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Abstract

We formalize what it means to have permission to say something. We
adapt the dynamic logic of permission by van der Meyden [22] to the case
where atomic actions are public truthful announcements. We also add
a notion of obligation. Our logic is an extension of the logic of public
announcements introduced by Plaza [17] with dynamic modal operators
for permission and for obligation. We axiomatize the logic and show that
it is decidable.

Keywords Epistemic logic, deontic logic, public announcements, modal logic,
axiomatisation, decidability, permission, obligation.

1 Introduction

Consider an art school examining works at an exhibition. A student
is supposed to select one of the displayed works and is then permitted
to make a number of intelligent observations about it, sufficient to
impress the examiners with the breadth of her knowledge. Now in
such cases it never hurts to be more informative than necessary, in
order to pass the exam, but a certain minimum amount of intelligent
information has to be passed on. This particular museum has both
the Night Watch by Rembrandt and Guernica by Picasso on display
in the same room! You pass the exam if you observe about the Night
Watch that a big chunk of a meter or so is missing in the left corner,
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that was cut off in order to make the painting fit in the Amsterdam
Townhall (a1), and that the painter was Rembrandt van Rijn (a2).
Clearly, this is not a very difficult exam. You also pass the exam
if you make two of the three following observations: that Guernica
depicts the cruelties of the Spanish Civil war (b1), that it is painted
in black and white and not in colour (b2), and that the painter
was Pablo Picasso (b3). It is not permitted to make observations
about different paintings at the same time, so any conjunction of
ai’s and bj ’s is not permitted: it would amount to bad judgement
if you cannot focus on a single painting. You are obliged to make
two observations about the Rembrandt and in that case say nothing
about the Picasso, or to make at least two of the three possible
observations about the Picasso and in that case say nothing about
the Rembrandt. We can treat the permissions and obligations in
this setting in an extension of public announcement logic.

1.1 Dynamic epistemic logic

The logic of public announcements proposed by Plaza in [17] (reprinted in [18])
is an extension of multi-agent epistemic logic. It permits to express how agents
update their knowledge after public announcements of true propositions. Let p
be the proposition that there is a thunderstorm in Eindhoven, and a be the agent
Pablo, whereas b is the agent Hans. The language of public announcement logic
contains epistemic operators Ka and Kb such that ¬Kap stands for “Pablo does
not know that there is a thunderstorm in Eindhoven”. It also contains so-called
dynamic epistemic operators [ψ] such that [Kbp]Kap means “After Hans tells
Pablo that there is a thunderstorm in Eindhoven, Pablo knows that there is a
thunderstorm in Eindhoven. These operators [ψ] are dynamic modal operators,
of the necessity kind, that might be seen as labelled with the formula of the
announcement, so we could see it as well as �ψ — that might appeal slightly
more to a reader familiar with modal logic. The logic of public announcements
is only one of many dynamic epistemic logics, for example, there are also logics
for private announcements, logics combining factual and epistemic change, dy-
namic epistemic logics for belief revision, etc. A fair number of such extensions
are presented in the monograph-type chapter [5]. Latest developments involve
quantification over informative actions, as in [23, 1]. For a standard treatment
of the logic of public announcements, see [24]. A number of paradoxes can be
explained by their formalizations in dynamic epistemic logic, for example, an-
nouncement of p ∧ ¬Kap (the Moore-sentence [15]) makes p known to agent
a: Kap, and its weakening Kap ∨ ¬p is the negation of p ∧ ¬Kap. In public
announcement logic, [p ∧ ¬Kap]¬(p ∧ ¬Kap) is a validity: this formula always
becomes false when it is announced.
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1.2 Deontic logic

Deontic logic is the logic formalizing notions such as ‘ought’, ‘might’, ‘should’
and ‘must’. Like many logics, it is rooted in Antiquity and the Middle Ages,
e.g., in the Obligatio game/procedure [7]. Its modern roots are twofold, both
non-modal and modal, namely Mally [13] and von Wright [25]. Without going
into the details of Von Wright’s work, it is sufficient to say that this developed
into a tradition of a propositional modal logic with modalities for obligation or
permission, with the characteristic that such modalities bind formulas. Char-
acterizable modal properties are considered such as Oϕ→ ¬O¬ϕ, and also the
possible equivalence of Pϕ (it is permitted that ϕ) with ¬O¬ϕ. Combining
the former with the latter we should then get that if something is obligatory it
should at least be permitted. Yet another property is O(Oϕ→ ϕ), formalizing
that it is required that obligations are fulfilled. Various interesting paradoxes
have come out of such ‘standard’ deontic logic, we should mention at least Ross’s
paradox: if you are permitted (or obliged) to do a or b, that seems to entail you
are permitted to do a and you are permitted to do b. This suggest that in this
standard modal setting Pϕ → P (ϕ ∨ ψ) is invalid (because, clearly, Pϕ does
not imply Pϕ and Pψ for any ψ).

To dynamic epistemic logicians, spoilt by 25 years of thinking about actions
and their execution, this seems a bewildering discussion: clearly obligations
and permissions are about actions, how strange that people associate these
with static observations, and ‘confuse’ the non-deterministic choice between
two actions with the disjunction of two propositions. It is easy to forget that
this really required a different frame of mind. For deontic logic this frame of
mind was reset by John-Jules Meyer with his A different approach to deontic
logic: deontic logic viewed as a a variant of dynamic logic [14], an approach
that was later followed up by Van der Meyden in [22], the starting point for our
proposal in this contribution.

1.3 Dynamic deontic logic

To formalize the concept of “having the permission to say” we extend Plaza’s
public announcement logic with a modal operator P of permission, where Pϕ
expresses that it is permitted to say (i.e., announce) ϕ. To define the update
of permissions after public announcements we employ a more general binary
operator P (ψ,ϕ) that expresses “after the announcement of ψ it is permitted to
announce ϕ”—such that Pϕ can then be defined by abbreviation as P (>, ϕ),
where > is the true proposition.

Our proposal can be seen as an adaption of the dynamic logic of permission
proposed by van der Meyden in [22]. Van der Meyden’s proposal was later
elaborated on by Pucella et al. in [19]). In Van der Meyden’s work, ♦(α,ϕ)
means “there is a way to execute α which is permitted and after which ϕ is true.”
We treat the particular case where actions are public announcements. Thus, for
α in van der Meyden’s ♦(α,ϕ) we take an announcement ψ! such that ♦(ψ!, ϕ)
now means “there is a way to execute the announcement ψ which is permitted
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and after which ϕ is true.” The executability precondition for an announcement
(‘truthful public announcement’) is the truth of the announcement formulas,
therefore, the latter is equivalent to “ψ is true and it is permitted to announce
ψ, after which ϕ is true”. This suggests an equivalence of ♦(ψ!, ϕ) with, in
our setting, P (>, ψ)∧ 〈ψ〉ϕ, but our operator behaves slightly different. This is
because we assume that if you have the permission to say something, you also
have the permission to say something weaker, and because our binary permission
operator allows update of permissions after an announcement.

In [22] van der Meyden also introduces a weak form of obligation. The
meaning of O(α,ϕ) is “after any permitted execution of α, ϕ is true”. Similarly,
we also introduce a binary obligation operator O(ψ,ϕ), meaning “After every
announcement of ψ, the agents are obliged to announce ϕ.”

Our work further relates to the extension of public announcement logic with
protocols by [21, 26]. In their approach, one cannot just announce anything that
is true, but one can only announce a true formula that is part of the protocol,
i.e., that is the first formula in a sequence of formulas (standing for a sequence
of successive announcements) that is a member of a set of such sequences called
the protocol. In other words, one can only announce permitted formulas.

In the setting of informative actions like announcements we leave the beaten
track for permission in one important aspect. Little Alice is given permission by
her parents to invite uncle Charlie for her 8th birthday party with her children
friends and for a delightful canoe trip on the river Thames, but not for the family
dinner afterwards. When seeing uncle Charlie, she only mentions the canoe trip
but not the children’s party. She does not mention the family dinner. Has she
transgressed the permissions given? Of course not. Permission to say p ∧ q
implies permission to say only q. She has also not transgressed the permission
if she were not to invite him at all. Permission to say p∧q implies permission to
say nothing, i.e., to say the always true and therefore uninformative statement
>. Similarly, an obligation to say ϕ entails the obligation for anything entailed
by ϕ. If you are obliged to say p ∧ q you are also obliged to say q. Now saying
q does not therefore mean you have fulfilled the original obligation of p∧ q, you
have only partially fulfilled the entailed weaker obligation of q. It may be worth
to already point out as this stage that the weakening of announcement formulas
is unrelated to Ross’s Paradox [20]: this is about the obligation to do one of two
possible actions—the alternative to that in public announcement logic would be
the obligation to make one of two possible announcements (announcement of) ϕ
and (announcement of) ψ, completely different from the obligation to make an
announcement of (the disjuntive formula) ϕ ∨ ψ. In dynamic epistemic logics,
there is a clear distinction between actions and formulas.

1.4 Overview

We will first present the syntax and the semantics of our logic, continue with
various validities and semantics observations, and conclude with the complete-
ness of the axiomatisation and the decidability of the problem of satisfiability.
After that we present an example in detail: the card game La Belote. We con-
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clude with some observations relating to standard deontic logical topics, and
a more detailed comparison of our proposal with the relevant dynamic logical
literature, i.e. with [22, 19, 21].

2 The logic of permission and obligation to speak

2.1 Syntax

The logic POPAL of permitted announcements is an extension of the multi-
agent epistemic logic of public announcements [17].

Definition 1 (Language Lpopal) The language Lpopal over a countable set of
agents N and a countable set of propositional atoms Θ is defined as follows:

ϕ ::= p|⊥|¬ϕ|ψ ∨ ϕ|Kiϕ|[ψ]ϕ|P (ψ,ϕ)|O(ψ,ϕ)

where i ∈ N and p ∈ Θ. The language Lpoel is the fragment without announce-
ment construct [ψ]ϕ, the language Lpal is the fragment without O and P , and the
language Lel is the fragment restricted to the Boolean and epistemic operators.

