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Abstract Reasoning about concurrent programs involves representing the
information that concurrent processes manipulate disjoint portions of memory.
In sophisticated applications, the division of memory between processes is not
static. Through operations, processes can exchange the implied ownership of
memory cells. In addition, processes can also share ownership of cells in a
controlled fashion as long as they perform operations that do not interfere,
e.g., they can concurrently read shared cells. Thus the traditional paradigm of
distributed computing based on locations is replaced by a paradigm of concur-
rent computing which is more tightly based on program structure. Concurrent
Separation Logic with Permissions, developed by O’Hearn, Bornat et al., is
able to represent sophisticated transfer of ownership and permissions between
processes. We demonstrate how these ideas can be used to reason about fine-
grained concurrent programs which do not employ explicit synchronization
operations to control interference but cooperatively manipulate memory cells
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so that interference is avoided. Reasoning about such programs is challenging
and appropriate logical tools are necessary to carry out the reasoning in a
reliable fashion. We argue that Concurrent Separation Logic with Permissions
provides such tools. We illustrate the logical techniques by presenting the
proof of a concurrent garbage collector originally studied by Dijkstra et al.,
and extended by Lamport to handle multiple user processes.

Keywords Resource logics · Separation logic · Program correctness ·
Concurrent programs · Garbage collection · Heap storage

1 Introduction

Reasoning about concurrent programs, where multiple processes (or threads)
are executed in parallel, is widely acknowledged to be one of the most
challenging aspects of computer programming. The reason for the difficulty
is that the different processes act on the same storage, causing interference.
The assumptions made in one process regarding the state of storage can
be invalidated by the actions done in another process. The early work on
the problem, carried out by Dijkstra, Hoare, Brinch Hansen and others,
emphasized the need to keep the concurrent threads of control as independent
as possible, working with separate areas of storage. When shared areas of
storage need to be manipulated, for example for the purpose of communi-
cation between threads, synchronisation protocols are used to ensure that a
single thread is accessing a shared region at any given time. A variety of
synchronisation mechanisms, such as atomic statements [19], semaphores [9],
conditional critical regions [15] and monitors [6, 16], have been developed to
ensure mutually exclusive access to shared storage. During a period of such
exclusive access (called a “critical section”), a thread is expected to carry out
a well-defined operation on the shared storage to its conclusion. The amount
of activity carried out during a critical section is referred to as the granularity
of concurrency. Coarse granularity, where large operations are carried out in
critical sections, is easier to reason about, but it is bad for performance. When
one process is executing a critical section, the other processes are blocked from
proceeding. In this paper, we address the issues in dealing with fine granularity.
Here the atomic operations are small, being at the level of individual machine
instructions. Hence, they achieve high performance. Correspondingly, they
pose considerable challenges in reasoning.

A second aspect we are interested in is the use of dynamic storage (also
referred to as the “heap” storage). Computer programs normally work by
setting and modifying storage variables during their execution which might
be thought of –superficially– as variable symbols as in algebra or symbolic
logic. To reason about program behaviour, one uses some form of before-
and-after specifications. A standard form is that of Hoare Logic [14], which
uses specifications of the form {P} C {Q} where C is a command, and P and
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Q are formulas in classical logic (referred to as “assertions”).1 The assertion
P describes a hypothetical state of the program variables before the command
execution and Q describes the state obtained after the command execution.
A crucial point is that the program variables occurring in the command C
are treated in the assertions as if they were ordinary logical variables. Since
the storage manipulated by a program is in direct correspondence with the
program variables occurring in it, it means that the storage manipulated by the
command is more or less fixed. This is a significant limitation of this formalism.

The use of dynamic storage involves the allocation of new storage cells in
the course of program execution. These cells are referred to in the program by
their unique identifying addresses (also referred to as “pointers”) and accessed
via “indirect addressing.” In contrast to the variable symbols mentioned in
the preceding paragraph, addresses are part of data. Commands can store
them in variables or other heap cells and compute with them before deciding
to read or write the storage cells that they point to. This means that the
structure of the storage manipulated by a program fragment is not fixed in
advance and not easily predictable. Program reasoning must deal with the
structure of storage, in addition to dealing with the state of such storage. Due
to the difficulty of dealing with this issue cleanly and reliably, most theoretical
treatments of concurrent programming have completely avoided dynamic
storage. (For example, the widely used text book on concurrent programming
by Andrews [1] makes no mention of dynamic storage at all.) In contrast,
practical applications of concurrency often share only dynamic storage, and
routinely exchange such storage between processes and data structures.

A breakthrough in reasoning about dynamic storage was made by
Reynolds [29], who used before-and-after specifications {P} C {Q} where P
and Q are formulas in a resource-sensitive logic called the Logic of Bunched
Implications (BI). The logic BI, formulated by Pym and O’Hearn [22, 27],
is a form of substructural logic—in fact, a bunched logic [28]—representing
a symmetric combination of the BCI relevant logic, on the one hand, and
intuitionistic or classical logic on the other.2 BI differs from other forms of
relevant logics in having a rich class of models that incorporate a notion of
“resource”.

Let us agree that a resource is some form of an entity which has identity
and permanence, and which cannot be freely created, destroyed or duplicated.
Storage cells themselves form an excellent example of such “resource”. The
connectives of the BCI fragment of BI (called the “multiplicative” connec-
tives) allow us to navigate in the plane of resources, whereas those of the
classical fragment (called the “additive” connectives) allow us to stay within
a context of resources and reason about it in the traditional fashion. For

1From a logical point of view, Hoare Logic can be thought of as a modal logic, studied by
Pratt [26]. A specification {P} C {Q} is interpreted as a modal formula P =⇒ [C]Q where the
modal operator [C] means “after the execution of C.”
2The development of this logic owes some inspiration to Girard’s Linear Logic [12]. However, its
structure and model-theoretic import are quite different.
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example, the multiplicative conjunction P � Q is true for a combination of
two separate collections of resources if the two collections satisfy P and Q
respectively. In contrast, the additive conjunction P ∧ Q is true for a collection
of resources if both P and Q are true for that same collection. The unit for the
multiplicative conjunction, written as “emp”, is true for the empty collection
of resources and nothing else. In contrast, the additive unit, written as “true”
is true for any collection of resources. A comprehensive proof-theoretic and
model-theoretic study of the logic BI can be found in [27].

Reynolds used BI’s � connective to make assertions about separate parts of
the heap storage. These ideas were further developed by Ishtiaq and O’Hearn
[17] by adding the requirement of “tight specifications” which mention pre-
cisely the heap storage being used by a program fragment and no more,
leading to local reasoning for heap storage. O’Hearn also developed a form
of the logic for dealing with concurrent programs [21] with a soundness proof
provided by Brookes [7]. Bornat et al. [4] enriched the framework by adding a
notion of permissions. The logic resulting from all these developments may be
termed “Concurrent Separation Logic with permissions” and forms the basis
of our study.

Our objective is to test the efficacy of these techniques by applying them
to a substantial problem of program proof. The algorithm chosen for this task
is that of a concurrent garbage collector due to Dijkstra et al. [11], who also
included its correctness proof. This is perhaps one of the first challenging
concurrent algorithms whose correctness proof was attempted, and has an
interesting history. At the time of this proof attempt in 1975 [10], virtually no
formal proof techniques were known for fine-grained concurrent programs.
The authors used a form of informal reasoning that is ambitious in its scope.
An early version of the algorithm [10] had a fault which was discovered after
the version was submitted for publication. The final published proof is still
too informal to carry full conviction. In the interim period, a formal proof
technique for fine-grained concurrent programs was developed by Owicki
and Gries [24] and Gries was able to prove the correctness of the algorithm
using this technique [13]. This course of events is often used in the field of
concurrency to illustrate the challenges underlying concurrent programming.
(See, e.g., [8].) Since the publication of this algorithm, many researchers have
given alternative proofs and algorithms for concurrent garbage collection. For
example Ben-Ari, in [3], gave an algorithm that uses two colours and has less
complexity. Flaws in his correctness proof were found when checking the proof
mechanically [31].

Separation Logic has been viewed as a good technique for addressing the
correctness of garbage collection algorithms because it gives a tight handle
on the storage accessed by a program [32]. So far, only sequential garbage
collection algorithms have been treated in this way. Through our proof attempt
using Concurrent Separation Logic, we wish to demonstrate how the novel
techniques of program logic can be used to reason about concurrent algorithms
more reliably. In fact, we claim that the Separation Logic proof exhibits
structure which makes it almost impossible to ignore the flaw that was present
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in the original version of the algorithm. Gries [13] also made a claim that a
“careful application” of the Owicki-Gries technique can avoid such errors in
reasoning. Clearly, Gries’s proof is a vast improvement in clarity and formality
over the previous informal proof. However, it is not a closed chapter. Prensa
Nieto et al. [20] make the point that a complete pencil and paper proof
using this technique is very tedious. For this reason, many of the interference-
freedom checks are “usually omitted.” In the Separation Logic approach, on
the other hand, these issues are rather at the forefront. It is not even possible
to formulate a resource invariant without a clear understanding of how the
permissions are distributed among the various components. In this sense, we
argue that the Separation Logic techniques provide the right set of logical
tools for reasoning about concurrent algorithms that exhibit a high degree of
cooperation between processes.

2 Background

2.1 Concurrent Separation Logic

The basic Separation Logic, described in [30], incorporates Reynolds’s insights
for the use of separating conjunction and Ishtiaq and O’Hearn’s [17] additional
formulation of “tight specifications”. In this logic, a specification {P}C{Q} is
valid only if C is able to execute without faults starting from any heap satisfying
P. In particular, C cannot read or write any heap cells that are not guaranteed
to exist by P.

This logic admits an elegant proof rule for parallel composition of com-
mands C1 ‖ C2:

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 � P2} C1 ‖ C2 {Q1 � Q2}

if Ci does not modify any variable
in FV(P j, C j, Q j) for i �= j

To see why such a rule is sound, consider a heap store that satisfies P1 � P2.
By the definition of �, the heap store can be split into two separate partitions
(with disjoint collections of cells), satisfying P1 and P2 respectively. By the
tightness property of specifications, we know that C1 runs without any faults
starting from the partition that satisfies P1. In particular, it does not access
any cells in the other partition. C2 does its work similarly, in its partition. So,
C1 and C2 are able to run in parallel, independently and without interference.
We think of the portion of the heap store manipulated by each parallel process,
and delineated by the corresponding pre-condition in its specification, as being
“owned” by that process. The other processes cannot interfere with the storage
owned by a process in this fashion. Upon termination of both the processes, we
obtain a heap store that satisfies Q1 � Q2. (The reader might contemplate how
one might go about formulating a rule for parallel composition without the �

connective and the tightness requirement.)
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Concurrent programming also requires that there be some form of com-
munication between the concurrent processes. In the framework of fine-
grained concurrency, such communication is achieved by executing atomic
operations on shared storage. (An atomic operation is an operation carried
out by a process without interruption and interference from other processes.)
O’Hearn’s proposal in the formulation of Concurrent Separation Logic [21] is
to view the shared storage as being made up of one or more shared resources
which are separate from the storage directly “owned” by the processes.3 The
properties of the resources are expressed through resource invariant assertions.
We use judgments of the form R � {P} C {Q} to mean that a process C has
the before-and-after specification {P} C {Q} in the context of a resource with
resource invariant R. Through an atomic operation, written in the form 〈A〉
where A is a command, a process can “borrow” the storage of a shared
resource and temporarily make it a part of the owned state of the process for
the duration of A. After the completion of A, the storage is returned back
to the shared resource. The storage returned to the shared resource can be
different from what was initially borrowed. Transfer of storage cells can take
place between the resource and the “owned” storage of the process during the
atomic operation. It is worth emphasizing that these ideas of borrowing and
returning are not actually computations; they represent our logical view of how
the storage is being managed. The shared resource is expected to satisfy the
resource invariant at all times except when it is borrowed by atomic operations.
So, an atomic operation 〈A〉 can assume that the resource invariant is true
when it begins execution and reestablish it again upon the completion of A.
All this can be expressed succinctly by the proof rule below:

ATOMIC
{P � R} A {Q � R}
R � {P} 〈A〉 {Q}

if no other process modifies
variables in FV(P, Q)

The parallel composition rule can now be generalized to

R � {P1} C1 {Q1} R � {P2} C2 {Q2}
R � {P1 � P2} C1 ‖ C2 {Q1 � Q2}

if Ci does not modify any vari-
able in FV(P j, Q j) for i �= j

The two parallel processes C1 and C2 are not independent as they were in
the previous rule because they “interfere” via the shared resource. However,
it is still possible to use a very similar proof rule because the interference is
structured and mediated via the invariant of the shared resource.

