
ar
X

iv
:0

90
2.

37
22

v2
 [

cs
.L

O
]

 1
1

Ju
n

20
09

A minimalistic look at widening operators

David Monniaux

CNRS / VERIMAG∗

March 7, 2019

Abstract

We consider the problem of formalizing in higher-order logic the fa-
miliar notion of widening in abstract interpretation. It turns out that
many axioms of widening (e.g. widening sequences are ascending) are not
useful for proving correctness. After keeping only useful axioms, we give
an equivalent characterization of widening as a lazily constructed well-
founded tree. In type systems supporting dependent products and sums,
this tree can be made to reflect the condition of correct termination of the
widening sequence.

1 The usual framework

We shall first recall the usual definitions of abstract interpretation and widening
operators.

1.1 Abstract interpretation

Abstract interpretation is a framework for formalizing approximation relation-
ships arising in program semantics and static analysis [7, 8]. Soundness of the
abstraction is expressed by the fact that the approximation takes place in a con-
trolled direction. In order to prove that some event is unreachable, we can try
computing some superset of the set of reachable states (an over-approximation),
in the hope that this set does not intersect the event. If we wish to obtain a set
of initial states that necessarily result in some event further down the program,
we compute an under-approximation of the set of initial states that verify that
property. Because most static analysis is concerned with over-approximations,
we shall only consider this case in this article.

Most introductory materials on abstract interpretation describe abstraction
as a Galois connection between a concrete space S (typically, the powerset
P(Σ) of the set of states Σ of the program, or the powerset of the set of finite
execution traces Σ∗ of the program) and an abstract space S♯. For instance,
if the program state consists in a program counter location, taken within a
finite set P of program locations, and three integer variables, Σ = P × Z

3,
S = P(P ×Z

3), the abstract state can be, for instance, P → ({⊥} ∪ I3), where
P is the set of program locations, a → b denotes the set of functions from a

∗VERIMAG is a joint laboratory of CNRS, Université Joseph Fourier and Grenoble-INP.

1

http://arxiv.org/abs/0902.3722v2

to b, I is the set of well-formed pairs (a, b) defining intervals (a ∈ Z ∪ {−∞},
b ∈ Z ∪ {+∞} and a ≤ b) and ⊥ is a special element meaning “unreachable”.
S and S♯ are ordered; here, S is ordered by set inclusion ⊆ and S♯ is ordered
by ⊑P , the pointwise application of ⊑ for all program locations: ⊥ ⊑ x♯ for
all x in S♯, and ((a1, b1), (a2, b2), (a3, b3)) ⊑ ((a′1, b

′

1), (a
′

2, b
′

2), (a
′

3, b
′

3)) if for all
1 ≤ i ≤ 3, a′i ≤ ai and b′i ≥ bi. For the sake of simplicity, we shall give
examples further on where P is a singleton; the generalization to any finite P

is straightforward. P → ({⊥} ∪ I3) is then isomorphic to {⊥} ∪ I3 and we
shall thus consider, as a running example, the case where S is P(Z3) and S♯ is
{⊥} ∪ I3.

S and S♯ are connected by an abstraction map α and a concretization map
γ. γ maps any abstract state x♯ to the set of concrete states that it represents;1

here, γ ((a1, b1), (a2, b2), (a3, b3)) is the set of triples (v1, v2, v3) such that for all
1 ≤ i ≤ 3, ai ≤ vi ≤ bi. α maps a set x of concrete states to the “best” (least)
abstract element x♯ such that x ⊆ γ(x♯). Here, if x ⊆ Z