The intuitive reading of Kiϕ is “agent i knows that ϕ is true” whereas [ψ]ϕ is
read as “after announcing ψ, it is true that ϕ”. We read P (ψ,ϕ) as “(ψ is true
and) after announcing ψ, it is permitted to announce ϕ”. Similarly, O(ψ,ϕ)
stands for “(ψ is true and) after announcing ψ, it is obligatory to announce ϕ”.
Note that announcements are assumed to be public and truthful. Definitions
by abbreviation of other Boolean operators are standard. Moreover, we define
by abbreviation:

• 〈ψ〉ϕ := ¬[ψ]¬ϕ;

• Pϕ := P (>, ϕ);

• Oϕ := O(>, ϕ).

Formula Pϕ stands for “It is permitted to announce ϕ” and Oϕ stands for “It
is obligatory to announce ϕ” (the semantics also entails the truth of ϕ, in both
cases); 〈ψ〉ϕ stands for “ψ is true and after announcing ψ, ϕ is true.” Note the
difference with [ψ]ϕ: “if ψ is true, then after announcing it, ϕ is true.” The
latter is vacuously true if the announcement cannot be made.

The degree deg of a formula is a concept that will be used in the completeness
proof, in Section 3.2. It keeps count of the number of P and O operators in a
given formula.

Definition 2 (Degree) The degree of a formula ϕ ∈ Lpopal is defined induc-
tively on the structure of ϕ as follows:

deg(p) = 0 deg(ψ1 ∨ ϕ2) = max(deg(ψ1), deg(ψ2))
deg(⊥) = 0 deg([ψ]ϕ) = deg(ψ) + deg(ϕ)
deg(¬ψ) = deg(ψ) deg(P (ψ,ϕ)) = deg(ψ) + deg(ϕ) + 1
deg(Kiψ) = deg(ψ) deg(O(ψ,ϕ)) = deg(ψ) + deg(ϕ) + 1
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This is therefore not the usual modal degree function, that counts Ki operators.
For all formulas ϕ ∈ Lpopal , deg(ϕ) = 0 iff ϕ does not contain any occurrence of
P or O iff ϕ ∈ Lpal .

2.2 Semantics

The models of our logic are Kripke models with an additional permission relation
P between states and pairs of sets of states, that represents, for each state, the
announcements that are permitted to be done in this state.

Definition 3 (Permission Kripke Model) Given a set of agents N and a
set of atoms Θ, permission Kripke models have the formM = (S, {∼i}i∈N , V,P)
with S a non-empty set of states, for each i ∈ N , ∼i an equivalence relation
between states of S, valuation function V mapping propositional atoms to subsets
of S, and P ⊆ S × 2S × 2S such that if (s, S′, S′′) ∈ P then s ∈ S′′ ⊆ S′.

If the equivalence relation ∼i holds between states s, t ∈ S, this means that,
as far as agent i is concerned, s and t are indiscernible. The membership of
(s, S′, S′′) in P can be interpreted as follows: in state s, after an announcement
that restricts the set of possible states to S′, a further announcement in S′ that
restricts that set to S′′ is permitted. We will explain this in more detail after
giving the semantics.

We simultaneously define the restrictionMψ of a modelM after the public
announcement of ψ, and the satisfiability relation |=. In the definitions we use
the abbreviation [[ψ]]M = {s ∈ S | M, s |= ψ}. If no ambiguity results, we
occasionally write [[ψ]] instead of [[ψ]]M.

Definition 4 (Restricted model) For any model M and any ψ ∈ Lpopal , we

define the restriction Mψ = (Sψ,∼ψi , Vψ,Pψ) where:

• Sψ = [[ψ]]M

• for all i, ∼ψi = ∼i ∩ (Sψ × Sψ)

• for all p ∈ Θ, Vψ(p) = V (p) ∩ Sψ

• Pψ = {(s, S′, S′′) ∈ P | s ∈ Sψ, S′ ⊆ Sψ, S′′ ⊆ Sψ}

Definition 5 (Satisfiability relation) Let M be a model and s be a state of
S. The satisfiability relation |= is defined inductively on the structure of ϕ:

M, s |= p iff s ∈ V (p)

M, s 6|= ⊥

M, s |= ¬ψ iff M, s 6|= ψ

M, s |= ψ1 ∨ ψ2 iff (M, s |= ψ1 or M, s |= ψ2)

M, s |= Kiψ iff for all t ∼i s, M, t |= ψ
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M, s |= [ψ]χ iff (M, s |= ψ ⇒Mψ, s |= χ)

M, s |= P (ψ, χ) iff for some (s, [[ψ]]M, S
′′) ∈ P, S′′ ⊆ [[〈ψ〉χ]]M

M, s |= O(ψ, χ) iff for all (s, [[ψ]]M, S
′′) ∈ P, S′′ ⊆ [[〈ψ〉χ]]M.

For all ϕ ∈ Lpopal , M |= ϕ iff for all s ∈ S, M, s |= ϕ; and |= ϕ iff for all
models M we have M |= ϕ.

We do not impose that S′ and S′′ are denotations of formulas in the language
for (s, S′, S′′) to be in P. This semantics is thus more general than the intuitive
one for “having the permission to say”. Indeed, if S′ or S′′ do not correspond
to a restriction of S made by an announcement, then (s, S′, S′′) ∈ P does not
correspond to some announcement being permitted.

The semantics of P (ψ, χ) expresses that after announcement of ψ it is per-
mitted to announce a χ weaker than the restriction given in the relation P.
If the S′′ in (s, [[ψ]], S′′) is the denotation of some [[〈ψ〉ϕ]], we get that after
announcement of ψ it is permitted to announce a χ weaker than (implied by)
ϕ.

2.3 Example: Art School

Consider the example in the introduction. In an art school examination you
are asked to “describe precisely one (and only one) of the presented pictures”.
There are two distinct sets of intelligent observations to make (modelled as
atomic propositional variables): A = {a1, a2}, B = {b1, b2, b3}, with A∪B = Θ.
The domain of discourse consists of all possible valuations S = 2Θ, in the actual
state s all atoms are in fact true, and our student is in fact an omniscient
agent g (i.e. ∼g= idS) that can announce anything she likes. The set P is
given as P = {(s, [[>]], [[a1∧a2]]), (s, [[>]], [[b1∧b2]]), (s, [[>]], [[b1∧b3]]), (s, [[>]], [[b2∧
b3]]), (s, [[>]], [[b1 ∧ b2 ∧ b3]])}. Note that [[>]] = S. We now have that

• It is permitted to say a1 (M, s |= P (>, a1)), because (s, [[>]], [[a1∧a2]]) ∈ P
and [[a1 ∧ a2]] ⊆ [[〈>〉a1]]M (where [[〈>〉a1]]M = [[a1]]M): it is permitted to
say something weaker than a1 ∧ a2.

• It is not permitted to say a1 ∧ b2 (M, s |= ¬P (>, a1 ∧ b2)) because the
denotation of that formula is not contained in either of the members of
the set P.

• It is not obligatory to say a1 (M, s 6|= O(>, a1)), because it is permitted
to say b1 ∧ b2, and [[a1]] 6⊆ [[b1 ∧ b2]].

• It is obligatory to say ob := (a1 ∧ a2) ∨ (b1 ∧ b2) ∨ (b2 ∧ b3) ∨ (b1 ∧ b3) as
all members of P are stronger.

This last obligation is also the strongest obligation in this setting. It is, e.g.,
also obligatory to say a1 ∨ b1 ∨ b2 (M, s |= O(>, a1 ∨ b1 ∨ b2)) because this
is weaker than ob. However, as already mentioned, this does not mean that a
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student has fulfilled her obligation when saying a1∨b1∨b2 - she then only fulfills
part of her obligation (and will therefore fail the exam!). We observe that our
intuition of what an obligation is corresponds to the strongest obligation under
our definition—reasons to prefer the current definition are technical, such as
getting completeness right.

2.4 Valid principles and other semantic results

The O and P operators are not interdefinable. This is because the obligation
to say ϕ means that anything not entailing ϕ may not be permitted to say,
and not only that it is not permitted to say ¬ϕ. As an example, consider
the following two models that have the same domain S = {s1, s2}, the same
valuation V (p) = {s1}, the same epistemic relation ∼i= S × S, but that differ
on the permission relation: M = (S, V,∼i,P) and M′ = (S, V,∼i,P ′ where
P = {(s1, S, {s1}), (s2, S, S)} and P ′ = {(s1, S, {s1}), (s1, S, S), (s2, S, S)}. Let
L−popal be the language without the obligation operator O. The pointed models
(M, s1) and (M′, s1) have the same theory in that language: for all ϕ ∈ Lpopal ,
(M, s1 |= ϕ iff M, s1 |= ϕ). The proof is obvious for all inductive cases of ϕ
except when ϕ takes shape P (ψ,ϕ). In that case, observe from the semantics
of P and the given relations P and P ′ that only formulas of type P (>, ϕ2) can
be true in these models, as the second argument of all triples in P and P ′ is the
entire domain S. Further observe that in both models, anything that is true in
s1 is permitted to be said, formally for all ϕ ∈ Lpopal , M, s1 |= ϕ ↔ P (>, ϕ)
and M′, s1 |= ϕ ↔ P (>, ϕ). So M and M′ are modally equivalent in L−popal .
On the other hand, as (s, S, S) is not in P we have that M, s1 |= O(>, p) but
M′, s1 |= ¬O(>, p), so the models are not modally equivalent in Lpopal . We
conclude that:

Proposition 6 L−popal is strictly less expressive than Lpopal.