The formal semantics of a proof system with more generous judgments � �
{P}C{Q} as well as its soundness were described in [7]. In most of the paper
we are concerned only with one resource and one resource invariant, which we

3The use of “resource” for the packets of shared storage is inherited from Hoare [15]. It is a
more specialised notion than the general logical notion of resource mentioned earlier in the
Introduction.
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write as RI. A brief review of the formalism for the purposes of this article is
given in Appendix A.

2.2 Treatment of Variables

Even though our main interest is in how to share heap storage between parallel
processes, they also need to share variables (represented by variable symbols)
to some extent. The conditions associated with sharing variables turn out to
be a bit of nuisance and a full treatment is given in Appendix A.2. Here we
indicate a brief outline of the state of affairs.

The rule for parallel composition in the previous section allows the
processes in a composition C1 ‖ C2 to share variables that they only read. It
does not allow one process to modify variables that are used in the other
process (either for reading or writing). Resources can be used to allow other
forms of sharing [15, 24]. A resource is specified using a declaration of the form

resource r(X) in C

where r is a name given to the resource and X is a set of variables that are
“protected” by the resource. In addition, a resource has an associated resource
invariant R as indicated in the previous section. In any atomic block 〈A〉
occurring in the body C, the protected variables of the resource can be used
for both reading and writing. The protected variables cannot be used outside
atomic blocks.

2.3 Access Permissions

The basic Concurrent Separation Logic treats each heap location as a basic
resource. So, every location would be owned by either one of the processes or
one of the resources. However, in concurrent programming, it is also necessary
to allow two processes to access shared locations in a controlled fashion, for
simultaneous read access as well as other forms of controlled sharing. This can
be achieved by treating as resources, not entire heap locations but particular
access permissions on them. Boyland [5] and Bornat et al. [4] proposed two
forms of permissions suitable for this purpose, and we use a simplified form
of their systems. (Our system can be thought of as an instance of “counting
permissions” as well as “fractional permissions.”)

A full permission on a heap location is denoted as “1” and it allows both
reading and writing of the location. A full permission can be split into two
permissions, denoted ρ and ρ, both of which allow only reading of the location.
Formally, we have a partial commutative semigroup {ρ, ρ, 1} with its binary
operation defined by ρ � ρ = 1, undefined for all other cases. (Note that this
is not a group structure because 1 is not the unit of �.) A basic assertion in
our logic is of the form l

p	−→ x which is thought of as an agent possessing a
p permission for a heap location l, which holds the value x. The semigroup

operation means that, at the assertion level l
ρ	−→ x � l

ρ	−→ x ≡ l
1	−→ x.
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We indicate how this set-up of permissions can be employed for program
reasoning in the context of two processes C1 and C2 with a shared resource r,
and a location l used in both of them.

– If one process, say C1 has the full permission for l then neither the shared
resource nor the other process can have any access to l. The process C1 can
perform reading and writing and use facts about l in its local assertions.

– Suppose the two processes have ρ and ρ permissions for the location
respectively. Then the shared resource does not have any permissions, and
the two processes are restricted to reading the location.

– The third, interesting case, arises when the shared resource is given ρ

permission for the location and the complement ρ permission is given
to one of the processes, say C1. In this case, C1 can read the location
in the normal course of affairs, but it can also write to the location in
atomic operations 〈C1〉 by borrowing the ρ permission from the resource.
It can make local assertions about the location l using its ρ permission. For
instance, it is possible to conclude a specification of the form:

l
ρ	−→ _ � {

l
ρ	−→ x

} 〈[l] := 23〉 {
l

ρ	−→ 23
}

using the ATOMIC rule and the fact that l
ρ	−→ _ � l

ρ	−→ x ≡ l
1	−→ x.

(We use as a short-hand notation for a don’t-care value, which can be
formalised as an existentially quantified variable). We are able to make
changes to l and reason about these changes even though the process has
only a read permission. On the other hand, the process C2 can only read
the location l by borrowing the ρ permission from the shared resource.
Since it has no permissions of its own for l, it cannot make any assertions
about l.

– Finally, suppose the shared resource is given the full permission for l. Then
both the processes can borrow this permission to read as well as write
to l. However, lacking their own permissions for l, they cannot make any
assertions about l. Their knowledge about the values read from l are limited
to whatever properties are guaranteed by the resource invariant.

Such refined control over the access permissions to shared locations comes in
very handy in ensuring that correct reasoning is carried out about concurrent
execution behaviour.

2.4 Permission transfer

The permissions associated with the processes and shared resources are
not static. They can vary during program execution, governed by the re-
source invariants which control what permissions are owned by the shared
resources [21]. Consider again the situation of two processes C1 and C2
interacting via a shared resource r. Suppose the resource invariant for r is:

R ≡ (x = 0 ∧ emp) ∨ (
x = 1 ∧ l

ρ	−→ )
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If the process C1 does an atomic action such as 〈x := 0〉, it sends the resource
from a state where it might have ρ permission for l to a state where it has
no permission for l. However, permissions are being treated as resources
themselves. So, they cannot simply disappear. The effect is that the permission
gets retrieved by the process C1. In other words, we have the following before-
and-after specification for the atomic command:

R � {x = 1 ∧ emp} 〈x := 0〉 {x = 0 ∧ l
ρ	−→ }

If the process already had ρ permission for l, then it is able to upgrade it to a
full permission through this command:

R � {
x = 1 ∧ l

ρ	−→ _
} 〈x := 0〉 {

x = 0 ∧ l
1	−→ }

If, on the other hand, the process C2 had ρ permission for l, then this operation
takes away the ability of C2 to make any further changes to l.

Changing x from 0 to 1 has the opposite effect of transferring ρ permission
from the process to the resource:

R � {
x = 0 ∧ l

ρ	−→ } 〈x := 1〉 {x = 1 ∧ emp}

Thus, treating permissions as a resource provides a rich mechanism of dy-
namics of permission transfer, which comes in useful for reasoning about the
behaviour of concurrent algorithms. Variants of this form of reasoning appear
several times in this paper, in particular see Sections 5.3 and 7.

3 The DLMSS garbage collection algorithm

Most general purpose programming languages provide some mechanism to
allocate objects dynamically, that is, at run time. This is facilitated by making
use of free storage cells, often referred to as a heap, which are made available
to the program through their addresses (“pointers”) which are in turn stored
by the program in other storage cells.

If the program erases pointers to a cell in all its stored places, then the cell
is no longer accessible. Such a cell is called garbage. It can be reclaimed and
reused when the program asks for more free storage.

The process of reclaiming unusable cells is called garbage collection. Lan-
guages like Lisp and Java provide automatic garbage collection, where the
execution environment identifies and reuses space used by inaccessible cells.

The DLMSS paper [11] proposed a concurrent algorithm for automatic
garbage collection, where the garbage collector runs concurrently with the user
program (the mutator). The mutator can request for a “pointer” location to be
loaded with the address of such a “new” storage cell at run time, as well as
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modify existing pointers, perhaps making some cell garbage while doing so.
We put down the algorithm and explain it below.

gc
def= begin

const ROOT, FREE, ENDFREE, NIL: [0..N];
var i: [0..N+1];
[NIL.left] := NIL; [NIL.right] := NIL;
for i := 0 to N do [i.colour] := white od;
mutator || collector;

end

mutator
def= begin

var k, j, f, e, m: [0..N];
do true ⇒ k := some non-NIL node reachable from ROOT;

j := some node reachable from ROOT or NIL;
if true ⇒ modify left edge(k, j):

addleft(k, j)
� true ⇒ modify right edge(k, j):

addright(k, j)
� true ⇒ get new left edge(k):

f := [FREE.left]; e := [ENDFREE.left];
do f = e ⇒ e := [ENDFREE.left] od;
m := [f.left];
addleft(k, f); addleft(FREE, m); addleft(f, NIL)

� true ⇒ get new right edge(k):
– symmetric to the above

fi
od

end

collector
def= begin

var i, j: [0..N+1]; c: (white, gray, black);
do true ⇒ mark; sweep od

end

mark
def= atleastgrey(ROOT); atleastgrey(FREE); atleastgrey(ENDFREE);

atleastgrey(NIL); i := 0;
do i ≤ N ⇒ c := [i.colour];

if c �= gray ⇒ i := i+1
� c = gray ⇒

restart run on gray node:
j := i.left; atleastgrey(j);
j := i.right; atleastgrey(j);
[i.colour]:= black;
i := 0

fi
od

sweep
def= for i := 0 to N do

c := [i.colour];
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if c = white ⇒
collect white node(i):

e := [ENDFREE.left]; [e.left] := i;
[i.left] := NIL; [i.right] := NIL; [ENDFREE.left] := i

� c = black ⇒ [i.colour] := white
� c = gray ⇒ skip
fi;
i := i+1

od

addleft(k, j)
def= begin [k.left] := j; atleastgrey(j) end

atleastgrey(j)
def= 〈c := [j.colour]; if c = white ⇒ [j.colour] := gray �c �= white ⇒ skip fi〉

The algorithm is written using an “Algol-like” notation. (See Appendix A.1
for a brief description.) We label some of the command blocks by bold face
labels such as modify left edge(k,j) which are later used as abbreviations for the
command blocks. The only atomic block in the algorithm is in the definition of
atleastgrey(j). It can be implemented at the machine level using instructions
like “test and set” or “compare and swap”. All the other commands are
executed without any synchronisation.

The storage potentially available to the mutator is represented as a col-
lection of nodes with addresses ranging from 0 to N. (This is called the
“memory”.) Each node has, in addition to whatever data is stored in it (which
we completely ignore), three fields for storing a left pointer, a right pointer and
a colour. The data used by the mutator forms a binary data graph within the
memory using the left and right pointers, with a ROOT node. Every node of
the data graph is reachable from ROOT by a path of nodes following the left
or right pointers.

The collector maintains a free list of nodes, with a start node beginning at
the value of FREE.left and an end node at the value of ENDFREE.left. Here
we see the first separation property which we will use in the proof: the data
graph and the free list do not overlap.

When the mutator needs more storage, it takes a node from the free list and
links it into the data graph. We call this the mutator’s get action. In addition,
the mutator can modify a node’s left or right pointer to point to some other
node in the data graph, or perform a delete action by setting the pointer to
a null value. We will assume a special node called NIL, whose left and right
nodes are always set to point to itself. Hence giving a null value to a pointer is
modelled by modifying it to point to NIL.

When a pointer is modified, the node pointed to before the modification
can become inaccessible from the data root. Such a node is called garbage. The
separation property we mentioned above can be extended: the data graph, the
free list and the garbage nodes are disjoint.

The DLMSS collector is of the “mark and sweep” type, that is, it has a
marking phase which marks all the nodes reachable from ROOT and FREE,
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and a sweeping phase which puts all unmarked nodes onto the free list. The
colour field of each node represents the mark: black means a node is marked
and white means it is unmarked. The colour gray represents an intermediate
marked state.

The basic idea behind the marking phase is that it begins by marking
ROOT and FREE, and then keeps running through the memory marking
the successors of marked nodes. When no marked node has an unmarked
successor, all the unmarked nodes are garbage.

The sweeping phase runs through the memory, adding the nodes left
unmarked by the previous marking phase to the free list and unmarking
marked nodes. Note that the sweeping phase works on the garbage and the
mutator works on the data graph, hence we can use separation. The movement
of garbage nodes to the free list by the collector and their later reuse by
the mutator constitutes an ownership transfer which can be modelled well in
Separation Logic.

The DLMSS collector works all the time, concurrently interleaving its work
with the mutator’s actions. To facilitate this, the gray colour, intermediate
between “marked” and “unmarked,” is used. It signifies a node that is known
to be reachable but whose successors may not yet have been marked. The roots
are first coloured gray. The marking phase makes repeated runs through the
memory; when it finds a gray node, its successors are coloured gray (if they
were unmarked), the node is fully marked by colouring it black, and a new run
is started.

Hence, progressing from the root nodes, the data graph and the free list are
progressively coloured black with a gray frontier while marking is in progress.
During the sweeping phase, they are unmarked (white).

3.1 Proving the DLMSS algorithm

The algorithm presented above is a rather challenging concurrent program to
prove correct. The authors of [11] describe various difficulties they encoun-
tered in proving correctness. An informal proof is presented which is quite
persuasive, but no indication is given as to how it could be formalized. Our
formalization of the proof brings up several issues which did not receive full
treatment in the original proof. Gries [13] outlined a slightly different, but
formal, proof using Owicki and Gries proof system [24].

The use of resource invariants is similar to that of global invariants, first
considered by Ashcroft [2]. A global invariant must be preserved by all
processes at all times, except inside atomic actions. In return, all the atomic
actions can assume that the global invariant is true in their initial states. The
proof of [11] is based on global invariants as well, even though this fact is not
explicitly stated and their proof-outlines often use local assertions that deal
with shared storage (in violation of the proof method).

