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Ceteris Paribus Conditionals and Compar ative Normalcy*

Martin Smith

Our understanding of subjunctive conditionals hesrnbgreatly enhanced through the use of possiliel wo
semantics and, more precisely, by the idea that itineolve variably strict quantification over pdsts
worlds. | propose to extend this treatmentcéderis paribus conditionals that is, conditionals that
incorporate a ceteris paribus or ‘other things feegual’ clause. Although such conditionals are
commonly invoked in scientific theorising, they ditéonally arouse suspicion and apprehensiveness
amongst philosophers. By treating ceteris parimrslitionals as a species of variably strict caoddl |

hope to shed new light upon their content and tbgic.

Key Words: Ceteris paribus conditional, subjunctive conditipmessible world semantics, comparative

normalcy

[. INTRODUCTION

By a ‘ceteris paribus conditional’ | shall mean ubjsinctive conditional in which the
relationship between antecedent and consequentetiated by a qualifying ceteris
paribus or ‘other things being equal’ clause. Aownditional of the form ‘If __ were the
case, then ceteris paribus would be the case’ counts as a ceteris paribuditbomal.
Many law-statements in the sciences have the fdrmmeteris paribus conditionals, so
defined.

Consider, for instance, the principle of naturdésgon. As formulated by Elliott
Sober (1984, pp27) the principle of natural sedectstates the following: If (a) the
organisms in a population possessing trait T werteb able to survive and reproduce
than organisms possessing traitahd (b) T and Tare heritable traits, then (c) the

proportion of organisms in the population with tfiwould increase.

! Thanks go to Martin Davies, Andy Egan, Peter Roepel an anonymous referee for this journal, all of
whom provided valuable comments and criticism. nksaalso to audiences at the Australian National
University and the 2005 Australasian Associatiohagic conference.



The evolution of actual populations will not alwagenform to this principle,
however. There are various possible sources efference. The genes controlling trait
T could, for instance, mutate or they could be duhko genes controlling maladaptive
traits. Furthermore, random genetic drift can [sgaificant factor, particularly in small
populations. It would be quite possible for théeaedent of the above conditional to be
satisfied without the consequent being satisfiethus, as Sober remarks, ‘a ceteris
paribus clause needs to be added here’ (Sober, pp3%-28).

Ceteris paribus conditionals are not peculiar terdgdic theorising. In more
colloquial settings, however, we sometimes preteruse qualifying phrases such as
‘normally’, ‘ordinarily’, ‘typically’, ‘as a rule’and the like rather than the more formal
‘other things being equal’ or ‘ceteris paribus’n iny view these colloquial hedging
clauses can be perfectly well substituted for ¢efearibus clauses without any change in

content. Indeed, most of my examples will be dramvhfrom science, but the mundane.

In this paper | offer a semantic analysis of cst@aribus conditionals. | shall
employ the framework of possible world semantid@hat is, | shall offer an account of
how the truth value, at a particular possible wodtl a ceteris paribus conditional is
determined by the truth values, at various possitdelds, of its antecedent and its

consequent.

It is widely believed that ceteris paribus clauses either (i) shorthand for an
explicit list of background provisos or (ii) catells that render a conditional logically or
vacuously true (see, for instance, Schiffer, 1987287, 1991, Hempel, 1988, Earman
and Roberts, 1999, Earman, Roberts and Smith, 2002ccept neither alternative. |
believe that ceteris paribus clauses are neededisplg when no explicit list of
background provisos is available — as is argudidydase with the principle of natural
selection (see Pietroski and Rey, 1995, pp87). Isb delieve that ceteris paribus
conditionals can express perfectly substantiahtdaabout the world and are governed by

a non-trivial logic.



The (i)/(ii) dilemma partly stems from the ideatthaceteris paribus clause works
by further qualifying orstrengtheninghe antecedent of a conditional. | propose that a
ceteris paribus clause be viewed not as part chiecedendf a conditional but, rather,
as part of theconditional operatoritself. In this paper, | shall treat the presenta
ceteris paribus clause as a kind of logical or gnatical feature — like the presence of a

subjunctive verb — that is correlated with a digie sort of conditional operator.

Although | do not regard ceteris paribus conditleres vacuously true, | do not
expect my semantic analysis to necessarily reassase who do — at least not by itself.
Those who believe that ceteris paribus conditionadsdevoid of substantial content may
take a similar attitude toward the very paramdtat my analysis will exploit. They are
free to do so. However, | think it is a parameket is here to stay whether or not we
decide to use it in the semantic analysis of cetearibus conditionals. It is the relation

of comparative normalcy

We are quite comfortable assenting to things ‘iikes more normalfor a human
to have 46 chromosomes than 47’ and ‘itmisre normalfor me to have breakfast at
home than at work’. It is this comparative norrgalelation that will be invoked in my
proposed semantic analysis of ceteris paribus tondis. Naturally, it will be the
comparative normalcy of entipossible worldsand not limited states of affairs, that will
be at issue. The idea that possible worlds oestat affairs might be ordered to reflect a
relation of comparative normalcy is not new — thougis not exactly commonplace
either. The idea has been explored in connectitim @onditional logics for defeasible
reasoning (Delgrande, 1987, Boutilier, 1994, Baertiand Becher, 1995), in connection
with subjunctive conditionals (Gundersen, 2004) amdconnection with conditional

analyses of causation (Menzies, 2004).

Consider the conditional ‘If it had not rained &y¢dthen we would have gone to
the cricket’. David Lewis (1973a, 1973b) has swsgee that a bare subjunctive
conditional such as this means something like: ny possible world in which the

weather is fine and which resembles the actualdvasl much as the weather being fine



permits it to, we go to the cricket. Alternatalye most similar worlds in which it is not
raining and we go to the cricket ar®re similarthan the most similar worlds in which it

is not raining and we do not go to the cricket.

Consider the conditional ‘If it had not rained &ydthen other things being equal
we would have gone to the cricket’. | suggest thaeteris paribus conditional such as
this means something like: In any possible worlavinich the weather is fine and which
is asnormal from the perspective of the actual world, asvileather being fine permits it
to be, we go to the cricket. Alternately, the mostmal worlds in which it is not raining
and we go to the cricket amore normalhan the most normal worlds in which it is not
raining and we don’t go to the cricket. A cetgrégibus clause indicates that the worlds
relative to which a subjunctive conditional is exsted are to be selected on the basis of

theirnormalcyand not theisimilarity.