3, then for all 1 ≤ i ≤ 3,
ai = inf(v1,v2,v3)∈x vi and bi = sup(v1,v2,v3)∈x vi. ⊆ and ⊑ must be compatible:

if x♯ ⊑ y♯, then γ(x♯) ⊆ γ(y♯).
Abstract interpretation replaces a possibly infinite number of concrete pro-

gram execution, which cannot be simulated in practice, by a simpler “abstract”
execution. For instance, one may replace running a program using our three
integer variables over all possible initial states by a single abstract execution
with interval arithmetic. The resulting final intervals are guaranteed to contain
all possible outcomes of the concrete program. More formally, if one has a tran-
sition relation τ ⊆ Σ × Σ, one defines the forward concrete transfer function
fτ : S → S as fτ (x) = {σ′ | σ →τ σ′ ∧ σ ∈ x}. fτ (W) is the set of states reach-
able in one forward step from W . We say that the abstract transfer function
fτ

♯(x♯) is a correct abstraction for fτ if for all x♯, fτ ◦ γ(x
♯) ⊆ γ ◦ fτ

♯(x♯). This
soundness property means that if we have a superset of the concrete precondi-
tion, we get a superset of the concrete postcondition.

As usual in program analysis, obtaining loop invariants is the hardest part.
Given a set x0 ⊆ Σ of initial states, we would like to obtain a superset of the
set of reachable states x∞ = {σ′ | σ →∗

τ σ′ ∧ σ ∈ x0}. The sets of states xn

reachable in at most n steps from x0 is defined by induction: xn+1 = φ(xn),
where φ(x) = fτ (x) ∪ x0. The sequence (xn) is ascending, and its limit is

1In some presentations of abstract interpretation, abstract elements x♯ are identified with
their concretization γ(x♯). For instance, one talks directly of the interval [a, b], not of the pair
(a, b). This can makes explanations smoother by clearing up notations. It is however important
for some purposes to distinguish the machine representation of an abstract element x♯ from
its concretization γ(x♯), if only because γ may not be injective. For instance, x = y ∧ x ≤ 1
and x = y∧y ≤ 1 define exactly the same part of the plane (as geometrical convex polyhedra)
but are different in their machine representation. This is the same difference as that between
the syntax and the semantics of a logic.

Certain abstract operations may be sensitive to the syntax of an abstract element; that is,
they may yield different results for x♯ and y♯ even though γ(x♯) and γ(y♯). For instance, the
original widening operator defined for the convex polyhedra [9] was sensitive to syntax, and
was later improved, losing this sensitivity [12, p. 56–57][11, §2.2].

Also, while in many cases ⊑ is defined by a ⊑ b ⇐⇒ γ(a) ⊆ γ(b), this relation may some-
times be too costly or impossible to compute, and some smaller relation may be used. Finally,
since our goal is to write programs and proofs in a proof assistant based on intuitionistic type
theory, we thought it best to clearly separate the computational, constructive content from
the non-computational content (the set of reachable states of the program cannot be defined
constructively, in general).

2

x∞, which is the least fixed point of φ by Kleene’s fixed point theorem; this
sequence is thus often known as Kleene iterations. x∞ is also known as the
strongest invariant of the program. An inductive invariant is a set x such that
x0 ⊆ x and fτ (x) ⊆ x, and by Tarski’s theorem, the intersection of all such sets
is x∞.

Obviously, the set of all possible states (often noted ⊤) is an inductive in-
variant, but it is uninteresting since it cannot be used to prove any interesting
property of the program. A major goal of program analysis is to obtain program
invariants x that are strong enough to prove some interesting properties, yet not
too costly too establish.

In some cases, interesting inductive invariants may be computed directly.
Various approaches have recently been proposed for the direct computation of
invariants, without Kleene iterations. Costan et al. [5] proposed a method for
computing least fixed points in the lattice of real intervals by downward policy
iteration, also known as strategy iteration, a technique borrowed from game
theory; they later extended their framework to other domains. Gawlitza and
Seidl [10] proposed a method for computing least fixed points in certain lattices
by upward strategy iteration. Monniaux [15, 16] showed that least fixed point
problems in some lattices expressing numerical constraints can be reduced to
quantifier elimination problems, which in turn can be solved algorithmically.
Other recent proposals include expressing the least invariant problem in the
abstract lattice directly as a constrained minimization problem, then solving it
with operational research tools [6]. One common factor to these approaches is
that they target specific classes of abstract domains and programs; in addition
to lack of genericity, they may also suffer from high complexity.