The global invariant method can seem almost impossible at first because,
unlike in Hoare Logic proof-outlines, the same assertion must hold at every
program point. However, information specific to program points can be
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incorporated in the global invariants by adding auxiliary variables to the prog-
ram and making the conditions of the global invariant depend on the values of
such auxiliary variables.

The critical ideas used in the correctness proofs, right from the 1970s [11,
13], are summarized in the Appendix B.

3.2 Augmented algorithm

The DLMSS garbage collection algorithm is remarkable in that it works with
virtually no synchronization between the processes except for the atleastgrey
operation, which must be carried out atomically.

However, to reason about the algorithm using Concurrent Separation Logic,
we must treat each basic command that deals with shared storage as an atomic
action. This would allow the use of ATOMIC rule of Section 2.1 to reason
about the manipulation of shared storage. For example, whereas the original
algorithm says [i.colour] := white to set i’s colour, we write it as 〈[i.colour] :=
white〉 in the augmented algorithm. This makes no operational difference at the
machine level because our syntax allows at most one heap location to be read
or written in a single command, and this can be done without any additional
synchronization mechanisms.

Secondly, our augmented algorithm adds a number of “auxiliary variables”
to the algorithm meant for reasoning purposes. The need for such variables
in reasoning about concurrent programs has been long recognized [23]. The
auxiliary variables do not affect the original data flow or control flow of
the algorithm. So, they can be safely deleted upon the completion of the
proof, recovering the original algorithm. More precisely, a variable is said to
be auxiliary for an original program P if it is not used in any control flow
tests in if and do commands and it is not used on the right hand side of an
assignment command x := E or [e] := E, where x is an original variable of
the program P. We specify the auxiliary variables added to the algorithm
using auxvar declarations. We also annotate each declaration with the process
that updates the variables. (Our proof rules for atomic commands have a side
condition that the variables mentioned in the local assertions are not modified
by other processes. This information is useful for ensuring the side condition.)

gc
def= const ROOT, FREE, ENDFREE, NIL: [0..N];

var i: [0..N+1];
auxvar in_marking: bool updated by collector;

scanned[0..N]: bool; tested[0..N]: bool updated by collector;
lgrays, lgrayt, rgrays, rgrayt, reclaim: [0..N] updated by collector;
ladd, radd: [0..N] updated by mutator;
avail: bool updated by mutator;

[NIL.left] := NIL; [NIL.right] := NIL;
for i := 0 to N do [i.colour] := white; tested[i] := false; scanned[i] := false od;
avail := false; ladd, radd := NIL, NIL;
in_marking := false;
lgrays, lgrayt, rgrays, rgrayt, reclaim := NIL, NIL, NIL, NIL, NIL;
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resource r(scanned, tested, in_marking, lgrays, lgrayt, rgrays, rgrayt, reclaim,
avail, ladd, radd)

in
mutator || collector

mutator
def= begin

var k, j, f, e, m: [0..N];
do true ⇒

k := some non-NIL node reachable from ROOT;
j := some node reachable from ROOT or NIL;
if true ⇒ modify left edge(k, j):

addleft(k, j)
� true ⇒ modify right edge(k, j):

addright(k, j)
� true ⇒ get new left edge(k):

〈f := [FREE.left]〉;
〈e := [ENDFREE.left]; avail := (f �= e)〉;
do f = e ⇒ 〈e := [ENDFREE.left]; avail := (f �= e)〉 od;
〈m := [f.left]〉;
addleft(k, f);
〈addleft(FREE, m); avail := false〉;
addleft(f, NIL)

� true ⇒ get new right edge(k):
– symmetric to the above

fi
od

end

addleft(p, q)
def= begin 〈[p.left] := q; ladd := p〉; 〈atleastgrey(q); ladd := NIL〉 end

atleastgrey(j)
def= 〈c := [j.colour]; if c = white ⇒ [j.colour] := gray � c �= white ⇒ skip fi〉

collector
def= begin

var i, j: [0..N+1]; c: (white, gray, black);
do true ⇒ mark; sweep od

end

mark
def= begin

〈atleastgrey(ROOT); tested[ROOT] := true〉;
〈atleastgrey(FREE); tested[FREE] := true〉;
〈atleastgrey(ENDFREE); tested[ENDFREE] := true〉;
〈atleastgrey(NIL); tested[NIL] := true〉;
〈in_marking := true〉;
i := 0;
do i ≤ N ⇒

atomic 〈c := [i.colour] |
if c �= gray ⇒ | scanned[i] := true〉; i := i+1
� c = gray ⇒ | tested[i] := true〉;

restart run on gray node(i):
〈j := i.left; lgrays := i; lgrayt := j 〉;
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〈atleastgrey(j); lgrayt := NIL〉;
〈j := i.right; rgrays := i; rgrayt := j 〉;
〈atleastgrey(j); lgrayt := NIL〉;
〈[i.colour] := black; lgrays := NIL; rgrays := NIL;
for j := 0 to i-1 do scanned[j] := false od〉;

i := 0;
fi

od;
〈in_marking := false〉

end

sweep
def= begin

i := 0;
do i ≤ N ⇒

atomic 〈c := [i.colour] |
if c = white ⇒ | reclaim := i〉;

collect white node(i):
〈scanned[i] := false〉;
〈[i.left] := NIL〉; 〈[i.right] := NIL〉;
〈e := [ENDFREE.left]〉;
〈[e.left] := i; reclaim := NIL〉;
〈[ENDFREE.left] := i〉

� c = black ⇒ | skip〉;
whiten black node(i):

〈[i.colour]:=white; tested[i]:=false; scanned[i]:=false〉
� c = gray ⇒ | skip〉;

skip gray node(i):
〈tested[i] := false; scanned[i] := false〉

fi;
i := i+1;

od
end

The auxiliary variables we add have one of two purposes. Some of them
are used to capture control flow information so that global invariants can state
properties that must hold in specific regions of the code. The others are used
to capture an abstract view of the processing done in one process so that it can
be used in reasoning about the other process.

– The boolean variable in_marking captures control information. It is set
to true during the marking phase of the collector and false outside the
marking phase.

– The boolean arrays scanned and tested indexed by heap nodes can be
viewed as finite sets of nodes and provide an abstraction of the processing
done in the collector. The array scanned captures the nodes that have
been scanned during the marking phase of the collector. The array tested
represents the nodes that are tested during the marking phase and found to
be at least gray. Both of these arrays are progressively reset to false during
the sweeping phase.
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– The variables lgrays, lgrayt, rgrays, rgrayt mark the source and target nodes
of edges that are traversed and coloured in the marking phase. They are
set to NIL after the colouring is completed.

– The variable reclaim is used by the collector to mark an unreachable node
that it is about to reclaim. It is reset to NIL after the reclamation.

– The variables ladd and radd mark the source of an edge that has been just
added by the mutator. After the add action, the mutator greys the target
node, at which point the variables are reset back to NIL.

– The variable avail represents information about the availability of nodes in
the free list. It is an abstraction of the nodes manipulated by the collector,
but used inside the mutator.

In addition to the usual forms of commands, we have used atomic conditional
branching and (later in Section 7) atomic iteration constructs of the form:

atomic 〈C0|
if E1 ⇒ |C1〉; C′

1
� . . .

� En ⇒ |Cn〉; C′
n

fi

atomic 〈C0|
do E1 ⇒ |C1〉; C′

1
� . . .

� En ⇒ |Cn〉; C′
n

od

These constructs atomically execute a setup operation C0, the chosen condition
test Ei and the atomic part of the corresponding conditional branch Ci. (The
remainder of the chosen branch C′

i is executed outside the atomic action.) The
semantics and proof rules for the constructs are given in Appendix A. If each
Ci = skip and each Ei involves only local variables of the process then the
atomic branching construct can be simplified to the following sequences using
standard if and do:

〈C0〉;
if E1 ⇒ C′

1 � . . . � En ⇒ C′
n fi

〈C0〉;
do E1 ⇒ C′

1 � . . . � En ⇒ C′
n od

The reason is that, since the expressions Ei involve only local variables, they
are not affected by other processes and give the same values outside the atomic
brackets as they do inside.

It may be verified that the augmented algorithm can be transformed back
to the original one after the removal of the auxiliary variables. The code for
atleastgrey is the only place in the program where atomicity is required, which
matches the granularity of the program we originally considered.

4 Storage, permissions and colours

Assertions in Separation Logic are resource-sensitive. Hence, they must de-
lineate (permissions for) an area of storage in addition to stating properties
that must be satisfied by the contents of such storage. Assertions that precisely
delineate a set of storage locations and permissions for them are termed
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“precise” assertions. At the other extreme, assertions that continue to hold
when the heap extended with additional locations or permissions are termed
“intuitionistic” assertions. (See Appendix A for precise definitions.) Recall
that an assertion of the form P ∧ Q holds for a heap iff both P and Q hold for
the same heap. We arrange our assertions as conjunctions of the form P ∧ Q
where P is a precise assertion delineating locations and permissions and Q is
an intuitionistic assertion that states the properties required for these locations,
with the result that the whole formula is precise.

We use the auxiliary predicates defined in Table 1. Each heap node in the
DLMSS algorithm consists of three fields: a left pointer, a right pointer (the link
fields) and a colour. We denote the three fields by i.left, i.right and i.colour. For
readability, we abuse the notations 	−→ and ↪−→ to apply to entire heap nodes
(in addition to individual fields of the nodes). We also annotate these notations
with new composite permissions for heap nodes, denoted ρ, ρ and F. The nota-
tion i

ρ	−→ ( j, k, c) indicates ρ permission for a heap cell as consisting of a read
permission for all its fields, but full permission for the colour field whenever

the variable tested[i] is false. The ρ permission for a heap cell i
ρ	−→ ( j, k, _) is

defined as just the ρ permission for the link fields (and no access to the colour

Table 1 Auxiliary predicate definitions

i
ρ	−→ ( j, k, c)

def= i ∈ [0 . . . N] ∧
(i.left

ρ	−→ j � i.right
ρ	−→ k �

((i.colour
ρ	−→ c ∧ tested[i]) ∨ (i.colour

1	−→ c ∧ ¬tested[i])))
i

ρ	−→ ( j, k, c)
def= i.left

ρ	−→ j � i.right
ρ	−→ k

i
F	−→ ( j, k, c)

def= i ∈ [0 . . . N] ∧
(i.left

1	−→ j � i.right
1	−→ k �

((i.colour
ρ	−→ c ∧ tested[i]) ∨ (i.colour

1	−→ c ∧ ¬tested[i])))
i

1	−→ ( j, k, c)
def= i.left

1	−→ j � i.right
1	−→ k � i.colour

1	−→ c

cell p(i)
def= ∃ j ∈ [0..N], k ∈ [0..N], c : i

p	−→ ( j, k, c)

cellsp(X)
def= �i∈X cell p(i)

listsegp( j, k, V) ⇐⇒ ( j = k ∧ V = ∅ ∧ emp) ∨
( j �= k ∧ ∃l : j ∈ V ∧ ( j

p	−→ (l, NIL, _) � listsegp(l, k, V \ { j}))
edgep( j, k)

def= j
p

↪−→ (k, _, _) ∨ j
p

↪−→ (_, k, _)

pathp( j, k, X) ⇐⇒ j = k ∨ ∃l : l �∈ X ∧ edgep( j, l) ∧ pathp(l, k, X)

reachGraphp(U, X)
def= cellsp(U) ∧ ∀i(i ∈ U ⇐⇒ pathp(ROOT, i, X))

freeListpqr(V)
def= ∃ f, g, e, V1, V2, V3 :

V = {FREE, ENDFREE} � V1 � V2 � V3 ∧
(FREE

p	−→ ( f, NIL, _) � ENDFREE
p	−→ (e, NIL, _) �

listsegp( f, g, V1) � listsegq(g, e, V2) � listsegr(e, NIL, V3)) ∧
(avail ∧ |V1| = 1 ∨ ¬avail ∧ |V1| = 0)

f reeHeadp( f, g, V)
def= (FREE

p	−→ ( f, NIL, _) � listsegp( f, g, V)) ∧
(avail ∧ |V| = 1 ∨ ¬avail ∧ |V| = 0)
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field). The F permission for a heap cell is defined in a similar way to the ρ per-
mission so that these definitions satisfy:

i
ρ	−→ ( j, k, c) � i

ρ	−→ ( j, k, c) ⇐⇒ i
F	−→ ( j, k, c)

The predicate cell p asserts a permission p for a cell and cellsp similarly
asserts permission p for a finite set of cells. The predicate listsegp( j, k, V)

asserts, through a recursive definition which has a unique solution, permission
p for a “linked list” segment of cells starting at a cell j and ending at an address
k, with V being the finite set of all the cells making up the segment. (Such a
“linked list” is built using the left links for pointing to the successor nodes and
the right links set to NIL.) Note that the set of nodes spanned by the predicate
V is used as a parameter to the predicate. The use of such parameters avoids
certain anomalies in the use of Separation Logic formulas with permissions.
(See, e.g., [4].)

