
HAL Id: inria-00177326
https://inria.hal.science/inria-00177326

Submitted on 7 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Type-Theoretic Foundation of Delimited
Continuations

Zena Ariola, Hugo Herbelin, Amr Sabry

To cite this version:
Zena Ariola, Hugo Herbelin, Amr Sabry. A Type-Theoretic Foundation of Delimited Continuations.
Higher-Order and Symbolic Computation, 2007. �inria-00177326�

https://inria.hal.science/inria-00177326
https://hal.archives-ouvertes.fr

A Type-Theoretic Foundation of

Delimited Continuations†

Zena M. Ariola‡

University of Oregon

Hugo Herbelin
INRIA-Futurs

Amr Sabry§

Indiana University

Abstract. There is a correspondence between classical logic and programming
language calculi with first-class continuations. With the addition of control delim-
iters, the continuations become composable and the calculi become more expres-
sive. We present a fine-grained analysis of control delimiters and formalise that
their addition corresponds to the addition of a single dynamically-scoped vari-
able modelling the special top-level continuation. From a type perspective, the
dynamically-scoped variable requires effect annotations. In the presence of con-
trol, the dynamically-scoped variable can be interpreted in a purely functional
way by applying a store-passing style. At the type level, the effect annotations are
mapped within standard classical logic extended with the dual of implication, namely
subtraction. A continuation-passing-style transformation of lambda-calculus with
control and subtraction is defined. Combining the translations provides a decom-
position of standard CPS transformations for delimited continuations. Incidentally,
we also give a direct normalisation proof of the simply-typed lambda-calculus with
control and subtraction.

Keywords: callcc, monad, prompt, reset, shift, subcontinuation, subtraction

1. Introduction

Programming practice suggests that control operators add expressive
power to purely functional languages. For example, control operators
permit the implementation of backtracking (Haynes, 1986), corou-
tines (Haynes et al., 1986), and lightweight processes (Wand, 1999),
which go beyond pure functional programming. Of course, any complete
program which uses these abstractions can be globally transformed
using the continuation-passing style (CPS) transformation to a purely

† Extended version of the conference article “A Type-Theoretic Foundation of
Continuations and Prompts.” (Ariola et al., 2004)

‡ Supported by National Science Foundation grant number CCR-0204389
§ Supported by National Science Foundation grant number CCR-0204389, by

a Visiting Researcher position at Microsoft Research, Cambridge, U.K., and by a
Visiting Professor position at the University of Genova, Italy.

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

final.tex; 11/04/2007; 15:30; p.1

2 Ariola, Herbelin, and Sabry

functional program, but this misses the point. As Felleisen (1990) for-
malises and proves, the additional expressiveness of control operators
comes from the fact that no local transformation of program fragments
using control operators is possible.

There is another, simpler, way to formalise the additional expressive
power of control operators that is based on the Curry-Howard isomor-
phism (Howard, 1980). The pure λ-calculus corresponds to (minimal)
intuitionistic logic; extending it with the control operator C (Felleisen,
1988) makes it expressive enough to computationally interpret classical
logic proofs (Griffin, 1990). Felleisen (1990) also showed that the control
operator callcc is less expressive than C. The logical counterpart is
that callcc is enough to computationally express proofs of minimal
classical logic where it is possible to prove Peirce’s law but not double
negation elimination, whereas C corresponds to (non-minimal) clas-
sical logic which proves double negation elimination (see Ariola and
Herbelin, 2003).

So far, only a small family of control operators have been shown
to be connected to proof constructions in logic, and the situation for
the other control operators is much less understood. In particular,
the addition of control delimiters (Felleisen, 1988) gives rise to delim-
ited continuations which are more expressive than their undelimited
counterparts (Sitaram and Felleisen, 1990b). Even for the well-studied
operators for delimited continuations shift and reset (Danvy and Filin-
ski, 1990), it is not clear how to formalise this additional expressiveness
for at least three reasons:

1. Several type systems and type-and-effect systems have been pro-
posed for these operators (Danvy and Filinski, 1989; Murthy, 1992;
Kameyama, 2000; Kameyama, 2001), and it is not apparent whether
one of these systems is the “right” one even when moving to the
worlds of CPS or monads (Wadler, 1994). Furthermore, for the
type-and-effect systems, there are several possible interpretations
of the effect annotations, which should be completely eliminated
anyway to get a correspondence with a standard logic.

2. Although the semantics of many control operators (including shift
and reset (Kameyama and Hasegawa, 2003)) can be given using lo-
cal axioms, a few properties of these systems, when seen as rewriting
systems, have been investigated. Especially, many of the systems
are not confluent, and under none of the type-and-effect systems is
a property such as strong normalisation known to be ensured.

3. Delimited continuations can simulate a large number of other com-
putational effects like state and exceptions (Filinski, 1994). This

final.tex; 11/04/2007; 15:30; p.2

A Type-Theoretic Foundation of Delimited Continuations 3

seems to indicate that the understanding of the expressive power
of such control operators must also include an understanding of
the expressive power of other effects. Riecke and Thielecke (1999)
and Thielecke (2000, 2001) have formalised the expressive power
of various combinations of continuations, exceptions and state but
their results are not expressed using standard type systems and
logics.

We show that the additional expressiveness of control delimiters can
be characterised in terms of a dynamically-scoped continuation variable,
and that in the presence of dynamic binding, continuations can model
other effects like state and exceptions.

Environment-passing transformation is the standard way to inter-
pret dynamic binding in a functional way. In the presence of control, it
turns out that a store-passing transformation is needed. This is because
the dynamically-scoped continuation variable can be passed back to the
contexts surrounding the binding locations.

At the level of types, if a continuation in the store is assigned
the type ¬T , then a store-passing transformation translates functional
types of the form A → B into types of the form A ∧ ¬T → B ∧ ¬T .
Interestingly, we have the following equivalences that hold classically
but not intuitionistically:

A ∧ ¬T → B iff A→ B ∨ T iff A ∧ ¬T → B ∧ ¬T

This informally complies with the fact that in the presence of control
delimiters, all of the following particular cases are definable: functions
which refer to a dynamic variable of type ¬T without relying on con-
trol, functions which throw an exception of type T , functions which
manipulate a state variable of type ¬T .

Felleisen’s approach of the theory of control (Felleisen, 1988) relies
on a reification of evaluation contexts into continuations. Contrastingly,
our approach, inspired by Ariola and Herbelin (2003), itself inspired by
Parigot (1992), directly deals with contexts (or more precisely with
elementary pieces of context).

Passing around a store which is a context requires to be able to
manipulate the pair of a term and of a context. From this perspective,
the connective of logical subtraction A − T (Rauszer, 1974; Crolard,
2001; Crolard, 2004), which is classically equivalent to A∧¬T , naturally
arises. This connective will be used to interpret the effect annotations.

The next section reviews some background material on abortive
continuations. We present Felleisen and Hieb (1992) revised theory of
control and the λCtp-calculus, an extended syntactic variant of call-by-
value λµ-calculus (Parigot, 1992; Ong and Stewart, 1997) from previous

final.tex; 11/04/2007; 15:30; p.3

4 Ariola, Herbelin, and Sabry

x, a, v, f, c, k ∈ Vars
M, N ∈ Terms ::= x | λx. M |M N | C M
V ∈ Values ::= x | λx. M

Figure 1. Syntax of λC

work by the first two authors (Ariola and Herbelin, 2003). Section 3
explains the semantics of delimited continuations by generalising the
λCtp-calculus to include just one dynamically-scoped variable. Section 4
investigates various ways to extend the type system of λCtp to accom-
modate the dynamically-scoped variable. We present three systems
(closely related to existing type-and-effect systems) and reason about
their properties. Sections 5 and 6 explain how to interpret the effect
annotations in a standard logic. The first focuses on motivating the dual
connective of implication, namely subtraction, and formally defining
λ−

C , a calculus with control operators and subtraction, but no dynamic
binding. The second focuses on using the subtractive type for explaining
the action on the effect annotations of a store-passing style transforma-
tion when what is stored is an evaluation context. Section 7 develops
a CPS transformation for λ−

C that ultimately shows that known CPS
transformations for delimited continuations are decomposable into a
store-passing style transformation into λ−

C followed by a standard CPS
transformation into the pure λ-calculus. The first transformation takes
care of the control delimiter; the second transformation takes care of the
control operator. Section 8 concludes with a discussion of some of the
other control operators. Also discussed is the Curry-Howard problem
for control delimiters. Finally, Appendix A gives the details of the proof
of strong normalisation for simply-typed λ−

C .

2. Abortive Continuations and Classical Logic

We review the semantics of abortive continuations and their connection
to classical logic. We start with Felleisen and Hieb (1992) revised theory
of control.

2.1. The λC-calculus: Felleisend and Hieb revised theory

of control

Figure 1 introduces the syntax of a call-by-value calculus extended with
the unary operator C. Variables and lambda-abstractions are called
values. There is no distinction between continuations and variables, and
a continuation does not need to be applied. The reduction semantics is

final.tex; 11/04/2007; 15:30; p.4

A Type-Theoretic Foundation of Delimited Continuations 5

βv : (λx. M) V → M [V/x]
CL : (CM) N → C (λc. M (λf. A (c (f N))))
CR : V (CM) → C (λc. M (λx. A (c (V x))))
Cidem : C (λc. CM) → C (λc. M (λx. A x))
Ctop : CM → C (λc. M (λx. A (c x)))

Figure 2. Reduction rules of call-by-value λC (Felleisen and Hieb)

x, a, v, f ∈ Vars
k ∈ KVars

KConsts = { tp }
M, N ∈ Terms ::= x | λx. M |M N | C(λk. J)

V ∈ Values ::= x | λx. M
J ∈ Jumps ::= k M | tp M

Figure 3. Syntax of λCtp

given in Figure 2. Our previous work (2003) introduced an alternative
theory of control called λCtp (For a thorough comparison of the two
systems see (Ariola and Herbelin, 2007)).

2.2. The λCtp-calculus: Syntax and Dynamic Semantics

The syntax of the call-by-value λCtp-calculus is in Figure 3. It is a call-
by-value variant of Parigot’s λµ-calculus (1992) where µ is written C.
Ariola and Herbelin (2003) showed that a top-level continuation con-
stant has to be added to the λµ-calculus to recover the expressiveness of
the control calculus of Felleisen and Hieb (1992). The resulting calculus
has the following properties:

− every use of the control operator C must be syntactically applied
to a procedure which receives the captured continuation. For ex-
ample, whereas λy. C y is a legal λC term, it is not a legal λCtp

term;

− variables bound to continuations are distinct from other variables
and can only occur in application position. For example, whereas
C(λk. k) or C(λk. λx. k) are legal λC terms, they are not legal λCtp

terms;

− applications of continuations are called jumps and must occur ex-
actly when a continuation is also captured. For example, whereas
C(λk. (k x) y) is a legal λC term, it is not a legal λCtp term;

− there is a continuation constant tp which denotes the top-level
continuation.

final.tex; 11/04/2007; 15:30; p.5

6 Ariola, Herbelin, and Sabry

(x)
◦

= x
(λx. M)

◦
= λx. M◦

(M N)
◦

= M◦ N◦

(CM)◦ = C(λk. tp (M◦ (λx. Th k x)))

Figure 4. Translation of λC in λCtp

βv : (λx.M) V → M [V/x]
CL : C(λk. J) N → C(λk. J [k (2 N)/k])
CR : V C(λk. J) → C(λk. J [k (V 2)/k])
Celim : C(λk. k M) → M where k 6∈ FV (M)

Cidem : tp C(λk. J) → J [tp 2/k]
Cidem′ : k′ C(λk. J) → J [k′

2/k]

Figure 5. Reductions of call-by-value λCtp

We sometimes use the following convenient abbreviations:

A M ∆
= C(λ .tp M) (Abbrev. 1)

Th k M ∆
= C(λ .k M) (Abbrev. 2)

In both abbreviations, the variable is an anonymous continuation vari-
able that does not occur in the body of the abstraction. Thus, the first
abbreviation corresponds to jumping to the top-level continuation. The
second abbreviation corresponds to jumping to a previously-captured
continuation k.

The translation of λC terms into the λCtp-calculus is given in Figure 4.
For example, λy. Cy becomes λy. C(λk.tp (y (λx. Th k x))). Notice how
the captured continuation is given a name k; the implicit jump to the
top-level associated with the continuation capture is made explicit;
and the implicit aborting of the context when k is applied is also made
explicit.

The semantics is given by the local reduction rules in Figure 5. The
first four reduction rules are similar to the ones given by Felleisen and
Hieb (1992) for λC but with important differences discussed below:

− Like the original calculus, the rules CL and CR allow one to lift the
control operation step-by-step until it reaches a point where it can
no longer be lifted. When the control operator reaches a jump to
the top-level (rule Cidem), the continuation captured is the trivial
continuation modelled by tp.

− Unlike λC, the reduction rules of Figure 5 use structural substitu-
tions for continuations. The general form of structural substitution

final.tex; 11/04/2007; 15:30; p.6

A Type-Theoretic Foundation of Delimited Continuations 7

relies on the definition of contexts:

E ::= 2 | E M | V E ,

and on the notation E[N] which stands for the replacement of
the hole 2 of E with N . The structural substitution M [q E/k]
(resp. J [q E/k]) reads as: “replace every jump of the form k N in
M (resp. J) by the jump (q E[N]) (and recursively in N).” The
substitutions M [tp E/k] and J [tp E/k] are defined similarly. For
example,

tp C(λk. k (M C(λk′. k N)))→ tp (M C(λk′. tp N))

assuming that k does not occur free in M and N . What is dis-
tinctive about this structural substitution is that it is performed
irrespective of whether the jump argument is a value or not. In
particular, in the above example, the application of M is clearly
not a value and N need not be a value. In contrast, λC requires the
argument to every jump to be reduced to a value before performing
the jump.

− Unlike the original presentation, the abortive behaviour of C is not
hard-wired in the reduction rules but in the syntax. Each call k M
to a continuation k bound by some C is necessarily surrounded by
some other C(λk′.2) making it abortive. Contrastingly, the original
reduction rules dynamically insert the context C(λ .2) around each
reference to k (an abortive operator which is useless, as shown by
the original Cidem , when k is already surrounded by some C).

Rule Cidem ′ is a generalisation of Cidem which, apart from the notion of
structural substitution, is similar to the rule M (C N)→ N (λx. (M x))
where M has type ¬A, proposed by Barbanera and Berardi (1993). In
terms of the λµ-calculus, both Cidem′ and Cidem correspond to Parigot’s
“renaming” rule (Parigot, 1992). The Celim rule, which is also used
by Hofmann (1995) for completeness reasons, was also proposed by
Felleisen and Hieb (1992) since it leads to a better simulation of evalua-
tion. However, unlike our system, Felleisen and Hieb extended reduction
theory is non-confluent.

The difference between λC and λCtp is not observable with respect to
reduction to values (Ariola and Herbelin, 2007):

PROPOSITION 1. Let M be a closed λC term:

A M→→λC
A V iff tp M ◦→→λCtp

tp V ′ .

final.tex; 11/04/2007; 15:30; p.7

8 Ariola, Herbelin, and Sabry

b ∈ BaseType
A, B, T ∈ TypeExp ::= b | A→ B

Γ ∈ Contexts ::= · | Γ, x : A | Γ, k : A→⊥⊥

Γ, x : A ` x : A; T
Ax

Γ, x : A `M : B; T

Γ ` λx.M :A→ B; T
→i

Γ `M :A→ B; T Γ `M ′ :A; T

Γ `MM ′ : B; T
→e

Γ, k : A→⊥⊥` J :⊥⊥; T

Γ ` C(λk.J) : A; T
RAA

Γ, k : A→⊥⊥`M : A; T

Γ, k : A→⊥⊥` k M :⊥⊥; T
→k

e

Γ `M : T ; T

Γ ` tp M :⊥⊥; T
→tp

e

Figure 6. Type system of λCtp

However, it is significant as the use of structural substitution avoids
introducing useless and artificial β-expansions which are not even βv-
expansions. In contrast, the β-expansions in the original calculus force
both the evaluation of the argument to the jump in some continuation
and then the erasure of this continuation, instead of the equivalent but
more natural (and efficient) choice of first erasing the continuation and
then evaluating the argument to the jump.