The standard validities for public announcement logic are preserved in this
extension of the logic with permission and obligation (for details, see a standard
introduction like [24]):

• |= [ψ]p↔ (ψ → p)

• |= [ψ]⊥ ↔ ¬ψ

• |= [ψ]¬ϕ↔ (ψ → ¬[ψ]ϕ)

• |= [ψ](ϕ1 ∨ ϕ2)↔ ([ψ]ϕ1 ∨ [ψ]ϕ2)

• |= [ψ]Kiϕ↔ (ψ → Ki[ψ]ϕ)

• |= [ψ1][ψ2]ϕ↔ [〈ψ1〉ψ2]ϕ

For example, [ψ]p↔ (ψ → p) says that p is true after announcement of ψ iff ψ
implies p (is true). As ψ is the condition to be able to make the announcement,
this principle merely says that an announcement cannot change the valuation
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of atoms. Of course, for other formulas than atoms we cannot get rid of the
announcement that way. A typical counterexample (the Moore-sentence) is that
(p ∧ ¬Kip) → (p ∧ ¬Kip) is a trivial validity whereas [p ∧ ¬Kip](p ∧ ¬Kip) is
false, because whenever p ∧ ¬Kip can be announced, p is known afterwards:
Kip.

Additional to the principles for public announcement logic, two principles
address how to treat a permission or obligation operator after an announced.

Proposition 7 For all p ∈ Θ, all ψ,ϕ, ψ1, ψ2, ϕ1, ϕ2 ∈ Lpopal

1. |= [ψ1]P (ψ2, ϕ)↔ (ψ1 → P (〈ψ1〉ψ2, ϕ))

2. |= [ψ1]O(ψ2, ϕ)↔ (ψ1 → O(〈ψ1〉ψ2, ϕ))

Proof For all M, all s ∈ S and all ψ1, ψ2, ϕ ∈ Lpopal we have:

1. (⇒) Suppose that M, s |= [ψ1]P (ψ2, ϕ) and s ∈ [[ψ1]]M. Then for some
S′′ ⊆ [[〈ψ2〉ϕ]]Mψ1

, (s, [[ψ2]]Mψ1
, S′′) ∈ Pψ1

. This implies that for
some S′′ ⊆ [[〈ψ1〉〈ψ2〉ϕ]]M, (s, [[〈ψ1〉ψ2]]M, S

′′) ∈ Pψ1
, i.e. for some

S′′ ⊆ [[〈ψ1〉〈ψ2〉ϕ]]M, (s, [[〈ψ1〉ψ2]]M, S
′′) ∈ P. FinallyM, s |= P (〈ψ1〉ψ2, ϕ).

(⇐) Suppose that M, s |= (ψ1 → P (〈ψ1〉ψ2, ϕ)). If M, s 6|= ψ1 then
obviously M, s |= [ψ1]P (ψ2, ϕ). Otherwise s ∈ [[ψ1]]M and M, s |=
P (〈ψ1〉ψ2, ϕ). Therefore, there exists S′′ ⊆ [[〈〈ψ1〉ψ2〉ϕ]]M such that
(s, [[〈ψ1〉ψ2]]M, S

′′) ∈ P. Thus s ∈ [[ψ1]]M, S′′ ⊆ [[〈ψ2〉ϕ]]Mψ1
and

(s, [[ψ2]]Mψ1
, S′′) ∈ Pψ1 . Finally M, s |= [ψ1]P (ψ2, ϕ).

2. (⇒) Suppose that M, s |= [ψ1]O(ψ2, ϕ) and s ∈ [[ψ1]]M. Then for all
(s, [[ψ2]]Mψ1

, S′′) ∈ Pψ1 , S′′ ⊆ [[〈ψ2〉ϕ]]Mψ1
. This implies that for all

(s, [[〈ψ1〉ψ2]]M, S
′′) ∈ Pψ1

, S′′ ⊆ [[〈ψ1〉〈ψ2〉ϕ]]M i.e. for all
(s, [[〈ψ1〉ψ2]]M, S

′′) ∈ P, S′′ ⊆ [[〈ψ1〉〈ψ2〉ϕ]]M. FinallyM, s |= O(〈ψ1〉ψ2, ϕ).

(⇐) Suppose that M, s |= (ψ1 → O(〈ψ1〉ψ2, ϕ)). If M, s 6|= ψ1 then
obviously M, s |= [ψ1]O(ψ2, ϕ). Otherwise s ∈ [[ψ1]]M and M, s |=
O(〈ψ1〉ψ2, ϕ). Therefore, for all (s, [[〈ψ1〉ψ2]]M, S

′′) ∈ P we have
S′′ ⊆ [[〈〈ψ1〉ψ2〉ϕ]]M. Thus s ∈ [[ψ1]]M and for all (s, [[ψ2]]Mψ1

, S′′) ∈
Pψ1 we have S′′ ⊆ [[〈ψ2〉ϕ]]Mψ1

. Finally M, s |= [ψ1]O(ψ2, ϕ).

�

For example, principle [ψ1]P (ψ2, ϕ) ↔ (ψ1 → P (〈ψ1〉ψ2, ϕ)) of Proposition
7 says the following: “(After announcing ψ1 we have that (ψ2 is true and after
announcing ψ2 it is permitted to announce ϕ)) iff (On condition that ψ1 is true
(〈ψ1〉ψ2 is true and after announcing 〈ψ1〉ψ2 it is permitted to say ϕ)).” Using
the meaning of the public announcement operator, the right part is the same as
“On condition that ψ1 is true, after announcing ψ1, ψ2 is true and after then
announcing ψ2 it is permitted to say ϕ.” Which gets us back to the left part of
the original equivalence.

Another validity of the logic spells out that equivalent announcements lead
to equivalent permissions.
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Proposition 8 For all models M and all formulas ψ,ψ′, ϕ, ϕ′ ∈ Lpopal : If
M |= (ψ ↔ ψ′) ∧ ([ψ]ϕ → [ψ′]ϕ′) then M |= P (ψ,ϕ) → P (ψ′, ϕ′) and M |=
O(ψ,ϕ)→ O(ψ′, ϕ′).

Proof For all ψ,ψ′, ϕ, ϕ′ ∈ Lpopal , if M |= (ψ ↔ ψ′) and M |= 〈ψ〉ϕ →
〈ψ′〉ϕ′, then [[ψ]]M = [[ψ′]]M and [[〈ψ〉ϕ]]M ⊆ [[〈ψ′〉ϕ′]]M. It implies that for
all (s, [[ψ]]M, S

′′) ∈ P, we have (s, [[ψ′]]M, S
′′) ∈ P and if S′′ ⊆ [[〈ψ〉ϕ]] then

S′′ ⊆ [[〈ψ〉′ϕ′]]. �

We continue with a proposition on allowed logical compositions of permitted
and obliged announcements.

Proposition 9 For all ψ,ϕ, ϕ1, ϕ2 ∈ Lpopal

1. |= (O(ψ,ϕ1) ∧O(ψ,ϕ2))↔ O(ψ,ϕ1 ∧ ϕ2)

2. |= (P (ψ,ϕ1) ∧O(ψ,ϕ2))→ P (ψ,ϕ1 ∧ ϕ2)

3. |= (ψ ∧O(ψ,ϕ) ∧ ¬P (ψ,ϕ))↔ (ψ ∧ ¬P (ψ,>))

Proof For all models M and all state s ∈ S we have

1. M, s |= O(ψ,ϕ1)∧O(ψ,ϕ2) iff for all (s, [[ψ]], S′′) ∈ P, S′′ ⊆ [[〈ψ〉ϕ1]] and
S′′ ⊆ [[〈ψ〉ϕ2]] iff for all (s, [[ψ]], S′′) ∈ P, S′′ ⊆ [[〈ψ〉ϕ1]] ∩ [[〈ψ〉ϕ2]] =
[[〈ψ〉(ϕ1 ∧ ϕ2)]] iff M, s |= O(ψ,ϕ1 ∧ ϕ2).

2. SupposeM, s |= P (ψ,ϕ1)∧O(ψ,ϕ2). Then for some (s, [[ψ]], S′′) ∈ P, S′′ ⊆
[[〈ψ〉ϕ1]] and for all (s, [[ψ]], S′′) ∈ P, S′′ ⊆ [[〈ψ〉ϕ2]]. Thus, for some
(s, [[ψ]], S′′) ∈ P, S′′ ⊆ [[〈ψ〉ϕ1]] ∩ [[〈ψ〉ϕ2]] = [[〈ψ〉(ϕ1 ∧ ψ2)]] which is
equivalent to M, s |= P (ψ,ϕ1 ∧ ϕ2).

3. M, s |= ψ ∧ O(ψ,ϕ) ∧ ¬P (ψ,ϕ) if and only if M, s |= ψ and for all
(s, [[ψ]], S′′) ∈ P, S′′ ⊆ [[〈ψ〉ϕ]] and S′′ 6⊆ [[〈ψ〉ϕ]]. This is equivalent to
M, s |= ψ and the fact that there is no S′′ such that (s, [[ψ]], S′′) ∈ P,
which means that M, s |= ψ ∧ ¬P (ψ,>).

�

We also have that if ϕ is permitted, than any ϕ∨ψ is also permitted (namely
anything weaker than ϕ is also permitted) and similarly, if ϕ is obligatory,
than any ϕ ∨ ψ is also obligatory. In the example in the previous section we
already illustrated that this notion of weakened obligation is not intuitive—one
might rather see the announcement of ϕ ∨ ψ as something towards fulfilling an
obligation. The weakened permission of ϕ ∨ ψ we find intuitive in the setting
of permitted announcements. Unlike in the Ross Paradox [20], note that this is
not choice between two different announcements, but the single announcement
of a disjunction.