A ceteris paribus conditional and its bare subjweccounterpart may well
diverge in truth value. Suppose that our only aheans of transportation to the cricket
is the train and that, unbeknownst to me, the $rane not running as a result of a serious
mechanical fault. In this case the bare subjuaatonditional ‘If it had not rained today
we would have gone to the cricket’ will be fals8ince the trains are not running at the
actual world, the trains are not running at allstadine weather worlds that resemble the
actual world as much as the fine weather permigsntio. Plausibly, at some of these

worlds at least, we are unable to go to the cricket

In contrast, the ceteris paribus conditional tlhad not rained today, then other
things being equal we would have gone to the ctidauld still betrue. Even though
the trains are not running at the actual worldséh@ine weather worlds in which the
trainsare running are arguably more normal than those fieatier worlds in which the
trains are not. At the actual world, it is moremal for the trains to run than for all the
trains to be stopped. Therefore, the trains amaing at all those fine weather worlds
that are as normal, from the perspective of thaahavorld, as the fine weather permits

them to be. Plausibly, at all these worlds, wet@the cricket. While the no-rain, no-



train worlds outrank the no-rain, train worlds wittspect to comparative similarity, the
opposite is true when comparative normalcy is oeasare. This is what accounts for
the divergence in truth value between the bareuswabive conditional and its ceteris

paribus counterpart.

In terms of comparative world normalcy, Soberssien of the principle of
natural selection has the following truth conditidime most normal worlds in which (a)
organisms possessing trait T are better able teiv&urand reproduce than organisms
possessing traitT(b) T and T are heritable traits and (c) the proportion ofamigms
possessing trait T increases, avere normalthan the most normal worlds in which (a)
organisms possessing trait T are better able teiv&uand reproduce than organisms
possessing trait'T(b) T and T are heritable traits and (d) the proportion ofamigms
possessing trait T decreases or stagnates.

One might complain, at this point, that judgmeotsomparative normalcy are
context sensitive- that is, that the truth value of at least sommmarative normalcy
judgments will be sensitive to features of the eghof utterance. This is doubtless true
— but it is all for the better, since ceteris pasltonditionals aralso context sensitive. If
my analysis is on the right track, then the contakffactors to which ceteris paribus
conditionals are responsive are the very same asctntextual factors to which
comparative normalcy judgments are responsives the job of a semantic analysis to

respectcontext sensitivity and not to eradicate it.

[I. SUBJUNCTIVE CONDITIONALS AND COMPARATIVE SIMILARITY

Lewis, in providing his semantic analysis of sulgjive conditionals, supplements the
standard possible world semantic toolkit with tie¢ion of comparative world similarity
He elucidates this relation graphically. Let w the index world to which all other
worlds are being compared. If we visualise possibbrlds arranged in space with
proximity serving as a metaphor for similarity, thwe can imagine a series of concentric

spheres radiating out from w — each representirddass of worlds that resemble w



equally. This is the mathematician’s sense of sphe a locus of points (in three-
dimensional space) equidistant from a single poldw think of a sphere as solid rather
than hollow — containing not just the worlds thampose its surface, but also those that
fall inside it. This is how Lewis intends that ttegm be used. For Lewis the system of
spheres associated with an index world can be avd#ted by inclusion or ‘size’ — a

constraint he termsesting

According to Lewis, the smallest nonempty sphera gystem will be a singleton
set containing the index world. Presumably no dedsembles the index world more
closely or as closely as it resembles itself. TEngest sphere in a system will be the set
containing all the worlds accessible from the indexld. This is intended to be the very
same accessibility relation that governs the qtieational range of necessity and
possibility operators. The worlds accessible frarworld w are those worlds that are
possible from the perspective of w. Say that aesplaround a world vpermits a

sentence just in case it contaings-worlds.

Lewis introduces two conditional operatars, and<> - to be read respectively
as ‘If __ were the case, then ... would be the casd ‘If __ were the case, then ...
might be the case’ (see Lewis, 1973b, pp1-2) Hzpdpwith the notion of comparative
similarity, the truth conditions for the two typegsubjunctive conditional can be given
as follows:

¢ - y is true at a world wff there exists ap-permitting sphere of similarity

around w in which all thé-worlds are als@-worlds.

¢ < - Y is true at a world w iff in al-permitting spheres of similarity around

w, there exists ap(0J Y)-world.

Lewis allows for one exception: Despite the faeitt tits truth condition has the form of an
existential quantification over spherés, —» { should be deemed vacuously true at w if
¢ is necessarily false — that is, if theren®¢-permitting sphere around w. This allows
us to maintain that subjunctive conditionals agidally weaker tharstrict conditionals.
That is, thatd - @) - (¢ (1 ). A strict conditionalp - Y, of course, is true at a

world just in casall accessiblé-worlds arep-worlds.



Subjunctive conditionals, like strict conditionalsivolve quantification over
possible worlds. However, while strict conditionale associated with a single sphere of
accessibility governing their quantificational rangsubjunctive conditionals are
associated with a set of spheres of accessibilgch governing oneoossible
guantificational range. Subjunctive conditionalgyint, then, be described asriably
strict (see Lewis, 1973, pp13-19). A subjunctive coodal will quantify over as large a
sphere as it needs to in order to accommodaterdtie df its antecedent (assuming this

can be done).

According to Lewis, sphere systems must focus upomadiate from, the world
to which they are assigned — that is {w} is guaeaudtto be the smallest nonempty sphere
around w. Lewis terms this constrag@ntering (It is technically convenient to include
the empty set amongst the spheres around an inded.w Evidently, this makes no
difference to the truth conditions for subjunctig®nditionals). Some of Lewis’
commentators have expressed misgivings about thagth of the centering constraint
(Bowie, 1979, Nozick, 1981, ppl76, 690, 681, Gusdey2004). Amongst other things,
it lands us with some unusual logical consequenc®¥ith centering in place, for
instance, a subjunctive conditional with a trueeaatlent and a true consequent is

guaranteed to be true.

In aweaklycentered system of spheres, while the index werldains an element
of the smallest nonempty sphere around itsel§ ia longer thesole element. Further
worlds are permitted to infiltrate. If we supplacgntering with weak centering, a
subjunctive conditionap [1- Y with a true antecedent and consequent need rtaide
rather it will retain some modal strength. Thisdiional will be true at ad( (I {)-world
just in case all of thé-worlds in the smallest or innermost nonempty seluéisimilarity
around w are alsg-worlds. |take no stand here on whether the geowr the weaker
centering constraint is preferable. | raise tlssue simply as a way of finessing the

transition to my own semantics for ceteris pariboisditionals.



Ill. FROM IMPERATIVE CONDITIONALS TO CETERIS PARIBS
CONDITIONALS

In a centered system of spheres, the index woilaysra uniquely privileged position as
the sole member of the smallest nonempty spherea Wweakly centered system of
spheres, the index world shares this particularilpge with a range of further worlds.
Clearly, there is a third possibility. Indecenteredsystem of spheres, the index world
enjoysno privileges whatsoever. In a decentered systeeninitiex world does not even
feature as an element of the smallest nonemptyrsph&Vhile out of place in the
modelling of bare subjunctive conditionals, Lewigigested that such systems might find
a home in the semantic analysis of certain othedkiof conditional — he chose

imperative conditionalas his example.