The edge and path predicates state that there is an edge (respectively a path)
between the two given nodes within the heap formed using the links (without
passing through the nodes in X).

The predicate reachGraphp defines permission p to a directed graph (the
data graph) of nodes reachable from ROOT (the set U), but without passing
through nodes in X. The reason for the exception set X is that while perform-
ing an operation, other nodes which we do not think of as being part of the
data graph may temporarily be reachable from ROOT and we need to exclude
them.

The predicate freeListpqr describes a tripartite free list structure with per-
missions p, q and r for the three parts respectively. This predicate is admittedly
complex, but a justification is provided in the next subsection.

The free list is viewed as consisting of three segments, running between f to
g, g to e and e to NIL (with respective sets of nodes V1, V2 and V3). The first
segment, called the “head” of the free list, contains at most one cell and its
length is controlled by the variable avail. The third segment, called the “tail”
of the free list, is identified by ENDFREE. It is normally of length 1, but this is
not required in the definition. The predicate f reeHead describes just the head
of the free list.

Note that the predicates edgep and pathp are intuitionistic and all other
predicates defined in Table 1 are precise. For instance reachGraphp(U, X)

is precise because cellsp(U) is precise. More interestingly, ∃U : reachGraphp

(U, X) is also precise because U is uniquely determined as the set of all nodes
reachable from ROOT without passing through X.

4.1 Distributing the permissions

The permissions for every heap node is split three-way: between the mutator
process, the collector process and the central resource. That this split happens
differently at different program states is a key idea in the structure of the
proof. The mutator and the collector can use whatever permissions they “own”
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in a state. They can also mention these permissions in their local assertions.
When accessing the resource, a process grabs the permissions for the heap
cells described by the resource invariant and combines them with its own
permissions using the � connective in order to read or write a heap location.
But, the permissions owned by the central resource can only be borrowed by
the two processes in atomic actions; such permissions cannot be mentioned in
the local assertions. As a specific example, there are points in the program
where the function atleastgrey(p) can be called by both the mutator and the
collector to colour the cell p. At such points, 1 permission for p’s colour field
resides with the central resource, and can be borrowed by either process. But,
as a consequence, the colour field of p is absent from both processes’ local
assertions.

It is in general desirable to minimize the locations and permissions held in
the central resource because their properties must be expressed in the resource
invariant which is not state-specific. However, Concurrent Separation Logic
allows permission transfer between processes and the central resource but not
directly between processes themselves. So, we are forced to park permissions
with the central resource until one of the processes retrieves them for itself,
typically by setting an auxiliary variable.

We have already noted that the memory of the algorithm can be split into
three parts: the data graph, the free list and the garbage cells. Let us consider
each in turn.

– The data graph’s link fields can be modified only by the mutator but the
collector needs read access for them to carry out marking.
We give ρ permission to these f ields to the mutator and retain ρ permission
in the central resource. (This allows the mutator to modify the link fields in
atomic actions and the collector to read them.)

– The data graph’s colour fields are modifiable by both the collector and the
mutator. The mutator’s modifications are limited to turning white nodes
into gray.
White nodes are present in the data graph until they are greyed during a
marking scan. They are subsequently tested by the collector and identified
as belonging to the data graph. We retain a full permission for the colour
f ields of all untested nodes in the central resource (so that both the mutator
and the collector can modify them). For tested nodes, ρ permission for the
colour f ields is retained in the central resource and ρ permission is given to
the collector.4

– The free list consists of at least two parts that are used in different ways.
All the nodes up to the end node are used in a way similar to the data

4One might wonder if it is necessary to treat the untested and tested nodes differently. Is it not
possible to retain a full permission for all the colour fields in the central resource? Note that the
collector needs to reason about the colours of the nodes that it marks. Retaining full permissions
in the central resource would inhibit such local reasoning.
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graph: their link fields can be modified only by the mutator and the colour
fields by both the mutator and the collector. The end node is modified
exclusively by the collector.
So, it might appear that we should give ρ permission to all but the end node
to the mutator and a similar permission to the end node to the collector.
However, the collector extends the free list by adding nodes at the end of
the free list and moving the ENDFREE pointer forward. This results in an
ownership transfer for the erstwhile end node, and this transfer can only
be made to the central resource.
So, we split the free list into three parts:

1. The head part that contains a list segment of at most one node has its
ρ permission given to the mutator and ρ permission retained in the
central resource.

2. The middle part that contains all the nodes except the f irst and the last
nodes has its full permission deposited in the central resource.

3. The tail part consisting of the end node has its ρ permission given to
the collector and ρ permission retained in the central resource.

Note that there is ownership transfer: nodes are regularly moving from the
tail part to the middle part and from there to the front part.

– The garbage nodes are not modifiable by either the mutator or the
collector until they are reclaimed by the collector.
So, the full permission to the garbage nodes is retained in the central
resource.

In addition to the three major regions of storage, there are two transient
areas at the borders, which need special treatment controlled through auxiliary
variables. The head of the free list, lying at the border of the free list and data
graph during allocation of nodes, is controlled by the variable avail. During
the collection phase, a chosen node of the garbage area lies at the border of
garbage cells region and the free list, whose status is controlled by the variable
reclaim.

Using these intuitions, we now formally state the permissions given to the
three components as precise assertions RP, mutP and colP respectively.

The permissions given to the central resource are defined as follows:

RP(U, V, W)
def=

cellF(NIL) � freeListρFρ(V) � reachGraphρ(U, V ∪ {NIL}) � cellsF(W)

The structure of the definition follows the preceding discussion. The set W is
that of garbage cells for which the central resource has an F permission. It is
not hard to see that if any heap satisfies RP(U, V, W) then there is precisely
one assignment of values to U , V and W. Moreover, for all the cells in U ∪ V ∪
W ∪ {NIL}, the central resource always holds at least a read permission for the
colour field.
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The permissions for the collector process include the ρ permission for the
tail part of the free list and ρ permission for the colour fields of all the tested
nodes:

colP
def= ∃e. ENDFREE

ρ	−→ (e, NIL, _) � e
ρ	−→ (_, _, _) � tested_colours

tested_colours
def= �k∈[0..N](¬tested[k] ∧ emp) ∨

(∃c : tested[k] ∧ k.colour
ρ	−→ c ∧ c ∈ {g, b})

Recall that the atomic operations in a process can use the permissions of the
process as well as the permissions of the central resources. So, the effective
permissions for the collector process are as follows:

Remark 1 The assertion RP(_, _, _) ∗ colP includes F permission for all the
garbage cells and the tail of the free list and ρ permission for the rest of the
nodes in the free list and the data graph. It also includes 1 permission for the co-
lour fields of all tested nodes.

Permissions for the mutator process include the ρ permission for the data
graph and the head part of the free list:

mutP(U, V)
def= reachGraphρ(U, {NIL}) � freeHeadρ(_, _, V)

Even though the resource permissions allow the data graph to store pointers
into the free list nodes, our mutator is written so that the data graph is
self-contained. There is no conflict here, because any heap that satisfies
reachGraph(U, {NIL}) without encroaching on the free list also satisfies
reachGraph(U, V ∪ {NIL}).

Remark 2 The assertion RP(_, _, _) � mutP(_, _) includes F permission for all
the nodes in the data graph and all nodes but the tail of the free list.

4.2 Colour properties and the resource invariant

The global resource invariant is given by

RI
def= ∃U, V, W, X : RP(U, V, W) ∧ X = {NIL} ∪ U ∪ V

∧ [0..N] \ {i | i = reclaim �= NIL} = X ∪ W
∧ whiteI(X) ∧ grayI(X) ∧ bwI(X) ∧ blackI

We have already seen the RP predicate in the previous section. Its storage is
expected to span all the cells numbered 0, . . . , N except for the cell reclaim
(whenever it is not NIL). The symbol X denotes the set of all nodes reachable
from a root: ROOT, FREE, ENDFREE and NIL. The other conjuncts of
the invariant, whiteI etc., are intuitionistic assertions that maintain several
properties of the heap nodes, which are detailed in the sequel.
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Lemma 1 RI is precise.

Proof Suppose (s, h) |= RI. Let R stand for the value of {i | i = reclaim �=
NIL} in the current store. Then (s, h) |= RP(U, V, W) and it can be seen from
the structure of RP that dom(h) = U � V � W. So, dom(h) = [0 . . . N] \ R.
For each node in this domain, the permission for the link fields is determined
by RP and that for colour fields is uniquely determined by the value of tested
in the store. ��

Recall, from Section 3.2, that the collector maintains a set of auxiliary
variables lgrays, lgrayt, rgrays and rgrayt which record the source and target
information about the edges being coloured in the marking phase. We define
a notion of C-edge, similar to the one used by Dijkstra et al. [11] using these
variables.

Cedge(k, j)
def= k= lgrays �=NIL ∧ k

ρ
↪−→ ( j, _, _) ∧(lgrayt �=NIL =⇒ j �= lgrayt)

∨ k = rgrays �= NIL ∧ k
ρ

↪−→ (_, j, _)

∧ (rgrayt �= NIL =⇒ j �= rgrayt)

The idea is that, if (lgrays, lgrayt) is a putative edge being coloured by the
collector, then an edge starting at the same source but a different target is a
C-edge. Such an edge might result from the mutator changing the target of the
edge without the knowledge of the collector.

White Invariant During the marking phase, every white reachable node is
reachable from a reachable gray node via a path passing through only white
nodes, but without passing through a C-edge. (Such a path is dubbed a
“propagation path.”) During the sweeping phase, reachable nodes can be
white only if their scanned flag is set to false.

whiteI(X)
def= ∀i ∈ X : i.colour

ρ
↪−→ w =⇒

(in_marking =⇒ ∃ j : j ∈ X ∧ propath( j, i))
∧ (¬in_marking =⇒ ¬scanned[i])

propath( j, i)
def= ∃k : j.colour

ρ
↪−→g ∧ edge( j, k) ∧ ¬Cedge( j, k) ∧ wpath(k, i)

wpath(k, i) ⇐⇒ k = i ∨ ∃l : k.colour
ρ

↪−→ w ∧ edge(k, l)
∧¬Cedge(k, l) ∧ wpath(l, i)

(The predicate wpath asserts the existence of a path through white nodes, while
the predicate propath captures the notion of a propagation path.)

Gray Invariant During the marking phase, as long as there is a gray reachable
node, there must be a gray node which is unscanned. This is initially established
by making all nodes unscanned.

grayI(X)
def= in_marking =⇒ (∃i : i ∈ X ∧ i.colour

ρ
↪−→ g)

=⇒ (∃ j: j ∈ [0..N] ∧ j.colour
ρ

↪−→ g ∧ ¬scanned[ j])
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Black-to-white Invariant During the marking phase, there is at most one edge
that is a black-to-white edge or a C-edge leading to a white node. Further, the
source of this edge is represented by one of the auxiliary shared variables ladd
and radd, which are maintained by the mutator. This is initially established by
colouring all the nodes white, and setting the auxiliary variables to NIL.

bwI(X)
def= in_marking =⇒ ¬(ladd �= NIL ∧ radd �= NIL)

∧ (∀k, j ∈ X : bwedge(k, j) ∨ Cwedge(k, j) =⇒ add(k, j))

bwedge(k, j)
def= (k

ρ
↪−→ ( j, _, b) ∨ k

ρ
↪−→ (_, j, b)) ∧ j.colour

ρ
↪−→ w

Cwedge(k, j)
def= Cedge(k, j) ∧ j.colour

ρ
↪−→ w

add(k, j)
def= (k = ladd ∧ k.left

ρ
↪−→ j) ∨ (k = radd ∧ k.right

ρ
↪−→ j)

Black Invariant Tested nodes can be gray or black and only tested nodes can
be black. The first conjunct equivalently says white nodes have to be untested,
which is initially established.

blackI
def= (∀i ∈ [0..N] : tested[i] =⇒ i.colour

ρ
↪−→ g ∨ i.colour

ρ
↪−→ b)

∧ (∀i ∈ [0..N] : i.colour
ρ

↪−→ b =⇒ tested[i])

5 The proof

A proof outline for the top-level of the augmented algorithm can be written as
follows:

{cells1[0..N]}
[NIL.left] := NIL; [NIL.right] := NIL;
for i := 0 to N do [i.colour] := white; tested[i] := false; scanned[i] := false od;
avail := false; ladd, radd := NIL, NIL;
in_marking := false;
lgrays, lgrayt, rgrays, rgrayt, reclaim := NIL, NIL, NIL, NIL, NIL;
{RI � mutI � (colI ∧ ¬in_marking ∧ ∀i ∈ [0..N] : ¬tested[i] ∧ ¬scanned[i])}
resource r(scanned, tested, in_marking, lgrays, lgrayt, rgrays, rgrayt, reclaim,

avail, ladd, radd) in
begin

{mutI} mutator { f alse} ||
{colI∧¬in_marking∧ (∀i∈[0..N] :¬tested[i]∧ ¬scanned[i])} collector {f alse}

end
{ f alse}

The initial pre-condition asserts 1 permission for all the cells 0, . . . , N. After
the initialisation steps, the three assertions RI, mutI and colI along with the
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additional conditions are claimed to hold in separate contexts of the heap
permissions. (The assertions mutI and colI are mutP(_, _) and colP along
with additional conditions for the auxiliary variables, defined in the sequel.)
The permissions of cells1[0..N] are split three-way, along the lines described in
Section 4.1.