Proposition 7 suggests the following translation tr :Lpopal → Lpoel :

Definition 10 (the translation tr) We define tr(ϕ) by induction on the com-
plexity of ϕ as follows:

10



• tr(p) = p

• tr(⊥) = ⊥

• tr(¬ϕ) = ¬tr(ϕ)

• tr(ψ ∨ ϕ) = tr(ψ) ∨ tr(ϕ)

• tr(Kiϕ) = Kitr(ϕ)

• tr(P (ψ,ϕ)) = P (tr(ψ), tr(ϕ))

• tr(O(ψ,ϕ)) = O(tr(ψ), tr(ϕ))

• tr([ψ]p) = tr(ψ)→ p

• tr([ψ]⊥) = ¬tr(ψ)

• tr([ψ]¬ϕ) = tr(ψ)→ ¬tr([ψ]ϕ)

• tr([ψ](ϕ1 ∨ ϕ2)) = tr([ψ]ϕ1) ∨ tr([ψ]ϕ2)

• tr([ψ]Kiϕ) = tr(ψ)→ Kitr([ψ]ϕ)

• tr([ψ1][ψ2]ϕ) = tr([〈ψ1〉ψ2]ϕ)

• tr([ψ1]P (ψ2, ϕ)) = tr(ψ1)→ P (tr(〈ψ1〉ψ2), tr(ϕ))

• tr([ψ1]O(ψ2, ϕ)) = tr(ψ1)→ O(tr(〈ψ1〉ψ2), tr(ϕ))

An elementary proof by induction on the structure of ϕ, using Proposition 7,
now delivers:

Proposition 11 For all ϕ ∈ Lpopal , |= ϕ↔ tr(ϕ).

In other words, adding public announcements to logical language with permitted
and obligatory announcement does not increase the expressivity of the logic.

Finally, we need to show a property of the degree function. This property
will be used in the completeness proof. Its proof is in the appendix.

Proposition 12 For all ϕ ∈ Lpopal , deg(tr(ϕ)) = deg(ϕ).

3 Axiomatization

We define the axiomatization POPAL and prove its soundness and complete-
ness. Let POPAL be the least set of formulas in our language that contains the
axiom schemata and is closed under the inference rules in Table 1. We write
`POPAL ϕ for ϕ ∈ POPAL. We define the consistency and the maximality
of a set x of formulas as usual: x is POPAL-consistent iff for all nonnegative
integers n and for all formulas ϕ1, . . . , ϕn ∈ x, ¬(ϕ1 ∧ . . . ∧ ϕn) 6∈ POPAL
whereas x is maximal iff for all formulas ϕ, ϕ ∈ x or ¬ϕ ∈ x.
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all propositional tautologies
Kiϕ→ ϕ truth
Kiϕ→ KiKiϕ positive introspection
¬Kiϕ→ Ki¬Kiϕ negative introspection
[ψ]p↔ (ψ → p) atomic permanence
[ψ]⊥ ↔ ¬ψ ann. and false
[ψ]¬ϕ↔ (ψ → ¬[ψ]ϕ) ann. and negation
[ψ](ϕ1 ∨ ϕ2)↔ ([ψ]ϕ1 ∨ [ψ]ϕ2) ann. and disjunction
[ψ]Kiϕ↔ (ψ → Ki[ψ]ϕ) ann. and knowledge
[ψ1][ψ2]ϕ↔ [〈ψ〉1ψ2]ϕ ann. composition
[ψ]P (ψ′, ϕ)↔ (ψ → P (〈ψ〉ψ′, ϕ)) ann. and permission
[ψ]O(ψ′, ϕ)↔ (ψ → O(〈ψ〉ψ′, ϕ)) ann. and obligation
P (ψ,ϕ)→ 〈ψ〉ϕ permission and truth
O(>,>)
(O(ψ,ϕ1) ∧O(ψ,ϕ2))↔ O(ψ,ϕ1 ∧ ϕ2) obligations composition
(P (ψ,ϕ1) ∧O(ψ,ϕ2))→ P (ψ,ϕ1 ∧ ϕ2) obligation and permission comp.
(ψ ∧O(ψ,ϕ) ∧ ¬P (ψ,ϕ))↔ (ψ ∧ ¬P (ψ,>)) obligation and prohibition
From ϕ and ϕ→ ψ infer ψ modus ponens
From ϕ infer Kiϕ necessitation of Ki

From ϕ infer [ψ]ϕ necessitation of announcement
From (ψ ↔ ψ′) ∧ (〈ψ〉ϕ→ 〈ψ′〉ϕ′) infer
(P (ψ,ϕ′)→ P (ψ′, ϕ)) and (O(ψ,ϕ)→ O(ψ′, ϕ′)) substitution

Table 1: Axiomatization of POPAL
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3.1 Soundness

Proposition 13 POPAL is sound on the class of all models.

Proof By Propositions 7, 8 and 9. �

Note that we have in particular that

Proposition 14 For all ϕ ∈ Lpopal ,`POPAL ϕ↔ tr(ϕ).

3.2 Completeness

To prove the completeness result, let us define the canonical model for POPAL:

Definition 15 (Canonical Model)
The canonical model Mc = (Sc,∼ci , V c,Pc) is defined as follows:

• Sc is the set of all `POPAL-maximal consistent sets

• for any p ∈ Θ, V c(p) = {x ∈ Sc | p ∈ x}

• x ∼ci y iff Kix = Kiy, where Kix = {ϕ|Kiϕ ∈ x}

• Pc = {(x, S′, S′′) : ∃P (ψ,ϕ) ∈ x| S′ = {y ∈ Sc : ψ ∈ y} , S′′ = {y ∈ Sc :
〈ψ〉ϕ ∈ y} ∩Axψ}

⋃
{(x, S′, S′′) : ∃(ψ ∧¬O(ψ,ϕ)) ∈ x| S′ = {y ∈ Sc : ψ ∈

y} , S′′ = Axψ}
where for all ψ ∈ Lpopal and all x ∈ Sc we pose Axψ = {y ∈ Sc : ∀O(ψ, χ) ∈
x, 〈ψ〉χ ∈ y}.

For any set x ∈ Sc and any formula ψ ∈ Lpopal , the set Axψ is the set of all the
Lpopal -maximal consistent sets that satisfy 〈ψ〉ϕ for all announcements ϕ that
are obligatory after the announcement of ψ.

Proposition 16 The canonical model is a model.

Proof The set of states and the valuation are clearly well defined, and as the
equality is an equivalence relation between set of formulas, ∼ci is an equivalence
relation. Pc is a set of triplets of the expected form, the only thing we have
to verify is that for every (x, S′, S′′) ∈ Pc, we have x ∈ S′′ ⊆ S′. Indeed, let
(x, S′, S′′) ∈ Pc, thus there are two possibilities:

1. First, there exists a P (ψ,ϕ) ∈ x such that S′ = {y ∈ Sc : ψ ∈ y} and
S′′ = {y ∈ Sc : 〈ψ〉ϕ ∈ y} ∩ Axψ. In this case, clearly S′′ ⊆ S′ because for
all y ∈ Sc, 〈ψ〉ϕ ∈ y only if ψ ∈ y. Now x ∈ S′′ comes from the axiom
“permission and truth”.

2. Second, there exists a (ψ∧¬O(ψ,ϕ)) ∈ x such that S′ = {y ∈ Sc : ψ ∈ y}
and S′′ = {y ∈ Sc : ∀O(ψ, χ) ∈ x, 〈ψ〉χ ∈ y}. In this case, S′′ ⊆ S′ comes
from the fact that ψ ∈ x implies [ψ]O(>,>) ∈ x, i.e. O(ψ,>) ∈ x and
thus y ∈ S′′ implies 〈ψ〉> ∈ y. Now to show that x ∈ S′′ let us consider
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O(ψ, χ) ∈ x and let us show that 〈ψ〉χ ∈ x. Indeed, by “obligation and
prohibition”, ψ ∧ ¬O(ψ,ϕ) ∈ x implies ψ ∧ P (ψ,>) ∈ x, now P (ψ,>) ∧
O(ψ, χ) ∈ x implies P (ψ, χ) ∈ x by ”obligation and permission comp.”,
and finally 〈ψ〉χ ∈ x by “permission and truth”.

�

In the canonical model, a state is a set of formulas. The link between the fact
that a formula ϕ is in a set x and the fact thatMc, x |= ϕ is given by the Truth
Lemma. In the proof of the Truth Lemma, we need the following

Lemma 17 For any x ∈Mc and any ψ,ϕ, α, β ∈ Lpoel ,

1. if Axψ ⊆ {y : 〈ψ〉ϕ ∈ y}, then O(ψ,ϕ) ∈ x,

2. if P (α, β) ∈ x and {y : 〈α〉β ∈ y}∩Axα ⊆ {y : 〈α〉ϕ ∈ y}, then P (α,ϕ) ∈ x

Proof 1. By hypothesis, any maximal consistent set that contains 〈ψ〉χ for
all O(ψ, χ) ∈ x contains also 〈ψ〉ϕ, thus {〈ψ〉χ : O(ψ, χ) ∈ x}∪{[ψ]¬ϕ} is
inconsistent. By definition, it has a finite subset {〈ψ〉χ1, . . . , 〈ψ〉χn, [ψ]¬ϕ}
that is inconsistent. Thus ` 〈ψ〉χ1∧ . . .∧〈ψ〉χn → 〈ψ〉ϕ, i.e. ` 〈ψ〉

∧
χi →

〈ψ〉ϕ and then ` O(ψ,
∧
χi) → O(ψ,ϕ) by the inference rule (R). By

axiom “obligation composition” O(ψ,
∧
χi) ∈ x, and by modus ponens

O(ψ,ϕ) ∈ x.