When evaluating a conditional such as ‘If Jesebed the bank, then he ought to
return the loot and confess’ we are still interéstethe properties of possible worlds in
which Jesse robs the bank. But, rather than sedettese worlds on the basis of the
extent to which they resemble the actual world weeild be better served by examining
the degree to which they exemplify some moral ideBhe content of this conditional,
according to Lewis, is that theestworlds in which Jesse robs the bank are worlds in
which he then confesses and returns the loot. I&irauggestions have been made by
Bengt Hansson (1969) and Bas Van Fraassen (1973).

If a sphere system is intended to represent thgpacative goodness of possible
worlds from the perspective of the index world rthieere is no reason to expect that the
system will be centered or even weakly centerettiedd, these conditions will only be
met on the proviso that the index world estimatsslfito be perfect. Ceteris paribus
conditionals and imperative conditionals appedraee a good deal in common. Both, |
think, implicate some implicidealisationof the world at which they are to be evaluated.
However, in the case of a ceteris paribus conditjchis is not a romantic idealisation so
much as aimplifyingone — a practice in which we, surely, just asroitelulge.



When evaluating a conditional such as ‘If the sy oil were to decrease while
demand remains constant, then ceteris paribus tive pf oil would rise’ we are
interested in the properties of certain possiblédgoin which the supply of oil decreases
while the demand remains constant. What the ceteairibus clause does, | have
suggested, is to signal that these worlds are tekseted on the basis of thaormalcy
or simplicity rather than their similarity to thectaal world. The content of the
conditional is that the most normal worlds in whtble supply of oil decreases while the

demand remains constant are worlds in which theepnicreases.

It would be interesting to compare the notion afamal world with the idea of
anidealised modebf a phenomenon, as used across the breadthenteé In the same
way that normal worlds can be ranked accordinghtrtdegree of normalcy, certain
kinds of models can be ranked according to theyreke of idealisation. Various models
of projectile motion provide one good example (Séaffer, 2001, pp39-41, Arthur and
Fenster, 1969, chap. 7). Furthermore, the relstipn between ceteris paribus
conditionals and the goings-on in idealised modes been noted (Cartwright, 1983,
1999, Pietroski and Rey, 1995, Menzies, 2004).oh'wpursue this comparison further
here. Sticking with a widespread custom in deofdgic, | will say nothing precise

about the significance of the world orderings tdakn appeal.

| introduce two ceteris paribus conditional opersat® — and € - to be read
respectively as ‘If __ were the case, then cetargops ... would be the case’ and ‘If __
were the case, then ceteris paribus ... might beake’. The truth conditions for the two
types of ceteris paribus conditional can be givefolows:

¢ W, Y is true at a world wff there exists ap-permitting sphere of normalcy

associated with w in which all tiieworlds are als@-worlds.

¢ € Y is true at a world w iff in allp-permitting spheres of normalcy

associated with w there exists¢al({ )-world.

2 The widespread use of idealisations in sciengfiplanation and prediction has been emphasised by
Cartwright (1983, 1999) and Laymon (1985, 1989) magst others. | would suggest that the use of
idealisations is just as widespread throughouk*fekplanation and prediction.
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Once again, we need to add the proviso ¢h#- ¢ should be deemed vacuously true
and$ € - ~y vacuously false at a world w in case there ishrpmermitting sphere of

normalcy associated with w.

The failure of weak centering means that a numib@otable inference patterns
will fail to preserve truth in the logic of cetenmribus conditionals. The following
notable patterns, all of which are perfectly vafidhe logic of subjunctive conditionals,

are fallacious in the logic of ceteris paribus abodals:

¢ ~y ¢

oy oy EURI

P ~ ~om- )
Modus Ponens Modus Tollens Refutation

The following notable patterns, however, remaindzal

|-y oWy
WOo)m- x WX
p X oW X

Restricted Hypothetical SyllogismWeakening the Consequent
The logic of ceteris paribus conditionals will beplred in some detail in the final

section.

Not only will world rankings based upon comparatgye®dness fail, in general, to
centre upon the index world, they will fail, in g#al, to centre upon arsingle world.
That is to say, the smallest nonempty sphere iomparative goodness ordering will
typically contain more than just one world. Afal, why should a single possible world
outshine all others? Intuitively, there are innualée facts about any given world that
simply do not bear upon its goodness. Similarlye avould presume that there are
countless minutiae about most possible worlds dieahot affect their normalcy in any
way. The worlds that comprise the smallest nongraphere in a comparative normalcy
ordering will differ in just these irrelevant regpe Comparative normalcy orderings,

then, will typically centre upon a non-singletoasd of possible worlds.
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One might think that the correct ranking of worldgh respect to comparative
goodness is unchanged from the perspective of amngvorld — that is, every world
gets assigned the one true comparative goodnessirggd Conventional wisdom
regarding the fact/value gap would tend to supploig supposition. Plausibly, what
oughtto be the case does not vary as a function of wehtlte case. However, if one
held, say, a divine command theory of goodnessprdoty to which what is good is
simply that which is dictated to be good by an appate deity, then one may well take a

different view.

For a divine command theorist, the correct rankafigvorlds with respect to
comparative goodness would indeed vary from warlavorld reflecting the incumbent
deity’s preferences. (Those worlds without an appate deity would, presumably,
receive an empty or nihilistic sphere system.) bést worlds, from the standpoint of w,
will be those worlds at which the preferences efdeity incumbent at w are all satisfied
(as far as this is possible). There will be onenparative goodness ordering
corresponding to every possible set of divine pegfees. Similarly, the correct ranking
of worlds with respect to comparativermalcy will, intuitively, vary from world to
world — but with explanatory generalisations ordimcies taking over the role of divine
preferences. The most normal worlds, from thedgtamt of w, will be those worlds at
which the generalisations or tendencies that playngportant explanatory role at the

actual world are akkxceptionlesgas far as this is possible).
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Consider the following four figures:

If we were to order these figures with respecthmrtsimilarity to (a), then plausibly we
would obtain the following ranking (from most siamilto least similar): (a), (b), (d), (c).
((b) has 24 squares in common with (a), (d) haarik¥ (c) has 16). If, on the other hand,
we were to order these figures with respect tor tfagthfulness to thattern suggested
by (a) (their ‘comparative normalcy’ from the perspve of (a)), then plausibly we
would obtain the following ranking (from most fafith to least faithful): (b), (a), (d), (c).
We can form a defeasible generalisation about ikgiltution of squares in (a) that

happens to describ@jthout exceptionthe distribution of squares in (b).