2.3. The λCtp-Calculus: Static Semantics

The calculus λCtp was originally motivated by the Curry-Howard corre-
spondence between classical logic and control operators. The calculus
is both a clarification of the connection between the control operator C
and classical logic (Griffin, 1990), and a counterpart to Parigot’s λµ-
calculus for a formulation of classical logic based on the classical rule
Reductio Ad Absurdum (see below).

According to the Curry-Howard correspondence, the natural inter-
pretation of the tp continuation constant is as a constructor for the
elimination rule of the “false” connective ⊥, i.e., as a primitive contin-
uation expecting an argument of type ⊥. In the current approach, we
generalise the use of tp. We assign it the role of the top-level continua-
tion for a top-level that can have any fixed but arbitrary type and not
only the type ⊥ as in the characterisation of (non-minimal) classical
logic.

The resulting system of simple types for λCtp is given in Figure 6.
The set of base types in λCtp could include ⊥ to represent an empty
type or the proposition “false” but that type plays no special role in

final.tex; 11/04/2007; 15:30; p.8

A Type-Theoretic Foundation of Delimited Continuations 9

the judgements. The judgements do however refer to a special type
⊥⊥ which is used as the type of jumps, i.e., the type of expressions in
the syntactic category J . The type ⊥⊥ is not a base type; it can never
occur as the conclusion of any judgement for terms in the syntactic
category M , but it may occur in the context Γ as the return type of a
continuation variable. We sometimes abbreviate T →⊥⊥ as ¬⊥⊥T .

The judgements are of two forms: Γ `M : A;T for typing terms and
Γ ` J :⊥⊥;T for typing jumps. In both cases the type T is the arbitrary
but fixed type for the top-level; it acts as a global parameter to the
type system (Murthy, 1992). The rule RAA (Reductio Ad Absurdum)
is similar to the double-negation rule in Griffin’s system (1990) except
that it uses the special type ⊥⊥ instead of ⊥. According to the →tp

e

rule, the special top-level continuation can only be invoked with a term
of the distinguished type T . According to the →k

e rule, continuation
variables are invoked with a term of the type expected by the context
in which they were captured.

It is possible to inject a continuation of type T →⊥⊥ into the type of
functions T → ⊥:

Γ, k : T →⊥⊥, x : T ` x : T ;T

Γ, k : T →⊥⊥, x : T ` k x :⊥⊥;T

Γ, k : T →⊥⊥, x : T ` C(λ .k x) : ⊥;T

Γ, k : T →⊥⊥` λx. C(λ .k x) : T → ⊥;T

Thus, it does no harm to informally think of ⊥⊥ as ⊥ remembering that
an explicit coercion is required to move from one to the other (the way
to coerce T → ⊥ into T →⊥⊥ is given in Intermezzo 16). But the special
nature of the type ⊥⊥ can perhaps be best understood by examining the
situation in the isomorphic λµ-calculus extended with tp. In that type
system, there is no need for ⊥⊥: the types of continuation variables are
maintained on the right-hand side of the sequent and jumps have no
type. In other words, a more accurate understanding of ⊥⊥ is as a special
symbol denoting “no type.”

Simple experience with the type system reveals that the top-level
type sometimes provides helpful additional information about the type
of a term. For example:

` A 5 == "Hello" : bool; int

accurately predicts that the expression returns a bool or jumps to the
top-level with an int. However, the top-level type sometimes provides
misleading information about the type of a term. For example, in the
judgement:

` λx. (x + A "Hello") : int→ int; string

final.tex; 11/04/2007; 15:30; p.9

10 Ariola, Herbelin, and Sabry

the presence of the type string is actually associated with the definition
of the function and not its use. This confusion could lead to problems
as discussed in Sections 4.1 and 4.2 where we talk about generalisations
of the system.

PROPOSITION 2.

(i) λCtp is confluent.

(ii) Subject reduction: Given λCtp terms M and N , if Γ `M : A;T
and M → N , then Γ ` N : A;T .

(ii) Progress: A closed λCtp jump J is either a jump to the top-
level with a value (i.e. a jump tp V) or a head-reducible jump (i.e.
either of the form tp E[N] with N a redex or tp C(λk. J) which is
a redex).

(ii) Simply typed terms are strongly normalising.

Proof. Confluence is shown in (Ariola and Herbelin, 2007) where
it relies on the standard parallel reduction method, using extra tricks
from (Baba et al., 2001). Subject reduction and progress are routine
verifications. Strong normalisation is somehow standard but it can also
be obtained as a consequence of Proposition 17, interpreting tp as a
free continuation variable.

3. Delimited Continuations

We modify the λCtp-calculus by adding control delimiters. We then show
that the delimiter can be eliminated in favour of a single dynamically-
scoped variable.

3.1. Adding Control Delimiters

As shown in Figure 7, we extend the syntax of the λCtp calculus with a
control delimiter #. The use of # delimits the continuation captured
by C. For example, the occurrence of C in:

1 + (# (tp (2 + (C(λk . . .)))))

only captures the continuation corresponding to the context (2 + 2).
Similarly, in the following expression, the use of # delimits the jump:

1 + (# (tp 2))

final.tex; 11/04/2007; 15:30; p.10

A Type-Theoretic Foundation of Delimited Continuations 11

x, a, v, f ∈ Vars
k ∈ KVars

KConsts = { tp }
M, N ∈ Terms ::= x | λx. M |M N | C(λk. J) | # J

V ∈ Values ::= x | λx. M
J ∈ Jumps ::= k M | tp M

Figure 7. Syntax of λC#tp

βv : (λx.M) V → M [V/x]
CL : C(λk. J) N → C(λk. J [k (2 N)/k])
CR : V (C(λk. J)) → C(λk. J [k (V 2)/k])
Cidem : tp C(λk. J) → J [tp 2/k]
Cidem′ : k′ C(λk. J) → J [k′

2/k]
Celim : C(λk. k M) → M where k 6∈ FV (M)
#v : # (tp V) → V

Figure 8. Reductions of call-by-value λC#tp

The jump to the top-level is blocked by the #, and the entire expres-
sion should evaluate to 3. This intuition is consistent with the original
motivation for introducing control delimiters: they provide an explicit
“top-level” for the evaluation of a subexpression (Felleisen, 1988).

The semantics is formalised by adding one new reduction to the
reductions of λCtp as shown in Figure 8. The reduction #v formalises
that the role of the # terminates once its subexpression has been
simplified to a value, which by definition can no longer perform any
control actions.

λCtp is sound and complete equivalent with respect to Felleisen’s λC#

calculus 1988, which consists of adding #-expressions to the syntax of
λC. The reduction semantics of λC# has the following two rules for the
#:

#C #(CM) → #(M (λx.A x))
#v #V → V

but omit the Ctop rule. The translation of Figure 4 is extended with the
clause:

(# M)◦ = # (tp M ◦)

The equivalence can then be stated as follows (Ariola and Herbelin,
2007):

PROPOSITION 3. Let M be a closed λC# term:

M→→λC#
V iff # (tp M ◦)→→λC#tp

V ′ .

final.tex; 11/04/2007; 15:30; p.11

12 Ariola, Herbelin, and Sabry

REMARK 4. The presence of the delimiter # makes it possible to
express the operators shift and reset given in the seminal paper of
Danvy and Filinski (1989). Filinski (1994) showed that both operators
are definable from Felleisen’s C and # operators. Expressed in λC#tp,
we get:

S (λq. M) = C(λk. tp (λq.M) (λx.# (k x))))
〈M〉 = # (tp M)

The essence of the above definition is to surround each invocation of
a continuation by the delimiter. This however does not mean that
each jump in λC#tp must be surrounded by the delimiter. For example,
one can write # (tp (C(λk. tp ((λx. (Th k x) + 10) (# (k 3)))) +
5)), which evaluates to 8. This does not mean either that any term
that behaves like S (λq.M) must have the form above. For exam-
ple, C(λk. tp ((λx. (# (k x)) + 10) (# (k 3)))) behaves the same as
S (λq. ((λx. q x + 10) (q 3))).

3.2. Dynamic Binding of the Top-Level Continuation

The discussion and semantics in the previous section explain that the
addition of control delimiters amounts to having different bindings to
the top-level continuation. To better understand this idea, we propose
to modify the original λCtp which has a constant corresponding to the
top-level continuation by making the top-level continuation a variable.
In this section, we explain why this variable cannot be a statically-
scoped variable.

EXAMPLE 5. (Static vs. Dynamic #) Using the λC#tp reductions, we
have (we underline the redex in the first two steps):

(tp ((# (tp (λ . C(λ .tp (λ . 3))))) (λ . C(λ .tp 4))))

→ # (tp ((λ . C(λ .tp (λ . 3))) (λ . C(λ .tp 4))))

→ # (tp C(λ .tp (λ . 3)))
→ # (tp (λ . 3))
→ (λ . 3)

In the original term, the third occurrence of tp is statically associated
with the second occurrence of #. However, after one reduction step this
occurrence of tp is actually associated with the first occurrence of #.

Intuitively, a use of a control delimiter introduces a new binding
for the top-level continuation for the duration of the evaluation of
its subexpression. In other words, the standard semantics of control

final.tex; 11/04/2007; 15:30; p.12

A Type-Theoretic Foundation of Delimited Continuations 13

x, a, v, f, c ∈ Vars
k ∈ StaticKVars

DynKVars = { t̂p }

M, N ∈ Terms ::= x | λx. M |M N | C(λk. J) | C(λt̂p. J)
V ∈ Values ::= x | λx. M

J ∈ Jumps ::= k M | t̂p M

Figure 9. Syntax of λ
Ct̂p

delimiters requires that the binding for the top-level continuation be
dynamic (as we will formally prove in the remainder of the paper).

It is possible to use static scope for control delimiters. Not surpris-
ingly, this choice gives a different semantics. Indeed, Thielecke (2002)
considers several variations of control operators with different scope
rules. He presents a system with static scope and a system with dy-
namic scope and shows that the system with static scope (adequately
extended with infinitely many continuation variables so that capture-
free substitution and β-reduction are correctly defined) corresponds to
classical logic and that the system with dynamic scope corresponds to
intuitionistic logic. Kameyama (2001) also develops a type system and
a semantics for a static variant of control delimiters which he shows
has a different semantics than the usual operators.

3.3. The λ
Ct̂p

-Calculus

As motivated in the previous section the control delimiter can be mod-
elled in an extension of the λCtp-calculus where the top-level contin-
uation is a dynamically-scoped variable. This extension is given in
Figure 9. The grammar now has two distinct uses of C: one for reg-
ular statically-scoped continuation variables and one for the unique
dynamically-scoped continuation variable t̂p. We introduce a new ab-
breviation for an expression which aborts to the closest occurrence of
this dynamically-scoped continuation variable:

Â M ∆
= C(λ . t̂p M) (Abbrev. 3)

The anonymous variable ranges only over regular variables and static
continuation variables but not over the dynamic variable. Similarly, the
notions of free and bound variables only apply to the regular variables
and the static continuation variables but not the dynamic variable.

In order to define the semantics of λ
Ct̂p

we first need an under-
standing of the semantics of dynamic binding in the absence of control
operators (Moreau, 1998). A dynamic abstraction (λx̂.M) is generally

final.tex; 11/04/2007; 15:30; p.13

14 Ariola, Herbelin, and Sabry

βv : (λx. M) V → M [V/x]
CL : C(λk. J) N → C(λk. J [k (2 N)/k])
CR : V C(λk. J) → C(λk. J [k (V 2)/k])

Cidem : t̂p C(λk. J) → J [t̂p 2/k]
Cidem′ : k′ C(λk. J) → J [k′

2/k]
Celim : C(λk. k M) → M where k 6∈ FV (M)

Celim′ : C(λt̂p. t̂p V) → V even if t̂p occurs in V

Figure 10. Reductions of call-by-value λ
Ct̂p

like a regular function in the sense that when it is called with a value V ,
the formal parameter x̂ is bound to V . But:

DS1 The association between x̂ and V established when a function is
called lasts exactly as long as the evaluation of the body of the
function. In particular, the association is disregarded when the
function returns, and this happens even if the function returns
something like (λ x̂ . . .) which contains an occurrence of x̂: no
closure is built and the occurrence of x̂ in the return value is allowed
to escape.

DS2 The association between x̂ and V introduced by one function may
capture occurrences of x̂ that escape from other functions. For
example, if we have two dynamic functions f and g with f directly
or indirectly calling g, then during the evaluation of the body of f ,
occurrences of x̂ that are returned in the result of g will be captured.
Turning this example around, the occurrences of x̂ that escape
from g are bound by the closest association found up the dynamic
chain of calls.

In the presence of control operators, the situation is more complicated
because the evaluation of the body of a function may abort or throw to
a continuation instead of returning; and capturing a continuation inside
the body of a function allows one to re-enter (and hence re-evaluate)
the body of the function more than once.

Despite the additional complications, the reduction rules of λ
Ct̂p

in
Figure 10 look essentially like the reduction rules of the λCtp-calculus.
The noteworthy addition is the rule Celim′ which allows occurrences of t̂p
in V to escape as suggested by DS1 above. Another change, implied
by DS2, is that the meta-operation of substitution must allow for the
capture of t̂p. The substitution operations M [V/x] and J [k E/k] do
not rename t̂p but are otherwise standard. In particular, we have that:

C(λt̂p. J)[M/x] ≡ C(λt̂p. J [M/x])

even if t̂p occurs in M .

final.tex; 11/04/2007; 15:30; p.14

A Type-Theoretic Foundation of Delimited Continuations 15

b ∈ BaseType
A, B, T ∈ TypeExp ::= b | A→ B

Γ ∈ Contexts ::= · | Γ, x : A | Γ, k : A→⊥⊥

Γ, x : A ` x : A; T
Ax

Γ, x : A `M : B; T

Γ ` λx.M :A→ B; T
→i

Γ `M :A→ B; T Γ `M ′ :A; T

Γ `MM ′ : B; T
→e

Γ, k : A→⊥⊥` J :⊥⊥; T

Γ ` C(λk.J) : A; T
RAA

Γ ` J :⊥⊥; T

Γ ` C(λt̂p. J) : T ; T
RAAt̂p

Γ, k : A→⊥⊥`M : A; T

Γ, k : A→⊥⊥` k M :⊥⊥; T
→k

e

Γ `M : T ; T

Γ ` t̂p M :⊥⊥; T
→t̂p

e

Figure 11. Λ→ fixed

Ct̂p
: a type system of λ

Ct̂p

EXAMPLE 6. (Dynamic capture) The reduction:

(λx. λy. C(λt̂p. t̂p (x y))) (λ .C(λ .t̂p y)) →βv

(λy. C(λt̂p. t̂p (x y))) [λ .C(λ .t̂p y)/x] ≡α

λy′. C(λt̂p. t̂p ((λ .C(λ . t̂p y)) y′))

captures t̂p but not y.

The exact correspondence between the syntax and reductions of
λC#tp and λ

Ct̂p
allows to express the following:

PROPOSITION 7. The calculi λC#tp and λ
Ct̂p

are isomorphic.

4. The λ
Ct̂p

-Calculus: Static Semantics

We consider several natural type (and effect) systems for both λC#tp

and λ
Ct̂p

that are inspired by systems in the literature.

4.1. Type System I: Fixed Answer Type

The simplest way to produce a type system for λ
Ct̂p

is to adapt the type

system of λCtp in minor ways: change the occurrences of tp to be t̂p, and
add a new variant of the rule RAA for typing the new use of C. The
resulting system is in Figure 11.

final.tex; 11/04/2007; 15:30; p.15

16 Ariola, Herbelin, and Sabry

The type system Λ→ fixed

Ct̂p
induces the following rule on the λC#tp side:

Γ `M : T ;T

Γ ` # (tp M) : T ;T

In other words, every occurrence of the control delimiter in the program
must be used at the same fixed type T . Thus, control operators can only
be used in contexts that agree with the top-level type. This situation is
similar to the type system one gets when defining control operations on
top of a continuation monad with a fixed answer type (Wadler, 1994).
Despite its obvious restrictions, this system may be adequate for some
applications (Filinski, 1994).