1.2 Abstract Kleene iterations and widening operators

The more traditional approach to finding inductive invariants by abstract inter-
pretation is to perform abstract Kleene iterations. Let x♯

0 be an abstraction of

x0. Define φ♯(x♯) = f ♯
τ (x

♯) ⊔ x
♯
0, where ⊔ is a sound overapproximation of the

concrete union ∪: γ(x♯) ∪ γ(y♯) ⊆ γ(x♯ ⊔ y♯). From the soundness of f ♯
τ and ⊔,

φ♯ is a sound abstraction of φ: for all x♯, φ ◦ γ(x♯) ⊆ γ ◦ φ♯(x♯). By induction,
for all n, xn ⊆ γ(x♯

n).
In many presentations of abstract interpretation, it is supposed that the ab-

stract transfer function f ♯
τ and the abstract union ⊔ are monotonic. Intuitively,

this means that if the analysis has more precise information at its disposal,
then its outcome is more precise. This is true for elementary transfer functions
in most abstract domains, and thus of their composition into abstract trans-
fer functions of more complex program constructions. A well-known exception
is when the abstract transfer function is itself defined as the overapproxima-
tion of a least fixed-point operation using a widening operator (see below), yet
there exist less well-known cases where the abstract transfer function may be
non-monotonic.2

2Such is for instance the case of the symbolic constant propagation domain proposed by
Miné [14, §5][13, §6.3.4]. The full symbolic propagation strategy can induce non-monotonic
effects: if the analysis knows more relationships, it can perform spurious rewritings and para-
doxically provide a less precise result. The same is true of the linearization step: for nonlinear
terms, a choice has to be made between several valid linearizations; while all choices lead to
sound results, they do not have the same precision and the choice heuristic does not necessarily

3

Let us nevertheless temporarily assume that f ♯
τ and ⊑ and, thus, φ♯, are

monotonic, and that a♯, b♯ ⊑ a♯ ⊔ b♯ for all a♯ and b♯. Then x0
♯ ⊑ x1

♯ and
by induction, for all n, by repeatedly application of monotonic φ♯, x♯

n ⊑ x
♯
n+1.

The sequence x♯
n is ascending. If this sequence is stationary, there is a N such

that x
♯
N+1 = x

♯
N . Then, γ(x♯

N) = γ(x♯
N+1) = γ(f ♯

τ (x
♯
N) ⊔ x

♯
0) ⊇ γ ◦ f ♯

τ (x
♯
N) ⊇

f ◦ γ(x♯
N), and γ(x♯

N) = γ(x♯
N+1) = γ(f ♯

τ (x
♯
N) ⊔ x

♯
0) ⊇ γ(x♯

0), which means that

γ(x♯
N) is an inductive invariant. Obviously, if the abstract domain S♯ is finite,

then any ascending sequence is stationary.3

More generally, the same results hold for any domain of finite height (there
exists an integer L such that any strictly ascending sequence has at most length
L), and, even more generally, for any domain satisfying the ascending chain
condition (there does not exist any infinite strictly ascending sequence). Yet,
even the very simple domain of products of intervals that we defined earlier does
not satisfy the ascending chain condition!

