,
hence convergent. Assume that t}F pwkq}u does not converge to zero. Then, there exists ǫ ą 0 such
that twku Ă Ωpǫq for infinitely many k. We will show that the following two cases both lead to
contradictions and thus, the hypothesis }F pwkq} Û 0 is not valid.

Case 1. For infinitely many k, if step (3b) in Algorithm 5 is executed with αk ” ᾱk, it follows
from Proposition 6.2 that ϕpwk`1q{ϕpwkq ď λk :“ r1 ´ 2ᾱkβ p1 ´ σkqs . Since tᾱku is bounded away
from zero by Lemma 7.6 and tσku is bounded away from one, then tλku is bounded away from one
and hence, ϕpwkq Ñ 0; this is a contradiction.

Case 2. On the other hand, for infinitely many k, if αk ă ᾱk, we have that αk ď θᾱk.
Then, condition (33) fails to hold for an α̃k with αk ă α̃k ď αk{θ “ θt´1ᾱk. Notice that αk{θ is
the value corresponding to the last failure. Recall that the derivative of the real-valued function
α ÞÑ ϕpαq :“ ϕ

`
¯Expwk

pα∆wkq
˘
is

ϕ1pαq “ Dϕp ¯Expwk
pα∆wkqqrD ¯Expwk

pα∆wkq r∆wkss. (37)

Applying the mean value theorem to ϕpαq on the interval r0, α̃ks yields a number ξ P p0, 1q such
that α̃kϕ

1pξα̃kq “ ϕpα̃kq ´ ϕp0q. For short, let u :“ ξα̃k∆wk. Hence,

α̃kβ xgradϕk,∆wky
ă ϕpα̃kq ´ ϕp0q (as condition (33) fails for α̃k)

“ α̃kϕ
1pξα̃kq

“ α̃kDϕp ¯Expwk
puqq

“
D ¯Expwk

puq r∆wks
‰
(by equation (37))

“ α̃kxgradϕp ¯Expwk
puqq,D ¯Expwk

puq r∆wksy.

(38)

On the other hand, note that

xgradϕk,∆wky
“ xgradϕk, uy{ξα̃k

“ xD ¯Expwk
puq rgradϕks ,D ¯Expwk

puq rusy{ξα̃k (by Lemma 4.12)

“ xD ¯Expwk
puq rgradϕks ,D ¯Expwk

puq r∆wksy.

(39)
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Subtracting α̃k xgradϕk,∆wky from both sides of (38) and using equalities (39) gives

α̃kpβ ´ 1q xgradϕk,∆wky
ă α̃k

“
xgradϕp ¯Expwk

puqq,D ¯Expwk
puq r∆wksy ´ xgradϕk,∆wky

‰

“ α̃kxgradϕp ¯Expwk
puqq ´ D ¯Expwk

puq rgradϕks ,D ¯Expwk
puq r∆wksy

ď α̃k

››gradϕp ¯Expwk
puqq ´ D ¯Expwk

puq rgradϕks
›› ››D ¯Expwk

puq r∆wks
››

“ α̃k

››gradϕpyq ´ D ¯Expwk
puq rgradϕpwkqs

›› ››D ¯Expwk
puq r∆wks

››
(by letting y :“ ¯Expwk

puq)
ď α̃kκ }u} }∆wk} (by (22), Definition 4.2 and Lemma 4.12)

“ κξα̃2
k }∆wk}2 .

Finally, we obtain pβ ´ 1q xgradϕk,∆wky {pκξ }∆wk}2q ă α̃k.

Because xgradϕk,∆wky ă 0 and αk satisfies (33), we have

ϕkp0q ´ ϕkpαkq ě ´αkβ xgradϕk,∆wky
ě ´θβα̃k xgradϕk,∆wky
ě ´θβ xgradϕk,∆wky pβ ´ 1q xgradϕk,∆wky {pκξ }∆wk}2q
ě rθβp1 ´ βq{κξs pxgradϕk,∆wky { }∆wk}q2

“ ω pxgradϕk,∆wky { }∆wk}q ,

where ωp¨q is an F -function (see [28, Definition 14.2.1 & 14.2.2 in P479]). Since tϕku is bounded be-
low and ϕk ě ϕk`1, it follows that limkÑ8pϕk ´ ϕk`1q “ 0. By the definition of F -functions,
we obtain xgradϕk,∆wky { }∆wk} Ñ 0. Since t}∆wk}u is bounded (Proposition 7.5), we have
xgradϕk,∆wky Ñ 0. Choosing ρk with zTk sk{m ď ρk ď }F pwkq} {?

m in Algorithm 5 implies
that

xgradϕk,∆wky {p´2q “ ϕk ´ σkρkz
T
k sk ě ϕk ´ σk }F pwkq} zTk sk{

?
m

ě ϕk ´ σk }F pwkq}2 ě p1 ´ σkqϕk.