It is worth checking each of the properties involved in the resource in-
variant hold after the initialisation steps. The white invariant holds because
in_marking is false and the scanned flag is false for all nodes. The gray
invariant holds because there are no gray nodes. The black-to-white invariant
holds because there are no black nodes or C-edges. The black invariant holds
because there are no tested nodes or black nodes.

The resource block and the parallel composition split the assertion into
three parts, for the central resource, the mutator and the collector, requiring
us to prove:

RI � {mutI} mutator { f alse}
RI � {colI ∧ ¬in_marking ∧ ∀i ∈ [0..N] : ¬tested[i]

∧¬scanned[i]} collector { f alse}

(The post-conditions are false because the processes do not terminate.) Prov-
ing these statements amounts to proving the safety of the collector. Since mutI
and colI are disjoint and mutI includes ρ permission for the link fields of all
the data graph nodes, it means that the collector does its work without altering
the data graph. (There is a separate liveness property that can be stated to
the effect that any unreachable node is eventually put on the free list by the
collector. However, our proof technique is not meant for addressing liveness.)

Note that the entire processes of mutator and collector are within the scope
of the resource declaration. Hence, their proof outlines are written in the
context of the resource invariant RI. It is only inside atomic blocks inside these
processes that the invariant participates in the pre- and post-conditions.

5.1 The mutator process

The proof outline of the mutator is constructed using the following mutator
invariant:

mutI
def= ∃U, V0 : mutP(U, V0) ∧ ladd = NIL = radd ∧ ¬avail

Using Remark 2, the assertion mutI � RI has F permission for the data graph
and the head part of the free list, allowing the mutator to update the link fields
of these nodes in atomic operations. The mutator can also read the colour fields
of all these nodes but it can only update the colour fields of the untested nodes.
However, it must do any updates of the colour fields without mentioning the
colours in its assertions.
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For the mutator, we need to prove the following proof outline in the context
of the resource invariant RI:

mutator
def= var k, j, f, e, m: [0..N];

{mutI}
do true ⇒ k := some non-NIL node reachable from ROOT;

j := some node reachable from ROOT or NIL;
{∃U, V0 : mutP(U, V0) ∧ ladd = NIL = radd

∧ k ∈ U ∧ j ∈ U ∪ {NIL}
if true ⇒ modify left edge(k, j)
� true ⇒ modify right edge(k, j)
� true ⇒ get new left edge(k)
� true ⇒ get new right edge(k)
fi

od

Here, in the sequel, we use the labels such as “modify left edge(k,j)” as ab-
breviations for command blocks in the augmented algorithm (cf. Section 3.2).

Proof outlines for the operations of the mutator are shown in Table 2. Since
the operation addleft is used in both modify left edge and get new left edge,
we prove a more general specification for its definition. The predicate reach is
defined by:

reach(q)
def= ∃x : edgeρ(x, q) ∨ x = NIL

So, the pre-condition of addleft says that in the storage delineated by
mutP(U, V), there is a node p and some path to reach address q (unless it
is NIL), and the ladd and radd variables are NIL. The post-condition says very
much the same thing except for noting that p’s left link has been modified to
q. The specification can be strengthened to that of modify left edge using the
structural rules of Separation Logic. (Cf. Appendix A.2.) A full discussion of
the proof of addleft is given in Section 6.1.

5.2 The collector process

The following collector invariant plays a central role in the proof of the collec-
tor process:

colI
def= colP ∧ lgray = (NIL, NIL) = rgray ∧ reclaim = NIL

For brevity, we treat lgray = (lgrays, lgrayt) and rgray = (rgrays, rgrayt) as
pairs in our assertions.

As per Remark 1, the assertion colI � RI allows the collector process to
update the link fields of the end node of the free list, and to update the colour
fields of tested nodes. It can also update the colour fields of untested nodes
(using only RI’s 1 permission), but without mentioning them in its assertions.
Likewise, it can access and update the remaining garbage nodes using the
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Table 2 Mutation operations

addleft(p, q):

{∃U, V : mutP(U, V) ∧ p
ρ

↪−→ (l, m, _) ∧ reach(q) ∧ ladd = NIL = radd}
〈[p.left] := q; ladd:= p〉;
{∃U, V : mutP(U, V) ∧ p

ρ
↪−→ (q, m, _) ∧ reach(q) ∧ ladd = p ∧ radd = NIL}

〈atleastgrey(q); ladd:= NIL〉
{∃U, V : mutP(U, V) ∧ p

ρ
↪−→ (q, m, _) ∧ reach(q) ∧ ladd = NIL = radd}

modify left edge(k, j):
{∃U, V0 : mutP(U, V0) ∧ ladd = NIL = radd ∧ k ∈ U ∧ j ∈ U ∪ {NIL} ∧ ¬avail}
addleft(k, j)
{∃U, V0 : mutP(U, V0) ∧ ladd = NIL = radd ∧ k ∈ U ∧ j ∈ U ∪ {NIL} ∧ ¬avail}

get new left edge(k):
{∃U : reachGraphρ(U, {NIL}) � f reeHeadρ(_, _,∅) ∧ k ∈ U ∧ ¬avail}
〈f := [FREE.left]〉;
{∃U : reachGraphρ(U, {NIL}) � f reeHeadρ( f, _,∅) ∧ k ∈ U ∧ ¬avail}
〈e := [ENDFREE.left]; avail := (f �= e)〉;
{∃U, V : reachGraphρ(U, {NIL}) � freeHeadρ( f, _, V) ∧ k ∈ U ∧ avail = ( f �= e)}
do f = e ⇒ 〈e := [ENDFREE.left]; avail := (f �= e)〉 od;
{∃U : reachGraphρ(U, {NIL}) � f reeHeadρ( f, _, { f }) ∧ k ∈ U ∧ avail}
〈m := [f.left]〉;
{∃U : reachGraphρ(U, {NIL}) � f reeHeadρ( f, m, { f }) ∧ k ∈ U ∧ avail}
addleft(k, f);
{∃U : reachGraphρ(U, { f, NIL}) � freeHeadρ( f, m, { f }) ∧ k ∈ U ∧ avail}
{∃U : reachGraphρ(U, { f, NIL}) � FREE

ρ	−→ ( f, NIL, _) � f
ρ	−→ (m, NIL, _) ∧ avail}

〈addleft(FREE, m); avail := false〉;
{∃U : (reachGraphρ(U, {m, NIL}) ∧ f

ρ
↪−→ (m, NIL, _)) � FREE

ρ	−→ (m, NIL, _) ∧ ¬avail}

{∃U : (reachGraphρ(U, {m, NIL}) ∧ f
ρ

↪−→ (m, NIL, _)) � freeHeadρ(m, _,∅) ∧ ¬avail}
addleft(f, NIL);
{∃U : reachGraphρ(U, {NIL}) � f reeHeadρ(_, _,∅) ∧ ¬avail}

RI’s full permission. The following proof outline needs to be proved for the
collector process in the context of the resource invariant RI:

collector
def= var i: [0..N+1]; c: (white, gray, black);

do true ⇒ {colI ∧ ¬in_marking ∧ ∀k ∈ [0..N] :
¬scanned[k] ∧ ¬tested[k]}

mark;
{colI ∧ ¬in_marking ∧ ∀k ∈ [0..N] : scanned[k]}
sweep
{colI ∧ ¬in_marking ∧ ∀k ∈ [0..N] :
¬scanned[k] ∧ ¬tested[k]}

od

At the end of the marking phase, all nodes are scanned. Hence, by gray
invariant, we can conclude that there are no reachable gray nodes. Then the
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white invariant implies that there no reachable white nodes. This enables the
sweeping phase to reclaim all the white nodes. At the end of the sweeping
phase, the loop invariant is re-established. (Our proof outlines do not show
that all the white nodes have been reclaimed because we are only proving the
safety of the garbage collector.)

5.3 Marking phase

The marking phase of the collector is an initialization followed by a loop over
the marking operations. The proof makes use of the marking invariant, which
is a local loop invariant of the collector process.

markI′(i) def= colP ∧ in_marking ∧ reclaim = NIL
∧ i ∈ [0..N + 1] ∧ ∀k ∈ [0..N] : (scanned[k] ⇐⇒ k < i)

markI(i)
def= markI(i) ∧ lgray = (NIL, NIL) = rgray

Setting the in_marking flag requires us to establishes the stronger version of
the white invariant, viz., that every white reachable node is reachable via a
propagation path. This is achieved by greying all the root nodes initially. The
assertion “k is a root” in the proof outline below means that k is one of ROOT,
FREE, ENDFREE, and NIL. Setting the tested flag of all greyed nodes to true
allows the collector to retrieve the ρ permission for their colour fields from the
central resource and prohibits the mutator from further modifying the colours.
The retrieved permissions are absorbed into colP.

mark
def={colI ∧ ¬in_marking ∧ (∀k ∈ [0..N] : ¬scanned[k] ∧ ¬tested[k])}
〈atleastgrey(ROOT); tested[ROOT] := true〉;
〈atleastgrey(FREE); tested[FREE] := true〉;
〈atleastgrey(ENDFREE); tested[ENDFREE] := true〉;
〈atleastgrey(NIL); tested[NIL] := true〉;
{colI ∧ ¬in_marking ∧ (∀k ∈ [0..N] : ¬scanned[k]
∧(k is a root =⇒ tested[k]))}

〈in_marking := true〉;
{colI ∧ in_marking ∧ (∀k ∈ [0..N] : ¬scanned[k])}
{markI(0) ∧ lgray = (NIL, NIL) = rgray}
i := 0;
{markI(i)}
do i ≤ N ⇒

{markI(i) ∧ i ≤ N}
atomic 〈c := [i.colour] |
if c �= gray ⇒ | scanned[i] := true〉;

{markI(i) ∧ i ≤ N ∧ scanned[i]}
{markI(i + 1) ∧ i ≤ N}
i := i+1

� c = gray ⇒ | tested[i] := true〉;
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{markI(i) ∧ i ≤ N ∧ ∧tested[i] ∧ i.colour
ρ

↪−→ g}
restart run on gray node(i)

fi
od;
{markI(N + 1)}
{colI ∧ in_marking ∧ ∀k ∈ [0..N] : scanned[k]}
〈in_marking := false〉
{colI ∧ ¬in_marking ∧ ∀k ∈ [0..N] : scanned[k]}

In this program block, we have used atomic conditional branching to test
the colours of nodes. So, the resource invariant is assumed at the beginning
of every atomic sequence and needs to be re-established at the end of the
sequence. Consider the sequence

〈c := [i.colour] | c �= gray ⇒ | scanned[i] := true〉
As a result of the initialisation c := [i.colour] and the test c �= gray, we con-
clude that i is non-gray. Since the collector does not have any permission for
the colour fields of untested nodes, this information about the colour will be
lost at the end of the atomic sequence. So we set scanned[i] to true, note
that the the resource invariants are restored (especially grayI), and assert that
scanned[i] is true. In the case where the node is gray, tested[i] is set to true and
the collector acquires ρ permission over the colour field. So, it is possible to
assert the fact about the colour in the post-condition. A longer sequence of
statements, whose proof appears in Table 3, is used to blacken the node and
restart the scan.

The post-condition of the marking phase asserts that all nodes are scanned.
Hence from the gray invariant, we get that there are no reachable gray nodes.
From the white invariant, we get that all white nodes are unreachable. This is
the basis for the sweeping phase.