Similarly, if we were to order the figures withspeect to their similarity to (d) we
would obtain the ordering (d), (c), (a), (b) andvié were to order them with respect to
their faithfulness to the pattern established hywid would obtain the ordering (c), (d),
(@), (b). While each of (a), (b), (c) and (d) ssaciated with its own unique comparative
similarity ordering, both (a) and (b) share a corapae normalcy ordering as do (c) and
(d). They serve to ‘establish’ the same recogiésgiattern. The standards of
comparative normalcy imposed by these figures ae then, absolute. They are,

however less relativeor more robusthan the standards of comparative similarity.
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When dealing with objects more complex than thegerds, it is possible to
generalise about thexceptionsto generalisations. Consider, for instance, the
generalisations ‘Most peacocks are blue’ and ‘Maino peacocks are white’. These
two generalisations can, of course, be made simedtasly exceptionless — namely, by
emptying the extension of albino peacocks. Howeer second generalisation will still
leave its mark upon a comparative world normalaeang. It is as if a deity were to
issue the following commands: ‘All peacocks aréeédolue’ and ‘All albino peacocks are
to be white’. The second command is not superfiuoline worlds that most faithfully
satisfy the deity’s preferences will be worlds ihigh all peacocks are blue and there are
no albino peacocks at all. However, with respectwbrlds thatdo contain albino
peacocks, those in which all such peacocks areewhill better satisfy the deity’s
preferences than those in which they are not. t when normalcy rather than divine

preference is our measure.

The idea that standards of normalcy are world ikedats related to a view
expressed in section | — namely, that ceteris pardonditionals can be used to express
substantial claims about the world. If standardsnormalcy were indifferent to
hypothetical variation in the nature of the wothén, given my semantic analysis, so too
would the truth of ceteris paribus conditionalsitaifferent to hypothetical variation in
the nature of the world. In this case, ceterisibpgr conditionals could never be

contingent

Craig Boutilier (1994) proposes a possible worldnaetics for what he terms
‘normative’ conditionals — that is, conditionalstbe form ‘If __, then normally ...’. He
suggests that a normative conditional should benéeetrue at a possible world w iff for
every possible world at which the antecedent is &nd the consequent false, there is a
more normal possible world at which (i) antecedsrd consequent are both true and (i)
at all possible worlds that are more normal sifllthe antecedent is true, then the
consequent is true (Boutilier, 1994, pp103). Barts semantic apparatus is more

austere than mine, consisting of a class of passiorlds and a single ordering relation
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upon that class intended to represent a relatiatoofparative normaléy As such, his
analysis depends for its success upon the assumptad standards of normalcy are not

themselves world relative.

It is interesting to note that Boutilier does ngipaar to regard normative
conditionals as expressing substantial claims atih@utvorld (Boutilier, 1994, pp96, 110-
116). For Boutilier, normative conditionals sepr@marily as a vehicle for expressing a
kind of expectationor reasoning preference a default or defeasible willingness to
accept the consequent given the antecedent. Hsssenptions could help to motivate a
semantic framework in which standards of normaleywaorld absolute — but they strike
me as dubious. When | say ‘If | were to drop tflass, then normally it would break’, |
am telling you something (contingent) about thepprties of the glass— not just
something about my reasoning preferences. Furttrernalthough there is some relation
between the endorsement of a conditional suchissatiu a default willingness to draw
certain inferences, | am not inclined to think thia¢ relationship is straightforward.
Having said this, | should point out that Boutieprimary concern is to provide a
semantic analysis afefeasible inference rulemnd that his theory can be assessed in this

light quite independently of the issues | haveaadisere.

One must be careful not to place unrealistic demargbn a semantic analysis.
The purpose of my comparative normalcy semanticcéberis paribus conditionals is
not to help us determine the truth value of paléicaonditionals — at least not on its own.
No one would expect a comparative goodness sersalotiamperative conditionals to
provide genuine moral guidance — and the situatidth my analysis is no different. A
comparative goodness semantics for imperative tiondis, it might be said, is no

substitute for a genuine theory what goodness .isBy the same token, a comparative

® Boutilier, in a sense, limits himself to the resms of standard possible world semantics. Hedhizes a
reflexive, transitive accessibility relation upohet class of possible worlds, to be understood as a
comparative normalcy ordering. That is, aRb mehaasb is at least as normal a world as a (Boutilie
1995, pp96-97). He then introduces two modal dpesa- one that quantifies, at a given world, cader
equally or more normal worlds (accessible worlds)l ane that quantifies over all less normal worlds
(inaccessible worlds) giving us, in effect, a birablbgic in which both modal operators are goverhgd

the same accessibility relation. Boutilier procetaml define his normative conditional operatoremts of
these two unary operators.
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normalcy semantics for ceteris paribus conditiomaliso substitute for a genuine theory
of what normalcy is- and, aside from a few suggestive remarks, thig matter upon

which | have remained silént

Much the same point can be made regarding the aténgdossible world
semantics for necessity and possibility operatsee Kripke, 1980, ppl9, footnote 18).
Possible world semantics does not tell us whabssible and what isn’t. But it is, of
course, often used to clarify just what is at stakesuch disputes. Similarly, my
proposed comparative world normalcy semantics nnayeguseful in clarifying precisely
what is at stake in disputes over particular cefearibus conditionals.

Furthermore, although my comparative world normadeynantics cannot settle
disputes over particular ceteris paribus condil®ni can settle matters ddgic — at
least, in combination with a little reflection updine formal features of comparative
normalcy. My proposed semantics has the potetatiekplainandmotivate in a unified
way, the logical principles to which ceteris pashbtonditionals are intuitively subject.
As such, it offers an alternative to piecemeal tisgtg about the logic of ceteris paribus
conditionals. This is perhaps the most signifidaenefit of a semantic analysis. In the
concluding section, | provide technical detailstbé logic to which ceteris paribus
conditionals, and various related operators, atgest and show just how this logic

emerges from my analysis.

IV. THE LOGIC OF CETERIS PARIBUS CONDITIONALS

| shall begin this final section by setting thingsin a purely formal fashion. The formal
languagel to be interpreted includes in its vocabulary cabiy many sentence letters

(A, B, C ...), the sentential constariisand and punctuation. It also contains the truth

* A few more suggestive remarks: When it comes tonatcy, | am inclined to think that both frequentis
accounts (Gundersen, 2004) and teleological acediitiikan, 1984, pp5, 33-34) are on the wronghra

| suggest that one fruitful, if somewhat ellipticalay to shed light upon the nature of normalcpys
investigating the utility of idealised models iregdiction and explanation and, in particular, thaditions
under which explanation and prediction can sucaoéiggiroceed in the absence of complete theories.
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functional operators (+}, [J, [, =), the special operator®(-, ¢ -, -, [, <) and four
more sentential operators to be introduced shoiflye sentences af are built up using
the standard recursive clauses for operators amdtyation. The metalanguage, in
which the truth conditions folk sentences are described, is an extensional,ofidsr
language. For ease, | will use the same symbolthéotruth functional operators of this

language. | will use lower case Greek letters ataflimguistic sentence variables.