This shows that ϕpwkq Ñ 0, because tσku is bounded away from one; this is a contradiction.

8 Numerical Experiments

The numerical experiments compared the performance of the globally convergent RIPM (Algorithm
5) with those of other Riemannian methods in solving two problems. They were conducted in
Matlab R2022a on a computer with an Intel Core i7-10700 (2.90GHz) and 16GB RAM. Algorithm
5 utilized Manopt 7.0 [6], a Riemannian optimization toolbox for Matlab. The problems involve
three manifolds:

• fixed-rank manifold, Mr “ tX P R
mˆn : rankpXq “ ru;

• Stiefel manifold, Stpn, kq “
 
X P R

nˆk : XTX “ Ik
(
;

• oblique manifold, Obpn, kq “ tX P R
nˆk :

`
XTX

˘
ii

“ 1,@i “ 1, . . . , ku.

We only consider their embedded geometry and we apply the default retractions in Manopt, e.g.,
the retraction based on QR decomposition for the Stiefel manifold.

Problem I. Recently, [31] proposed the Nonnegative Low-Rank Matrix (NLRM) approximation.
Formally, NLRM aims to solve

min
XPMr

}A ´ X}2F s.t. X ě 0. (NLRM)

Input. We tested three cases of integer triples pm,n, rq: p20, 16, 2q, p30, 24, 3q, and p40, 32, 4q. For
each pm,n, rq, we generated nonnegative L P R

mˆr, R P R
rˆn whose entries follow a uniform

distribution in [0,1]. Then, we added the Gaussian noise with zero mean and different standard
deviation pσ “ 0, 0.001, 0.01q to A “ LR. When there is no noise (i.e., σ “ 0), the input data
matrix A itself is exactly a solution.
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Problem II. Given C P R
nˆk, [19] computed its projection onto the nonnegative part of the

Stiefel manifold. If the distance is measured in terms of }C ´X}2F, we can express it equivalently as

min
XPStpn,kq

´2 tracepXTCq s.t. X ě 0. (Model St)

In [19], it is shown that (Model St) can be equivalently reformulated into

min
XPObpn,kq

´2 tracepXTCq s.t. X ě 0, }XV }F “ 1, (Model Ob)

where the positive integer p and V P R
kˆp can be arbitrary as long as }V }F “ 1 and V V T is entry-

wise positive. We examined both models. Input. We considered four cases of integer pairs pn, kq:
p40, 8q, p50, 10q, p60, 16q, and p70, 14q. For a general C, it is always difficult to seek nonnegative projec-
tions globally. Fortunately, Proposition 1 in [19] showed a way to construct C such that Model St has
a unique, known solutionX˚. In our experiments, we generated a feasible point B of Model St; then,
we set C by codes: X1=(B>0).*(1+rand(n,k));Xstar=X1./sqrt(sum(X1.*X1));L=rand(k,k);
L=L+k*eye(k);C=Xstar*L’. The initial point was computed by projecting C onto the Stiefel man-
ifold. In addition, for Model Ob we set p=1;V=ones(k,p);V=V/norm(V,"fro").

8.1 Implementation Details

The experimental implementation of Algorithm 5 (i.e.,RIPM) initialized z0 and s0 from a uni-
form distribution in [0,1] and set y0 “ 0 if equality constraints exist. We used ρk “ zTk sk{m,
σk “ mint0.5, }F pwkq}1{2u and Algorithm 3 to solve the condensed form of Newton equation (19).
Algorithm 3 stopped when the relative residual went below 10´9, or it reached 1000 iterations. We
used a backtracking line search simultaneously for the central conditions and sufficient decreasing
conditions. We set γ´1 “ 0.9, γk`1 “ pγk ` 0.5q{2; and β “ 10´4, θ “ 0.5. We compared RIPM
with the following Riemannian methods:

• RALM: Riemannian augmented Lagrangian method [23].