A standard question about type systems is whether they ensure nor-

malisation of typed λ-terms. It turns out that the type system Λ→ fixed

Ct̂p

hides a recursive type in case the top-level type is non-atomic. Strong
normalisation is not guaranteed as the following example shows. (See
also Proposition 26.)

EXAMPLE 8. (Loss of SN) We present the example using λC#tp. Let
T = (int → int)→ int be the fixed top-level type, then we can calculate
the following types for the given λC#tp expressions:

g :: int → T = λ .λ .0
f :: T = λx. (# (tp (g (x 0)))) x
s :: int→ int = λ .(A f)
e :: int = f s

Despite being well-typed, e goes into an infinite loop:

f s →→ (# (tp (g (A f)))) s →→ (# (tp f)) s →→ f s

4.2. Type System II: Dynamic Binding as an Effect

The requirement that all occurrences of t̂p (or equivalently, all occur-
rences of #) are typed with the same fixed top-level type T is overly
restrictive. Each introduction of t̂p can be given a different type. This

is captured by the following variant of rule RAAt̂p:

Γ ` J :⊥⊥;A

Γ ` C(λt̂p. J) : A;T

final.tex; 11/04/2007; 15:30; p.16

A Type-Theoretic Foundation of Delimited Continuations 17

b ∈ BaseType
A, B, T ∈ TypeExp ::= b | A→T B

Γ ∈ Contexts ::= · | Γ, x : A | Γ, k : A→T⊥⊥

Γ, x : A ` x : A; T
Ax

Γ, x : A `M : B; T

Γ ` λx.M :A→T B; T ′
→i

Γ `M :A→T B; T Γ `M ′ :A; T

Γ `MM ′ : B; T
→e

Γ, k : A→T⊥⊥` J :⊥⊥; T

Γ ` C(λk.J) : A; T
RAA

Γ ` J :⊥⊥; A

Γ ` C(λt̂p. J) : A; T
RAAt̂p

Γ, k : A→T⊥⊥`M : A; T

Γ, k : A→T⊥⊥` k M :⊥⊥; T
→k

e

Γ `M : T ; T

Γ ` t̂p M :⊥⊥; T
→t̂p

e

Figure 12. Λ
→ effeq

Ct̂p
: a type-and-effect system of λ

Ct̂p

In this rule, if t̂p is introduced in a context expecting a value of type A,
then it can be called with arguments of type A. In other words, a new
top-level type is introduced for the typing of J . Thus, the judgement:

Γ `M : A;T

can now be read as “term M returns a value of type A to its immediate
context or a value of type T to its enclosing #.” On the λC#tp side, this
corresponds to the following rule:

Γ `M : A;A

Γ ` # (tp M) : A;T

This modification is closely related to Murthy’s type system (1992).
Unfortunately, this modification is unsound by itself as it changes

the type of t̂p without taking into account that it is dynamically bound.

Simply modifying the RAAt̂p rule of the type system of Figure 11 pro-
duces a type system for the static variant of #: the term considered in
Example 5 which evaluates to (λ .3) is given the type int.

Therefore, in addition to having the modified rule RAA t̂p, we also
need to modify the system to take into account that t̂p is a dynamic
variable. A possible modification is to repeat what must be done for
other dynamically-bound entities like exceptions (Guzmán and Suárez,
1994), and to add an effect annotation on every arrow type to pass
around the type of t̂p. The system with dynamic effect annotations is
shown in Figure 12. Using this system the term in Example 5 has
type A →B int which is consistent with the value λ .3. The term

final.tex; 11/04/2007; 15:30; p.17

18 Ariola, Herbelin, and Sabry

λx. (x + A "Hello") has the type int →string int with the string

constraint correctly associated with the function call not the function
definition.

PROPOSITION 9. Subject reduction: given λ
Ct̂p

terms M and N if

Γ `M : A;T in Λ
→ effeq

Ct̂p
and M → N then Γ ` N : A;T in Λ

→ effeq

Ct̂p
.

On the λC#tp side, the corresponding type-and-effect system (which
we do not present) addresses the loss of strong normalisation discussed
in Example 8. The effect annotations impose the following recursive
constraint T = (int →T int) →T int. In other words, for the terms to
typecheck, we must allow recursive type definitions. This is a situation
similar to the one described by Lillibridge (1999) where unchecked ex-
ceptions can be used to violate strong normalisation. More generally, we

can prove that under the type-and-effect system Λ
→ effeq

Ct̂p
of Figure 12,

typed λ
Ct̂p

-terms are strongly normalising. (See Proposition 26.)

INTERMEZZO 10. In the approach discussed above, different occur-
rences of the symbol # in a program may have different types. Gunter et
al. (1995) take the (quite natural) position that occurrences of # with
different types should have different names. Each name still has a fixed
type but that type is not constrained to be the same as the top-level,
nor is it constrained to be related to the types of the other names. As

in Λ
→ effeq

Ct̂p
, different occurrences of control delimiters can have different

types and the type of the delimiter must be propagated to the control
operator. However, it is closer in design to the system with a fixed
answer type as all calls to a delimiter of a given name must have the
same type. Moreover, since the type system has no effect annotations,
Example 8 still typechecks and loops, and well-typed control operations
may refer to non-existent control delimiters.

4.3. Understanding the Dynamic Annotations

The dynamic annotations we used happen to produce a sound type
system, but on closer inspection they are not the “right” annotations.
In the following discussion, ¬⊥⊥T denotes the type of a continuation
variable expecting an argument of type T , as defined in Section 2.3.

It is standard to embed type systems with effects into regular type
systems using a monadic transformation. Since our effect annotations
have to do with t̂p which is a dynamic variable, a first guess would be to
use the environment-passing transformation used to explain dynamic
scope (Moreau, 1998). At the level of types, the environment-passing

final.tex; 11/04/2007; 15:30; p.18

A Type-Theoretic Foundation of Delimited Continuations 19

transformation (written (·)∗) maps A →T B to A∗ ∧ ¬⊥⊥T ∗ → B∗,
which means that every function is passed the (unique) environment
binding as an additional argument (we defer to Section 5.1 the question
of how to concretely represent the pair of a term and a continuation
variable). Judgements Γ ` A;T are mapped to Γ∗,¬⊥⊥T ∗ ` A∗ which
means that every expression must be typed in the context of its en-
vironment. Writing the translation for the pure fragment is easy, but
when it comes to C, the translation of the typing rule RAA would
produce a continuation whose input type is A∗ ∧ ¬⊥⊥T ∗, because con-
tinuations also need the environment. But as the rule RAA shows,
the input type of the continuation corresponds to the return type of
the expression that captures it. In other words, expressions that might
capture continuations must return both their value and the environ-
ment variable. Thus, our environment-passing embedding becomes a
store-passing transformation.

A second interpretation of the annotations would be using excep-
tions: each delimiter installs an exception handler, and calls to t̂p throw
exceptions to the dynamically-closest handler. Indeed, exceptions can
be simulated with ordinary dynamic variables (Moreau, 1998) and with
dynamic continuation variables (Gunter et al., 1995). According to the
standard monadic interpretation of exceptions (Moggi, 1989), this leads
to a transformation mapping A→T B to A∗ → B∗ ∨ T ∗, which means
that every function may return a value or throw an exception to its
delimiter. Judgements Γ ` A;T are mapped to Γ∗ ` A∗ ∨ T ∗ and have
a similar interpretation. When writing such a translation in a general
setting (Thielecke, 2001; Thielecke, 2000; Riecke and Thielecke, 1999),
one is faced with a choice: should a use of a control operator capture
the current exception handler or not? In our setting, the question is:
if a continuation is captured under some #, and later invoked under
another #, should calls to t̂p refer to the first # or the second? It is
clear that our semantics requires the second choice, which turns out to
be consistent with the SML/NJ control operators capture and escape.
In combination with exceptions, these control operators can simulate
state (Thielecke, 2001, Fig. 12) which means that our embedding also
becomes a store-passing transformation.

The above discussion suggests the following interpretation: functions
A →T B are mapped to A∗ ∧ ¬⊥⊥T ∗ → B∗ ∧ ¬⊥⊥T ∗ and judgements
Γ ` A;T are mapped to Γ∗,¬⊥⊥T ∗ ` A∗ ∧¬⊥⊥T ∗. This interpretation is
a standard store-passing one, which is consistent with Filinski’s obser-
vation that shift and reset can be implemented using continuations and
state (1994, 1999). The entire analysis is also consistent with the fact
that in classical logic, the following formulae are all logically equivalent

final.tex; 11/04/2007; 15:30; p.19

20 Ariola, Herbelin, and Sabry

b ∈ BaseType
A, B, T, U ∈ TypeExp ::= b | A U→T B

Γ ∈ Contexts ::= · | Γ, x : A | Γ, k : A→T⊥⊥

Γ, x : A; T ` x : A; T
Ax

Γ, x : A; U `M : B; T

Γ; T ′ ` λx.M :A U→T B; T ′
→i

Γ; U1 `M :A U2
→T1

B; T2 Γ; T1 ` N :A; U1

Γ; U2 `MN : B; T2

→e

Γ, k : A→U⊥⊥` J :⊥⊥; T

Γ; U ` C(λk.J) : A; T
RAA

Γ ` J :⊥⊥; A

Γ; T ` C(λt̂p. J) : A; T
RAAt̂p

Γ, k : A→U⊥⊥; U `M : A; T

Γ, k : A→U⊥⊥` k M :⊥⊥; T
→k

e

Γ; U `M : U ; T

Γ ` t̂p M :⊥⊥; T
→t̂p

e

Figure 13. Λ→ eff

Ct̂p
: another type-and-effect system of λ

Ct̂p

(even though they are not computationally equivalent):

A ∧ ¬T → B (t̂p as an environment)
A→ B ∨ T (t̂p as an exception)
A ∧ ¬T → B ∧ ¬T (t̂p as a state)

4.4. Type System III: State as Effects

As the analysis in the previous section shows, t̂p can be understood
as a state parameter and this understanding leads to a different, more
expressive, type-and-effect system, which maintains the type of t̂p before
and after each computation. This generalisation gives the type-and-

effect system Λ→ eff

Ct̂p
of Figure 13, which is essentially identical to the

one developed by Danvy and Filinski as early as 1989.
In the cases of jumps and continuations, the judgements and types

of the new type system are the same as before. When typing terms, the
judgements have the form Γ;U `M : A;T with T and U describing the
top-level continuation before and after the evaluation of the term M ,
respectively. For terms without C, we can show by induction that the
two formulae T and U are the same. For terms of the form C(λk.J), the
formula U is the type of the top-level continuation when k is invoked.
Implication has two effects A U→T B with T describing the top-level
continuation before the call and U describing the top-level continuation

final.tex; 11/04/2007; 15:30; p.20

A Type-Theoretic Foundation of Delimited Continuations 21

after the call. These changes make the typing of applications sensitive
to the order of evaluation of the function and argument: the rule →e

assumes the function is evaluated before the argument. The new system
is sound.

PROPOSITION 11. Subject reduction: given λ
Ct̂p

terms M and N , if
Γ;U `M : A;T and M → N then Γ;U ` N : A;T .

Let Adf be the operation of changing each arrow B →T C into the arrow
B T→T C in the formula A. Let Γdf be the extension of this operation
to Γ. Let Ab be the operation of adding twice the same atomic effect
b on the occurrences of → in the effect-free formula A (i.e. B → C
becomes B b→b C). Let Γb be the extension of this operation to an
effect-free Γ. The new type-and-effect system generalises the previous
systems.

PROPOSITION 12.

(i) If Γ ` M : A;T (resp. Γ ` J :⊥⊥;T) in Λ
→ effeq

Ct̂p
then Γdf ;Tdf `

M : Adf ;Tdf (resp. Γdf ` J :⊥⊥;Tdf) in Λ→ eff

Ct̂p
.

(ii) For atomic b, if Γ ` M : A; b (resp. Γ ` J :⊥⊥; b) in Λ→ fixed

Ct̂p

then Γb; b `M : Ab; b (resp. Γb ` J :⊥⊥; b) in Λ→ eff

Ct̂p

The added expressiveness of the type system is illustrated with the
following example.

EXAMPLE 13. The term C(λt̂p. t̂p (1 + C(λk. t̂p (2 == C(λt̂p. k 3)))))

is rejected by Λ
→ effeq

Ct̂p
but accepted in Λ→ eff

Ct̂p
with the following rule for

typing the equality:

Γ;T1 `M : A;T Γ;U ` N : A;T1

Γ;U `M == N : bool;T

The first occurrence of k is delimited by the outermost occurrence of t̂p
which is of type int, but when k is invoked, the context is delimited by
a type bool. Indeed, the term evaluates to a boolean value as shown
below:

C(λt̂p. t̂p (1 + C(λk. t̂p (2 == C(λt̂p. k 3)))))
→ C(λt̂p. t̂p (C(λk. t̂p (2 == C(λt̂p. k (1 + 3))))))
→ C(λt̂p. t̂p (2 == C(λt̂p. t̂p (1 + 3))))
→→ C(λt̂p. t̂p (2 == 4)) →→ false

final.tex; 11/04/2007; 15:30; p.21

22 Ariola, Herbelin, and Sabry

In general, the new type system is expressive enough to give different
types to different occurrences of t̂p, as shown in the next example.

EXAMPLE 14. In the term C(λt̂p. t̂p (Â 5==Â "Hello")) the visible

occurrence of t̂p and the two implicit occurrences in Â have the three
different types: bool, int and string respectively, as indicated in the
derivation below.

; int ` 5 : int; int
Ax

; string ` Â 5 : A; int

; string ` "Hello" : string; string
Ax

; bool ` Â "Hello" : A; string

; bool ` Â 5 == Â "Hello" : bool; int

` t̂p (Â 5 == Â "Hello") :⊥⊥; int
→t̂p

e

; T ` C(λt̂p. t̂p (Â 5 == Â "Hello")) : int; T
RAAt̂p

5. The λ−
C -Calculus

We show that the dual connective of implication, namely subtraction
(written A−B) arises as the natural type for carrying around the type
of the top-level continuation, and formally introduce the λ−

C -calculus.

5.1. Subtraction

Our analysis in Section 4.3 together with our understanding of the

system Λ→ eff

Ct̂p
suggest we interpret the more general effect annotations

as follows:

(A U→T B)∗ = A∗ ∧ ¬⊥⊥T ∗ → B∗ ∧ ¬⊥⊥U∗

(Γ;U ` A;T)∗ = Γ∗,¬⊥⊥T ∗ ` A∗ ∧ ¬⊥⊥U∗

But the question arises: how to represent ¬⊥⊥T ∗ as a type? A natural
attempt is to embed ¬⊥⊥T ∗ into the type of functions T ∗ → ⊥ as shown
in Section 2.3, but it is also possible to investigate a more abstract
solution based on the subtraction connective.

The subtractive type has been previously studied by Rauszer (1974)
and Crolard (2001), and has been integrated by Curien and Herbe-
lin (2000) in their study of the duality between the producers of values
(which are regular terms) and the consumers of values (which are
contexts or continuations). Subtraction has been also considered in Fil-
inski (1989) where it is named a co-exponential. In particular, Filinski

final.tex; 11/04/2007; 15:30; p.22

A Type-Theoretic Foundation of Delimited Continuations 23

b∗ = b
(A U→T B)∗ = (A∗ − T ∗)→ (B∗ − U∗)

(·)∗ = ·
(Γ, x : A)∗ = Γ∗, x : A∗

(Γ, k : A→U⊥⊥)∗ = Γ∗, k : (A∗ − U∗)→⊥⊥

Figure 14. Interpreting the effect annotations

Γ ` ∆, C; A Γ, B ` ∆, C; C

Γ ` ∆, C; A−B
−i

Γ ` ∆; A−B Γ, A ` ∆; B

Γ ` ∆; C
−e

Figure 15. Subtractive logic in Parigot’s style (classical natural deduction)

presents a duality between functions of type A → B and continua-
tions of type A − B (there written [B ← A]) that are interpreted as
continuation transformers. In our work, the subtraction arises as the
natural type for pairing a term and an evaluation context and we use
it as a direct representation of this information rather than to rely on
an embedding of evaluation contexts (of type ¬⊥⊥T) into functions (of
type ¬T).