2. By hypothesis, any maximal consistent set that contains 〈ψ〉β and 〈ψ〉χ
for all O(ψ, χ) ∈ x contains also 〈ψ〉ϕ. Thus {〈ψ〉β} ∪ {〈ψ〉χ : O(ψ, χ) ∈
x} ∪ {[ψ]¬ϕ} is inconsistent. By definition, this set has a finite sub-
set {〈ψ〉β, 〈ψ〉χ1, . . . , 〈ψ〉χn, [ψ]¬ϕ} that is inconsistent. Thus ` (〈ψ〉β ∧
〈ψ〉χ1 ∧ . . . ∧ 〈ψ〉χn) → 〈ψ〉ϕ, i.e. ` 〈ψ〉(β ∧

∧
χi) → 〈ψ〉ϕ and then

` P (ψ, β ∧
∧
χi)→ P (ψ,ϕ). O(ψ,

∧
χi) ∈ x is true by axiom “obligation

composition” and and P (ψ, β) ∈ x by hypothesis. Thus P (ψ, β∧
∧
χi) ∈ x

is true by axiom “obligation and permission comp.”. Finally, P (ψ,ϕ) ∈ x
by modus ponens.

�

Proposition 18 (Truth Lemma for Lpoel) For all ϕ ∈ Lpoel we have:

Π(ϕ) : for all x ∈ Sc,Mc, x |= ϕ iff ϕ ∈ x

Proof The proof is by induction on the degree of ϕ.

Base case If deg(ϕ) = 0 then ϕ ∈ Lel and Π(ϕ) is a known result (See [6] or
[9] for details). Note that (Sc,∼ci , V c) is the classical canonical model for
Lel .

Induction steps Let k ∈ N, let us suppose that Π(ψ) is true for all ψ ∈ Lpoel

such that deg(ψ) 6 k.
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Note that it follows that Π(ψ) is true for all ψ ∈ Lpopal such that deg(ψ) 6
k. Indeed, for all such ψ, for all x ∈ Sc, Mc, x |= ψ iff Mc, x |= tr(ψ) iff
tr(ψ) ∈ x iff ψ ∈ x.

Let ϕ be such that deg(ϕ) ≤ k + 1 and let us reason by induction on the
structure of ϕ.

• ϕ = p;⊥;¬ψ;ϕ1 ∨ ϕ2;Kiψ: See the proof of the truth lemma for Lel in [6] or
[9].

• ϕ = P (ψ, χ):

(⇒) Suppose that Mc, x |= P (ψ, χ) and let S′′ ⊆ [[〈ψ〉χ]]Mc be such that
(x, [[ψ]]Mc , S′′) ∈ Pc.
Two possibilities:

• First, there exists P (α, β) ∈ x s.t. (∗)[[ψ]]Mc = {y ∈ Sc : α ∈ y} and
S′′ = {y ∈ Sc : 〈α〉β ∈ y} ∩ Axα. Now we know, by hypothesis, that
S′′ ⊆ [[〈ψ〉χ]]Mc = [[〈α〉χ]]Mc (by (∗)), this implies by lemma 17.2,
that P (α, χ) ∈ x. By (∗) again and the inference rule (R) we obtain
that P (ψ, χ) ∈ x.

• Second, there exists ¬O(α, β) ∈ x s.t. [[ψ]]Mc = {y ∈ Sc : α ∈
y} and S′′ = Axα. On one hand, this implies that ` ψ ↔ α and
then ¬O(ψ, β) ∈ x. On the other hand, with the fact that S′′ ⊆
[[〈ψ〉χ]]Mc we obtain, by lemma 17.1, that O(ψ, χ) ∈ x. Now, if
we suppose P (ψ, χ) /∈ x then ψ ∧ O(ψ, χ) ∧ ¬P (ψ, χ) ∈ x and thus
ψ∧¬P (ψ,>) ∈ x by “obligation and prohibition”. Therefore, by the
same axiom, O(ψ, β) ∈ x, which leads to a contradiction. This shows
that P (ψ, χ) ∈ x.

(⇐) If P (ψ, χ) ∈ x then let us define S′ = [[ψ]]Mc and S′′ = [[〈ψ〉χ]] ∩Axψ.
We then obtain, by definition of Pc, (x, S′, S′′) ∈ Pc, and then, as S′′ ⊆
[[〈ψ〉χ]] = [[tr(〈ψ〉χ)]], Mc, x |= P (ψ, χ).

• ϕ = O(ψ, χ):

(⇐) Suppose that O(ψ, χ) ∈ x and Mc, x 6|= O(ψ, χ). Thus Mc, x |=
ψ otherwise we would have Mc, x |= O(ψ, χ). Now Mc, x 6|= O(ψ, χ)
implies that there exists (x, [[ψ]], S′′) ∈ Pc such that S′′ 6⊆ [[〈ψ〉χ]]. That is
impossible, because by definition S′′ ⊆ Axψ ⊆ [[〈ψ〉χ]].

(⇒) Suppose that O(ψ, χ) 6∈ x and Mc, x |= O(ψ, χ). Then ¬O(ψ, χ) ∈ x
and, by definition of Pc, (x, [[ψ]], Axψ) ∈ Pc. But then Mc, x |= O(ψ, χ)
leads to Axψ ⊆ [[〈ψ〉χ]] = [[tr(〈ψ〉χ)]]. By Proposition 11, IH (with
deg(tr(〈ψ〉χ)) ≤ k) and Lemma 17.1, O(ψ, χ) ∈ x. Contradiction.

�

Proposition 19 POPAL is sound and complete with respect to the class of all
models.
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Proof The soundness has been shown in Proposition 13. By Proposition 18 we
can show the completeness with respect to the class of all models. Indeed, for
all ϕ ∈ Lpopal : |= ϕ⇒ |= tr(ϕ)⇒ Mc |= tr(ϕ)⇒ ` tr(ϕ)⇒ ` ϕ. �

4 Decidability

We prove in this section that POPAL is decidable by proving a small model
property. To do so, we will use the filtration method.

Definition 20 (Closed set) Let X ⊆ Lpoel . We shall say that X is closed if
the following properties are satisfied:

• it is closed under subformulas

• for all P (ψ,ϕ) ∈ X, tr(〈ψ〉ϕ) ∈ X

• for all O(ψ,ϕ) ∈ X, tr(〈ψ〉ϕ) ∈ X

Definition 21 (P-filtration) Let M = (S,∼i, V,P) be a model and Γ be a
closed set of formulas. Let !Γ be the relation on S defined, for all s, t ∈ S, by:

s!Γt iff ∀ ϕ ∈ Γ : (M, s |= ϕ iff M, t |= ϕ)

We call the filtration ofM through Γ (or simply the filtration ofM) the model
MΓ = (SΓ,∼Γ

i , V
Γ,PΓ) where:

• SΓ = S/!Γ

• |s| ∼Γ
i |t| iff for all Kiϕ ∈ Γ, (M, s |= Kiϕ iff M, t |= Kiϕ)

• V Γ(p) =

{
∅ if p 6∈ Γ
V (p)/!Γ if p ∈ Γ)

• PΓ = {(|s|, S1, S2): there exists t ∈ |s| and S′′ ⊆ S s.t. S′′/!Γ = S2 and
(t,
⋃

(S1), S′′) ∈ P}

In this definition, S1 is a set of equivalence classes, and
⋃
S1 is the set of all

states that are represented by an element of S1. Note that!Γ is an equivalence
relation. For all s ∈ S, let us denote |s|Γ (or simply |s|) the equivalence class of
s with respect to !Γ; and for S′ ⊆ S′′, we write !Γ(S′) for {t ∈ S | ∃s ∈ S′ :
s!Γt}. Here is a useful lemma:

Lemma 22 Let Γ ⊂ Lpoel be a finite closed set. For any modelM, its filtration
MΓ contains at most 2m nodes, where m = Card(Γ).

Proof Let M be a model. Let g : SΓ → 2Γ defined by g(|s|) = {ψ ∈ Γ :
M, s |= ψ}. It follows from the definition of !Γ that g is well-defined and
injective. Thus the size of SΓ is at most 2m. �
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The epistemic relations of a model and their filtrations over a set Γ are linked
by the following property:

Proposition 23 Let M be a model and Γ be a closed set of formulas. Then
for all s, t ∈ S, for all ϕ ∈ Γ:

1. s ∼i t⇒ |s| ∼Γ
i |t|.

2. |s| ∼Γ
i |t| and Kiϕ ∈ Γ andM, s |= Kiϕ⇒M, t |= ϕ.

Proof

1. Let s, t ∈ S such that s ∼i t, and let Kiϕ ∈ Γ. Then we have M, s |=
Kiϕ iff for all u ∼i s,M, u |= ϕ iff for all u ∼i t, M, u |= ϕ iff M, t |=
Kiϕ. Then by definition of ∼Γ

i we obtain |s| ∼Γ
i |t|.

2. Let us suppose the first part of the implication. Since |s| ∼Γ
i |t|, Kiϕ ∈ Γ

and M, s |= Kiϕ then M, t |= Kiϕ. Since ∼i is reflexive M, t |= ϕ.

�

Proposition 23 is sufficient to prove the following:

Proposition 24 (Filtration lemma) LetM be a model and Γ be a closed set
of formulas. For all ϕ ∈ Γ we have:

(F oϕ) ∀s ∈ S, (M, s |= ϕ iff MΓ, |s| |= ϕ).

Proof By induction on the degree of ϕ.

base case If deg(ϕ) = 0 then ϕ ∈ Lel and the proof of (F oϕ) comes by in-
duction on the complexity of ϕ (see [6] or [9] for details, note that Γ is in
particular closed under subformulas).

induction steps Let k ∈ N. Suppose that (F oψ) is true for all ψ ∈ Lpoel such
that deg(ψ) 6 k. Let ϕ be such that deg(ϕ) ≤ k + 1 and let us reason on
the structure of ϕ.

• ϕ = p;⊥;¬ψ;ϕ1 ∨ ϕ2,Kiϕ: See the proof of the filtration lemma in [6] or [9].

• ϕ = P (ψ, χ): Let s ∈ S. By construction of Γ we know that{
!Γ([[ψ]]M) = [[ψ]]M and
(∗) !Γ([[〈ψ〉χ]]M) =!Γ([[tr(〈ψ〉χ)]]M) = [[tr(〈ψ〉χ)]]M = [[〈ψ〉χ]]M.