Table 3 Marking phase operations

Restart run on gray node(i):

{markI′(i) ∧ i ≤ N ∧ tested[i] ∧ i.colour
ρ

↪−→ g ∧ lgray = (NIL, NIL) = rgray}
〈j := [i.left]; lgrays := i; lgrayt := j〉;
{markI′(i) ∧ i ≤ N ∧ tested[i] ∧ i.colour

ρ
↪−→ g ∧ lgray = (i, j) ∧ rgray = (NIL, NIL)}

〈atleastgrey(j); lgrayt := NIL〉;
{markI′(i) ∧ i ≤ N ∧ tested[i] ∧ i.colour

ρ
↪−→ g ∧ lgray = (i, NIL) ∧ rgray = (NIL, NIL)}

〈j := [i.right]; rgrays := i; rgrayt := j〉;
〈atleastgrey(j); rgrayt := NIL〉;
{markI′(i) ∧ i ≤ N ∧ tested[i] ∧ i.colour

ρ
↪−→ g ∧ lgray = (i, NIL) = rgray}

〈[i.colour] := black; lgrays := NIL; rgrays := NIL;
for j := 0 to i-1 do scanned[j] := false od〉;

{markI′(0) ∧ i ≤ N ∧ tested[i] ∧ i.colour
ρ

↪−→ b ∧ lgray = (NIL, NIL) = rgray}
i := 0;
{markI′(i) ∧ lgray = (NIL, NIL) = rgray}
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5.4 Sweeping phase

The proof uses the sweeping invariant sweepI(i), which is a loop invariant that
must hold at the beginning and end of each iteration:

sweepI(i)
def= colI ∧ ¬in_marking ∧ lgray = (NIL, NIL) = rgray

∧ i ∈ [0..N + 1] ∧
∀k ∈ [0..N] : (k < i =⇒ ¬scanned[k] ∧ ¬tested[k])
∧ (k ≥ i =⇒ scanned[k])

At stage i, the scanned and tested flags are expected to have been set to false
for all the nodes 0, . . . , (i − 1).

sweep
def={sweepI(0) ∧ reclaim = NIL}

i := 0;
{sweepI(i) ∧ reclaim = NIL}
do i ≤ N ⇒

{sweepI(i) ∧ reclaim = NIL ∧ i ≤ N}
atomic 〈c := [i.colour] |
if c = white ⇒ | reclaim := i〉;

{i 1	−→ (_, _, w) � sweepI(i) ∧ reclaim= i ∧ i ≤ N}
collect white node(i)
{sweepI(i) ∧ reclaim = NIL}

� c = black ⇒ | skip〉;
{sweepI(i) ∧ reclaim = NIL ∧ i ≤ N

∧i.colour
ρ

↪−→ b}
whiten black node(i)
{sweepI(i) ∧ reclaim = NIL}

� c = gray ⇒ | scanned[i] := false; tested[i] := false〉;
{sweepI(i + 1) ∧ reclaim = NIL ∧ i ≤ N}
i := i+1
{sweepI(i) ∧ reclaim = NIL}

fi
od
{sweepI(N + 1) ∧ reclaim = NIL}
{colI ∧ ¬in_marking ∧ ∀k ∈ [0..N] : ¬tested[k] ∧ ¬scanned[k]}

Again atomic conditional branching is used to test node colours. If i is white,
it is a garbage cell and the central resource has 1 permission for it. In this case,
the variable reclaim is set to i inside the atomic sequence, which removes the
1 permission from the central resource and releases it to the collector. So, we
assert the permission in the post-condition of the atomic sequence. Next, the
node is added to the free list by a sequence of statements whose proof is shown
in Table 4.

On the other hand, if i is black, from the black invariant tested[i] is true and
the collector can assert its colour. This node is whitened, and the proof is also
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Table 4 Sweeping phase operations

Collect white node(i):

{sweepI(i) � i
1	−→ (_, _, w) ∧ i ≤ N ∧ reclaim = i)}

〈scanned[i] := false〉;
{sweepI(i + 1) � i

1	−→ (_, _, w) ∧ i ≤ N ∧ reclaim = i}
〈[i.left] := NIL〉; 〈[i.right] := NIL〉;
{sweepI(i + 1) � i

1	−→ (NIL, NIL, w) ∧ i ≤ N ∧ reclaim = i}
〈e := [ENDFREE.left]〉;
{sweepI(i + 1) � i

1	−→ (NIL, NIL, w) ∧ i ≤ N ∧ reclaim = i ∧ ENDFREE
ρ

↪−→ (e, NIL, _)}
〈[e.left] := i; reclaim := NIL〉;
{sweepI(i + 1) ∧ i ≤ N ∧ reclaim = NIL

∧ ENDFREE
ρ

↪−→ (e, NIL, _) ∧ e
ρ

↪−→ (i, NIL, _) ∧ i
ρ

↪−→ (NIL, NIL, _)}
〈[ENDFREE.left] := i〉;
{sweepI(i + 1) ∧ i ≤ N ∧ reclaim = NIL ∧ ENDFREE

ρ
↪−→ (i, NIL, _) ∧ i

ρ
↪−→ (NIL, NIL, _)}

{sweepI(i + 1) ∧ reclaim = NIL}
i := i+1
{sweepI(i) ∧ reclaim = NIL}

Whiten black node(i):

{sweepI(i) ∧ reclaim = NIL ∧ i ≤ N ∧ i.colour
ρ

↪−→ b}
〈[i.colour] := white; scanned[i] := false; tested[i] := false〉;
{sweepI(i + 1) ∧ reclaim = NIL ∧ i ≤ N}
i := i+1
{sweepI(i) ∧ reclaim = NIL}

shown in Table 4. If i is gray, which is somewhat of an unusual occurrence,
we set the scanned and tested flags to false, which immediately extends the
sweeping invariant to the node i.

In the sweeping phase, bwI is trivially true. From the black invariant, we
have that no black nodes are left at the end of sweeping, hence no black-to-
white edges either. This is the basis for the marking phase which repeats after.

6 Example proofs of operations

Tables 2, 3 and 4 show the proof outlines of the detailed operations of the
mutator and collector. Considerable reasoning is involved in proving that these
proof outlines are valid. We illustrate the reasoning by giving detailed proofs of
the operations addleft used in the mutator, and the “restart run on gray node”
action of the collector.

6.1 Addleft

Table 2 shows the proof outline for addleft, which constitutes the entire
operation of “modify left edge” and also used in “get new left edge” several
times. We prove the validity of this proof outline.
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The proof uses the auxiliary shared variable ladd. The purpose of this
variable is to ensure that the black-to-white invariant is maintained and there
is at most one black-to-white edge.

Proof The first proof segment to be proved, in the context of the resource
invariant RI, is RI � {P} 〈C〉 {Q} with

P ≡ ∃U, V : mutP(U, V) ∧ p
ρ

↪−→ (l, m, _) ∧ q ∈ (U ∪ V ∪ {NIL})
∧ ladd = NIL = radd

C ≡ ([p.left] := q; ladd := p)

Q ≡ ∃U, V : mutP(U, V) ∧ p
ρ

↪−→ (q, m, _) ∧ q ∈ (U ∪ V ∪ {NIL})
∧ radd = p ∧ radd = NIL

That means, we must prove {RI � P}C{RI � Q} using sequential Separation
Logic with permissions.

Note that mutP is a precise assertion whose domain includes all the nodes
reachable from ROOT except NIL and the head node of the free list. The sets
of these nodes are captured in the logical variable U and V respectively. The
node p must be included among these nodes. The assertion P has ρ permission
to the nodes in U ∪ V and RI has ρ permission to them. So, RI � P has F
permission. Thus, it is permissible for C to alter p.left.

We verify that RI is re-established in the post-condition.

– For the resource permission RP, note that the only node whose status is
changed is l, the initial left child of p, since the edge from p to l has been
removed.

– If l is reachable via some other path then the post-condition retains
the ρ permission for it as part of mutP(U, V). A read permission is left
with the resource invariant, as required.

– If l becomes unreachable then the post-condition has no permission for
l any more. The resource invariant is left with the F permission for l,
which is again as required because l has been moved to the unreachable
part of the heap (W).

– For the white invariant, if we are in the marking phase, we need that every
white reachable node is reachable via a propagation path. Since the edge
from p to l has been removed, we must consider the case where l is a
white node. (Outside the marking phase, this is not an issue and the white
invariant is automatically preserved.)

– If l continues to be reachable, say via another edge (h, l) then, by
bwI ∧ (ladd = NIL = radd) ∧ in_marking we infer that h is not black
in the initial state. It must be either gray or, if white, reachable via a
propagation path. Since h is not altered in the command, l continues to
be reachable via propagation path in the final state.

– If l ceases to be reachable in the final state then the white invariant is
not affected.



614 K. Kapoor et al.

– The gray invariant grayI is unaffected by the command.
– Since ladd = NIL = radd initially, inside the marking phase, bwI implies

there is no black-to-white edge or C-edge to a white node. In the post-state
there is a potential black-to-white edge, or C-edge, from p to q. However,
bwI is maintained because ladd has been set to p.

(Notice that, if l becomes unreachable, the node l silently moves in the
resource invariant from reachGraph into garbage. This means a permission
transfer: the mutator retains no permissions on it in the post-condition and the
resource invariant takes on F permission. This enables the collector to later
sweep this node into the free list.)

The next proof segment to be proved, in the context of the resource
invariant RI, is RI � {Q} 〈C′〉 {R} with

Q ≡ ∃U, V : mutP(U, V) ∧ p
ρ

↪−→ (q, m, _) ∧ q ∈ (U ∪ V ∪ {NIL})
∧ ladd = p ∧ radd = NIL

C′ ≡ (atleastgrey(q); ladd := NIL)

R ≡ ∃U, V : mutP(U, V) ∧ p
ρ

↪−→ (q, m, _) ∧ q ∈ (U ∪ V ∪ {NIL})
∧ ladd = NIL = radd

As before, RI � Q has F permission for node q, either by combining the
ρ and ρ permissions from the two conjuncts or using RI’s F. This gives the
command a 1 permission for the colour field of q in case tested[q] is false. If,
on the other hand, tested[q] is true, the node cannot be white (using the black
invariant) and, in this case, the ρ permission available in RI is enough for the
execution of atleastgrey.

The local post-condition R is easily established because ladd has been set to
NIL. Re-establishing the resource invariant requires a careful argument.

– The resource permission RP is unaffected by the command.
– The white invariant is preserved. If q is initially white and any propagation

path passed through q, then the path can be replaced by the suffix that just
begins at q, because q is gray in the final state.

– The gray invariant is affected if the node q was white before the greying
action, and happened to be scanned. However, by the white invariant, q
is reachable from a gray node g in the initial state, and hence by the gray
invariant, there is a gray unscanned node g′ �= q. The node g′ is unaffected
by the greying of q and so the gray invariant continues to hold in the final
state.

– As for the black-to-white invariant, the edge (p, q) in the initial state is a
potential black-to-white edge or a C-edge to a white node, since ladd = p.
Since it is the only edge of this kind, greying q and setting ladd = NIL
restores the invariant. ��

This proof of addleft is a key step in the correctness of the algorithm. It is in
fact surprising that the sequence of operations

[p.left] := q; atleastgrey(q);
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can possibly work because the first update operation potentially creates a
black-to-white edge from p to q and one would wonder if the collector
might reclaim q at this stage. It seems safer to use the opposite order of the
operations:

atleastgrey(q); [p.left] := q;

In fact, the early version of the DLMSS algorithm given in [10] had this
sequence of operations and most computer scientists seem to believe, at first
sight, that it is safe. However, it is faulty. Stenning and Woodger found an error
trace that showed that this version of the algorithm allowed reachable nodes
to be garbage collected, invalidating the original correctness proof.5

We argue that our approach of using Separation Logic with permissions
makes it almost impossible to commit such an error. In order for the greying
action to be useful, one must be able to assert that q is gray as a result of the
greying action:

atleastgrey(q);
{
mutI ∧ q.colour

p
↪−→ g

}
[p.left] := q;

However, as argued in Section 4.1, the mutator cannot have any permissions
for the colour fields of nodes. So, it is not possible to refer to the colour fields in
the local assertions of the mutator. The techniques of Concurrent Separation
Logic provide a formal framework to help one avoid such serious pitfalls in
reasoning.

6.2 Restart run

We look at the proof outline of the action “Restart run on gray node” carried
out by the collector when it encounters a gray node during the marking phase.
This is shown in Table 3.

Unlike the mutator, the collector has no direct permissions to the link fields
of nodes other than the tail of the free list. It has ρ permission to the colour
fields of tested nodes. All its actions are performed by borrowing permissions
from the resource in atomic operations.

Proof The first proof segment to be proved is RI � {P1} 〈C1〉 {P2} with

P1 ≡ markI(i) ∧ tested[i] ∧ i.colour
ρ

↪−→ g ∧ lgray = (NIL, NIL) = rgray
C1 ≡ (j := [i.left]; lgrays := i; lgrayt := j)

P2 ≡ markI(i) ∧ tested[i] ∧ i.colour
ρ

↪−→ g ∧lgray=(i, j) ∧ rgray=(NIL, NIL)

RI � markI(i) has at least a read permission for the link fields and, so, it is
permissible to read the left link of i. The local post condition P2 clearly holds
in the final state and the resource invariant is not affected.

5The reason that the seemingly unsafe order of operations above works correctly is very subtle.
The node q is a reachable node before assigning it as the left successor of p and, so, it has an
independent propagation path as per the white invariant.
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The second proof segment to be proved is RI � {P2} C2 {P3} with

C2 ≡ (atleastgrey(j); lgrayt := NIL)

P2 ≡ markI(i) ∧ tested[i] ∧ i.colour
ρ

↪−→ g ∧ lgray = (i, NIL)

∧ rgray = (NIL, NIL)

RI � markI(i) has 1 permission for the colour fields of reachable nodes and, so,
it is permissible to grey i. The local post-condition is immediate. So, it remains
to show that RI is re-established in the final state.