The actual interpretation of effects we use is in Figure 14. (The cor-
rectness of the interpretation is discussed in Section 6 after we explain
the target of the translation in detail.) The interpretation shows that
a continuation k has type (A − T) →⊥⊥. Understanding A − T as the
type A∧¬T means that, as Danvy and Filinski explain, every delimited
continuation must be given a value and another continuation (called the
metacontinuation in their original article (Danvy and Filinski, 1990)
and referring to the top-level continuation as we explain). The type
A−T is also equivalent to ¬(¬T → ¬A) and with that view, a delimited
continuation is more like a continuation transformer, which is an idea
closely related to Queinnec and Moreau’s formalisation of delimited
continuations as the difference between two continuations (1994).

The embedding of a function type is of the form (A−T)→ (B−U)
which captures the idea that the top-level type T needed to execute
the function’s body should be available when the function is called,
and that the new top-level type U is returned as part of the result.

INTERMEZZO 15.
Figure 15 presents the subtraction rules introduced by Crolard (2004)
in the style of Parigot’s classical natural deduction. In that setting one
works with two sets of assumptions: Γ and ∆, where ∆ maintains the

final.tex; 11/04/2007; 15:30; p.23

24 Ariola, Herbelin, and Sabry

A, B ::= X | A→ B | A−B
Γ ::= · | Γ, A | Γ, A→⊥⊥

Γ, A ` A
Ax

Γ, A ` B

Γ ` A→ B
→i

Γ ` A→ B Γ ` A
Γ ` B

→e

Γ, A→⊥⊥`⊥⊥

Γ ` A
RAA

Γ, A→⊥⊥` A

Γ, A→⊥⊥`⊥⊥
→k

e

Γ ` A Γ, B `⊥⊥

Γ ` A−B
−i

Γ ` A−B Γ, A, B →⊥⊥`⊥⊥

Γ `⊥⊥
−e

Figure 16. Classical subtractive logic

continuation variables. In a setting with continuation variables writ-
ten on the left-hand side of the sequent, the natural representation of
∆ = {A1, · · · , An} is as ¬⊥⊥∆ defined as {¬⊥⊥A1, · · · ,¬⊥⊥An}. With this
notation, the subtraction rules rewrite to:

Γ,¬⊥⊥∆,¬⊥⊥C ` A Γ, B,¬⊥⊥∆,¬⊥⊥C ` C

Γ,¬⊥⊥∆,¬⊥⊥C ` A−B
−i

Γ,¬⊥⊥∆ ` A−B Γ, A,¬⊥⊥∆ ` B

Γ,¬⊥⊥∆ ` C
−e

Figure 16 presents our variant of the classical natural deduction with
subtraction. A formula is built from a set of atomic formulae (X), which
we leave unspecified, and two logical connectives. We make use of two
kinds of judgements: Γ ` A and Γ `⊥⊥. The rules for subtraction are
slightly different. We can recover Crolard’s rules as follows:

Γ,¬⊥⊥∆,¬⊥⊥C ` A

Γ, B,¬⊥⊥∆,¬⊥⊥C ` C

Γ, B,¬⊥⊥∆,¬⊥⊥C `⊥⊥
→k

e

Γ,¬⊥⊥∆,¬⊥⊥C ` A−B
−i

Γ,¬⊥⊥∆,¬⊥⊥C ` A−B

Γ,¬⊥⊥∆,¬⊥⊥B, A,¬⊥⊥C ` B

Γ,¬⊥⊥∆,¬⊥⊥B, A,¬⊥⊥C `⊥⊥
→k

e

Γ,¬⊥⊥∆,¬⊥⊥C `⊥⊥
−e

Γ,¬⊥⊥∆ ` C
RAA

final.tex; 11/04/2007; 15:30; p.24

A Type-Theoretic Foundation of Delimited Continuations 25

x, a, v, f ∈ Vars
k, tp ∈ KVars

M, N ∈ Terms ::= x | λx. M |M N | C(λk. J) |
(M, λx. Jc[E[x]])

V ∈ Values ::= x | λx. M | (V, λx. Jc[E[x]])
J ∈ Jumps ::= k M | let (x, k) = M in J

Jc ∈ ElemJumpCtx ::= k 2 | let (x, k) = 2 in J
F ∈ ElemCtxt ::= 2 M | V 2 | (2, λx. Jc[E[x]])

E ∈ EvCtxt ::= 2 | E[F]

Figure 17. Syntax of λ−
C

5.2. Syntax, Semantics, and Type System

We formalise the λ−
C -calculus by extending the original λCtp with sub-

traction and removing the special constant tp since we are maintaining
the top-level continuation using the subtractive type. The resulting cal-
culus is a call-by-value variant of Crolard’s extension of the λµ-calculus
with subtraction (2004).

The syntax is given in Figure 17. Subtractions are introduced by
terms of the form (M,λx. k E[x]) or (M,λx. let (x′, k) = E[x] in J).
We represent them both using the syntactic category Jc and write
(M,λx. Jc[E[x]]). We call the second component of the pair a jump
context. The use of a jump context in place of a continuation vari-
able is motivated and explained below. The notation λx. Jc[E[x]] is
basically a writing for the pair of the elementary jump context Jc

and of the evaluation context E. The role of the abstraction over x
is purely decorative: it is a way to recall that the hole of Jc[E] is bound
in the pair (M,λx. Jc[E[x]]). In particular, in the evaluation context
(E′, λx. Jc[E[x]]), the hole is in E ′, not in E. As an abuse of notation,
we write k as an abbreviation for the jump context λx.k x. Subtractions
are eliminated by a jump of the form let (x, k) = M in J . The notation
E[F] is pure syntax: it denotes the pair of E and F . Contrastingly, each
of the notations F [M] and E[M] (resp. Jc[M] and Jc[E[M]]) that are
used later on denote the term (resp. jump) obtained by interpreting
the context as a partial term (resp. jump) and by filling the hole of this
partial term with M .

The reduction semantics is given in Figure 18. The Clift rule lifts a
C-expression out of any of the three possible elementary contexts F :
these include applicative contexts as before as well as contexts of the
form (2, λx. Jc[E[x]]).

Consider the λ
Ct̂p

term C(λk. t̂p (Th k 2)). After the invocation of
continuation k, control goes back to the current top-level continuation

final.tex; 11/04/2007; 15:30; p.25

26 Ariola, Herbelin, and Sabry

βv : (λx.M)V → M [V/x]
Clift : F [C(λk. J)] → C(λk. J [k F/k])
Celim : C(λk. k M) → M where k 6∈ FV (M)
Cidem : k′ C(λk. J) → J [k′

2/k]

Sublift
v : let (x, k) = C(λk′. J ′)

in J
→ J ′ [let (x, k) = 2 in J/k′]

Subbase
v : let (x, k) = (V, λx. Jc[x])

in J
→ J [Jc/k; V/x]

Substep
v : let (x, k) = (V, λx. Jc[E[F [x]]])

in J
→ let (x, k) = (V, λx. Jc[E[x]])

in J [k F/k]

Figure 18. Reductions of call-by-value λ−
C

bound to t̂p. If this top-level continuation has value tp, then we can
express the example using subtraction by writing C(λk. k (2, tp)). In
λ−

C , the dynamically-scoped variable t̂p disappears. Instead, the invo-
cation of k is given the current top-level context which must be invoked
next. In this particular case, the jump context is essentially just a
continuation variable but things can be more complicated.

As another example, consider the term C(λk. t̂p (C(λt̂p. k 2)== 3)).
After the invocation of continuation k, control returns to the context
2 == 3 and then to the top-level continuation bound to t̂p. If this
top-level continuation has value tp, then we can express the example
using subtraction by writing C(λk. k (2, λx. tp (x == 3))). In this case,
the jump context is not simply a continuation variable, indicating that
the continuation composes with another context before returning to
the top-level.

To see this behaviour simulated by the reduction rules, consider
a jump expression which eliminates the subtraction and invokes the
continuation:

let (x, k) = (2, λx. tp (x == 3)) in k x

Using Substep
v , the context 2 == 3 is lifted:

let (x, k) = (2, λx. tp (x == 3))
in k x

→ let (x, k) = (2, tp)
in k (x == 3)

and then using Subbase
v control is transferred to the top-level:

let (x, k) = (2, tp)
in k (x == 3)

→ tp (2 == 3)

In general the jump context may include an arbitrary nesting of
elementary contexts. For example, we can have:

let (x, k) = (z, λx. tp (((x N1) N2) N3))
in k x

final.tex; 11/04/2007; 15:30; p.26

A Type-Theoretic Foundation of Delimited Continuations 27

The question arises whether it is more convenient or natural to lift the
context ((2 N1) N2) N3 in one step or in many steps in the style of
the rule Clift . We adopt a one by one lifting of 2 N1, 2 N2 and 2 N3

as shown below:

let (x, k) = (z, λx. tp (((x N1) N2) N3)) in k x
→ let (x, k) = (z, λx. tp ((x N2) N3)) in k (x N1)
→ let (x, k) = (z, λx. tp (x N3)) in k ((x N1) N2)
→ let (x, k) = (z, tp) in k (((x N1) N2) N3)
→ tp (((z N1) N2) N3)

The above discussion motivates jump contexts of the form λx. k E[x].
The form λx. let (x′, k) = E[x] in J is motivated by the following
Sublift

v -reduction:

let (x′, k) = C(λq. k′ (2, λx. q x))
in k x′

→ k′ (2, λx. let (x′, k) = x
in k x′)

INTERMEZZO 16.
In Section 2.3, we showed how to embed ¬⊥⊥T into ¬T . For the other

direction, we need to explicitly consider an elimination rule for ⊥:

Γ `M : ⊥
Γ ` tp⊥ M :⊥⊥

⊥e

The continuation tp⊥ is the constant tp considered in Section 2 re-
stricted to the ⊥ type: it is the dual of the unique inhabitant of the
unit type >. Using tp⊥, any term M of type T → ⊥ can be turned into
the jump context λx. tp⊥ ((λy.M y)x).

The following abbreviations capture some common patterns:

λ(x, k).M ∆
= λv. C(λq. let (x, k) = v in q M) (Abbrev. 4)

join M ∆
= let (x, k) = M in k x (Abbrev. 5)

bindq,k M in N ∆
= let (f, k) = M in q (f N) (Abbrev. 6)

In the first abbreviation v is a fresh variable. The operator join abbrevi-
ates the common pattern where the elimination form of the subtractive
value immediately throws the value to the jump context. The operator
bind is similar to the monadic operator of the same name. Both M
and N are expected to be terms that evaluate to subtractive values
with N containing free occurrences of k and f is a fresh variable: the
effects of M are performed to produce a subtractive value which is
bound to (f, k) and then f is applied to N .

The typing rules for the complete language are in Figure 19. The
system named Λ→−

C is completely standard with no effect annotations

final.tex; 11/04/2007; 15:30; p.27

28 Ariola, Herbelin, and Sabry

b ∈ BaseType
A, B, C, T, U ∈ TypeExp ::= b | A→ B | A−B

Γ ∈ Contexts ::= · | Γ, x : A | Γ, k : A→⊥⊥

Γ, x : A ` x : A
Ax

Γ, x : A `M : B

Γ ` λx.M :A→ B
→i

Γ `M :A→ B Γ `M ′ :A
Γ `MM ′ : B

→e

Γ, k : A→⊥⊥` J :⊥⊥

Γ ` C(λk.J) : A
RAA

Γ, k : A→⊥⊥`M : A

Γ, k : A→⊥⊥` k M :⊥⊥
→k

e

Γ `M : A Γ, x : B ` Jc[E[x]] :⊥⊥

Γ ` (M, λx. Jc[E[x]]) : A−B
−i

Γ `M : A−B Γ, x : A, k : B →⊥⊥` J :⊥⊥

Γ ` let (x, k) = M in J :⊥⊥
−e

Figure 19. Λ→−
C : type system of λ−

C

and not even a global parameter T . Note that the right premise of the
rule −i must be read as “there is a derivation of Γ, x : B ` J :⊥⊥ for
J obtained by filling the jump context Jc with E[x] where x is chosen
such that it does not occur in Jc nor in E”.

PROPOSITION 17.

1. Subject reduction: Given λ−
C terms M and N if Γ ` M : A and

M → N then Γ ` N : A.

2. Typed λ−
C terms are strongly normalising.

Proof. Subject reduction is routine verification. The proof of strong
normalisation is expanded in detail in Appendix A.

6. Embeddings in λ−
C

We introduce the full embedding of λ
Ct̂p

into λ−
C and show its correct-

ness. Our starting point is the effect logic of Figure 20 which gives
the type judgements of λ

Ct̂p
with no terms. The aim is to embed such

final.tex; 11/04/2007; 15:30; p.28

A Type-Theoretic Foundation of Delimited Continuations 29

A, B, T, U ::= X | A U→T B
Γ ::= · | Γ, A | Γ, A→T⊥⊥

Γ, A; T ` A; T
Ax

Γ, A; U ` B; T

Γ; T ′ `: A U→T B; T ′
→i

Γ; U1 ` A U2
→T1

B; T2 Γ; T1 ` A; U1

Γ; U2 ` B; T2

→e

Γ, A→U⊥⊥`⊥⊥; T

Γ; U ` A; T
RAA

Γ `⊥⊥; A

Γ; T ` A; T RAAt̂p

Γ, A→U⊥⊥; U ` A; T

Γ, A→U⊥⊥`⊥⊥; T
→k

e

Γ; U ` U ; T

Γ `⊥⊥; T →t̂p
e

Figure 20. Natural deduction with effects

judgements into the judgements of the subtractive logic of Figure 16,
which is a term-free version of the type system of λ−

C :

(Γ;B ` A;C)∗ = Γ∗,¬⊥⊥C∗ ` A∗ −B∗

(Γ `⊥⊥;C)∗ = Γ∗,¬⊥⊥C∗ `⊥⊥

The embedding extends the embedding of Figure 14 which maps λ
Ct̂p

types and contexts into λ−
C .

When extended with a term assignment, the embeddings become:

(Γ;B `M : A;C)tp = Γ∗, tp : ¬⊥⊥C∗ `M tp : A∗ −B∗

(Γ ` J :⊥⊥;C)tp = Γ∗, tp : ¬⊥⊥C∗ ` J tp :⊥⊥

where the value tp of the dynamic top-level continuation is required as
a parameter.

Figure 21 summarises the embedding of terms and jumps. The trans-
lation in the figure includes a special translation (·)+ on values with the
following property. The translation of a value has no free occurrences
of the continuation variable used in the embedding. More precisely,
every function takes a subtractive value as an argument which specifies
the original argument and the top-level continuation resulting from the
evaluation of the function and the argument. This allows us to infer for
example that in the special case where we jump to the top-level with a
value, we have (t̂p V)

tp
→→tp V +. We further discuss some cases of the

embedding below.
In the translation of an application of the form MN , for M not a

value, the references to the top-level in N tp are bound by the bindq,tp,
while the occurrences of the top-level in M tp are free. These relation-
ships mimic the fact that the actual binding for a call to t̂p in N is

final.tex; 11/04/2007; 15:30; p.29

30 Ariola, Herbelin, and Sabry

x+ = x
(λx.M)+ = λ(x, tp).M tp

V tp = (V +, tp)
(V N)

tp
= V + N tp

(MN)
tp

= C(λq.bindq,tp M tp in N tp) (M not a value)
(C(λk. J))

tp
= C(λk. J tp)

(C(λt̂p. J))
tp

= (C(λtp.J tp), tp)

(k M)tp = k M tp

(t̂p M)
tp

= join M tp

Figure 21. Embedding of λ
Ct̂p

terms and jumps into λ−
C

the one active when M returns its result, whereas the actual binding
for a call to t̂p in M is the one at the time of evaluating MN . The
embedding of C(λt̂p. J) returns a subtractive term with the current
top-level continuation tp as the jump context and a computation which
introduces a fresh tp thus simulating the rebinding of the top-level
continuation in J . Note that tp does not expect a subtractive value
as its argument. Thus, the argument passed to a top-level jump is
evaluated to produce a value and a jump context, which are consumed
before returning to tp.