(⇒) Suppose M, s |= P (ψ, χ). Let S′′ ⊆ [[〈ψ〉χ]]M = [[tr(〈ψ〉χ)]]M be
such that (s, [[ψ]],S

′′) ∈ P, and let Soo = S′′/!Γ
. We have (by IH)

that Soo ⊆ [[tr(〈ψ〉χ)]]MΓ and we obtain that (|s|, [[ψ]]MΓ , Soo) ∈ PΓ by
definition of the filtration and (∗). Finally, MΓ, |s| |= P (ψ, χ)

(⇐) Suppose MΓ, |s| |= P (ψ, χ). Let Soo ⊆ [[tr(〈ψ〉χ)]]MΓ be such that
(|s|, [[ψ]]MΓ , Soo) ∈ PΓ. Then by definition of PΓ, there exists t ∈ |s|
and S′′ such that S′′/!Γ

= Soo and (t, [[ψ]], S′′) ∈ P. By IH, Soo ⊆
[[tr(〈ψ〉χ)]]MΓ implies that S′′ ⊆ [[tr(〈ψ〉χ)]]M. Therefore,M, t |= P (ψ, χ).
Finally, as s!Γt, M, s |= P (ψ, χ).
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• ϕ = O(ψ, χ): Let s ∈ S,

(⇒) Suppose M, s |= O(ψ, χ) and let Soo be such that
(|s|, [[ψ]]MΓ , Soo) ∈ PΓ, we want to show that Soo ⊆ [[〈ψ〉χ]]MΓ . By def-
inition of the filtration, we can construct S′′ such that S′′/!Γ

= Soo

and (t, [[ψ]], S′′) ∈ P for some t ∈ |s|. Thus S′′ ⊆ [[〈ψ〉χ]]M, because
M, t |= O(ψ, χ) (as s!Γt). Finally Soo ⊆ [[〈ψ〉χ]]MΓ by (∗) and IH.

(⇐) Suppose MΓ, |s| |= O(ψ, χ) and let S′′ be such that
(s, [[ψ]], S′′) ∈ P. We show that S′′ ⊆ [[〈ψ〉χ]]M. Let Soo = S′′/!Γ

,
then by definition of the filtration, (|s|, [[ψ]]MΓ , Soo) ∈ PΓ. Thus Soo ⊆
[[〈ψ〉χ]]MΓ and then S′′ ⊆ [[〈ψ〉χ]]MΓ by (∗) and IH.

�

Definition 25 (Closure) For all ϕ ∈ Lpoel , we construct the P-Closure of ϕ,
noted Cl(ϕ), inductively on the structure of ϕ:

• Cl(p) = {p}

• Cl(⊥) = {⊥}

• Cl(¬ϕ) = {¬ϕ} ∪ Cl(ϕ)

• Cl(ψ ∨ ϕ) = {ψ ∨ ϕ} ∪ Cl(ψ) ∪ Cl(ϕ)

• Cl(Kiϕ) = {Kiϕ} ∪ Cl(ϕ)

• Cl(P (ψ,ϕ)) = {P (ψ,ϕ)} ∪ Cl(ψ) ∪ Cl(ϕ) ∪ Cl(tr(〈ψ〉ϕ)).

• Cl(O(ψ,ϕ)) = {O(ψ,ϕ)} ∪ Cl(ψ) ∪ Cl(ϕ) ∪ Cl(tr(〈ψ〉ϕ)).

Proposition 26 For all ϕ ∈ Lpoel , Cl(ϕ) is well-defined and it is a finite closed
set.

Proof The proof is by induction on the degree of ϕ.

[base case] If deg(ϕ) = 0 then ϕ ∈ Lel and we only need to prove that Cl(ϕ)
is a well-defined finite set closed under subformulas, which is straightfor-
ward.

[inductive cases] Let k ∈ N, let us suppose that Cl(ψ) is a well-defined
finite closed set for any ψ such that deg(ψ) ≤ k. Let ϕ be such that
deg(ϕ) ≤ k + 1 and let us reason inductively on the structure of ϕ.

• ϕ = p;⊥;¬ψ;ϕ1 ∨ ϕ2;Kiψ: Trivial.

• ϕ = P (ψ, χ) or O(ψ, χ): By IH, Cl(ψ), Cl(χ) and Cl(tr(〈ψ〉χ)) are well-defined
finite closed sets, so Cl(P (ψ, χ)) and Cl(O(ψ, χ)) are well-defined finite
sets. We only need to prove that they are closed, which is straightforward.

�
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Proposition 27 (Finite model property)
Let ϕ ∈ Lpoel , if ϕ is satisfiable then ϕ is satisfiable in a model containing at
most 2m nodes, where m = Card(Cl(ϕ)).

Proof Suppose that M and s are such that M, s |= ϕ. Let Γ = Cl(ϕ). Then
by Proposition 24,MΓ, |s| |= ϕ. By Lemma 22,MΓ contains at most 2m states.

�

Theorem 28 POPAL is decidable.

Proof Let ϕ ∈ Lpopal be a formula, the following procedure decides whether ϕ
is satisfiable or not:

1. Compute Φ = tr(ϕ)

2. Compute Γ = Cl(Φ)

3. For all modelsM of size ≤ 2Card(Γ) check if there exists s ∈M such that
M, s |= Φ.

�

5 Extended example: La Belote

We now consider the French card game “la Belote”. For a full description of the
game, see http://en.wikipedia.org/wiki/Belote. The game is played with
four players, who form two teams, and with 32 cards of a regular full deck of
cards (the ranks 2 to 6 are eliminated). The name of the game, “belote”, is also
used in the game to designate a pair of a King and a Queen of a trump suit.

After the deal, and after the choice of a trump suit, the first person to play
chooses a card of her hand, followed by the other players in clockwise order.
The player who dealt the highest trump card or the highest of the same color
as the first player’s card wins the round and starts the next round. Except for
the first player of a round, each player has to follow suit or, if she cannot, to
play trump. Moreover, when a trump is played, it is forbidden to play a lower
trump.

The act of playing a card is the public announcement that the correspond-
ing card belonged to the corresponding player. We model the game with the
set of propositional atoms Θ expressing card ownership, namely {RCi | R ∈
{7, 8, 9, 10, J,Q,K,A}, C ∈ {♣,♥,♦,♠}, i ∈ {1, 2, 3, 4}}. An atom RCi stands
for ‘player i holds a card with rank R of suit C’. For any suit C and player i,
we introduce the abbreviations Ci =

∨
RRCi, and C>Ri =

∨
R′>RR

′Ci.
A model M = (S, {∼i}, V,P) is called a “model of La Belote” if

1. for each state s, for any R and C, there is exactly one i such that s ∈
V (RCi) (i.e. the states of M are deals of cards);

2. for any s, t ∈ S and any i, s ∼i t implies that for all R,C: s ∈ V (RCi) iff
t ∈ V (RCi) (i.e. each player can distinguish different cards);
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3. P is constructed from (S, {∼i}, V ) according to the rules of the game.

The last item means that in a given deal s, for all the cards p held by an
agent i that are permitted by the rules to be played, (s, S, Spi) ∈ P. If after p
has been played by player i it is permitted for player j to play q, then we also
need that (s, Spi , S〈pi〉qj ) ∈ P. And so on, for all possible moves.

Let M be a model of La Belote. The trump suit has been selected before
the game starts, we will suppose that it is clubs. The set of atoms is partially
ordered as follows (∗ can be one of the players 1, 2, 3, 4). First, any trump is
higher than any non-trump. But the card are also ordered in the following way:
for non-trumps (i.e. for any C 6= ♣):

7C∗ < 8C∗ < 9C∗ < JC∗ < QC∗ < KC∗ < 10C∗ < AC∗

For trumps:

7♣∗ < 8♣∗ < Q♣∗ < K♣∗ < 10♣∗ < A♣∗ < 9♣∗ < J♣∗

For more details, see the mentioned website. We now list a number of model
validities of Belote. These formulas are valid at the beginning of each round
of the game, in other words, the models M considered below result from any
iteration of a sequence of four permitted announcements. We will call 1 the
player that opens the round, followed by 2, etc.

1-One player at once:

For all ψ ∈ Lpopal , all i 6= j, all pi, qj ∈ Θ, M |= P (ψ, pi)→ ¬P (ψ, qj).
Two different players are not allowed to play simultaneously.

2-Each card is played once:

For all p ∈ Θ, all ψ ∈ Lpopal , M |= ¬P (〈p〉ψ, p).
If a card has been played once, it cannot be played again.

3-Obligation to follow suit:

For all ranks R and all suits C, M |= C2 → O(RC1, C2).
If the player 2 can follow the suit asked by 1, he is obliged to do so.

4-Obligation to play trump:

For all ranks R, all suit C 6= ♣, M |= ♣2 → O(RC1, C2 ∨ ♣2).
If the player 2 can follow the suit asked by 1 or play trump, he is obliged
to do so.

5-Permission to say “belote et rebelote”:

For all players i,M |= K♣i∧Q♣i∧(P (ψ,Q♣i)∨P (ψ,K♣i))→ P (ψ,Q♣i∧
K♣i).
If a player one is allowed to play the queen of the trump suit, he is allowed
to announce that he has the royal couple (called the “belote”). This does
not mean that she is allowed to play both cards, but playing one of them
she is allowed to announce that she also has the other one.
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6-Obligation to go up at trump:

For all ψ ∈ Lpopal , all player i and allR,M |= ♣>Ri → O(〈ψ〉R♣i−1,♣>Ri ).
It says that if the previous player played trump and if you have higher
cards than the played trump, then you are obliged to play one of them.

We apply these conditional rules about the permission to speak to the following
state (deal) s, where each player has 2 cards.