In domains that do not satisfy the ascending condition, the abstract Kleene
iterations may fail to converge in finite time. Such is the case, for instance, of
the interval abstraction of the program with a single integer variable defined by
the transition system τ : for all n, n →τ n + 1, and the initial state is 0. The
best abstract transfer function φ♯ maps a pair (0, n) representing an integer
interval {0, . . . , n} to the pair (0, n+1), thus the abstract Kleene iterations are
x♯
n = (0, n) and the analysis fails to converge in finite time.
The traditional solution to the convergence problem in domains that do

not satisfy the ascending chain condition is to use a widening operator, which
is a form of convergence accelerator applied to abstract Kleene iterations [7,
Def. 4.1.2.0.4][8, §4].4 Intuitively, the widening operation examines the first
abstract Kleene iterations and conjectures some possible over-approximation of
the limit, which is then checked for stability; further iterations may be necessary
until an inductive invariant is reached.

Here is the most common definition:

Definition 1. A widening operator ▽ on an abstract domain (S♯,⊑) is a binary
operator that verifies the three following properties:

1. x♯ ⊑ x♯
▽y♯

2. y♯ ⊑ x♯
▽y♯

3. for any sequence v♯n, a sequence of the form u
♯
n+1 = u♯

n▽v
♯
n is ultimately

stationary.

We can then use u
♯
0 = x

♯
0, u

♯
n+1 = u♯

n▽φ
♯(u♯

n). By the third property of the

widening operator, there exists N such that u♯
N = u

♯
N▽φ♯(u♯

N). Thus, φ♯(u♯
N) ⊑

choose the best one.
3This explains the popularity of Boolean abstractions: S♯ is the set of sets of bit vectors

of fixed length L, and these sets are often represented by reduced ordered binary decision

diagrams (ROBDD) [4]. Reachability analysis in BDD-based model-checkers is thus a form
of Kleene iteration in the BDD space. Very astute implementation techniques, involving
generalized hashing of data structures, ensure that equality tests take constant time and that
φ♯ is computed efficiently.

4For each infinite height domain, one or more widening operators must be designed. Conse-
quently, most literature on abstract interpretation domains includes descriptions of widening
operators. We shall list here only the earliest examples, namely the widenings on intervals
and convex polyhedra [7, 9, 11, 12].

4

⊥

1 2 . . .

21

⊥

⊥

1

1 2

⊑

⊑ ⊑ ⊑

. . .

3

+∞

Figure 1: Interpretation of widening as a well-founded tree. Each node rep-
resents a proposal u♯

n from the widening system. Each edge is labelled with
the answer v♯n from the analysis system. The widening system either answers ⊑
when it determines that v♯n ⊑ u♯

n, either makes a new proposal. A path from the
root of the tree is an abstract Kleene iteration sequence. The well-foundedness
of the tree ensures the termination of such sequences.

u
♯
N . But then, by the same reasoning as for stationary Kleene iterations without

widening, φ♯(u♯
N) ⊑ u

♯
N and thus γ ◦ fτ (u

♯
N) ∪ γ(x♯

0) ⊆ γ(u♯
N) and γ(u♯

N) is an
inductive invariant.

Let us now have a second look at the hypotheses that we really used to
establish that result. Though it is often assumed that the abstract domain is a
complete lattice, and that the abstract transfer function is monotonic, we never
used either hypotheses. In fact, the only hypotheses that we used are:

• fτ is monotonic and the concrete domain P(S) is a complete lattice, thus φ
has a least fixed point which is the least inductive invariant of the program.

• For all a♯ and b♯, b♯ ⊑ a♯▽b♯.

• For all sequence v♯n, any sequence defined by u
♯
n+1 = u♯

n▽v
♯
n is stationary.

2 Relaxation of conditions and interpretation in

inductive types

During our work on the Astrée tool [3], and when formalizing the notion of
widening in the Coq proof assistant [1],5 we realized that the usual definitions
of abstract domains and widenings are unnecessarily restrictive for practical
purposes. Pichardie [17, §4.4] already proposed a relaxation of these conditions,
but his definition of widenings is still fairly complex. We propose here a drasti-
cally reduced definition of widenings, which subsumes both the ⊑ ordering and
the ▽ operator.

5Coq is a proof assistant in higher order logic available from http://coq.inria.fr.