Languagel is interpreted relative to a nonempty set of iedicand a function
S(x) assigning a system of spheres to eachl x A sphere is simply a set of indices and
a system of such spheres is simply a set of sushsseting certain structural conditions.

| define an associated interpretation functigig)lwhich maps pairs of elementsloédnd

sentences df into the set {0, 1}. An interpretatioy , then, is a triple< 1, S(x), k(y)>.

For all interpretations«(T) = 1 and {(0)= O for any index x. Ifi{($p) = 1, we can say that

sentence¢ holds at i under interpretatioy. A sentence¢ is valid under an

interpretationy just in case it holds at every index — that ist ja caselx O I, Ix(¢) =

1. A sentencé might be described aemantically validr valid simpliciter just in case

it is valid under all permissible interpretations.

The function J(y) will meet the following conditions:

li(~0) = 1iff ~ (i(¢)=1)

li(p Ow) =1 iff (I(p) = DO (i) = 1)

li(d Ow) =1 iff (I(d) = DO (i) = 1)

li(d Ow) =1iff (Ii(¢p) =)0 (1) = 1)

li(d =) = 1iff (1i(¢) = 1)= (Ii(p) = 1)

L(O¢) = 1iff OSO S(i),Ox O S, k($) = 1

L(O9)=1iff 0SOS(), X OS, ko) =1

(¢ — @) =1iff OSOS@H),O0xOS, ko Og)=1

li(o ®- @) iff SO S(), xOS, k) =100y 0S, Ko Dy) =1)
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O(0SOS(@),xO0S, ko) =1)
[0 ®- Wliiff OSOS(), (XOS, k) =100y 0S, Lo DY) =1)
O@SOS(),xOS, k) =1)
The additional disjunct added to the truth condsidor ¢ ® -  and the additional
conjunct added to the truth conditions for€ -  capture Lewis’s provisos about

impossible antecedents.

This purely formal characterisation obviously leswequite neutral just whdt
Ix(y) and S(x) are to represent. Different thoughts &libis give rise to different
interpretations oL.. On myintended interpretationl is the totality of possible worlds,
li(d) = 1 iff ¢ is true at world i and S(x) is the function assignto each world the
system of spheres of normalcy associated with watd. That is, every S1 S(i)
represents the set of possible worlds that satisfiene given standard of normalcy from
the perspective of world i. Given this intendetkipretation, | have argued tit. and

€ - can be read as ceteris paribus conditionals.

We can now introduce a pair of ‘inner modal operat@®,®) to serve as the
counterparts of the ‘outer’ modal operatdrs {):

L(m$)=1iff (SO S@H),O0xOS, k) =1

L(®d)=1iff OSTOS(), (S=ATIXOS, k) = 1)
While Ll¢ holds at an index i just in cageholds throughout all spheres assigned Wi,
holds at an index i ifp holds throughousomesphere assigned to i. Given my intended
interpretation,® can be read as ‘*__ would normally be the case’ 4nds ‘ __ could
normally be the case’ or ‘It would not be abnorrfaal __ to be the case’. Call these

normalcyoperators.

We can also introduce two binary sentential opesat® and<M as follows:
(o <my)=1iff0SOS@), (xUS, k$) =100y OS, ~ (L) =1))
li(p <m ) =1iff0SOSAH), (XUS, kW) =100y US, L) =1)



18

¢ <M Y holds at an index i iff there is a sphere S ir) 8fch that S permit but noty.

¢ <M Y holds at an index i iff for all spheres S in S(i)S permitsy then S permitg.
Given my intended interpretatiod® can be read as ‘* __ would be no less normal than
...”and <@ can be read as ‘*__ would be more normal than Call thesecomparative

normalcyoperators.

Both the normalcy and comparative normalcy opesatan be defined in terms of
ceteris paribus conditionals (and possibility) Bpleiting the following equivalences:

H)=(TH- ¢)

*o=(T®-0¢)

@ <my)=(¢0yp) - ¢)I~Y

@<my)=(¢0Y)m- )04
We can define possibility as follows:

Co=0€- 0

Ceteris paribus conditionals can also be definederms of the comparative
normalcy operators (and possibility) by exploitthg equivalences:

@u- )= (6 Oy)<m (6 O~y)) O~

Ge-v)=(d0w)<m@O~y)To
We can also define possibility as follows:

Odp=p<m
The claim that ifp were the case, then ceteris pariugiould be the case is equivalent
to the claim that it would be more normal fbandy to both be true than fdr to be true
andy false (or¢ is impossible)’. The claim that ¢f were the case, then ceteris paribus
¥ might be the case is equivalent to the claim ithabuld be no less normal fdr andy

to be true than fap to be true ang to be false (and is possible)'.

There are three compulsory conditions that a fonc8(x) taking indices to sets
of sets of indices must meet in order to qualifyaagphere system assignment function.
The first condition -nesting requires thatlx O I, OX, Y O S(x), XOY OY O X. The
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second and third are closure underions and (nonemptyjntersectionsrespectively:
Ox O1, OX O S(x),0X O S(x)) anddx O1, OX O S(x), X #A 0 nX 0O S(x)).

These compulsory conditions furnish us with twaaxischemata:
(i) (b<my)0W<=my)) O (@<my)
(i) (o<my)0 (p<mo)
The content of these principles is most perspicwaosn they are expressed in terms of

comparative normalcy — they jointly express the fhat comparative normalcy is a weak

ordering.