• REPMlqh: Riemannian exact penalty method with smoothing functions of linear-quadratic
and pseudo-Huber [23].

• REPMlse: Riemannian exact penalty method with smoothing functions of log-sum-exp [23].

• RSQP: Riemannian sequential quadratic programming [27].

Let rts` :“ maxp0, tq and rts´ :“ minp0, tq for any t P R. The experimental settings followed those
of [27], where they used the KKT residual defined as

gffe}gradx Lpwq}2 `
mÿ

i“1

trzis2´ ` rgipxqs2` ` |zigipxq|2u `
lÿ

i“1

|hipxq|2

to measure the deviation of an iterate from the KKT conditions. For the parameters of RALM,
REPMs, and RSQP, we utilized the experimental setting and Matlab codes provided by [27].

We conducted 20 random trials of each problem and model. All the algorithms ran with the
same initial point. The experiment is considered successfully terminated if it finds a solution with
a KKT residual lower than ǫkkt before triggering any of the stopping conditions. For the first-order
algorithms (including RALM and the REPMs), the stopping conditions are: elapsed time exceeding
tmax seconds, number of outer iterations exceeding 1,000, or failure of the algorithm to update any
parameters. For the second-order algorithms (including RSQP and RIPM), the stopping conditions
are elapsed time exceeding tmax seconds or a number of outer iterations exceeding 10,000. Here,
considering that some problems might not have converged easily, the maximum number of iterations
was chosen to be 1,000 (10,000), which was a sufficiently large value. The selection of tmax is related
to the actual time it took to run all the codes on the computer. Setting tmax too large resulted
in excessive time spent on poorly performing algorithms. On the other hand, ǫkkt was chosen to
better demonstrate that second-order algorithms could achieve more accurate solutions. Therefore,
we chose the appropriate values for tmax and ǫkkt according to the problem that was to be solved.
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Table 1: Performance of various Riemannian methods on problem I (NLRM).
pm,n, rq (20,16,2) (30,24,3) (40,32,4)
no noise Success Time [s] Iter. Success Time [s] Iter. Success Time [s] Iter.
RALM 0.4 1.115 31 0.65 1.813 31 0.75 2.800 31
REPMlqh 1 5.165ˆ10´1 31 1 1.009 31 1 1.747 31
REPMlse 1 2.242 31 1 4.041 31 0.95 6.952 31
RSQP 0.9 6.429 7 0.9 3.944ˆ10 8 0.9 1.254ˆ102 8
RIPM 1 4.920 ˆ 10´1 19 1 2.247 27 1 5.277 32

pm,n, rq (20,16,2) (30,24,3) (40,32,4)
σ “ 0.001 Success Time [s] Iter. Success Time [s] Iter. Success Time [s] Iter.
RALM 0.2 1.001 31 0.15 2.050 31 0.05 2.758 31
REPMlqh 0.1 4.983ˆ10´1 32 0.25 1.035 31 0.15 1.787 31
REPMlse 0.15 2.444 31 0.1 4.867 31 0.05 8.371 31
RSQP 0.95 6.619 7 0.95 3.848ˆ10 8 0.9 1.299ˆ102 8
RIPM 1 5.376 ˆ 10´1 20 1 2.342 27 1 4.631 29

pm,n, rq (20,16,2) (30,24,3) (40,32,4)
σ “ 0.01 Success Time [s] Iter. Success Time [s] Iter. Success Time [s] Iter.
RALM 0 - - 0 - - 0 - -
REPMlqh 0 - - 0 - - 0 - -
REPMlse 0 - - 0 - - 0 - -
RSQP 1 7.295 8 0.95 4.114ˆ10 8 0.95 1.430ˆ102 9
RIPM 1 5.980ˆ10´1 21 0.95 1.883 25 0.95 4.602 29

8.2 Results and Analysis

The tables in this subsection report the success rate (Success), the average time (Time), and the
average iteration number (Iter.) among the successful trials. In order to capture the combination
of stability and speed, the algorithms with 0.9 or higher are first highlighted in bold in the “Success”
column, and then, of those algorithms, the fastest result is highlighted in bold in the “Time” column.
Here, “successful convergence in numerical experiments” means that the algorithm can generate a
relatively accurate solution in a relatively reasonable amount of time. It is not exactly the same
as the “theoretical convergence in any global convergence theorem”. Numerical experiments reflect
the actual performance of the algorithm in the application. For example, the first-order algorithms
(RALM, REPMs) also have theoretical global convergence, but under our high criterion, it is difficult
for them to generate a high-precision solution within a certain period of time. The second-order
algorithm (RIPM, RSQP), on the other hand, is excellent in terms of accuracy, although it takes
quite a bit of time.