5

http://coq.inria.fr

Definition 2. A widening system is an algorithm that proposes successive
abstract elements u

♯
0, u

♯
1, . . . , u

♯
n to the rest of the analyzer, and receives v♯n

from it — in practical use, v♯n = φ♯(u♯
n) and φ♯ is an abstraction of the concrete

transformer φ of a loop or, more generally, of a monotonic system of semantic
equations. It can then either terminate with some guarantee that γ(v♯n) ⊆ γ(u♯

n),

or propose the next element u♯
n+1. The system never provides infinite sequences.

It is obvious that any widening that verifies the conditions of Def. 1 also
verifies these conditions. Note that Def. 2 is strictly laxer than Def. 1. For
instance, we make no requirement that γ(u♯

n) ⊆ γ(u♯
n+1); a widening system

could first try some ascending sequence u
♯
0, . . . , u

♯
n, realize that it is probably a

bad idea to go this way, and restart with another sequence u
♯
n+1,

Definition 2 can be easily recast as couple of mutually inductive types :

widening ∼= S♯ × (S♯ → answer)
answer ≡ termination | next of widening

(1)

These types define a tree, as depicted in Fig. 1. A run of the widening
system, that is, a sequence u

♯
0, u

♯
1, . . . , u

♯
n, corresponds to a path in the tree.

The absence of infinite widening sequences means that the tree should be well-
founded. Note that, even in an eager language such as Objective Caml, this
tree is never constructed in memory: its nodes are constructed on demand by
application of the function S♯ → answer.

In a higher-order type system with dependent sums and products such as the
Calculus of inductive constructions (as in Coq), the above inductive datatype
can be adorned with proof terms. A tree node widening is a pair (u♯, a) where
a maps each v♯ to an answer. a(v♯) is either “⊑”, carrying a proof term stating
that γ(v♯) ⊆ γ(u♯), or another widening tree node.

3 Implementation in Coq

We shall first show how to implement our concept of widening system in Coq,
then we shall give a few concrete examples of how common abstract interpreta-
tion techniques can be implemented within this framework.

3.1 Framework

We assume we have an abstract domain S with an ordering domain le (repre-
senting ⊑). In practice, this ordering is supposed to be decidable: there exists
a function domain le decide that takes x and y as inputs and decides whether
x ⊑ y.

The answer is the disjunctive sum widening + {domain_le y x}: it either
provides a new widening object, either a proof that y ⊑ x. By inlining this
type into the definition of widening, we obtain:

Variable S : Set.

Hypothesis domain_le : S -> S -> Prop.

Hypothesis domain_le_decide :

forall x y : S,

{ domain_le x y } + {~ (domain_le x y) }.

6

Inductive widening: Set :=

widening_intro : forall x : S,

(forall y : S, widening + {domain_le y x}) -> widening.

Since widening is a inductive type, defining well-founded trees, it is possible
to define functions by induction over elements of that type. One especially
interesting inductively defined function takes f ♯ : S♯ → S♯ as a parameter and
computes x such that f ♯(x♯) ⊑ x♯:

Section Recursor.

Variable f : S -> S.

Fixpoint abstract_lfp_rec

(iteration_step : widening) :

{ lfp : S | domain_le (f lfp) lfp } :=

let (x, xNext) := iteration_step in

match xNext (f x) with

| inleft next_widening => abstract_lfp_rec next_widening

| inright fx_less_than_x => exist (fun x => domain_le (f x) x)

x fx_less_than_x

end.

End Recursor.

For ease of use, we pack S, domain le, an abstraction relation domain abstracts

and other related constructs into one single domain record. (domain abstracts

x♯ x) means that x ⊆ γ(x♯).