Bill(B)�� ��Q♥
�� ��K♠

Anne
�� ��7♦

�� ��Q♣ Charles

(A)
�� ��8♥

�� ��K♣ (C)�� ��8♣
�� ��A♣

Diane(D)

Anne starts the game. According to the rule, our model validates the following
formulas:

• M, s |= P (8♥A) ∧ P (7♦A) ∧ ¬P (8♥A ∧ 7♦A):

Anne has the permission to play one of her cards, but not both.

• M, s |= O(8♥A, Q♥B):

If Anne plays the 8♥ card, Bill is obliged to play a card of the same suit,
he cannot play his K♠ card (rule (3)).

• M, s |= P (〈8♥A〉Q♥B , Q♣C ∧K♣C):

Charles has the permission to announce that he has both cards of the
“belote” (rule (5)).

• M, s |= O(〈〈8♥A〉Q♥B〉Q♣C , A♣D):

The ‘go up at trump”applies if Charles plays the queen of clubs. As Diane
has a unique higher trump, she has the obligation to play it.

6 Comparison to the literature

6.1 Classic deontic principles and paradoxes

As we reviewed before, deontic logic started out with Von Wright’s operators
P and O binding formulas in expression Pϕ and Oϕ, then came Meyer’s and
van der Meyden’s mind-frame switch to operators P and O binding actions, and
finally we treat communicative actions that are represented by the announced
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formulas. We introduce by abbreviation the permission or obligation to speak
ϕ as Pϕ and Oϕ. Well, if we end up with such expressions, how do its validities
relate to the standard and historical von Wright approach? In this subsection,
we summarily treat that matter.

First, a disappointment: the P and O operators we have introduced are not
normal modal operators (the triples in the P relation rather suggest a modality
with a neighbourhood-type of semantics). They do not satisfy necessitation! A
formula may be valid, but that does not make it an obligation, or permitted; if
you are not allowed to announce p nor ¬p, it does not help you a great deal that
p∨¬p is a validity! Something else has to be underlined: our formalism allows to
consider situations in which nothing is permitted to be said, which is equivalent
to the fact that everything is obligatory. To avoid such borderline cases, we will
often consider the class of models in which for all ψ, ψ → P (ψ,>) is valid, called
the “permissive models”. In the class of permissive models the obligation and
prohibition axiom becomes the classical one: Oϕ→ Pϕ: something obligatory is
permitted. Obligation distributes over conjunction (and implication), as O(ϕ∧
ψ) ↔ (Oϕ ∧ Oψ) is a special case (in the case where the first argument is >)
of Proposition 9.1. Permission does not distribute over conjunction: we may
have that p and q are both permissible announcements, such that Pp and Pq
are true, but not at the same time, P (p ∧ q) may be false. This reflects that
for a given Kripke model with domain S and actual state s the relation P may
contain (s, S, [[p]]) and (s, S, [[q]]) but not (s, S, [[p∧q]]). However, given weakening
of permitted announcements, a valid principle indeed is P (ϕ∧ψ)→ (Pϕ∧Pψ).

Permitted announcements are true, obligatory ones also in the permissive
models: Pϕ → ϕ and Oϕ → ϕ. A principle obviously false in classic deontic
logic. But one has to realize the special reading of such implications in our set-
ting! Pϕ→ ϕ is valid because a precondition for a permitted announcement is
the truth of the announcement formula. It does not formalize that all permitted
actions always take place. A similar slip of the deontic mind occurs when ob-
serving that Pϕ→ P (ϕ∨ψ) is valid. Doesn’t this conflict with Ross’s Paradox
[20]? We addressed this matter in the introduction, let us go over the details.
Ross’s Paradox is about the reading (for permission and for obligation) that ‘to
be permitted to do a or b’ entails ‘to be permitted to do a’ and ‘to be permitted
to do b’. In the setting of permitted announcements we have to clearly distin-
guish the action of announcing from the formula being announced. Permission
to announce a or b indeed entails permission to perform either announcement,
and choose between them. This is a nondeterministic action. This is different
from the permission to make an announcement weaker than the announcement
of a, such as a ∨ b. In other words, permission to announce a or b is not the
same as permission to announce a∨b. Possibly, “permission to announce a or b”
might be called ambiguous, as the ‘or’ may mean logical disjunction of formulas
or non-deterministic choice between programs. But once the reading has been
chosen, the course is clear.

We already observed that obligation and permission are not interdefinable.
In Proposition 6 we showed that obligation adds to the expressivity of the logic.
So Oϕ↔ ¬P¬ϕ is not valid. Now, Clearly, Oϕ→ ¬O¬ϕ is valid in the class of
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permissive models. But then again, even in the permissive cases, Pϕ∨P¬ϕ is not
valid: there is nothing against both p and ¬p being forbidden announcements
at the same time! For yet another example, consider the schema O(Oϕ → ϕ),
formalizing the requirement that obligations are fulfilled. In our setting, either
we are in a non-permissive case and thus this obligation is satisfied, or it is a
permissive one and thus as Oϕ → ϕ is valid, this is equivalent to the validity
of O>, which indeed is a validity (note that > is weaker than any obligatory
announcement, and that weakening holds for obligation).

A more recent development in deontic logic is the interaction between obli-
gations and permissions and explicit agency [8, 11]. The well-known Meinong-
Chisholm reduction of “The agent is obliged to do a” to “It is obligatory that
the agent does a” seems to have an interesting parallel in the logic of permitted
announcements. In the logic of public announcements, the announcement by
agent a is typically reduced to ‘the (public) announcement of ‘agent a knows ϕ’.
It is relevant to recall at this stage that public announcements are supposedly
made by outsiders of the system, not by agents modelled explicitly in the logical
language. This observation can be applied in the logic of permitted and obliga-
tory announcements! A Meinongian turn to permitted announcements seems to
interpret OKiϕ—“It is obligatory that agent i announces ϕ” (announcements
of ϕ by an agent i in the system are known to be true by that agent, so in fact
have form Kiϕ)—as an indirect form of agency in our logic, namely, we can let
it stand for “Agent i is obliged to announce ϕ.”

6.2 Deontic action logics

For the purpose of comparing our work with the existing literature we present
the version of the semantics for permission that was presented in the precur-
sor [3] to our work. Our current understanding of P (ψ,ϕ) is that “after the
announcement of ψ it is permitted to give at most the information ϕ”. Any
weakening of ϕ is also permitted. Instead, in [3] it is ‘‘after the announcement
of ψ it is permitted to give exactly the information ϕ”. We will write P= for
that modality. It has the semantics: for all M and s in the domain of M:

M, s |= P=(ψ,ϕ) iff (s, [[ψ]], [[〈ψ〉ϕ]]) ∈ P.

Our current logic subsumes this somewhat different logic of permission. Let
us expand a given relation P with all supersets for the third argument of a
triple in that relation: for all subsets S′′′ of the domain of a given model M,
if (s, S′, S′′) ∈ P and S′′ ⊆ S′′′, then add (s, S′, S′′′) to P. Call the resulting
relation P= and let M= be the model with P= instead of P. On the language
without obligation, inductively define a translation •= that replaces all occur-
rences of P by P=. We now have that M, s |= P (ψ,ϕ) iff M=, s |= P=(ψ,ϕ).

The Dynamic Logic of Permission by Van der Meyden To formalize
the permission to act van der Meyden proposed a dynamic logic of permission
[22], later followed up by Pucella and Weismann’s [19]. Van der Meyden’s logic
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is an adaptation of propositional dynamic logic (PDL) [10] in which the models
contain a set P ⊆ S ×Act× S that links every action in Act to the set of all
transitions between states in S that are permitted for it. In other words, P is a
set of permitted transitions. The syntax of this language contains the following
constructs ♦(α,ϕ) that means “there is a way to execute action α which is
permitted and after which ϕ is true”. Our semantics for P=(ψ,ϕ) consists
of the particular case where actions are public announcements. Thus, for α
in van der Meyden’s ♦(α,ϕ) we take an announcement ψ! such that ♦(ψ!, ϕ)
now means ‘it is permitted to announce ψ, after which ϕ is true’. The precise
correspondence is:

Proposition 29 ♦(ϕ!, θ) is equivalent to P=(>, ϕ) ∧ 〈ϕ〉θ

Proof Given a modelM with domain S, we can see the announcement ϕ! as an
atomic action which links each state s ∈ [[ϕ]]M to the same state s ∈ Sϕ. This is
a permitted action in van der Meyden’s semantics if and only if (s, S, Sϕ) ∈ P.
By definition, M, s |= P=(>, ϕ) iff (s, S, Sϕ) ∈ P. The formula θ should then
hold after the permitted announcement of ϕ. �

Van der Meyden’s ♦(ϕ!, θ) is found in a syntactic variant Perm(ϕ)θ in [19].
Now, we have that P=(>, ϕ) is equivalent to Perm(ϕ). Given the abbreviation
P (ϕ) in our language for P=(>, ϕ), the correspondence is therefore very close.

Merging Frameworks for Interaction by van Benthem et al. In “Merg-
ing Frameworks for Interaction” [21] (see also [12]), a logic for protocols in
dynamic epistemic logic is proposed that can be interpreted as a logic for per-
mitted events – and in particular permitted announcements. A protocol is a set
of event sequences, and an announcement is an example of such an event; “being
in the protocol” can therefore be understood as “being permitted to be said”.
An objective of this publication was to merge epistemic temporal logic [16] with
dynamic epistemic logic [4, 24], and the axiomatization of the language with
added protocols is facilitated by the translation of the latter into the former.