6.1. Soundness of the embedding of λ
Ct̂p

into λ−
C

For tp a fresh continuation variable, the embedding is sound in the

sense that it maps judgements of Λ→ eff

Ct̂p
(Figure 13) to judgements of

Λ→−
C (Figure 19).

PROPOSITION 18.

(i) If Γ;U `M : A;T in Λ→ eff

Ct̂p
then (Γ;U `M : A;T)tp in Λ→−

C ,

(ii) If Γ ` J :⊥⊥;T in Λ→ eff

Ct̂p
then (Γ ` J :⊥⊥;T)tp in Λ→−

C .

Based on Proposition 12, the soundness argument also extends to

the type system Λ
→ effeq

Ct̂p
(Figure 12) and Λ→ fixed

Ct̂p
(Figure 11) for λ

Ct̂p
.

PROPOSITION 19.

(i) If Γ ` M : A;T in Λ
→ effeq

Ct̂p
then (Γdf ;Tdf `M : Adf ;Tdf)

tp in

Λ→−
C .

final.tex; 11/04/2007; 15:30; p.30

A Type-Theoretic Foundation of Delimited Continuations 31

(ii) If Γ ` M : A; b in Λ→ fixed

Ct̂p
then (ΓT ; b `M : Ab; b)

tp in Λ→−
C

for an atomic type b.

The embedding is also sound with respect to the semantics. More
precisely, each reduction step in λ

Ct̂p
maps to a reduction sequence of at

least one step (written →→≥1) in λ−
C up to some renaming steps which

are carried out by the Cidem rule. The reason for these renaming steps
is due to the administrative redexes introduced by the translation as
shown in the example below. Consider the following reduction in λ

Ct̂p
:

C(λk. k N) M → C(λk. k (N M))

For simplicity we assume k does not occur free in N . The embedding
of the left-hand side reduces to

C(λq. let (f, tp′) = N tp in q (f M tp’))

whereas the embedding of the right-hand side is:

C(λk. k C(λq. let (f, tp′) = N tp in q (f M tp’)))

Before stating the soundness we need a lemma indicating how the
embedding behaves with respect to substitution. To that end, we define
the following abbreviations:

(k (2 M))+ = bindk,tp 2 in M tp

(k (V 2))+ = k (V +
2)

(t̂p 2)+ = join 2

LEMMA 20. The following properties hold:

(i) M tp[V +/x] = (M [V/x])tp,

(ii) (J [k (V 2)/k])tp = J tp[(k (V 2))+/k],

(iii) (J [q (2 M)/k])tp→→Cidem
N←←J tp[(q (2 M))+/k] for some N ,

(iv) (J [t̂p 2/k])
tp

= J tp[(t̂p 2)+/k].

Proof. The non-obvious part is item (iii). The translation of each
subterm k (N M) in J [k (2 M)/k] depends on whether N is a value
or not. If N is some value V , then k (V M) is translated to k (V + M tp)
which is a contractum of bindk,tp V tp in M tp. If N is not a value, the
translation is k C(λq.bindq,tp’ N tp in M tp’) which reduces by Cidem to
bindk,tp N tp in M tp.

final.tex; 11/04/2007; 15:30; p.31

32 Ariola, Herbelin, and Sabry

PROPOSITION 21. If M → N in λ
Ct̂p

then there exists N ′ such that

M tp→→≥1N ′ in λ−
C and N tp→→Cidem

N ′.

Proof. We show one case of the proof:

Case CL:

(C(λk′. J) N)tp = C(λq.bindq,tp C(λk′. J tp) in N tp)
→

Sub
lift
v
C(λq. J tp[let (f, tp) = 2 in q (f N tp)/k′])

= C(λq. J tp[(q (2 N))+/k′])
→ P
←←Cidem

(C(λq. J [q (2 N)/k′]))tp (by Lemma 20(iii))

REMARK 22. In trying to find a better simulation of λ
Ct̂p

, we have
investigated alternative subtraction rules. In particular, the exact form
to give to the elimination rule is not obvious in natural deduction
(compared to its definition in sequent calculus (Curien and Herbelin,
2000)). For example, the rule:

Γ `M : A−B Γ, x : A, k : B →⊥⊥`M ′ : C

Γ ` let (x, k) = M in M ′ : C

that has been considered in a previous work (Ariola et al., 2004) seems
to be equally worthwhile. This however complicates the translation of
t̂pM , which becomes (tp (joinM tp)), where join M is now defined as
let (x, k) = M in Th k x. Due to the outer occurrence of tp, the transla-
tion is not stable under reduction. This introduces the need of reasoning
up to the name of this extra continuation variable. Another solution is
to reason in full classical logic with subtraction (i.e. λ−⊥

C) instead of

minimal classical logic (i.e. λ−
C) and to define t̂p M as tp⊥ (joinM tp),

where tp⊥ witnesses the elimination rule of ⊥ (see Intermezzo 16).
We believe that a true simulation of the reduction would have been
obtained with this approach.

As a corollary, we get the following result.

PROPOSITION 23. If M =λ
Ct̂p

N then M tp =λ
−

C
N tp.

As an emphasis of how the translation works, the following example
shows how to capture dynamic substitution of λ

Ct̂p
.

EXAMPLE 24. Consider Example 6 that was used to illustrate the
capture of t̂p during substitution:

(λx. (λy. C(λt̂p. t̂p (x y)))) (λ .C(λ .t̂p y))
→ λy′. C(λt̂p. t̂p ((λ .C(λ . t̂p y)) y′))

final.tex; 11/04/2007; 15:30; p.32

A Type-Theoretic Foundation of Delimited Continuations 33

The embedding of the left-hand side is as follows:

((λx. (λy. C(λt̂p. t̂p (x y)))) (λ .C(λ .t̂p y)))
tp

=

(λx. (λy. C(λt̂p. t̂p (x y))))+ (λ .C(λ .t̂p y))
tp

=

(λ(x, tp1).(λy. C(λt̂p. t̂p (x y)))
tp1) ((λ .C(λ .t̂p y))+, tp) =

((λ(x, tp1).((λ(y, tp3).C(λt̂p. t̂p (x y))
tp3), λx. tp1 x))

((λ .C(λ .t̂p y))+, tp)) =
((λ(x, tp1).(λ(y, tp3).(C(λtp4.join (x (y, tp4))), λx. tp3 x), λx. tp1 x))
((λ(, tp2).C(λ .join (y, λx. tp2 x))), tp))

This term reduces to:

(λ(y′, tp3).(C(λtp4.join ((λ(, tp2).C(λ .join (y, λx. tp2 x)))
(y′, tp4))), λx. tp3 x), tp)

which is the embedding of the right-hand side.

The theory λ−
C is richer than λ

Ct̂p
or λC#tp, so that the translation is

not complete.

EXAMPLE 25. Consider the λC#tp term y (# (tp x)) which is mapped
into the λ−

C term y (C(λtp. join(x, tp), tp), which reduces as follows:

y (C(λtp. join(x, tp)), tp)
Subbase

v→ y ((C(λtp. tp x), tp))
Clift

→ y (C(λtp. tp (x, tp)))
Clift

→ C(λtp. tp (y (x, tp)))

The lift reductions move the # while maintaining the proper references
to the top-level continuation. This move has no counterpart in either
λC#tp or λ

Ct̂p
. In λ

Ct̂p
such a lifting would cause the dynamically-bound

top-level continuation t̂p to be incorrectly captured; in λ−
C , the top-

level continuation is statically-bound so that it is enough to rely on
α-conversion to have a safe lifting rule for #. Pulling the lifting rule
for # back from λ−

C to λ
Ct̂p

is non trivial, if even possible.

6.2. Which type systems ensure termination?

We are now able to show that the type systems with effects ensure
strong normalisation of the underlying λ-calculus while the type system
with fixed type does not.

PROPOSITION 26.

(i) If Γ;U ` M : A;T in Λ→ eff

Ct̂p
or Γ ` M : A;T in Λ

→ effeq

Ct̂p
then

M is strongly normalising.

final.tex; 11/04/2007; 15:30; p.33

34 Ariola, Herbelin, and Sabry

(ii) If Γ `M : A;T in Λ→ fixed

Ct̂p
and T is atomic then M is strongly

normalising.

Proof. The result follows from Propositions 12, 17, 18, 21 and the
fact that Cidem commutes with the other reductions in the following
way: if M → N and M →Cidem

M ′ then there is N ′ such that M ′ → N ′

and N→→Cidem
N ′, unless M →Celim

N = M ′. But since Celim cannot be
applied infinitely many times in a row, any infinite reduction sequence

typed in Λ→ eff

Ct̂p
can be mapped to an infinite sequence in Λ→−

C .

Strong normalisation does not generally hold in Λ→ fixed

Ct̂p
if the top-

level type is not atomic. Indeed, if T is non atomic then we have to add
the annotation T on the arrows of T itself. This requires a definition by
fixpoint and the resulting recursive type can be used to type a fixpoint
combinator as shown in Example 8.

7. CPS Semantics

To complete our investigation, we present a CPS semantics for λ−
C and

a corresponding double-negation translation for Λ→−
C .

7.1. Target CPS Calculus

Before presenting the CPS translation from λ−
C we first introduce the

target language of the translation. This target language λ∧ is an ordi-
nary call-by-name λ-calculus with pairs. The semantics of λ∧ is given
using the following two rules:

β : (λx.M)N → M [N/x]
∧ : let (x, y) = (M,N) in M ′ → M ′ [N/y;M/x]

We also use the following abbreviation:

λ(x, y).M ∆
= λz. let (x, y) = z in M (Abbrev. 7)

The type system of λ∧, named Λ∧, is an ordinary natural deduc-
tion system equipped with tensorial conjunction. This is a conjunction
whose elimination rule extracts both components of the pair simulta-
neously, similar to what happens for the tensor product of linear logic.
The tensorial conjunction will be used to model subtractions in λ−

C ; its
introduction and elimination rules are as follows:

final.tex; 11/04/2007; 15:30; p.34

A Type-Theoretic Foundation of Delimited Continuations 35

b∗ = b
(A→ B)∗ = ¬B∗ → ¬A∗

(A−B)∗ = ¬B∗ ∧ A∗

(·)∗ = ·
(Γ, x : A)∗ = Γ∗, x : A∗

(Γ, k : A→⊥⊥)∗ = Γ∗, k : ¬A∗

(Γ `M : A)k = Γ∗, k : ¬A∗ ` [[M]] k : ⊥
(Γ ` J :⊥⊥)∗ = Γ∗ ` [[J]] : ⊥

Figure 22. Fischer-style call-by-value ¬¬-translation on Λ→−
C

Γ `M : A Γ ` N : B
Γ ` (M,N) : A ∧B

∧i

Γ `M : A ∧B Γ, x : A, y : B `M ′ : C

Γ ` let (x, y) = M in M ′ : C
∧e

We assume the existence in Λ∧ of a distinguished formula ⊥ to
which no inference rule is associated. We write ¬A as an abbreviation
of A→ ⊥.

7.2. CPS Translation of λ−
C

The CPS translation maps the types, judgements, and terms of λ−
C to

λ∧. The translation we present extends the call-by-value CPS transla-
tion of Fischer (1972, 1993). We give the translation in Figure 22 for the
types and judgements and in Figure 23 for the terms and the contexts.
We have:

PROPOSITION 27. The CPS translation is sound with respect to typ-
ing:

− If Γ `M : A in Λ→−
C then (Γ `M : A)k in Λ∧

− If Γ ` J :⊥⊥ in Λ→−
C then (Γ ` J :⊥⊥)∗ in Λ∧.

Before proving the soundness of the translation with respect to
reductions, we first state a few useful properties.

LEMMA 28.

final.tex; 11/04/2007; 15:30; p.35

36 Ariola, Herbelin, and Sabry

x+ = x
(λx.M)+ = λk′. λx. [[M]] k′

(V, λx. Jc[E[x]])+ = ([[E]] [[Jc]], V
+)

[[V]] k = k V +

[[V N]] k = [[N]] (V + k)
[[M N]] k = [[M]] (λf. [[N]] (f k)) (M not value)

[[C(λk′. J)]] k = [[J]][k/k′]
[[(M, λx. Jc[E[x]])]] k = [[M]] (λv. k ([[E]] [[Jc]], v)) (M not value)

[[let (x, k) = M in J]] = [[M]] (λ(k, x).[[J]])
[[k M]] = [[M]] k

[[2 N]] k = λf. [[N]] (f k)
[[V 2]] k = V + k
[[(2, λx. Jc[E[x]])]] k = λv. k ([[E]] [[Jc]], v)

[[E[F]]] k = [[F]] ([[E]] k)
[[2]] k = k

[[k 2]] = k
[[let (x, k) = 2 in J]] = λ(k, x).[[J]]

Figure 23. Fischer-style call-by-value CPS translation of λ−
C

(i) [[M]] ([[F]] k) = [[F [M]]] k if M not a value
(ii) [[V]] ([[F]] k) →→ [[F [V]]] k
(iii) [[M]] [[Jc]] = [[Jc[M]]]
(iv) [[M [V/x]]] k = ([[M]] k)[V +/x]
(v) [[J [V/x]]] = [[J]][V +/x]
(vi) [[F [E]]] k = [[E]] ([[F]] k)
(vii) [[J]] [[[F]] k′/k] →→ [[J [k′ F/k]]]
(viii) [[F [C(λk. J)]]] k′ →→ [[J [k′ F/k]]]
(ix) [[J]][[[Jc]]/k] = [[J [Jc/k]]]
(x) [[Jc[C(λk. J)]]] = [[J [Jc/k]]]

Proof. Items (i), (iii), (iv) and (v) can be easily checked. Item (ii)
introduces a reduction for the contexts 2 N and (λx. Jc[E[x]],2). Items
(vi) is by induction on the length of E. For item (vii), many cases can
occur. If k occurs at the head of the second component of a subtractive
term, the substitution leaves the term unchanged because of item (vi).
If k occurs elsewhere, then it may be applied to a value or not and
either (i) or (ii) applies. For item (viii), the result follows from (i) and

final.tex; 11/04/2007; 15:30; p.36

A Type-Theoretic Foundation of Delimited Continuations 37

(vii). Item (ix) follows because k is substitutive when it occurs at the
head of the second component of a subtractive term and by item (iii)
otherwise. For item (x), the result follows from (iii) and (ix).

PROPOSITION 29. The CPS translation is sound with respect to the
λ−

C semantics:

(i) If M →M ′ in λ−
C then [[M]] k =β,∧ [[M ′]] k in λ∧;

(ii) If J → J ′ in λ−
C then [[J]] =β,∧ [[J ′]] in λ∧;

Proof. We consider a few of the cases:

- Sublift
v : From Lemma 28(x), we directly have:

[[let (x, q) = C(λk. J ′) in J]] = [[J ′[let (x, q) = 2 in J/k]]] .

- Subbase
v : The left-hand side is:

[[let (x, q) = (V, k′) in J]] = [[(V, k′)]] (λ(q, x).[[J]])
→→βv

(let (q, x) = (k′, V +) in [[J]]
→∧ [[J]] [k′/q;V +/x]

The right-hand side is [[J [k′/q;V/x]]] and the result follows from
Lemma 28(v, x).