3.2 Examples

In numerical abstract domains, it is common to use “widening up to” [11, §3.2] or
“widening with thresholds” [2, §6.4][3, §7.1.2]: one keeps an ascending sequence

z
♯
1, . . . , z

♯
n of “magical” values, and x♯

▽y♯ is the least element z♯k greater than x♯⊔
y♯. For instance, instead of widening a sequence of integer intervals [0, 1], [0, 2]
etc. to [0,+∞[, we may try some “magical” values such as [0, 255], [0, 32767]
etc. Yet, if all elements in the sequence fail to define an inductive invariant, we
are forced to try [0,+∞[. Otherwise said, after trying the “magical” values, we
revert to the usual brutal widening on the intervals.

This is easily modeled within our framework by a “widening transformer”:
taking a widening W as input and a finite list l of values, it outputs a widening
W ′ that first applies the thresholds and, as a last resort, calls W . Variable

T : domain is a parameter defining the original domain and original widening,
which is used as the last resort by our transformed widening.

Section Widening_ramp.

Variable T : domain.

Fixpoint ramp_widening_chain_search (bound : (domain_set T))

(ramp : (list (domain_set T))) { struct ramp } :

(list (domain_set T)) :=

7

...

Fixpoint ramp_widening_chain (ramp : (list (domain_set T))) :

(widening_chain (domain_set T) (domain_le T)) := ...

A trick often used in static analysis is to delay the widening [3, §7.1.3].
Instead of performing ▽ at each iteration, one performs ⊔ for a finite number
of steps, then one tries ▽ again. For termination purposes, it suffices that there
is some “fairness property”: ▽ should not be delayed infinitely. One can for
instance choose to delay widening by n steps of ⊔ after each widening step.
This is again implemented as a “widening transformer”:

Definition delayed_widening_each_step :

nat -> (widening_chain (domain_set T) (domain_le T)).

We can similarly build a product domain S
♯
1 × S

♯
2. The widening on cou-

ples (a1, a2)▽(b1, b2) = (a1▽1b1, a2▽2b2) is implemented by a “widening trans-

former” taking one widening W1 on S
♯
1 and a widening W2 on S

♯
2 as inputs,

and producing a widening on S
♯
1 × S

♯
2 by syntactic induction on W1 and W2:

if a1 ⊑1 b1 ∧ a2 ⊑2 b2, then (a1, a2) ⊑ (b1, b2) for the product ordering and
one terminates; if a1 ⊑1 b1 but a2 6⊑2 b2 then one stays on a1 but moves one
step into W2 (and mutatis mutandis reversing the coordinates); if a1 ⊑1 b1 and
a2 6⊑2 b2, then one moves into both W1 and W2. This implements the usual
widening on products. This construct can be generalized to any finite products
of domains.

4 Conclusion

By seeing the combination of the computational ordering ⊑ and the widening
operator ▽ as a single inductive construct, one obtains an elegant characteriza-
tion extending the usual notion of widening in abstract interpretation, suitable
for implementation in higher order logic.

References

[1] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development, Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer, 2004. ISBN 3-540-20854-
2.

[2] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. Design
and implementation of a special-purpose static program analyzer for safety-
critical real-time embedded software. In Torben Æ. Mogensen, David A.
Schmidt, and I. Hal Sudborough, editors, The Essence of Computation:
Complexity, Analysis, Transformation, number 2566 in LNCS, pages 85–
108. Springer, 2002. ISBN 3-540-00326-6. doi: 10.1007/3-540-36377-7 5.

[3] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static

8

analyzer for large safety-critical software. In Programming Language Design
and Implementation (PLDI), pages 196–207. ACM, 2003. ISBN 1-58113-
662-5. doi: 10.1145/781131.781153.

[4] Edmund M. Clarke, Jr, Orna Grumberg, and Doron A. Peled. Model Check-
ing. MIT Press, 1999. ISBN 0-262-03270-8.