For the purpose of our comparison we present what is known as the forest
generated by a pointed epistemic model (M, s) and a number of pointed events
models. A prefix-closed set of such pointed events sequences can be seen as the
protocol Π, and the set consisting of such sequences preceded by a state in the
model wherein they are executed as the history H pertaining to the model M.
(Given an initial state s, and say a sequence of first ψ! and then ϕ! as allowed
according to protocol, we write sψϕ for that history: the announcements in
sequence are simply written one after the other.) Relative to this protocol we
can construct a temporal epistemic modelMΠ (details omitted). We now have
that MΠ, h |= 〈ψ〉ϕ iff:

• MΠ, h |= ψ

• h′ = hψ ∈ Π

• MΠ, h
′ |= ϕ
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This suggests to translate P=(ψ,ϕ) in Lpopal by [ψ]〈ϕ〉> in the logical language
Ltpal of van Benthem et al.’s protocol logic TPAL. (For convenience, we write
announcements ψ! and ϕ! instead of singleton event models with precondition ψ
and ϕ, respectively.) Unfortunately, this translation is imprecise. Consider ex-
ecuting these two announcements in a state s of an initial modelM. If sψ 6∈ H
then MΠ, s |= [ψ]〈ϕ〉>: after a non-permitted announcement, anything is per-
mitted to be said, because anything holds after a necessity-type modal operator
that cannot be executed. But M, s 6|= P=(ψ,ϕ), because (s, [[ψ]], [[〈ψ〉ϕ]]) is
not in the P relation to validate it. In other words, in our logic we get the
full forest produced by the protocol of all truthful public announcements, but
some branches are coloured with permitted and others are coloured with not-
permitted. The Van Benthem et al. approach produces a forest restricted to the
protocol (i.e., restricted to permitted announcements only).

A more serious problem with such a translation is as follows. Our semantics
allows that if something is later permitted to be said, we are already permitted
to say something now in a different way, a consequence of the axiom “announce-
ment and permission” [ψ]P (ψ′, ϕ)↔ (ψ → P (〈ψ〉ψ′, ϕ)). (This axiom holds for
P= as well.) In TPAL this would amount to requiring that (announcement)
protocols are postfix-closed in the restricted sense that if π′π′′ = π ∈ Π, then
there is a single announcement ξ (combining all the announcements in the initial
π′ part in one complex announcement) such that ξπ′′ ∈ Π.

Our logic with P instead of P= and with obligation O as well makes the
comparison even more problematic. As we now know, the notion of “obligation
to say ϕ” cannot be captured only by the negation of permission to say anything
else than ϕ (except in a very radical dictatorship), but much more by the fact
that all that does not say at least ϕ is not permitted. This notion of obligation
we consider a strong point of our logic POPAL, in which it differs from known
other proposals.

An interesting recent appearance on dynamic deontic logic, with the differ-
ence that ‘the right to say’ is derived from ‘the right to know’, is [2].

7 Conclusions and further research

We proposed a logic for the permission and obligation to say something. We
axiomatized the logic and have shown that it is decidable. The analysis of the
card game ‘La Belote’ illustrates the logic.

Various issues are left for further research. Our tentative observations on
the relation between Pϕ and Oϕ and ‘classic’ deontic principles, in Section 6.1,
seems worthwhile to pursue more systematically. The generalization to more
complex dynamics than (public) announcements is obvious. This would allow
to model permission for an individual to say something in the presence of some
but not all other agents. Such a logic of permitted announcement with more
explicit agency is under development: in that logic the primitive is that agent i
is permitted to say something, and to some agent j only but not to all agents;
instead of permission relation P we then have an individual permission relation
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Pi. We also consider to expand the framework with changing permissions, as in
Pucella et al. [19].
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Appendix

Proposition 12 says that for all ϕ ∈ Lpopal , the property Π(ϕ) : deg(ϕ) =
deg(tr(ϕ)) is true. To prove it, we will first introduce two preliminary lemmas.

Lemma 30 For all formula ϕ ∈ Lpoel ,Π(ϕ).

Proof Trivial, because in that case tr(ϕ) = ϕ. �

Lemma 31 For all ψ ∈ Lpopal , if Π(ψ) then for all θ ∈ Lpoel such that Π(χ) is
true for any χ subformula of θ, Π([ψ]θ) is true.

Proof Let us prove it by induction on the structure of θ. We denote =IH the
equalities that come from induction hypothesis and =∗ the ones that come from
Π(ψ).

Base cases:
• θ = p :

deg(tr([ψ]p)) = deg(tr(ψ)→ p)
= max(deg(tr(ψ)), deg(p))
= deg(tr(ψ))
=∗ deg(ψ)
= deg([ψ]p)

Inductive cases: let us suppose Π([ψ]χ) is true for all χ subformula of θ.
• θ = ⊥ :

deg(tr([ψ]⊥)) = deg(¬tr(ψ))
= deg(tr(ψ))
=∗ deg(ψ)
= deg([ψ]⊥).

• θ = ¬χ :
deg(tr([ψ]¬χ)) = deg(tr(ψ)→ ¬tr([ψ]χ))

= max(deg(tr(ψ)), deg(tr([ψ]χ)))
=∗IH max(deg(ψ), deg([ψ]χ))
= deg(ψ) + deg(χ)
= deg([ψ]¬χ)

• θ = χ1 ∨ χ2 :
deg(tr([ψ](χ1 ∨ χ2))) = deg(tr([ψ]χ1) ∨ tr([ψ]χ2))

= max(deg(tr([ψ]χ1)), deg(tr([ψ]χ2)))
=IH max(deg([ψ]χ1), deg([ψ]χ2))
= max(deg(ψ) + deg(χ1), deg(ψ) + deg(χ2))
= deg(ψ) +max(deg(χ1), deg(χ2))
= deg([ψ](χ1 ∨ χ2))

• θ = Kiχ :
deg(tr([ψ]Kiχ)) = deg(tr(ψ)→ Kitr([ψ]χ))

= max(deg(tr(ψ)), deg(tr([ψ]χ)))
=∗IH max(deg(ψ), deg[ψ]χ))
= deg([ψ]χ) = deg(ψ) + deg(χ)
= deg([ψ]Kiχ)
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• θ = P (ψ′, χ) :
deg(tr([ψ]P (ψ′, χ))) = deg(tr(ψ)→ P (tr(〈ψ〉ψ′), tr(χ)))

= max(deg(tr(ψ)), deg(P (tr(〈ψ〉ψ′), tr(χ))))
=∗ max(deg(ψ), deg(tr(〈ψ〉ψ′)) + deg(tr(χ)) + 1)
=IH max(deg(ψ), deg(〈ψ〉ψ′) + deg(tr(χ)) + 1)
= deg(〈ψ〉ψ′) + deg(tr(χ)) + 1
=IH deg(ψ) + deg(ψ′) + deg(χ) + 1
= deg([ψ]P (ψ′, χ))

• θ = O(ψ′, χ) : Idem
�

Lemma 32 For all ψ ∈ Lpopal , if Π(ψ) then for all θ ∈ Lpopal such that Π(χ)
is true for any χ subformula of θ, Π([ψ]θ) is true.

To prove it, we introduce the [.]-degree of a formula:

Definition 33 The [.]-degree is defined inductively as follows:
deg[.](p) = deg[.](⊥) = 0; deg[.](ψ1 ∨ ϕ2) = max(deg[.](ψ1), deg[.](ψ2))
deg[.](¬ψ) = deg[.](ψ); deg[.]([ψ]ϕ) = deg[.](ψ) + deg[.](ϕ) + 1
deg[.](Kiψ) = deg[.](ψ); deg[.](P (ψ,ϕ)) = deg[.](ψ) + deg[.](ϕ).

Proof Let us prove it by induction of the [.]-degree of θ. The previous lemma
gives us the result in the base case where deg[.]θ = 0. Let us suppose Π([ψ]χ) is
true for all χ ∈ Lpopal such that deg[.]χ 6 n. Let ν be such that deg[.](ν) 6 n+1
and let us prove Π([ψ]ν) by induction on the structure of ν

• ν = p,⊥,¬µ, µ1 ∨ µ2,Kiµ, P (µ1, µ2), O(µ1, µ2): already done.

• ν = [ψ′]χ:

deg(tr([ψ][ψ′]χ)) = deg(tr([〈ψ〉ψ′]χ)) by definition
= deg([〈ψ〉ψ′]χ)
(because Π(ψ′) (by IH) and deg[.](χ) 6 n)
= deg(〈ψ〉ψ′) + deg(χ)
= deg(ψ) + deg(ψ′) + deg(χ)
= deg([ψ][ψ′]χ)

�

Proof (of lemma 12) Let us prove it by induction on the structure of ϕ.

Base case: ϕ = p,⊥: in this case, tr(ϕ) = ϕ and the result is trivial.

Inductive steps: let us suppose that Π(θ) is true for any subformula θ of ϕ,
and let us prove Π(ϕ) in the following cases:

• ϕ = ¬ψ :

deg(tr(¬ψ)) = deg(¬tr(ψ))
= deg(tr(ψ))
= deg(ψ)
= deg(¬ψ)
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• ϕ = χ ∨ ψ:

deg(tr(χ ∨ ψ)) = deg(tr(χ) ∨ tr(ψ))
= max(deg(tr(χ)), deg(tr(ψ)))
= max(deg(χ), deg(ψ))
= deg(χ ∨ ψ)

• ϕ = Kiψ:

deg(tr(Kiψ)) = deg(Kitr(ψ))
= deg(tr(ψ))
= deg(ψ)
= deg(Kiψ)

• ϕ = P (χ, ψ):

deg(tr(P (χ, ψ))) = deg(P (tr(χ), tr(ψ)))
= deg(tr(χ)) + deg(tr(ψ)) + 1
= deg(χ) + deg(ψ) + 1
= deg(P (χ, ψ))

• ϕ = O(χ, ψ):

deg(tr(O(χ, ψ))) = deg(O(tr(χ), tr(ψ)))
= deg(tr(χ)) + deg(tr(ψ)) + 1
= deg(χ) + deg(ψ) + 1
= deg(O(χ, ψ))

• ϕ = [ψ]χ:

Proved by Lemma 32.

�

30