- Substep
v : The left-hand side is:

[[let (x, k′) = (V, λx. Jc[E[F [x]]]) in J]] =
(λk.k ([[F]] ([[E]] [[Jc]]), V

+))(λ(k′, x).[[J]]) →→βv

let (k′, x) = ([[F]] ([[E]] [[Jc]]), V
+) in [[J]] →∧

[[J]][[[F]] ([[E]] [[Jc]])/k
′;V +/x] =

[[J]][[[F]] k′′/k′][[[E]] [[Jc]]/k
′′;V +/x] for k′′ fresh

For the right-hand side we have:

[[let (x, k′) = (V, λx. Jc[E[x]]) in J [k′ F/k′]]] →→βv

let (k′, x) = ([[E]] [[Jc]], V
+) in [[J [k′ F/k′]]] →∧

([[J [k′ F/k′]]])[[[E]][[Jc]]/k
′;V +/x]

We conclude by Lemma 28(vii).

final.tex; 11/04/2007; 15:30; p.37

38 Ariola, Herbelin, and Sabry

b∗ = b
(A U→T B)∗ = ¬(¬U∗ ∧ B∗)→ ¬(¬T ∗ ∧ A∗)
(A→U⊥⊥)∗ = ¬(¬U∗ ∧ A∗)

(Γ; B `M : A; C)tpk = Γ∗, tp : ¬C∗, k : ¬(¬B∗ ∧ A∗) ` [[M]] k tp : ⊥
(Γ ` J :⊥⊥; C)tp = Γ∗, tp : ¬C∗ ` [[J]] tp : ⊥

Figure 24. Derived call-by-value ¬¬-state-transformation on Λ→ eff

Ctp

x+ = x
(λx. M)+ = λk. λ(tp, x). [[M]] k tp

[[V]] k tp = k (tp, V +)
[[V N]] k tp = [[N]] (V + k) tp
[[M N]] k tp = [[M]] (λ(tp′, f). [[N]] (f k) tp′) tp M not a value
[[C(λk′. J)]] k tp = ([[J]] tp)[k/k′]
[[# J]] k tp = [[J]] λv. k (tp, v)
[[tp M]] tp = [[M]] (λ(k, x). k x) tp
[[k M]] tp = [[M]] k tp

Figure 25. Derived call-by-value CPS translation of λC#tp

7.3. Induced CPS Translation of λC#tp

As λC#tp and λ
Ct̂p

are isomorphic, we can compose the embeddings from

λ
Ct̂p

to λ−
C with the CPS translation from λ−

C to λ∧ to produce a CPS
translation for λC#tp. The result is given in Figures 24 and 25 (obvious

redexes have been contracted), where Λ→ eff
Ctp stands for the type-and-

effect system of λC#tp. This is obtained from the system of Figure 13

by replacing the RAAt̂p and →t̂p
e with the following typing rules:

Γ ` J :⊥⊥;A

Γ;T ` # J : A;T

Γ;U `M : U ;T

Γ ` tp M :⊥⊥;T

The λC#tp CPS translation shows how such a translation for de-
limited continuations can be decomposed into a store-passing trans-
formation followed by a standard CPS transformation into the pure
λ-calculus. The first transformation deals with the control delimiter;
the second transformation deals with the control operator. By putting
together Propositions 7, 23 and 29, one then concludes that the CPS
semantics preserves the notions of convertibility of λC#tp.

PROPOSITION 30. Given λC#tp terms M and N . If M = N in λC#tp

then [[M]] k tp =β,∧ [[N]] k tp.

final.tex; 11/04/2007; 15:30; p.38

A Type-Theoretic Foundation of Delimited Continuations 39

7.4. The Operators shift and reset

Based on the embeddings of shift and reset given in Remark 4, their
translations in λ∧ are:

[[〈M〉]] k tp = [[M]] I ′ (λv. k (tp, v))
[[S (λq. M)]] k tp = [[M]] [reifyS k/q] I ′ tp

where I ′ = λ(k, x). k x
reifyS k = λk′. λ(tp, x). k (λy. k′ (tp, y), x)

which correspond, up to currying and η-conversion, to the definition of
shift and reset in the original paper by Danvy and Filinski (1989).

Let λ′
C#tp

be the subset of λC#tp without continuation variables and
where every occurrence of tp and C only occurs as part of the definitions
of S and 〈 〉, but still equipped jwith the same equational theory as
λC#tp. What we have shown is that the following diagram commutes:

THEOREM 31.

λ′
C#tp

[[]]′ k
−→ λv

↓ tp ↓[[]] tp

λ−
C

cur ◦ [[]] k
−→ λ

where

− λv is Plotkin’s call-by-value λ-calculus and λ is usual λ-calculus,

− cur is the currying combinator,

− [[]]′ k is the same as [[]] k from Figure 23 but extended with the
clauses

[[# J]]′ k = k [[J]]′

[[tp M]]′ = [[M]]′ λx.x

so that the “macros” [[〈M〉]]′ k and [[S(λq.M)]]′ k are translated as
in (Danvy and Filinski, 1990),

− [[]] tp is as in Figure 23 but written with the name tp in place
of k, so that the up and right sides of the square correspond to the
two-steps CPS translation from the syntax of λ′

C#tp
to λ (Danvy

and Filinski, 1990).

final.tex; 11/04/2007; 15:30; p.39

40 Ariola, Herbelin, and Sabry

7.5. Completeness of the CPS Translation

Thanks to Kameyama and Hasegawa (2003) axiomatisation of λ′
C#tp

,
we can give a proof of completeness of our translation. Let =′

λC#tp
be

the extension of =λC#tp
obtained by adding the following reductions:

#idem : tp (#J) →′ J
#tail : # (l ((λx.M) (# J))) →′ (λx.# (l M)) (# J)
Ctail : (λx.C(λk. l M)) N →′ C(λk. l ((λx.M) N))
ηv : λx.(V x) →′ V where x 6∈ FV (V)
βΩ : (λx.E[x]) M →′ E[M] where x 6∈ FV (E)

where l is either k or tp, F is either V 2 or 2 N and E is either 2

or E[F]. The following equations (respectively consequences of βΩ and
#idem conjugated with Cidem and Ctail , of Ctail , Cidem and βΩ, and of βΩ

and βv) will be useful:

#let : tp ((λx.# (k x)) M) =′
λC#tp

k M

Thlet : tp ((λx.Th (k x)) M) =′
λC#tp

k M

let lift : F [(λx.N) M] =′
λC#tp

(λx.F [N]) M .

Kameyama and Hasegawa’s axioms of λ′
C#tp

are listed below. Since
S is a stand-alone constant in Kameyama and Hasegawa (2003), we
need to slightly adapt their axiomatic1:

βv : (λx.M) V =KH M [V/x]
S-reset : 〈E[S(λk.M)]〉 =KH 〈(λk.M)λx.〈E[x]〉〉
S-elim : S(λk. k M) =KH M where k 6∈ FV (M)
S-tail : (λx.S(λk.M)) N =KH S(λk. (λx.M) N)
reset -value : 〈V 〉 =KH V
reset -lift : 〈(λx.M) 〈N〉〉 =KH (λx.〈M〉) 〈N〉
reset -S : S(λk. 〈M〉) =KH S(λk.M)
ηv : λx.(V x) =KH V where x 6∈ FV (V)
βΩ : (λx.E[x]) M =KH E[M] where x 6∈ FV (E)

On λ′
C#tp

, Kameyama and Hasegawa’s axiomatisation is derivable
from the equational theory =′

λC#tp
:

1 The original system has the rule S-reset : 〈E[S M]〉 =KH 〈Mλx.〈E[x]〉〉 and no
rule S-tail . The full strength of the original S-reset is not expressible in λ′

C#tp since
S in there is constrained to appear with the form S(λk.M). The original S-reset
implies Sη : S M = S(λk.M k), so, obviously, it is equivalent to the combination
of Sη and of the modified S-reset . Thanks to βΩ and ηv, Sη is provably equivalent
to S-tail , hence the modified system is equivalent to the original one on λ′

C#tp. We
leave open the question whether S-tail is not redundant in the modified system.

final.tex; 11/04/2007; 15:30; p.40

A Type-Theoretic Foundation of Delimited Continuations 41

PROPOSITION 32. Let M and N be in λ′
C#tp

. If M =KH N then
M =′

λC#tp
N .

Proof. The rules βv, ηv, βΩ and reset -value are also in =′
λC#tp

; S-reset

is a combination of CL, CR and Cidem ; S-elim is a consequence of Celim
using first βv , #let and #idem ; S-tail is a consequence of Ctail and let lift ;
reset -lift derives from #tail for l being tp; finally, reset -S derives from
#idem conjugated with βv.

Now, since Kameyama and Hasegawa’s axiomatisation is complete
with respect to the CPS translation2, we get (η∧ is the equation M =
(let (x, y) = M in x, let (x, y) = M in y)):

COROLLARY 33. Given λ′
C#tp

terms M and N , if [[M]] k tp =β,η,∧,η∧

[[N]] k tp then M =′
λC#tp

N .

We then show that any term M in λC#tp has a representative in λ′
C#tp

that behaves the same with respect to =′
λC#tp

. Let λ−
C#tp

be the subset

of λC#tp with no free continuation variables. The following embedding,
that relies on the definition of S and 〈 〉 in Remark 4, is a map from
λ−

C#tp
to λ′

C#tp
:

x• = x
(λx. M)• = λx. M•

(M N)• = M• N•

(C(λk. J))• = S(λk. J•)
(# J)• = 〈J•〉

(tp M)• = M•

(k M)• = k M•

Notice that (k M)•, when in position of subterm, is necessarily sur-
rounded by tp. Thanks to the following equation:

(C(λk. J))• = C(λk. tp ((λk.J•) λx.# (k x)))
=βv

C(λk. tp J•[λx.# (k x)/k])
= C(λk. tp J [tp (λx.# (k x)) 2/k]•)
=#let

C(λk. tp J•)

we get:

PROPOSITION 34. For all M in λ−
C#tp

, M =′
λC#tp

M•.

2 The CPS translation in (Kameyama and Hasegawa, 2003) is the composition of
the Plotkin-style variants of the Fisher-style call-by-value translations [[]]′ k and
[[]] tp. Both styles of translation are isomorphic. By Theorem 31, they are also
isomorphic to [[]] k tp and the equations are the same.

final.tex; 11/04/2007; 15:30; p.41

42 Ariola, Herbelin, and Sabry

Now, take M in λC#tp. We embed M into λ−
C#tp

by replacing each
free continuation variable k in M by the context tp (yk 2) for yk a
fresh variable associated to k. Let ρ be this substitution and ρ′ the
substitution that maps each yk to λx.Th k x. The term (M [ρ])• is in
λ′

C#tp
and, using Thlet , we can show that M =′

λC#tp
(M [ρ])•[ρ′].

A simple verification shows that the equation #let used in the proof
of Proposition 34 is sound with respect to [[]] k tp. Moreover, Figure 23
shows that [[]] k tp is stable by substitution of continuation variables.
Hence we get:

THEOREM 35 (Completeness). Given λC#tp terms M and N , from
[[M]] k tp =β,η,∧,η∧ [[N]] k tp, we get M =′

λC#tp
N .

7.6. More on shift and reset

We now make the connection with Kameyama and Hasegawa axiomat-
ics more precise. Let λS be the language defined by

M ::= x | λx.M | M M | S(λk.M) | 〈M〉

where S and 〈 〉 are primitive symbols. Clearly, passing from λ′
C#tp

to
λS is just a move from macro-defined S and 〈 〉 to primitive S and 〈 〉.
We can check that all equations in =′

λC#tp
not already checked valid for

=β,η,∧,η∧ through the CPS translation are so. Hence, we get:

THEOREM 36 (Isomorphism between λ−
C#tp

and λS). We have the fol-
lowing chain of isomorphisms:

(λ−
C#tp

,=′
λC#tp

) ' (λ′
C#tp

,=′
λC#tp

) ' (λ′
C#tp

,=KH) ' (λS ,=KH) .

Proof. The first isomorphism is by Proposition 34. The second is by
Proposition 32 and by composition of CPS soundness of =′

λC#tp
and

CPS completeness of =KH .

To extend the isomorphism to λC#tp, that has free continuation
variables, we need to extend λS with one new constant ck for each con-
tinuation variable k in λC#tp. If each of this constant were constrained
to occur in contexts of the form S(λk ′. ck M) or # (k M), we would
directly get a correspondence with λC#tp. If we otherwise allow these
constants to occur anywhere in terms, then we need to assign a default
semantics (abortive or functional) to them.

Let λ+

S be the extension of λS with the constants ck. To assign
an abortive semantics, we extend =KM with the parametric equation

final.tex; 11/04/2007; 15:30; p.42

A Type-Theoretic Foundation of Delimited Continuations 43

CA : ck = λx.S(λ . ck x). We also extend λ′
C#tp

to allow free occurrences
of continuation variables to the proviso that they occur in subterms of

the form λx.Th k x. Let λ
′
+A

C#tp be this extension. The interpretation of

λ′
C#tp

as a calculus of macro-definitions for λS extends to λ
′
+A

C#tp and λ+

S

by setting ck = λx.Th k x. We extend • on λC#tp by setting (k M)• =
(λx.Th k x) M • for k free. Because (k M)• always occurs surrounded
by tp in the translation of terms, we have k M = tp ((λx.Th k x) M)
by Thlet . Hence M =′

λC#tp
M• still holds and • is an isomorphism.

Expressed in λ
′
+A

C#tp, CA is derivable thanks to βv and Cidem .
Alternatively, we can assign a functional semantics by replacing

λx.Th k x by λx.# k x in the constructions above. We call λ
′
+#

C#tp the
image of λ+

S where ck is interpreted as λx.# k x. The new equation on
λ+
S is C# : ck = λx.# (ck x). The equation M =′

λC#tp
M• holds thanks

to #let and C# holds in λ
′
+#

C#tp by βv and #idem .

THEOREM 37 (Isomorphism between λC#tp and λ+

S). We have the fol-
lowing chain of isomorphisms:

(λC#tp,=
′
λC#tp

) ' (λ
′
+A

C#tp,=
′
λC#tp

) ' (λ
′
+A

C#tp,=KH+CA
) ' (λ+

S ,=KH+CA
)

' (λ
′
+#

C#tp,=
′
λC#tp

) ' (λ
′
+#

C#tp,=KH+C#
) ' (λ+

S ,=KH+C#
)

Proof. It remains to prove that from M =′
λC#tp

N in λ
′
+A

C#tp, we can

get M =KH+CA
N and similarly for λ

′
+#

C#tp and =KH+C#
. Both cases

are similar and we treat only the first one. We proceed as in the proof
of Theorem 35. Let ρ be the substitution that maps each free continu-
ation variables k in M and N to tp (yk 2) and ρ′ be the substitution
that maps each yk to ck (i.e. to λx.Th k x). From M =′

λC#tp
N , we

get M [ρ] =′
λC#tp

N [ρ]. By composition on λ′
C#tp

of CPS soundness of

=′
λC#tp

and CPS completeness of =KH , we get M [ρ] =KH N [ρ] and

hence M [ρ][ρ′] =KH N [ρ][ρ′]. It remains to connect M [ρ][ρ′] to M and
N [ρ][ρ′] to N . Since the free occurrences of k in M and N occur as
part of subterms of the form λx.Th k x, this amounts to connect ck to
λx.Th tp (ck x). This is a direct consequence of CA and βv .

EXAMPLE 38. Let M = # k (f 1) + # k (# tp (g 1)) + Th k (h 1).
The image of M by • is # (ck (f 1)) + # (ck # (g 1)) + S(λ . ck (h 1)):
at this point, the interpretation of ck does not matter since we have
tp ((λx.Th k x) N) =Thlet

k N =#let
tp ((λx.# k x) N).

In λ
′+A
C#tp and in λ+

S equipped with =KH+CA
, M• can be shortened to

(ck (f 1)) + # (ck # (g 1)) + ck (h 1): the abortive semantics of
S(λ .) can be left implicit because Ctail holds.

final.tex; 11/04/2007; 15:30; p.43

44 Ariola, Herbelin, and Sabry

In λ
′+#

C#tp and in λ+

S equipped with =KH+C#
, M• can be shortened to

(ck (f 1)) + ck # (g 1) + S(λ . ck (h 1)): the second # has been
removed thanks to #tail but the first one cannot be hidden in general.