The following table lists a series of optional cramits that might be placed upon
a sphere assignment function. Each constrainge $aw the first, is listed by Lewis
(1973b, ppl21). Constraints are listed along wlih formal semantic postulates that

capture them and the characteristic axiom schewadidated when those postulates are

implemented:

Constraint Postulate Axiom Schema
Triviality Ox O1, S(x) =A O<mT
Significance Ox O, S(x)# A T<m[d

Total reflexivity Ox 01, x O OS(x) Lo Od

Weak centering Ox OI, xO n(S(x) -A) o O¢
Centering Ox O, {x} OS(x) L JoNmN)

Local uniformity Ox 01, Oy O 0OS(x),0S(x) =0S(y) } {<>¢ 0O
Uniformity Ox, y O 1, OS(x) =0S(y) U O U0
Local absolutenessx O 1, Oy 0 0OS(y), S(x) = S(y) } {q) <m Y O O(dp <m )

Absoluteness  [x, yOl, S(x) = S(y) o <my O0L(p <my)

Axioms linked by brackets arboth yielded by either of the corresponding
postulates. The conditions listed here are noic#ly independent. Given the
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compulsory constraints upon S(x), centering impliesk centering, which implies total
reflexivity which, in turn, implies significanceTriviality implies absoluteness which
implies local absoluteness and uniformity, and anmiiity implies local uniformity.

| include the first constraint — triviality — siachis is the constraint to which
sceptics who regard ceteris paribus conditionalsrasiously true must subscribe —
provided, at any rate, that they accept my semaatialysis. Given my intended
interpretation, one can easily confirm that, urtiés condition, any sentence of the form
¢ ®m_,  will be true at all possible worlds and any seon¢eaf the formp € — @ will be
true at none. One need not probe the resultamd tog deeply to unearth principles that
are intuitively bizarre. | think it is quite apgnoate to use the counterintuitive nature of
the principles as part of a case against sceptieibbout ceteris paribus conditionals.
However, as I've stated, I'm not concerned to refiie sceptics here.

On my intended interpretation df and S(x),d and < can be read as
metaphysical necessity and possibility respectivelyy we suppose, for ease, that the
logic governing possibility and necessity is thedalologic S5, it follows immediately
that S(x) should be subject to the total refleyiand local uniformity constraints. The
accessibility relationR governing the quantificational range of the negsand
possibility operators is defined as follovix, y xRy iff S S(x), yO S. The necessity
and possibility operators quantify, at a world wepthose worlds that appear in some
sphere of normalcy assigned to w.RIfis to be reflexive -£1x XRx — then S(x) must be
constrained by total reflexivity. R is to be, in addition, transitive and symmetriClx
y, z ((Ry O yRz) 0 xRz) andx, y (xRy O yRx) — then S(x) must also be constrained

by local uniformity.

The weak centering constraint upon S(X) corresporgigen my intended
interpretation, to the presumption that every woektimates itself to be maximally
normal, while the full centering constraint uponx)S{orresponds to the presumption that
every world estimates itself to lbmiquelymaximally normal. As | have argued, both of
these presumptions are untenable. Thus, S(x) dhmmilfree from both centering and
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weak centering. It is intuitively correct thlity (I ¢ should fail to be semantically valid.
The claim thatp would normally be the case does not logically yriplat is in fact the

case.

Given my intended interpretation, the absolutenessistraint upon S(x)
corresponds to the presumption that every posgibid imposes the very same standards
of normalcy, while the local absoluteness constragiresponds to the presumption that
every world that igpossiblefrom the perspective of world w imposes the veayns
standards of normalcy as w. As | have arguedgetpessumptions are also untenable and
both constraints should be relaxed in the case (®f. SIt is intuitively correct that
G<my)d0(¢<my) and ¢ <m ) O CI(¢ <m ) should not be valid. The claim that
Y would be at least as normal ggloes not logically imply that it isecessariljthe case
that would be at least as normal s The claim that would be more normal thap

does not logically imply that it is necessarily ttese thap would be more normal than

.

Lewis’s list of semantic restrictions is, of couré® from exhaustive. Consider
the following constraint that | shall termobustnesslCix, y O I, (OS O S(x), S =A O
y 0 S)0 S(y) = S(x). This constraint upon S(x), weakemttoth local absoluteness and
centering, corresponds on my intended interpretatahe presumption that, if a world i
is estimated to be maximally normal by a worldif +is a member of every nonempty
sphere of normalcy associated with j — then i amdllj share the same standards of
normalcy. That is, if a possible world perfectlyeenplifies any world’s ideals of
normalcy, then it will share these ideals and, tipesfectly exemplify its own ideals of
normalcy. Robustness does some justice to théiartuexplored briefly in the previous
section, that standards of normalcy, while notrehtialoof from the contingent nature of

the world, are insensitive with respect to certaintingent differences.

Two principles are jointly characteristic of robusss — namely,p(<B ) =

H(p<m ) and ¢ <m ) = H(p <MW ). Robustness will also serve to validate the
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equivalences¢(m - ) =m( ®_, Y)and ¢ - ) =m($ € - ). These principles
seem intuitively plausible. The claim thatwould be at least as normal gagloes seem
logically equivalent to the claim thatormally ¢ would be at least as normal és
Similarly, the claim that would be more normal thaph seems logically equivalent to
the claim that normallyp would be more normal thap. In both of these cases, the
additional normalcy clause seems redundant. Mygestgon, then, is that the logic
governing ceteris paribus conditionals is the logenerated by a system assignment
function constrained by total reflexivity, localitormity and robustness.

Given this logic for ceteris paribus conditional® can derive a modal logic for
the normalcy operators M(®). The accessibility relationR' governing the
guantificational range of the normalcy operatorslédined as followstlx, y xR'y iff
OSSO S(x) (S=AUOy0OS). Thatis, the normalcy operators quantifya atorld w, over
the worlds that appear in all nonempty spheresasfalcy assigned to w. By total
reflexivity R' is serial {Jw [X wR'x — and by robustnes$®' is both transitive £lw, x, y
(WR'x OO xR'y) O wR'y — and Euclidean £w, x, y (WR'x O wR'y) 0 xRy. By the
failure of weak centeringR' is irreflexive — +lw wR'w — and by robustness and the
failure of weak centerin®' is asymmetric — ~[{w, x (WR'x OO xR'w)). The distribution
principleK: ®(¢ [ @) O (m$ [ my), holds for a completely unconstrainBd A serial
R’ validatesD: m$ [0 €¢, a transitiveR' validates4: B¢ [ mB¢$ and a Euclideaf’
validatess: ¢ (I B ¢.

It is worth pointing out that a Euclided will also beshift reflexive— Ow, x
(WRx O xRx). A serial and EuclideaR' will also bedense- [Ow, x (WR'x O [y (WR'y
O yR'x)). Shift reflexivity validates the princip®@T: B(HB¢ [] ¢), and density validates
the principleC4: El¢ [ H¢.