If l is the initial left successor of i (i.e., i.left ↪−→ l) then either l = j = lgrayt
or, if the mutator has modified the target of the edge, l �= j and (i, l) is a C-
edge. If l = j, the white invariant requires that all reachable nodes should
have a propagation path that does not pass through C-edges. The operation
atleastgrey(j) makes this possible. If there was a propagation path in the initial
state that passed through (i, j) then, in the final state, it can be replaced by the
suffix of the path beginning at j, since j is now gray. Hence the white invariant
is preserved. If, on the other hand, l �= j, then the white invariant is not affected
because propagation paths do not pass through the C-edge (i, l).

Since the node i is gray and remains unscanned, the gray invariant is
preserved. The black-to-white invariant is preserved because, even though a
new C-edge (i, j) is potentially created by C2, its target is non-white. If the left
successor of i is some other node l then (i, l) would have been a C-edge already
in the initial state, and would have satisfied the black-to-white invariant.

(We cannot assert after greying j that it is not white, since we can’t establish
that j is tested. In fact, j may not be the left successor of i any more. The
mutator may modify the left pointer after the greying, perhaps to a white
node, leading to ladd = lgrays = i holding. This is why the notion of C-edges
was introduced in [11]. The black-to-white invariant captures the maximum
information that can be assumed at this point.)

The proof for greying the right child is symmetric. So let us come to the
proof of the blackening step. We must show RI � {P5} 〈C5〉 {P6} with

P5 ≡ markI(i) ∧ tested[i] ∧ i.colour
ρ

↪−→ g ∧ lgray = (i, NIL) = rgray
C5 ≡ ([i.colour] := black; lgrays := NIL; rgrays := NIL;

for j := 0 to i-1 do scanned[j] := false od)

P6 ≡ markI(0) ∧ tested[i] ∧ i.colour
ρ

↪−→ b ∧ lgray = (NIL, NIL) = rgray

RI � markI(i) allows write access to i.colour, just as in the case of C2 above.
The local post-condition markI(0) holds in the final state because all the
scanned flags have been set to false. It remains to show that RI is re-
established.

Let l and r stand for the initial left and right successors of i respectively.
Since lgrays = i = rgrays, both (i, l) and (i, r) are C-edges in the initial state.
The black-to-white invariant says that there is at most one edge that is a black-
to-white edge or a C-edge to a white node and, further, the source of this
edge is one of ladd and radd. So, at most one of l and r is white and, if one
of them (say l) is white, then ladd = i. Since i is black in the final state, (i, l)
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has turned into a black-to-white edge with ladd = i, as allowed by the black-
to-white invariant. Setting lgrays and rgrays to NIL removes the C-edges, but
does not affect the black-to-white invariant. If both l and r are non-white, the
black-to-white invariant is preserved trivially.

The black invariant is preserved as tested[i] is true. The gray invariant holds
in the final state since all nodes are unscanned. (The nodes that have been
freshly greyed in this operation might have been previously scanned. So, those
scans are now obsolete and a fresh scan is warranted.) The white invariant is
preserved since no edges are changed or turned into C-edges in this step.

The last step of the operation is a straightforward assignment to a local
variable and does not affect the resource invariant. ��

7 Multiple Mutators

One advantage of using a modular proof method such as ours is that it
allows the components to be modified with relatively minor adaptations to the
correctness proof. To illustrate how this works, we consider the modification
of replacing the single mutator in our algorithm by multiple mutator processes
mutator1, . . . , mutatorn [18], which have identical program code in our abstract
treatment. Since our interest is in demonstrating how to adapt the proof, we
will assume that the mutators are independent, that is, they manipulate disjoint
data graphs, each of which is reachable from a distinct root node ROOTi.
However, the free list is unique. So, there is potential contention among the
mutators in acquiring new nodes from the free list. The procedure for acquiring
new nodes needs to be more elaborate to resolve the contention.

We first consider the issue of distributing permission resources across the
mutators. The total permissions used for the composition of the multiple
mutators are exactly the same as those used for the single mutator in the
original algorithm. But since the free list is unique, its “head” needs to be
shared by all the mutators. We envisage that the permission for the free
list head is deposited in a “local” shared resource, separate from the central
resource, so that each mutator can grab the permission to it in critical sections.
This leads to a scheme of permissions such as the following:

mutP(U, V)
def= (∃U1, . . . , Un : U = ⋃n

i=1 Ui ∧ ∏n
i=1 mutPi(Ui)) � LP(V, _, _)

mutPi(U)
def= reachGraphρ

i (U, {NIL})
Here, LP stands for the permissions deposited with the local resource and
mutPi stands for the permissions held by the i’th mutator. The predicate
reachGraphi denotes reachability from ROOTi.

For managing the shared access to the free list head, we use an additional
control variable called get with the possible values 0, 1, . . . , n. If the value is 0,
the permission to the free list head is deposited with the local resource. If it is
some i ∈ 1 . . . n, then the permission is deemed to be with the mutator i. Each
mutator follows a protocol whereby it waits until get = 0 and then atomically
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sets get to its own index i. To reason about the status of get in each mutator,
we need an auxiliary variable in each mutator, denoted acqi, to indicate that
the mutator i has acquired the permission for the free list head.

Hence, the local resource permission is defined by:

LP(V, f, g)
def= (∀i ∈ [1..n] : acqi ⇐⇒ get = i) ∧(

(get = 0 ∧ freeHeadρ( f, g, V)) ∨ (1 ≤ get ≤ n ∧ emp)
)

The central resource invariant remains essentially the same, except that it
has to account for the fact that each mutator can be adding edges to its data
graph. So we use a separate set of auxiliary variables laddi and raddi in each
mutatori for recording the node to which it is adding an edge, and modify the
black-to-white invariant as follows:

bwI(X)
def= in_marking =⇒

∀k, j ∈ X : (bwedge(k, j) ∨ Cwedge(k, j)) =⇒
∃i. (k = laddi ∧ k.left

ρ
↪−→ j)

∨(k = raddi ∧ k.right
ρ

↪−→ j)

We now have a parallel structure of n mutators, with the i’th mutator process

maintaining the invariant mutIi
def= ∃U : mutPi(U) ∧ laddi = NIL = raddi.

mutator
def=

var get: [0..n] updated by mutator1,. . . ,mutatorn;
auxvar acq1 : bool updated by mutator1;
. . .
auxvar acqn : bool updated by mutatorn;
get := 0; acq1 := false; . . . acqn := false;
resource l(get, acq1, . . . , acqn) in

{mutI1 � · · · � mutIn}
mutator1 || . . . || mutatorn

{ f alse � · · · � f alse}
where

mutIi
def= ∃U : mutPi(U) ∧ laddi = NIL = raddi

The definitions of the operations “modify left edge” and “modify right
edge” as well as their correctness proofs remain exactly the same as in the
single mutator case. For the operation “get new left edge,” we offer the
following algorithm shown in Table 5 along with the assertion annotations.
This is a coarse-grained solution for resolving the contention between the
mutators. A mutator busy-waits until the get flag turns 0 and grabs the free
list head by setting the flag to its own index. We use a simple version of the
atomic iterative command for this purpose (see Appendix A.1 for the full
syntax). Its proof rule (Appendix A.2) allows us to derive the local assertion
acqi from the exit condition which tests the shared variable get, and in fact
get is never mentioned in the local assertions of mutatori, satisfying the side
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Table 5 Get new left operation for mutator i in case of multiple mutators

get new left edge(k) in mutatori:
{mutIi ∧ ¬acqi}
{(¬acqi ∧ (mutIi � emp)) ∨ (acqi ∧ (mutIi � freeHeadρ(_, _, _)))}
atomic ¯do get = 0 ⇒ | get := i; acqi := true〉

�get /∈ {0, i} ⇒ | skip〉 od;
{acqi ∧ (mutIi � f reeHeadρ(_, _, _))}
〈f := [FREE.left]〉;
〈e := [ENDFREE.left]; avail := (f �= e)〉;
do f = e ⇒ 〈e := [ENDFREE.left]; avail := (f �= e)〉 od;
〈m := [f.left]〉;
addleft(k, f);
〈addleft(FREE, m); avail := false〉;
addleft(f, NIL);
{acqi ∧ (mutIi � f reeHeadρ(_, _, _))}
〈get := 0; acqi := false 〉
{mutIi ∧ ¬acqi}

conditions of the atomic iteration and the parallel composition with the other
mutators. Following Lamport [18], we note that this is only the second instance,
after that in atleastgrey, where an atomic command (after removal of auxiliary
variables) includes a test and set of a shared variable, and thus needs hardware
support.

At this point, the mutator has access to the free list head and the usual
procedure for detaching the first free node is used. By setting the get flag to
0 at the end, the free list head is returned to the local resource.

8 Conclusion

Separation Logic was initially conceived as a logic to conveniently reason
about spatial separation of program components. However, it is slowly emerg-
ing that the notion of separation can be stretched by inventing novel kinds
of components. O’Hearn [21] made the first break by treating resources and
critical sections as components through which shared data can be manipulated.
Still, critical sections represent a powerful barrier demarcating the separation
of components. In this work, we have made an attempt to break the barrier
by treating an example with fine-grained concurrency where race conditions
arise in a natural (albeit controlled) way. In work done concurrently with ours,
Parkinson et al. [25] make another attempt at breaking the barrier by treating
non-blocking algorithms.

The moral to be extracted from our exercise is that permissions play a crucial
role in reasoning about such fine-grained concurrent programs. The notion of
“separation of storage” gives way to one of “separation of permissions”. By
controlling the permissions held by the invariant via suitable control variables,
it becomes possible for processes to exchange permissions with the invariant
in a sophisticated manner.
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We found the exercise of proving this algorithm quite challenging. This is
not surprising, given the history of the challenges posed by this algorithm. We
have learnt much from the previous attempts to prove its correctness [11, 13],
but our methods in turn posed their own challenges. The main difference from
the proof of Gries is that our proof is based on global invariants, which is
more modular than the former but less flexible in the treatment of interference
between processes. Our proof extended to handle multiple mutators, as was
informally done by Lamport [18], without changing a single assertion inside the
collector process, a slight addition to the resource invariant and a modification
of the mutator code for interacting with the free list. Ours are the first global
invariant proofs (rather than ones using interference-freedom) of these two
concurrent garbage collection programs within a formal proof system.

In a recent development, Vafeiadis and Parkinson [33] have found a way to
combine Separation Logic and rely/guarantee reasoning (which is a modular
alternative to Owicki-Gries interference handling). This should pave the way
for using separation concepts along with reasoning about interference whereas,
in our approach, all sharing had to be mediated by the central resource.
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Appendix

A Review of Separation Logic

Separation Logic, formulated by Reynolds, O’Hearn and colleagues [30], is
a programming logic similar to Hoare Logic with the main difference being
that the assertions are written in a resource-sensitive logic that is tailored to
reasoning about heap storage.

A heap is taken to be a partial map from location addresses (L) to values
(V) with L ⊆ V. A partial operation � is defined on heaps by:

h1 � h2 =
{

h1 ∪ h2, if dom(h1) ∩ dom(h2) = ∅,

undefined, otherwise

Variables are assigned values using partial maps called stores from variables to
V. Assertions are then interpreted in contexts (s, h) consisting of a store and a
heap, as follows:

(s, h) |= P � Q ⇐⇒ ∃h1, h2. h = h1 � h2 ∧ (s, h1) |= P ∧ (s, h2) |= Q
(s, h) |= emp ⇐⇒ h is the empty heap

(s, h) |= P ∧ Q ⇐⇒ (s, h) |= P ∧ (s, h) |= Q
(s, h) |= true ⇐⇒ always

The idea is that, whenever h = h1 � h2, the heap h can be split into two disjoint
partitions h1 and h2, each of which can be operated upon independently by a
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concurrent process without interference with the other. An assertion of the
form P � Q allows this fact to be recorded at the level of assertions. Note
that � and emp are “modal” connectives (interpreting their subformulas in
contexts different from the current context), whereas ∧ and true are classical
connectives. Other classical connectives ∨, false, ⇒, ∀ and ∃ are also available
in a similar fashion. In addition, we use an iterated form of the � connective: if
X = {x1, . . . , xn} is a finite set, �i∈X P(i) means P(x1) � · · · � P(xn).