Conversely, the expression ck (f 1) + # ck (g 1) in λ+

S is not explicit
enough to express the semantics of the first occurrence of ck. With
an abortive semantics, it will be equivalent in λC#tp to the expression
Th k (f 1) + # k (g 1) while with a functional semantics, it will be equiv-
alent to (λx.# k x) (f 1) + # k (g 1). Note again that (λx.# k x) (f 1)
does not a priori simplify into # k (f 1) while (λx.Th k x) (f 1)
does simplify to Th k (f 1). Also, both # tp (λx.# k x) (g 1) and
tp (λx.Th k x) (g 1) do simplify to # k (g 1).

8. Conclusions

We have focused exclusively on delimited continuations obtained with C
and # (or equivalently shift and reset). We briefly review and classify
some of the other control operators in the literature and discuss them
based on our work. We also discuss the question of interpreting delim-
ited continuations along the lines of the Curry-Howard correspondence.

8.1. A Short History

Early proposals for delimited continuations had only a single control
delimiter (Felleisen et al., 1987; Felleisen, 1988; Danvy and Filinski,
1989). The control operation for capturing the continuation implicitly
refers to the most recent occurrence of this delimiter.

After the limitations of the single control delimiter became apparent,
later proposals generalised the single delimiter by allowing hierarchies
of delimiters and control operators like resetn and shiftn (Danvy and
Filinski, 1990; Sitaram and Felleisen, 1990a). At about the same time,
a different proposal spawn allowed new delimiters to be generated dy-
namically (Hieb and Dybvig, 1990; Hieb et al., 1994). In this system,
the base of each delimited continuation is rooted at a different #.
The action of creating the # returns a specialised control operator
for accessing occurrences of this particular #; this specialised control
operator can then be used for capturing (and aborting) the particular
delimited continuation rooted at the newly generated # (and only
that one). This is more expressive and convenient than either single
delimiters or hierarchies of delimiters and allows arbitrary nesting and
composition of continuation-based abstractions. A later proposal by
Gunter et al. (1995) separated the operation for creating new delimiters
from the control operator using that #.

final.tex; 11/04/2007; 15:30; p.44

A Type-Theoretic Foundation of Delimited Continuations 45

8.2. Control Delimiters and Extent

The issues related to hierarchies of control delimiters or the dynamic
generation of new names for control delimiters, appear orthogonal to
our analysis. Indeed, the presence of multiple delimiters does not change
the fundamental point about the dynamic behaviour of each individ-
ual #.

However, our analysis fundamentally relies on a subtle issue related
to the extent of delimiters (Moreau and Queinnec, 1994). More pre-
cisely, there is no question that the # delimits the part of the context
that a control operator gets to capture, but given that constraint there
are still four choices to consider with very different semantics (Dybvig
et al., 2004):

E[# (E↑[F1 M])] 7→ E[M (λx.E↑[x])]
E[# (E↑[F2 M])] 7→ E[# (M (λx.E↑[x]))]
E[# (E↑[F3 M])] 7→ E[M (λx.# (E↑[x]))]
E[# (E↑[F4 M])] 7→ E[# (M (λx.# (E↑[x])))]

All four variants have been proposed in the literature: F1 is like the
operator cupto (Gunter et al., 1995); F2 is Felleisen’s F operator (1988);
F3 is like a spawn controller (Hieb and Dybvig, 1990); and F4 is
shift (Danvy and Filinski, 1990).

It turns out that the inclusion of the # in the reified continua-
tion (variants F3 and F4) simplifies the semantics considerably. For
example, when a continuation captured by F3 or F4 is invoked, the
included # can be used to provide the required top-level context for
that invocation. In the case of F1 or F2, there is no included #; so
when the continuation is invoked, we must “search” for the # required
to denote the top-level. In general, the # can be located arbitrarily
deep in the calling context. Since the representation of contexts as
delimited continuations does not support operations for “searching for
delimiters,” Felleisen et al. (1988) developed a special model based
on an algebra of contexts which supports the required operations. In
a recent investigation of control operators for delimited continuations,
Dybvig et al. (2004) show however that it is possible to use standard
continuation semantics to explain all the four variants of operators
above: the trick is to augment the model with a state variable containing
a sequence of continuations and delimiters. Chung-Chieh Shan (2004)
has also recently shown a similar result using a different encoding for
the operators in terms of shift and reset. We believe that these encod-
ings can be adapted as the basis for an embedding of the operators in
a variant (or extension) of λ−

C .

final.tex; 11/04/2007; 15:30; p.45

46 Ariola, Herbelin, and Sabry

8.3. The Curry-Howard correspondence

The Curry-Howard correspondence relates proofs to programs, propo-
sitions to types, and proof normalisation to program normalisation.
Typically, the simply-typed λCtp-calculus (alternatively Parigot’s λµtp-
calculus) coincides with classical natural deduction as soon as tp is
assigned the type ⊥ (Ariola and Herbelin, 2003). Of course, this is a
restriction from the point of view of any computationally interesting
type system for control for which one would expect the top-level to be
of an inhabited type (e.g. the type of integers). But this is really where
the Curry-Howard correspondence holds, on the fragment of Figure 6
obtained by setting T to ⊥.

We mapped the effect-based type systems within subtractive logic
but we did not answer the question of a direct syntactic Curry-Howard-
style interpretation.

A possible approach is the following: in the same way as the logical
interpretation of tp expects it has type ⊥, let’s constrain t̂p to take argu-

ments of type ⊥. By this way, the type system Λ→ fixed

Ct̂p
collapses to clas-

sical implicational logic and similarly for the type systems Λ
→ effeq

Ct̂p
and

Λ→ eff

Ct̂p
when, in addition, the effects annotations, implicitly set to ⊥, are

omitted. Along this interpretation, delimiters provide no extra logical
expressiveness. This is somehow disappointing but can we really get
more? After all, even if it does not enrich the logic, it still enriches the
proof language. And this may well be related to completeness questions,
since λµ-calculus is known not to satisfy Böhm theorem (David and Py,
2001) while adding delimiters is known to provide some completeness
properties (Sitaram and Felleisen, 1990b; Filinski, 1994).

Acknowledgements

We thank Olivier Danvy, Matthias Felleisen, Yukiyoshi Kameyama,
and Hayo Thielecke for the discussions and help they provided in un-
derstanding their results. We would also like to thank the ICFP and
HOSC reviewers who provided corrections and extensive comments on
the presentation of both the conference and journal versions.

final.tex; 11/04/2007; 15:30; p.46

A Type-Theoretic Foundation of Delimited Continuations 47

Appendix

A. Proof of strong normalisation of λ−
C

The λ−
C calculus is defined by the reduction rules in Figure 18. We show

that its simply-typed fragment, as described in Figure 19, is strongly
normalisable (SN).

We begin by establishing a closure property of SN that is needed in
the rest of the proof. We then generalise the notion of SN to that of
reducibility and show that all typed terms are reducible.

In the following we say that M (respectively E or Jc[E]) is SN if
all its immediate reducts are. This is an inductive definition so that we
can reason by structural induction on it.

A.1. Properties of SN

As the following establishes, strong normalisability is preserved by head
expansion.

LEMMA 39.

1. If V and Jc[E[M [V/x]]] are SN, then Jc[E[(λx.M)V]] is SN

2. If Jc[E], V and J [V/y][Jc[E]/k] are SN then we also have that:

let (y, k) = (V, λx. Jc[E[x]]) in J is SN

3. If Jc[E] and J [Jc[E]/k] are SN then Jc[E[C(λk. J)]] is SN.

Proof.

1. We reason by induction on the SN proofs. If a reduction step occurs
in Jc[E] leading to J ′

c[E
′] then Jc[E[M [V/x]]] → J ′

c[E
′[M [V/x]]]

and the induction hypothesis on J ′
c[E

′[M [V/x]]] SN applies. Sim-
ilarly for a reduction step in M . If a reduction step occurs in
V leading to V ′ then Jc[E[M [V/x]]]→→Jc[E[M [V ′/x]]]. Hence, the
jump Jc[E[M [V ′/x]]] is SN and the induction hypothesis on V ′ SN
applies. Finally, if Jc[E[(λx.M)V]] → Jc[E[M [V/x]]], the result is
SN by hypothesis.

2. Let J ′ = J [V/x][Jc[E]/k]]. We reason by induction on the structure
of E, then by induction on the proofs of SN for Jc[E], V , and J ′. If
E = 2, then a reduction step in let (x, k) = (V, λx. Jc[x]) in J
occurs either in Jc, J , V or it yields J ′. In the first cases, we
apply the induction hypothesis as above. In the latter case, the

final.tex; 11/04/2007; 15:30; p.47

48 Ariola, Herbelin, and Sabry

contractum is directly SN by hypothesis. Otherwise, if E is some
E′[F], we consider the different reduction steps that can occur in
let (x, k) = (V, λx. Jc[E

′[F [x]]]) in J :

− If the reduction step occurs in V (respectively Jc[E
′[F]]) lead-

ing to V ′ (respectively J ′′
c [E′′]), then J ′→→J [V ′/x][Jc[E]/k]]

(respectively J ′→→J [V/x][J ′′
c [E′′]/k]]) so that the reducts of

J ′ and V (respectively Jc[E
′[F]]) are SN and the induction

hypothesis applies.

− If the reduction step occurs in J leading to some jump J ′′,
then J ′ → J ′′[V/x][Jc[E]/k]] so that the latter reduct is SN
and the induction hypothesis applies.

− If the reduction gives:

let (x, k) = (V, λx. Jc[E
′[x]]) in J [kF/k] then J ′ can be rewrit-

ten to J [kF/k][V/x][Jc[E
′]/k] so that the induction hypothesis

on E applies (taking E ′ and J [kF/k] for E and J respectively)

3. As above, we reason by induction on the structure of Jc[E], then by
induction on the proofs of SN for Jc[E], and J [Jc[E]/k]. If E = 2,
then there are two interesting cases:

− If Jc[C(λk. J)] → J [Jc/k] (i.e. Cidem or Sublift
v), then SN follows

from the hypothesis.

− If J is some kM with k not free in M and Jc[Ck.J] → Jc[M]
using Celim , then the reasoning is the same since Jc[M] =
J [Jc/k].

If E is some E ′[F], then there are also two interesting cases:

− If Jc[E
′[F [C(λk. J)]]] → Jc[E

′[C(λk.J [kF/k])]], then SN fol-
lows by induction hypothesis on E ′ since J [Jc[E

′[F]]/k] can
be rewritten into J [kF/k][Jc[E

′]/k].

− If J is some kM with k not free in M and Jc[E[Ck.J]] →
Jc[E[M]] using Celim , then again, the reasoning is the same
since Jc[E[M]] = J [Jc[E]/k].

A.2. Reducibility

We define the property “reducible of a given type” for terms and jump
contexts. The definition is by induction on the type, then by mutual
induction on values, jump contexts, and non-value terms, with priority
given first to values, then to jump contexts, and finally to non-values.

final.tex; 11/04/2007; 15:30; p.48

A Type-Theoretic Foundation of Delimited Continuations 49

The definition is a straightforward adaptation of the notion of reducibil-
ity developed by Herbelin (2001) for proving strong normalisation of
the call-by-name λµµ̃-calculus.

DEFINITION 40. [Reducible of a given type]

− A value V is reducible of type A iff:

• V is a variable

• V is λx.N and A is some B → C such that for all value V ′

reducible of type B, V V ′ is reducible of type C

• V is (V ′, λx. Jc[E[x]]) and A is some B−C and V ′ is reducible
of type B and Jc[E] is reducible of type C.

− A jump context Jc[E] is reducible of type A iff for all value V
reducible of type A, Jc[E[V]] is SN.

− A non-value term M is reducible of type A iff for all jump
contexts Jc[E] reducible of type A, Jc[E[M]] is SN.

Remark 1. Since reducible jump contexts are SN against any re-
ducible value, the if part of the last clause of the definition of re-
ducibility also holds for values.

A.3. Properties of Reducibility

LEMMA 41. Reducible values, non-value terms and contexts are
SN:

1. For all Jc[E] reducible of type A, Jc[E] is SN.

2. For all M reducible of type A, M is SN.

3. For all k of type A, k 2 is a reducible jump context.

Proof. Let Jc[E] be a reducible jump context. Take a variable x. It
is a reducible value, hence Jc[E[x]] is SN. Especially Jc[E] is SN.

We show the last two items conjointly by induction on A. We first
show that M reducible is SN if it is a value.

− If M is a variable, it is SN.

− If M is λx.N of type B → C, then applying it to x (which is
reducible of type B) yields a reducible term of type C identical to
N . By induction hypothesis on C, N is SN so that M is SN too.

final.tex; 11/04/2007; 15:30; p.49

50 Ariola, Herbelin, and Sabry

− If M is (V, kE) of type B − C with kE reducible of type C and
V reducible of type B then kE is SN, and V is SN by induction
hypothesis, so that M is SN.

We then show that all jump contexts of the form k 2 are reducible
of type A. Let V be a reducible value of type A. We have to show that
k V is SN. We just showed that V was SN. Since the only redexes of
k V are redexes of V , we get k V SN.

We can now extend the result to any non-value M . Let k be a
continuation variable of type A. Since k 2 is reducible of type A, we
obtain that k M is SN. Especially, M is SN.

The following lemma shows that reducibility of jump contexts is
preserved by context construction.

LEMMA 42. We have:

1. If V is reducible of type A→ B and Jc[E] reducible of type B then
Jc[E[V 2]] is reducible of type A.

2. If M is reducible of type A and Jc[E] reducible of type B then
Jc[E[2 M]] is reducible of type A→ B.

3. If Jc[E]′ is reducible of type A and Jc[E] reducible of type B − A
then Jc[E[(2, λx. J ′

c[E
′[x]])]] is reducible of type B.

4. If J [V/x][Jc[E]/k′] is SN for any reducible V of type B and Jc[E]
of type C then let (x, k′) = 2 in J is a reducible jump context of
type B − C.

Proof.

1. We have to show that Jc[E[V V ′]] is SN for any V ′ reducible of
type A. If V is some variable x then redexes of Jc[E[xV ′]] are either
in Jc[E] or in V ′ which are SN by Lemma 2. If V is some λx.M
then, by definition of its reducibility, V V ′ is reducible. Combined
with the reducibility of Jc[E], we get Jc[E[V V ′]] SN.

2. We have to show that Jc[E[V M]] is SN for any V reducible of type
A → B. By the previous item, Jc[E[V 2]] is a reducible context of
type A. Hence, Jc[E[V M]] is SN, by reducibility of M .

3. We have to show that Jc[E[(V, λx. J ′
c[E

′[x]])]] is SN for any V re-
ducible of type B. The reducibility of J ′

c[E
′] and V implies the

reducibility of the value (V, λx. J ′
c[E

′[x]]). Hence, the reducibility
of Jc[E] implies Jc[E[(V, λx. J ′

c[E
′[x]])]] SN.

final.tex; 11/04/2007; 15:30; p.50

A Type-Theoretic Foundation of Delimited Continuations 51

4. We have to show that let (x, k′) = V in J is SN for any V
reducible of type B − C. If V is some variable y then the only
redexes of let (x, k′) = y in J are in J . Since J = J [x/x][k′

2/k′]
which is SN by hypothesis, the whole expression is SN too. If V
is some value of the form (V ′, λx. J ′′

c [E′′[x]]), then by hypothe-
sis, J [V ′/x][J ′′

c [E′′]/k′] is SN. By Lemma 39(2), we conclude that
let (x, k′) = (V ′, J ′′

c [E′′]) in J is SN too.

A.4. Adequacy Lemma

Finally, we show the main lemma that all typed terms are reducible.

LEMMA 43. Let Γ be an ordered context of declarations of the form
either xi : Ai or ki : Bi →⊥⊥. Let Vi be instances for the variables xi

and J i
c[Ei] be instances for the variables ki such that the free variables

of Vi and J i
c[Ei] are among the xj and kj for j ≤ i. The Vi are reducible

values of respective types Ai and the J i
c[Ei] are reducible jump contexts

of respective types Bi. We write [σ] for the ordered substitution mixing
the substitution [Vi/xi] and [J i

c[Ei]/ki]. We have:

− Γ,∆ `M : A implies M [σ] reducible of type A

− Γ,∆ ` J :⊥⊥ implies J [σ] SN.

Proof. We reason by induction on the derivation of Γ,∆ `M : A or
Γ,∆ ` J :⊥⊥.