The modal logic governing the normalcy operator$ mave as axioms all of the
truth functional tautologies, all instances of tefinition ¢ = ~M~¢ and all instances

of the following schemata:



(K)
(D)
(4)
©)

(o Uy) U (mp 0 my)
CTOEER o)

Cognl | [0

2 Jogmg £ J0)

It will have two inference rules:

(i

(ii)

=20.=>060U
=

Modus Ponens
=0

=L

Normic Necessitation
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This is the modal logi&K D45 — a logic that has been investigated as a posdédnatic

and doxastic logic.

| conclude by offering an axiomatisation for thdl flogic of ceteris paribus

conditionals and all related operators. The lagit include, as axioms, all of the truth

functional tautologies, schemata defining the cjpes®, ¢, 1, O, <m, B € - and

- in terms of the operatox® (along with the truth functional operators), and a

instances of the following schemata:

0]
(if)
(iif)
(iv)
(v)
(Vi)
(vii)

(G<my)0<my) U (H<my)

(p<my)0 (W<mo)
O 0o

Co 00O

Ue¢ O L0
(p<my)=m(H<my)
(¢ <my)=m(p <my)
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There will be two rules of inference:
0] =>¢0,.=>6¢0U
=y
Modus Ponens
(i) foranyn>1
=00 W 0... OYp)

= Wi<m ) O... OWn<m ¢)
Rule for Comparative Normalcy

Call this logicVTRU. Following Lewis,V indicates a variably strict conditional logic

andT, R andU represent total reflexivity, robustness and lagaformity respectively.

Demonstrating tha¥ TRU is sound with respect to the proposed semantics is
relatively straightforward. As can be easily viedf all instances of schemata (i) — (vii)
are valid under any interpretation with the totalflaxivity, local uniformity and
robustness constraints (along with nesting anductosinder unions and intersections).
Further, modus ponens and the rule for comparatrealcy clearly preserve validity —
they will never take us from valid to non-valid samces. Therefore, there are no
theorems provable iWTRU that are not validated by the proposed semantdsRU is

consistent — it does not proizkas a theorem. Completeness is proved in the dppen

| have suggested that ceteris paribus conditioshtsuld be understood as a
distinct species of variably strict conditional radside subjunctive conditionals,
imperative conditionals and others. The contentaofeteris paribus conditional is
essentially this: the most normal worlds in whictiegedent and consequent jointly hold
are more normal than the most normal worlds in title antecedent holds and the
consequent fails. | have suggested furtherWTaRU is the logical system that emerges
from this conception of the content of ceteris Ipasi conditionals, given a little careful

reflection upon the relation of comparative norrgalc
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APPENDIX: COMPLETENESS ONTRU

The following technique for proving completeness isariant of the technique devised
by Lewis (1973b, pp124-130) which draws, in turpom the work of Lemmon and Scott
(see Lemmon, 1977, sections 2 and 3) and MakinE®®6). We begin by constructing a
canonical interpretation of language Call a set of sentenc&sof L, consistenfust in
case it does not allow us to proMen the logicVTRU. Say that a set of sentencess
consistent witha sentencé just in cas& [J {¢} is consistent. Say that a set of sentences
is maximally consistenust in case it is consistent but not consisterth wny sentence

that is not already contained in it.

VTRU satisfies Lindenbaum’s Lemma. That is, any cdestsset of sentences
can be extended into a maximally consistent Bebof The countably many sentences of
L can be numbered and ordered. Call this sequipnde, ¢s .... For any consistent set
of sentence<y, let Zn1 = 20 O {¢n} If 2, and ¢, are consistent and l&tn1 = Zp
otherwise. Every set in this sequence is congisteet >.. be the union of all sets in this
seguence. includesZ,. Z. is consistent. If not, some finite subset3af must be
inconsistent. But every finite subset Bf is included in some&, contradicting the
consistency of each,. Z. is maximally consistent. If not, then it must t@nsistent
with some sentenag, that is not included in it. [E. is consistent witlp,, thenZ, must

be consistent witlp,,, in which cas&. will include ¢,. QED

We construct the canonical interpretatiorLods follows:l is the set of all sets of
maximally consistent sets of sentence& @nd |(¢) = 1 iff ¢ O i. That is, a sentende
holds at an index i, under the canonical interpia@igust in case is a member of i. All
and only the theorems MTRU will be valid under the canonical interpretatiohlLa
Proof An index that did not contain a theoremMoFRU would be inconsistent with that
theorem and, hence, inconsistent simpliciter, @ytto stipulation. Thus, all theorems

of VTRU are valid under the canonical interpretationLof If ¢ is not a theorem of
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VTRU then 9 is consistent, in which case ¢} can be extended to a maximally
consistent set — call it i. Index i does not consentence. Thus, no non-theorems of

VTRU are valid under the canonical interpretatioh ofQED

Provided we can show that this canonical int¢gti@en of L is a genuine
interpretation meeting all requisite conditionsmgdeteness will follow at once. First, on
the canonical interpretatioh,is nonempty. Proof The set of theorems MTRU is a
consistent set of sentences and can be expanded imaximally consistent set which
will belong tol. QED Second, the canonical interpretation providesdwect truth
conditions for the sentential constants and truthcfional operators.Proof T is a
theorem o TRU. HenceT is a member of every maximally consistent seeotances
and, thus, true at every index under the canomitefpretation. [0 is not a member of
any maximally consistent sets of sentences. Tihus,not true at any index under the
canonical interpretationi(+¢) = 1 iff ~(li(¢) = 1) holds, since a maximal consistent set
must, for any$, contain either but not both ¢fand 4. If a maximally consistent set
contained neithep nor ~¢ it would be inconsistent with both and thus inastest with
(¢ O ~¢) — a theorem oWTRU — in which case it would be inconsistent simpdcit
li(d O W) = 1 iff (li(p) = 1) T (li(g) = 1) is true, since a maximally consistent set of
sentences must contain every sentence that itesypiVTRU. If it did not contain a
sentence it implied, it would be inconsistent wahsentence it implied and thus
inconsistent simpliciter. These results can edmlgxtended to the other truth functional
operators.QED

The canonical interpretation of the function Sé&gonstructed as follows: Call a
set of sentenceE characteristicof an index i just in case, (i) if a sentenc®¢- is a
member of i therp is not a member &t and (ii) if a sentencé is a member ok and
Y <Ml ¢ is a member of i they is a membek. These two conditions will not clash —
that is, a sentence will never be included im accordance with (ii) and excluded fr@&n
in accordance with (i). This is ensured by the that ¢ O QW <m¢)) O OyY is a

theorem oV TRU and, thus, a member of every index i.
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Call a set of sentenceaturatedjust in case, for every senteng@fL, it contains
eitherd or ~¢ or both. If a set of sentencésis characteristic for an index i then,
provided it is nonempty, it will be saturatedProof Assume a set of sentencis
characteristic for index i is nonempty and not sded. Since& is nonempty it must
contain a sentence — callgt. If neither¢ nor 4 are members ok, then neither
(¢ <m ) nor (~ <M Y)) can be members of i. In this case, i must bensistent with a
theorem oV TRU. ¢ O (¢ O ~9) is a truth functional tautology which implies, khye
rule for comparative normalcyp B ) [J (~¢ <H ). As a result, characteristic sets of

sentences, provided they are nonempty, must beasaduQED

Characteristic sets of sentences are closed umige remise consequence in
VTRU. That is, if a set of sentencEscharacteristic for an index i, contains a sergenc
¢ and¢ O Y is a theorem o TRU thenZ will also contain sentenag. Prooflf ¢ O Y
is a theorem oY TRU then, by the rule for comparative normalgy<m ¢ is a theorem
of VTRU and, thus, a member of i. ¢fis a member o andy <B ¢ is a member of i,
theny is a member oX. QED Under the canonical interpretatiansphereassociated
with an index i is a set of maximally consistenbsets of a characteristic set of i. S(x)

assigns to an index x the set of spheres, so dkfihat are associated with it.