[5] Alexandru Costan, Stephane Gaubert, Éric Goubault, Matthieu Martel,
and Sylvie Putot. A policy iteration algorithm for computing fixed points in
static analysis of programs. In Kousha Etessami and Sriram K. Rajamani,
editors, Computer Aided Verification (CAV), number 4590 in LNCS, pages
462–475. Springer, 2005. ISBN 3-540-27231-3. doi: 10.1007/11513988 46.

[6] Patrick Cousot. Proving program invariance and termination by para-
metric abstraction, Lagrangian relaxation and semidefinite program-
ming. In Sixth International Conference on Verification, Model Check-
ing and Abstract Interpretation (VMCAI’05), pages 1–24. Springer, Jan-
uary 17–19 2005. ISBN 3-540-24297-X. doi: 10.1007/b105073. URL
http://www.di.ens.fr/~cousot/COUSOTpapers/VMCAI05.shtml.

[7] Patrick Cousot. Méthodes itératives de construction et d’approximation
de points fixes d’opérateurs monotones sur un treillis, analyse sémantique
des programmes. State doctorate thesis, Université scientifique et médicale
de Grenoble & Institut national polytechnique de Grenoble, 1978. URL
http://tel.archives-ouvertes.fr/tel-00288657/en/. In French.

[8] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J.
of Logic and Computation, pages 511–547, August 1992. ISSN 0955-792X.
doi: 10.1093/logcom/2.4.511.

[9] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Principles of Programming Lan-
guages (POPL), pages 84–96. ACM, 1978. doi: 10.1145/512760.512770.

[10] Thomas Gawlitza and Helmut Seidl. Precise fixpoint computation through
strategy iteration. In Rocco de Nicola, editor, Programming Languages and
Systems (ESOP), volume 4421 of LNCS, pages 300–315. Springer, 2007.
ISBN 978-3-540-71316-6. doi: 10.1007/978-3-540-71316-6 21.

[11] Nicolas Halbwachs. Delay analysis in synchronous programs. In Computer
Aided Verification (CAV), pages 333–346. Springer, 1993. ISBN 3-540-
56922-7. doi: 10.1007/3-540-56922-7 28.

[12] Nicolas Halbwachs. Détermination automatique de relations linéaires
vérifiées par les variables d’un programme. PhD thesis, Université scien-
tifique et médicale de Grenoble & Institut national polytechnique de Greno-
ble, 1979. URL http://tel.archives-ouvertes.fr/tel-00288805/en/.
In French.

[13] Antoine Miné. Weakly Relational Numerical Abstract Domains. PhD thesis,
École polytechnique, Palaiseau, France, December 2004. In English.

9

http://www.di.ens.fr/~cousot/COUSOTpapers/VMCAI05.shtml
http://tel.archives-ouvertes.fr/tel-00288657/en/
http://tel.archives-ouvertes.fr/tel-00288805/en/

[14] Antoine Miné. Symbolic methods to enhance the precision of numerical
abstract domains. In Verification, Model Checking, and Abstract Inter-
pretation (VMCAI’06), volume 3855 of LNCS, pages 348–363. Springer,
January 2006. ISBN 3-540-31139-4. doi: 10.1007/11609773.

[15] David Monniaux. Automatic modular abstractions for linear constraints.
In POPL (Principles of programming languages). ACM, 2009. ISBN 978-
1-60558-379-2. doi: 10.1145/1480881.1480899.

[16] David Monniaux. Optimal abstraction on real-valued programs. In Gilberto
Filé and Hanne Riis Nielson, editors, Static analysis (SAS ’07), volume 4634
of LNCS, pages 104–120. Springer, 2007.

[17] David Pichardie. Interprétation abstraite en logique intuitionniste : extrac-
tion d’analyseurs Java certifiés. PhD thesis, Université Rennes 1, 2005. In
French.

10

	The usual framework
	Abstract interpretation
	Abstract Kleene iterations and widening operators

	Relaxation of conditions and interpretation in inductive types
	Implementation in Coq
	Framework
	Examples

	Conclusion