Problem I. Here, we set tmax “ 180, ǫkkt “ 10´8. The numerical results in Table 1 show that
RIPM had the best performance, except for cases (30, 40, 3) and (40, 32, 4) without noise. The
time spent by RALM and the REPMs grew slowly with the problem size m and n, but their success
rates dropped sharply as the noise level (standard deviation σ) intensified, eventually leading to
non-convergence. In contrast, RSQP and RIPM were more stable and robust, while RIPM was
much faster than RSQP. The cost of RSQP increased drastically with the problem size because a
quadratic programming subproblem (defined over tangent space of current point) had to be solved in
each iteration. Unlike RIPM, which uses Krylov subspace methods introduced in Subsection 3.4.2 to
avoid expensive computations, RSQP had to transform the subproblem into a matrix representation
(similar to Step 1-6 in Subsection 3.4.2). As can be seen from Table 1, RIPM took about the same
amount of time as RALM and the REPMs did.

Problem II. Here, we set tmax “ 600, ǫkkt “ 10´6 for both (Model St) and (Model Ob). Since
the true solution X˚ is known, we added a column showing the average error }X̃ ´ X˚}F, where
X̃ denotes the final iterate. The numerical results are listed in Table 2 and 3. The Error columns
show that if the KKT residual is sufficiently small, then X̃ does approximate the true solution. In
particular, RSQP and RIPM yield a more accurate solution (the error is less than 10´7). From
Table 2, we can see that RALM is stable and fast for (Model St). However, from Table 3, the
success rate of RALM for (Model Ob) decreases as the problem size becomes larger. The REPMs
do not work at all on either model. RSQP also does not perform well on either model. In contrast,
RIPM successfully solved all instances of both models and was only slightly slower than RALM in
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Table 2: Performance of various Riemannian methods on problem II (Model St).
pn, kq (40,8) (50,10)

Success Time [s] Iter. Error Success Time [s] Iter. Error
RALM 1 2.347 45 5.41ˆ10´7 1 4.344 54 5.21ˆ10´7

REPMlqh 0 - - - 0 - - -
REPMlse 0 - - - 0 - - -
RSQP 0.9 1.352ˆ10 7 2.05ˆ10´9 0.7 3.097ˆ10 6 2.47ˆ10´9

RIPM 1 2.225 31 3.72ˆ10´8 1 3.785 32 3.38ˆ10´8

pn, kq (60,12) (70,14)
Success Time [s] Iter. Error Success Time [s] Iter. Error

RALM 1 4.097 34 4.93ˆ10´7 1 6.234 37 5.34ˆ10´7

REPMlqh 0 - - - 0 - - -
REPMlse 0 - - - 0 - - -
RSQP 0.65 7.802ˆ10 7 6.48ˆ10´9 0.85 1.661ˆ102 7 2.64ˆ10´9

RIPM 1 5.555 32 2.81ˆ10´8 1 7.574 33 2.45ˆ10´8

Table 3: Performance of various Riemannian methods on problem II (Model Ob).
pn, kq (40,8) (50,10)

Success Time [s] Iter. Error Success Time [s] Iter. Error
RALM 1 2.510 51 5.04ˆ10´7 0.95 4.727 64 4.94ˆ10´7

REPMlqh 0 - - - 0 - - -
REPMlse 0 - - - 0 - - -
RSQP 0.65 8.618 5 2.30ˆ10´10 0.7 2.782ˆ10 6 1.12ˆ10´10

RIPM 1 3.791 22 5.62ˆ10´9 1 5.880 23 7.93ˆ10´9

pn, kq (60,12) (70,14)
Success Time [s] Iter. Error Success Time [s] Iter. Error

RALM 0.6 5.725 49 3.82ˆ10´7 0.6 8.223 52 3.85ˆ10´7

REPMlqh 0 - - - 0 - - -
REPMlse 0 - - - 0 - - -
RSQP 0.7 4.446ˆ10 5 1.17ˆ10´9 0.5 9.138ˆ10 5 1.82ˆ10´9

RIPM 1 7.134 23 9.69ˆ10´9 1 9.268 24 1.06ˆ10´8

some cases. Overall, our RIPM was relatively fast and most stable.