Under the canonical interpretation, the set okspd assigned to an index by the
function S(x) is nestedProof The sets that are characteristic for an inder inmsted. If
not, then there are two seisand 1 characteristic of an index i, such that for two
sentenceg andy, ¢ OZ, ¢ OOM, P O M andy O Z. It follows from this that neither
¢ <m Y nory <M ¢ will be members of i. In this case i must be imgistent with the
VTRU theorem ¢ <m ) O (y <® ¢) and hence inconsistent simpliciter. If a set of
sentencex is a subset of a set of senten€esthen the set of maximally consistent
subsets ok will be a subset of the set of maximally consis®ubsets ofl. If the sets
characteristic of an index i are nested, then soaee the spheres associated with i.

Therefore the set of spheres assigned to an indeneisted QED
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Under the canonical interpretation, the set oksps assigned to an index i by the
function S(x) is closed under unions and nonemptgrsections.Proof The unionX of
any set of sets characteristic of an index i misgtlfi be characteristic of i. If not, then
either (@)~ must contain a sentengesuch that <>¢ is a member of i or (bY must
contain a sentenap but not contain a sentengeeven thoughb <B { is a member of i.

If (@) then a characteristic set of i must contaisentencé such that <>¢ is a member
of i. If (b) then a characteristic set of i musintain a sentencgy but not contain a
sentencep even thoughp <B @ is a member of i. Both are impossible. If a Bet
characteristic for i is equal to the union of a&eff sets characteristic for i, then the set
of maximally consistent subsets2fs equal to the union of the set of sets of makima
consistent subsets of members&of The intersectiorE of any nonempty setf sets
characteristic of an index i is itself charactecigif i. If not, then either (af must
contain a sentend such that <>¢ is a member of i or (&) must contain a sentenge
but not a sentenae even thouglp <B Y is a member of i. If (a), then a characteristit s
of i must contain a sentenae such that <>¢ is a member of i. If (b), then a
characteristic set of i must contain a sentepd®it not contain a sentend¢esven though
¢ <m | is a member of i. Both are impossible. If aSe&haracteristic for i is equal to
the intersection of a sétof sets characteristic for i then the set of maiynconsistent
subsets ok is equal to the intersection of the set of semakimally consistent subsets
of members o&. QED

The canonical interpretation gives the corredhtraonditions for the operate.
Proof Every sphere in S(i) that containgiandex contains &-index iff for every set of
sentence& characteristic for i containsy only if £ containsp. Suppose) <B | is a
member of i. It follows immediately that any seat is characteristic for i will contaip
if it containsy and any sphere will containgaindex if it contains ap-index. Suppose
¢ <M  is not a member of i. SinceOy O (¢ <M ) is a theorem o¥ TRU, O must

be a member of i. Consider the &ethat contains all and only those sentengesich
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thatx <® @ is a member of i.Z will not contain any sentence such that <> is a
member of i, since>y is a member of i andXy O (x <m g)) O Oy is a theorem of
VTRU. Since all instances ofN&B x) [I (x <H )) OI (A <B ) are theorems of TRU
and, thus, members &f = will, then, be characteristic for & does not contain sentence
¢. Therefore, there is a set of sentericeharacteristic for i, such thatcontainsp but

not$ and thus a sphere that containg-mdex but not #-index.QED

Under the canonical interpretation, the functior) & subject to total reflexivity.
Proof The set of all sentencéssuch thak>¢ is a member of i is characteristic of i. Call
this setz. Given thatJ¢ O ¢ and the contraposed princippe] & are theorems of
VTRU, every sentence that is a member of i must be rabeeofZ. It follows that i
itself is one of the maximally consistent subsét.o Therefore, i is a member of one of
the members of S(RED

Under the canonical interpretation, the functi¢r) & subject to local uniformity.
Proof Consider two indices i and j such that [1S(i). Suppose that there is a sentence
¢ such that®¢ is a member of i and¢ is a member of j. Given thabd O LIO¢
and the consequencg¢ 0 ~O~O¢ are theorems of TRU, it follows that <>¢ is not
a member of any set characteristic for i. It felofrom this that j is not a member of
[0S(i), contrary to stipulation. In this case{Hp is a member of i thed>¢ is a member
of j. Suppose that there is a senteficguch that®>¢ is a member of j and&¢ is a
member of i. Given thdfl¢p 0 LI and the consequence>d [0 ~O<Od are theorems
of VTRU it follows that¢ is not a member of any set characteristic foltifollows
from this that j is not a member 0fS(i), contrary to stipulation. In this case{H is a
member of j then®d is a member of i. The set of all sentengesuch thatCd is a
member of i is the largest set that is characterdti, and the set of all sentenagsuch
that & is a member of j is the largest set that is chtaretic of j. Since these sets are
equal and the members of S(i) and S(j) are nestiedlows that[1S(i) = 1S(j). QED
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Under the canonical interpretation, the functiofx)3s subject to robustness.
Proof Consider two indices i and j such th& (1 S(i), (S=A0j0OS). Ifjis a member
of every nonempty member of S(i) then | must beaximally consistent subset of every
nonempty set characteristic for i. Consider aesged such that) <H @ is a member of
i for any sentencep. Sentencep must be a member of every nonempty set that is
characteristic for i. Given that) (<® () = H($p <H ) is a theorem oWV TRU, if a
sentencep <M  is a member of i therp(<m ) <m x will be a member of i for any.
Therefore, if a sentenafe <B @ is a member of ip <B ¢ must be a member of j. It
follows that a set that is characteristic for jlwbe characteristic for i. Given that
(¢ <m ) =m(d <M ) is a theorem OV TRU, if a sentence $(<H ) is a member of i,
(~(® <m )) <m x will be a member of i for any. Therefore, if a sentence¢~£m ) is
a member of i, 4( <® Y) must be a member of j. It follows that a setttisa
characteristic for i will be characteristic forlp this case we have S(i) = S(j) as required.
QED
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