− Rule Ax with M = xi: this is direct by reducibility of Vi.

− Rule→e with M = M1M2 with M1 of type B → A and M2 of type
B. Let Jc[E] a reducible jump context of type A. Since M ′

2 = M2[σ]
is reducible of type B by induction hypothesis, Jc[E[2 M ′

2]] is
reducible of type B → A by Lemma 42(2). Since M ′

1 = M1[σ] is
reducible by induction hypothesis, we have that Jc[E[M ′

1M
′
2]] is

SN. Hence M [σ] = M ′
1M

′
2 is reducible.

− Rule →i with M = λx.N : A → B. Let V be a reducible value
of type A and Jc[E] a reducible jump context of type B. By in-
duction hypothesis, we have N [σ][V/x] reducible of type B hence
Jc[E[N [σ][V/x]]] is SN. By Lemma 41, V is SN. By Lemma 39(1),
we get Jc[E[(λx.(N [σ]))V]] SN so that (λx.N)[σ] = λx.(N [σ]) is
reducible.

final.tex; 11/04/2007; 15:30; p.51

52 Ariola, Herbelin, and Sabry

− Rule →k
e with J = ki0M and M of type A and ki0 of type A→⊥⊥.

By induction hypothesis we have M ′ = M [σ] reducible of type A.
Since J i0

c [Ei0] is reducible (of type A), we get J [σ] = J i0
c [Ei0][M

′]
SN.

− Rule RAA with M = C(λk.J). Let Jc[E] a reducible jump context
of type A. By induction hypothesis we have J ′ = J [σ][Jc[E]/k] SN.
By Lemma 41, Jc[E] is SN so that we get Jc[E[C(λk.J)]] SN by
Lemma 39(3).

− Rule −e with J0 = (let (y, k) = N in J) with N of type B−C. We
have to show that J0[σ] is SN. By induction hypothesis we already
know that N ′ = N [σ] is reducible of type B−C. Let J ′ = J [σ]. By
induction hypothesis, we have that J ′[V/y][Jc[E]/k] is SN for every
reducible V of type B and Jc[E] of type C. Hence, by Lemma 42(4),
let (y, k) = 2 in J ′ is a reducible jump context of type B−C. By
reducibility of N ′, we conclude that J0[σ] = let (y, k) = N ′ in J ′

is SN.

− Rule −i with M = (M,λx. Jc[E[x]]) and A = B−C. The typability
of Jc[E] states that Γ,∆, x : C ` Jc[E[x]] :⊥⊥ for some fresh variable
x. By induction hypothesis, ((Jc[E])[σ])[V] = Jc[E[x]][σ][V/x] is
SN for any reducible V of type C so that J ′

c[E
′] = (Jc[E])[σ]

is reducible of type C. By induction hypothesis, N ′ = N [σ] is
reducible too, of type B. If N ′ is a value, we get that M [σ] =
(N ′, λx. J ′

c[E
′[x]]) is reducible. Otherwise, we have to show that

J ′′
c [E′′[(N ′, λx. J ′

c[E
′[x]])]] is SN for every reducible jump context

J ′′
c [E′′] of type B −C. By Lemma 42(3), J ′′

c [E′′[(2, λx. J ′
c[E

′[x]])]]
is reducible of type B. Hence, by reducibility of N ′, we conclude
that J ′′

c [E′′[(N ′, λx. J ′
c[E

′[x]])]] is SN.

Combining the above with Lemma 41(1 and 2), and because vari-
ables and variable-based jump contexts are reducible (respectively by
definition and by Lemma 41(3)), we finally get the strong normalisabil-
ity of λ−

C .

THEOREM 44. Typed λ−
C is strongly normalisable.

References

Ariola, Z. M. and H. Herbelin: 2003, ‘Minimal Classical Logic and Control Op-
erators’. In: Thirtieth International Colloquium on Automata, Languages and
Programming , ICALP’03, Eindhoven, The Netherlands, June 30 - July 4, 2003,
Vol. 2719. pp. 871–885, Springer-Verlag, LNCS.

final.tex; 11/04/2007; 15:30; p.52

A Type-Theoretic Foundation of Delimited Continuations 53

Ariola, Z. M. and H. Herbelin: 2007, ‘Control Reduction Theories: The Benefit of
Structural Substitution’. Journal of Functional Programming. To appear.

Ariola, Z. M., H. Herbelin, and A. Sabry: 2004, ‘A Type-Theoretic Foundation of
Continuations and Prompts’. In: ACM SIGPLAN International Conference on
Functional Programming. pp. 40–53, ACM Press, New York.

Baba, K., S. Hirokawa, and K. etsu Fujita: 2001, ‘Parallel Reduction in Type Free
λµ-Calculus’. Electronic Notes in Theoretical Computer Science 42, 52–66.

Barbanera, F. and S. Berardi: 1993, ‘Extracting Constructive Content from Classical
Logic via Control-Like Reductions’. In: M. Bezem and J. F. Groote (eds.):
Proceedings 1st Intl. Conf. on Typed Lambda Calculi and Applications, TLCA’93,
Utrecht, The Netherlands, 16-18 March 1993, Vol. 664. Berlin: Springer-Verlag,
pp. 45–59.

Crolard, T.: 2001, ‘Subtractive logic’. Theor. Comput. Sci. 254(1-2), 151–185.
Crolard, T.: 2004, ‘A formulae-as-types interpretation of subtractive logic’. Journal

of Logic and Computation (Special issue on Modalities in Constructive Logics
and Type Theories) 14(4), 529–570.

Curien, P.-L. and H. Herbelin: 2000, ‘The duality of computation’. In: ACM SIG-
PLAN International Conference on Functional Programming. pp. 233–243, ACM
Press, New York.

Danvy, O. and A. Filinski: 1989, ‘A Functional Abstraction of Typed Con-
texts’. Technical Report 89/12, DIKU, University of Copenhagen, Copenhagen,
Denmark.

Danvy, O. and A. Filinski: 1990, ‘Abstracting Control’. In: Proceedings of the 1990
ACM Conference on LISP and Functional Programming, Nice. pp. 151–160,
ACM Press, New York.

David, R. and W. Py: 2001, ‘Lambda-mu-Calculus and Böhm’s Theorem’. Journal
of Symbolic Logic 66(1), 407–413.

de Groote, P.: 1994, ‘On the Relation between the lambda-mu Calculus and the
Syntactic Theory of Sequential Control’. In: F. Pfennig (ed.): Logic Programming
and Automated Reasoning, Proc. of the 5th International Conference, LPAR’94.
Berlin, Heidelberg: Springer, pp. 31–43.

Dybvig, R. K., S. Peyton-Jones, and A. Sabry: 2004, ‘A Monadic Framework for
Subcontinuations’. Submitted for publication.

Felleisen, M.: 1988, ‘The Theory and Practice of First-Class Prompts’. In: Pro-
ceedings of the 15th ACM Symposium on Principles of Programming Languages
(POPL ’88). pp. 180–190, ACM Press, New York.

Felleisen, M.: 1990, ‘On the Expressive Power of Programming Languages’. In: N.
Jones (ed.): ESOP ’90 3rd European Symposium on Programming, Copenhagen,
Denmark, Vol. 432. New York, N.Y.: Springer-Verlag, pp. 134–151.

Felleisen, M., D. Friedman, and E. Kohlbecker: 1987, ‘A syntactic theory of
sequential control’. Theoretical Computer Science 52(3), 205–237.

Felleisen, M. and R. Hieb: 1992, ‘The Revised Report on the Syntactic Theories of
Sequential Control and State’. Theoretical Computer Science 103(2), 235–271.

Felleisen, M., M. Wand, D. P. Friedman, and B. F. Duba: 1988, ‘Abstract contin-
uations: A mathematical semantics for handling full functional jumps’. In: In
Conference on LISP and Functional Programming, Snowbird, Utah. pp. 52–62,
ACM Press, New York.

Filinski, A.: 1989, ‘Declarative Continuations: an Investigation of Duality in Pro-
gramming Language Semantics’. In: Category Theory and Computer Science,
Manchester, UK, September 5-8, 1989, Proceedings, Vol. 389 of LNCS. pp.
224–249, Springer-Verlag.

final.tex; 11/04/2007; 15:30; p.53

54 Ariola, Herbelin, and Sabry

Filinski, A.: 1994, ‘Representing Monads’. In: Conf. Record 21st ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages, POPL’94, Portland,
OR, USA, 17-21 Jan. 1994. pp. 446–457, ACM Press, New York.

Filinski, A.: 1999, ‘Representing layered monads’. In: Proceedings of the 26th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. pp.
175–188, ACM Press, New York.

Fischer, M. J.: 1972, ‘Lambda-calculus schemata’. In: Proc. ACM Conference on
Proving Assertions About Programs, Vol. 7(1) of SIGPLAN Notices. pp. 104–109,
ACM Press, New York.

Fischer, M. J.: 1993, ‘Lambda-Calculus Schemata’. LISP and Symbolic Computa-
tion 6(3/4), 259–288. <http://www.brics.dk/~hosc/vol06/03-fischer.html>
Earlier version available in the proceedings of an ACM Conference on Proving
Assertions about Programs, SIGPLAN Notices, Vol. 7, No. 1, January 1972.

Griffin, T. G.: 1990, ‘The Formulae-as-Types Notion of Control’. In: Conf. Record
17th Annual ACM Symp. on Principles of Programming Languages, POPL’90,
S an Francisco, CA, USA, 17-19 Jan 1990. pp. 47–57, ACM Press, New York.

Gunter, C. A., D. Rémy, and J. G. Riecke: 1995, ‘A Generalization of Exceptions
and Control in ML-like Languages’. In: Functional Programming & Computer
Architecture. New York, ACM Press.

Guzmán, J. and A. Suárez: 1994, ‘An Extended Type System for Exceptions’. In:
Record of the fifth ACM SIGPLAN workshop on ML and its Applications. Also
appeared as Research Report 2265, INRIA, BP 105 - 78153 Le Chesnay Cedex,
France.

Haynes, C. T.: 1986, ‘Logic Continuations’. In: Proceedings of the Third Interna-
tional Conference on Logic Programming, Vol. 225 of Lecture Notes in Computer
Science. Berlin, pp. 671–685, Springer-Verlag.

Haynes, C. T., D. Friedman, and M. Wand: 1986, ‘Obtaining coroutines from
continuations’. Journal of Computer Languages 11, 143–153.

Herbelin, H.: 2001, ‘Explicit Substitutions and Reducibility’. Journal of Logic and
Computation 11(3), 431–451.

Hieb, R., K. Dybvig, and C. W. Anderson, III: 1994, ‘Subcontinuations’. Lisp and
Symbolic Computation 7(1), 83–110.

Hieb, R. and R. K. Dybvig: 1990, ‘Continuations and Concurrency’. In: PPoPP
’90, Symposium on Principles and Practice of Parallel Programming, Vol. 25(3)
of SIGPLAN NOTICES. Seattle, Washington, March 14-16, pp. 128–136, ACM
Press, New York.

Hofmann, M.: 1995, ‘Sound and complete axiomatisations of call-by-balue control
operators’. Mathematical Structures in Computer Science 5(4), 461–482.

Howard, W.: 1980, ‘The formulae-as-types notion of construction’. In: J. R. Hindley
and J. P. Seldin (eds.): To H. B. Curry: Essays in Combinatory Logic, Lambda
Calculus and Formalism. Academic Press, pp. 479–490.

Kameyama, Y.: 2000, ‘A Type-Theoretic Study on Partial Continuations’. In: IFIP
TCS. pp. 489–504.

Kameyama, Y.: 2001, ‘Towards Logical Understanding of Delimited Continua-
tions’. In: Proceedings of the Third ACM SIGPLAN Workshop on Continuations
(CW’01).

Kameyama, Y. and M. Hasegawa: 2003, ‘A Sound and Complete Axiomatization of
Delimited Continuations’. In: Proc. of 8th ACM SIGPLAN Int. Conf. on Func-
tional Programming, ICFP’03, Uppsala, Sweden, 25-29 Aug. 2003, Vol. 38(9) of
SIGPLAN Notices. ACM Press, New York, pp. 177–188.

final.tex; 11/04/2007; 15:30; p.54

A Type-Theoretic Foundation of Delimited Continuations 55

Lillibridge, M.: 1999, ‘Unchecked Exceptions Can be Strictly More Powerful Than
Call/CC’. Higher-Order and Symbolic Computation 12(1), 75–104.

Moggi, E.: 1989, ‘Computational lambda-calculus and monads’. In: Proceedings of
the Fourth Annual Symposium on Logic in computer science. pp. 14–23, IEEE
Press.

Moreau, L.: 1998, ‘A Syntactic Theory of Dynamic Binding’. Higher Order Symbol.
Comput. 11(3), 233–279.

Moreau, L. and C. Queinnec: 1994, ‘Partial Continuations as the Difference of Con-
tinuations. A Duumvirate of Control Operators’. In: International Conference
on Programming Language Implementation and Logic Programming (PLILP’94).
Madrid, Spain, pp. 182–197, Springer-Verlag.

Murthy, C.: 1992, ‘Control Operators, Hierarchies, and Pseudo-Classical Type
Systems: A-Translation at Work’. In: ACM workshop on Continuations. pp.
49–71.

Ong, C.-H. L. and C. A. Stewart: 1997, ‘A Curry-Howard Foundation for Functional
Computation with Control’. In: Conf. Record 24th ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, POPL’97, Paris, France, 15-17
Jan. 1997. ACM Press, New York, pp. 215–227.

Parigot, M.: 1992, ‘Lambda-mu-calculus: An algorithmic interpretation of classical
natural deduction’. In: Logic Programming and Automated Reasoning: Interna-
tional Conference LPAR ’92 Proceedings, St. Petersburg, Russia. pp. 190–201,
Springer-Verlag.

Rauszer, C.: 1974, ‘Semi-boolean algebras and their application to intuitionistic logic
with dual connectives’. Fundamenta Mathematicae 83, 219–249.

Riecke, J. G. and H. Thielecke: 1999, ‘Typed Exceptions and Continuations Cannot
Macro-Express Each Other’. In: Proceedings of the 26th International Colloquium
on Automata, Languages and Programming (ICALP), Vol. 1644 of Lecture Notes
in Computer Science. Berlin, pp. 635–644, Springer-Verlag.

Shan, C.: 2004, ‘Shift to Control’. In: O. Shivers and O. Waddell (eds.): Proceed-
ings of the 5th workshop on Scheme and Functional Programming. pp. 99–107.
Technical report, Computer Science Department, Indiana University, 2004.

Sitaram, D. and M. Felleisen: 1990a, ‘Control delimiters and their hierarchies’. Lisp
and Symbolic Computation 3(1), 67–99.

Sitaram, D. and M. Felleisen: 1990b, ‘Reasoning with continuations II: full abstrac-
tion for models of control’. In: LFP ’90: Proceedings of the 1990 ACM conference
on LISP and functional programming. pp. 161–175, ACM Press.

Thielecke, H.: 2000, ‘On Exceptions versus Continuations in the Presence of State’.
In: Proceedings of the ninth European Symposium On Programming (ESOP), Vol.
1782 of Lecture Notes in Computer Science. Berlin, pp. 397–411, Springer-Verlag.

Thielecke, H.: 2001, ‘Contrasting Exceptions and Continuations’. Available from
http://www.cs.bham.ac.uk/~hxt/research/exncontjournal.pdf.

Thielecke, H.: 2002, ‘Comparing Control Constructs by Double-barrelled CPS’.
Higher-order and Symbolic Computation 15(2/3), 119–136.

Wadler, P.: 1994, ‘Monads and composable continuations.’. Lisp and Symbolic
Computation 7(1), 39–56.

Wand, M.: 1999, ‘Continuation-based multiprocessing’. Higher-Order and Symbolic
Computation 12(3), 285–299. <http://www.brics.dk/~hosc/vol12/3-wand.

html> Reprinted from the proceedings of the 1980 Lisp Conference, with a
foreword.

final.tex; 11/04/2007; 15:30; p.55

final.tex; 11/04/2007; 15:30; p.56