9 Conclusions

In this paper, we proposed a Riemannian version of the classical interior point method and es-
tablished its local and global convergence. To our knowledge, this is the first study to apply the
primal-dual interior point method to the nonconvex constrained optimization problem on a Rieman-
nian manifold. Numerical experiments showed the stability and efficiency of our method.

Recently, Hirai et al. [15] extended the self-concordance-based interior point methods to Rieman-
nian manifolds. They aimed to minimize a geodesically convex (i.e., convex on manifolds) objective
f : D Ñ R defined on a geodesically convex subset D Ă M. In contrast, in (RCOP), we do not re-
quire any convexity. In practice, many convex functions (in the Euclidean sense) are not geodesically
convex on some interested manifolds. For example, for any geodesically convex function defined on a
connected, compact Riemannian manifold (e.g., Stiefel manifold), it must be constant [5, Corollary
11.10], which is not of interest in the field of optimization. Thus, (RCOP) has a wider applicability.

In closing, let us make a comparison with the Euclidean Interior Point Method (EIPM) to
illustrate the theoretical advantages of our RIPM and discuss two future directions of research on
more advanced RIPM methods.

Comparison: Riemannian IPM (RIPM) v.s. Euclidean IPM (EIPM).

1. RIPM generalizes EIPM from Euclidean space to general Riemannian manifolds. EIPM is a
special case of RIPM when M “ R

n or Rmˆn in (RCOP).
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2. RIPM inherits all the advantages of Riemannian optimization. For example, we can exploit the
geometric structure of M, which is usually regarded as a set of constraints from the Euclidean
viewpoint.

3. Note that in both RIPM and EIPM, we have to solve the condensed Newton equation (19) at
each iteration. However, if the equality constraints can be considered to be a manifold, RIPM
can solve (19) with a smaller order on TxM ˆ R

l. For example, the problem II (Model St)
can be rewritten as

min
XPRnˆk

´2 tracepXTCq s.t. XTX “ Ik, X ě 0.

Here, Stiefel manifold is replaced by the equality constraints, i.e., we define h : Rnˆk Ñ
Sympkq : X ÞÑ hpXq :“ XTX ´ Ik; and M “ R

nˆk, l “ dim Sympkq “ kpk ` 1q{2 in
(RCOP). Then, when we apply EIPM, it requires us to solve (19) of order nk ` kpk ` 1q{2.
On the other hand, if we apply RIPM to (Model St), then (19) reduces to (21) since there
are only inequality constraints on M “ Stpn, kq. In this case, we solve the equation of order
nk ´ kpk ` 1q{2, i.e., the dimension of Stpn, kq. Compared to EIPM, using RIPM reduces our
dimensionality by kpk ` 1q.

4. RIPM can solve some problems that EIPM cannot. For example, the problem I (NLRM) can
be rewritten as

min
XPRmˆn

}A ´ X}2F s.t. rankpXq “ r, X ě 0.

Since the rank function, X ÞÑ rankpXq, is not even continuous, we cannot apply EIPM.

Future Work I: Preconditioner for linear operator equation. With regard to the comple-
mentary condition, S´1

k Zk values display a huge difference in magnitude as k Ñ 8. The operator
Θ :“ GxS

´1ZG˚
x causes the system (19) to be ill-conditioned, risking failure of the iterative method

without preconditioning. Matrix-decomposition-based preconditioner methods cannot be applied to
a problem that does not have a matrix form. A possible alternative is to find a nonsingular P such
that the condition number of P´1T is smaller.

Future Work II: Treatment of more state-of-the-art interior point methods. While
we have considered interior point methods on a manifold for the first time, our Euclidean theoretic
counterpart is an early nonlinear interior point method algorithm [11]; however, the counterpart now
appears to be obsolete compared with more recent interior point methods. For example, our method
does not drive the iteration towards minimizers but only towards stationary points; globalization is
done by monitoring only the KKT residuals; moreover, the boundedness assumption (C2) of tzku
is too strong to hold in some simple cases (see Wächter-Biegler effect [32]). It remains an important
issue to adapt more modern interior point methods to manifolds, although we may encounter various
difficulties in Riemannian geometry.
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