For our application, we need a version of Separation Logic with permis-
sions [4]. In this version, heaps are partial maps L ⇀ V × P, with P denoting
the set of permissions, where P is equipped with a partial cancellative com-
mutative semigroup structure whose operation is also denoted �. Now, h1 � h2
is defined iff (h1 � h2)(l) is defined for all l ∈ dom(h1) ∪ dom(h2) as per the
following rule:

(h1 � h2)(l)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(v, p1 � p2), if h1(l)=(v, p1), h2(l)=(v, p2) and
p1 � p2 is defined

(v, p1), if h1(l) = (v, p1) and h2(l) undefined
(v, p2), if h2(l) = (v, p2) and h1(l) undefined
undefined, otherwise

In our application, we use the permission algebra P = {ρ, ρ, 1} with ρ � ρ = 1.
Expressions occurring in Separation Logic formulas are normal mathemat-

ical expressions over the variable symbols that are assigned values in stores.
The valuation of an expression E in store s is denoted [[E]]s. Note that the
values of expressions do not depend on the heap. Normal atomic formulas are
likewise insensitive to heap. For example: All the other atomic formulas are
insensitive to the heap, for example

(s, h) |= E1 = E2 ⇐⇒ [[E1]]s = [[E2]]s

We only need one non-standard atomic formula E1
p	−→ E2 which is heap-

dependent. Its interpretation is:

(s, h) |= E1
p	−→ E2 ⇐⇒ dom(h) = {[[E1]]s} ∧ h([[E1]]s) = ([[E2]]s, p)

The notation E1
p

↪−→ E2, inherited from Reynolds [30], means (E1
p	−→ E2) �

true. Whereas E1
p	−→ E2 implies that the heap contains exactly one location

with the address E1, E1
p

↪−→ E2 implies that the heap contains at least one
location with address E1.

The definition of � on heaps induces a notion of a subheap

h1 ≤ h2 ⇐⇒ ∃h′ : h1 � h′ = h2

An assertion P is said to be precise if, whenever (s, h) |= P, there is no subheap
h′ ≤ h such that (s, h′) |= P. Examples of precise assertions include emp,
E1

p	−→ E2, P � Q whenever both P and Q are precise, and P ∧ Q whenever
either P or Q is precise. P ∨ Q is in general not precise. An assertion P is said
to be intuitionistic if, whenever (s, h) |= P, for all h′ ≥ h, (s, h′) |= P. Examples
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of intuitionistic assertions include true, E1
p

↪−→ E2, P � Q whenever P or Q
is intuitionistic, and P ∧ Q whenever both P and Q are intuitionistic. An
assertion P is said to be pure if it is heap-independent, i.e., (s, h) |= P implies
(s, h′) |= P for all heaps h′.

The programming logic of Separation Logic is similar to Hoare Logic except
that a “tight” interpretation of the specifications is employed. We use the nota-

tion (s, h)
C� (s′, h′) to mean that the execution of a command C can transform

an initial state (s, h) to the state (s′, h′). It is also possible for execution starting
from state (s, h) to lead to an error. This happens if C attempts to read or write
to a heap location that is not defined in h. A specification {P}C{Q} is valid iff,
for all stores s and heaps h such that (s, h) |= P:

1. (s, h)
C�� error, and

2. whenever (s, h)
C� (s′, h′), (s′, h′) |= Q.

This means that, starting from any state satisfying the pre-condition P, the
command C must execute without the possibility of error and, upon termina-
tion, result in a state satisfying Q. The precondition P must mention and assert
“ownership” of all the heap locations and their permissions required for the
command C to run. If that is not the case, then condition 1 of validity would be
violated.

In Concurrent Separation Logic, we deal with parallel execution of com-
mands. The parallel executions are interleaved respecting the atomic brack-
ets used inside the commands, and they access shared resources for which
suitable invariants are expected to be preserved. A specification r1(X1) :
R1, . . . , rn(Xn) : Rn � {P}C{Q} is valid if, starting in a state where the shared
resources r1, . . . , rn satisfy their respective invariants R1, . . . , Rn and the local
state satisfies P, any execution of the command C in parallel with an environ-
ment that preserves the resource invariants proceeds without giving an error
or a race condition and, if it terminates, ends in a final state where the shared
resources satisfy their respective invariants and the local state of the process
satisfies Q [7].

A.1 Programming Language Notation

The syntax of commands used in our programming notation is as follows:

C ::= x := E | x := [E] | [E] := E′ | 〈C〉
| skip | C1; . . . ; Cn | C1 ‖ C2
| if E1 ⇒ C1 � · · · � En ⇒ Cn fi
| do E1 ⇒ C1 � · · · � En ⇒ Cnod
| resource r(X) in C

The command x := E means the variable x should be modified (in the store) to
have the value of E, whereas x := [E] means that it should be modified to have
the contents of the heap location with address E. (Note that [E] is not regarded
as an “expression”, despite its appearance. This is because expressions in
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Separation Logic are required to be heap-independent.) The command [E] :=
E′ means the heap location with address E should be modified to have the
value of E′. Note that each basic command involves at most one read/write
operation on the heap memory.

The if and do commands represent the guarded command notations pop-
ularized by Dijkstra. The if command represents a nondeterministic choice
between alternatives depending on the conditions Ei (more than one of which
might hold). If Ei holds, execution can continue with the command Ci. If none
of the conditions holds, the command leads to an error. The do command is a
repeated iteration of the alternatives Ci, governed by the enabling conditions
Ei. If none of the Ei holds, the command terminates.

The resource command declares a resource r with protected variables X
for use within a command that presumably uses parallel composition. All the
variables listed in X must be used only inside atomic brackets in C.

We also use, by “syntactic sugar,” a more elaborate version of the condi-
tional command with atomic branching:

atomic 〈C0| if E1 ⇒ |B1〉; C1 � · · · � En ⇒ |Bn〉; Cn fi
def= begin var b : integer;

〈C0; if E1 ⇒ B1; b := 1 � · · · � En ⇒ Bn; b := n fi〉;
if b = 1 ⇒ C1 � · · · � b = n ⇒ Cn fi

end

where b is a fresh variable. Its semantics is that the initial setup command C0,
the conditional test Ei and the corresponding initial steps of the chosen branch
Bi are done atomically. After this, the command Ci is executed, but outside
the atomic section.

There is also a corresponding version of the do command with atomic
branching:

atomic 〈C′
0| do E1 ⇒ |B1〉; C1; 〈D1| � · · · � En ⇒ |Bn〉; Cn; 〈Dn| od

def= begin var b : integer;
〈C0; test〉;
do b = 1 ⇒ C1; 〈D1; test〉 � · · · � b = n ⇒ Cn; 〈Dn; test〉 od

end
where

test
def= if E1 ⇒ B1; b := 1 � · · · � En ⇒ Bn; b := n�

∧n
i=1 ¬Ei ⇒b := 0 fi

The first iteration of the loop is similar to atomic-if. The setup command C0
is executed atomically with the chosen test Ei and the corresponding Bi. For
subsequent iterations, the trailing command Di of the chosen branch in the
current iteration and the chosen test E j and the corresponding B j of the next
iteration are done atomically. If the Ci and Di are omitted, they are taken to
be skip.
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A.2 Proof Rules

Our programming language is a revised version of O’Hearn’s Concurrent
Separation Logic [21] adapted to the use of fine-grained concurrency and
extended to allow nested atomic sections and multiple resources. We borrow
the notation of Brookes [7] to formalize some of these aspects.6

A judgement in the logic is of the form � � {P}C{Q} with � being a resource
context of the form r1(X1) : R1, . . . , rn(Xn) : Rn, where ri are resource names,
Xi are lists of “protected” variables of the resources and Ri are their respective
resource invariants, satisfying the condition Xi ∩ X j = ∅ for i �= j. We use ��

to denote R1 � · · · � Rn. The free variables of � are FV(�) = X1 ∪ . . . ∪ Xn.
(The rules ensure that the free variables of the resource invariants are included
among these.)

If there is a single central resource with a resource invariant R, as it is in the
majority of this paper, we abbreviate the judgement to R � {P} C {Q}.

If P is a formula, the notation FV(P) denotes the set of free variables of
P. If C is a command, FV(C) denotes the set of variables that occur outside
atomic brackets in C. We also use the FV notation with multiple arguments,
e.g., FV(�, P, C, Q), in which case we mean the union of the individual sets of
free variables.

The structural rules of the logic are the following:

CONSEQ
P′ → P � � {P} C {Q} Q ⇒ Q′

� � {P′} C {Q′}

EXIST
� � {P} C {Q}

� � {∃x : P} C {∃x : Q} if x is not in FV(�, C)

SUBST
� � {P} C {Q}

� � {P[E/x]} C {Q[E/x]} if x is not in FV(C)

INV
� � {P} C {Q}

� � {P ∧ R} C {Q ∧ R}
if R is pure and C does
not modify any variable in
FV(R)

FRAME
� � {P} C {Q}

� � {P � R} C {Q � R}
if C does not modify any
variable in FV(R)

AUXILIARY
� � {P} C {Q}

� � {P} C \ X {Q}
if X is auxiliary for C and
X ∩ FV(P, Q) = ∅

6Brookes’s framework has subtle differences from that of O’Hearn. Our logic follows the O’Hearn
system despite the use of Brookes’s notation.
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A set of variables X is said to be auxiliary for C if every free occurrence of a
variable from X in C is in an assignment that only affects the variables in X.
The command C \ X is obtained by deleting all assignments to variables in X.

The proof rules for the sequential part of the programming language are
straightforward adaptations of the sequential Separation Logic [30]:

� � {x = m ∧ emp} x := E {x = E[m/x] ∧ emp}

� � {x = m ∧ E
p	−→ E′} x := [E] {x = E′ ∧ E[m/x] p	−→ E′}

if x not in
FV(E′)

� � {E
1	−→ _} [E] := E′ {E

1	−→ E′}

� � {P} skip {P}
� � {P} C1 {Q} � � {Q} C2 {R}

� � {P} C1; C2 {R}
P =⇒ E1 ∨ · · · ∨ En � � {P ∧ Ei} Ci {Q} (i = 1, . . . , n)

� � {P} if E1 ⇒ C1 � · · · � En ⇒ Cn fi {Q}
� � {P ∧ Ei} Ci {P} (i = 1, . . . , n)

� � {P} do E1 ⇒ C1 � · · · � En ⇒ Cn od {P ∧ (¬E1 ∧ · · · ∧ ¬En)}
Note that any permission p is enough to read a heap cell (at address E), but a
1 permission is needed to write to it.

The proof rules dealing with concurrent constructs are as follows:

RESOURCE
�, r(X) : R � {P} C {Q}

� � {R � P} resource r(X) in C {R � Q}
if R is precise and
FV(R) ⊆ FV(�) ∪ X

PAR
� � {P1} C1 {Q1} � � {P2} C2 {Q2}

� � {P1 � P2} C1 ‖ C2 {Q1 � Q2}
if Ci does not modify
variables in FV(Pj, Cj,

Q j) (for i �= j)

ATOMIC
� {P � (��)} C {Q � (��)}

� � {P} 〈C〉 {Q}
if no other process mo-
difies variables in FV
(P, Q)

The RESOURCE rule requires a resource invariant R to be extricated from
both the pre-condition and post-condition of the resource command which can
be used as part of the resource context for the body C. The rule ATOMIC
allows all the resource invariants in the context to be retrieved in the pre-
condition and post-condition of an atomic block. The side condition for the
rule, which is informally stated, requires that the local pre-condition and
post-condition should not have free variables that are modified by “other
processes”. It is possible to formalize the informal statement by using more
sophisticated judgements that track variables used in the assertions and com-
mands, but the simple rule should suffice for our purposes. It is worth noting
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that all the resources in the resource context are absorbed in an atomic
block. This is in contrast the conditional critical regions treated in [7, 21]
which absorb a single resource named in the critical region. Likewise, all the
protected variables of � can occur in the atomic block, but they cannot occur
in commands outside atomic blocks.

The following proof rules can be derived for the atomic-branching com-
mands from their sequential definition. Their side conditions are similar to
those of the ATOMIC rule above. Note that the atomic iteration allows a loop
invariant L.

� {P � (��)} C0 {P′ ∧ (E1 ∨ · · · ∨ En)}
� {P′ ∧ Ei} Bi {Qi � (��)} � � {Qi} Ci {R} (i = 1, . . . , n)

� � {P} atomic 〈C0| if E1 ⇒ |B1〉; C1 � · · · � En ⇒ |Bn〉; Cn fi {R}
� {P � (��)} C0 {L} L ∧ ¬E1 ∧ · · · ∧ ¬En =⇒ R � (��)

� {L∧Ei} Bi {Qi � (��)} � � {Qi} Ci {Ri} � {Ri � (��)} Di {L} (i=1, . . . ,n)

� � {P} atomic 〈C0| do E1 ⇒|B1〉; C1; 〈D1| � · · · � En ⇒|Bn〉; Cn;〈Dn| od {R}

B The Invariants Used in Proving the DLMSS Algorithm

The algorithm presented in [11] is a rather challenging concurrent program to
prove correct. We summarize the critical ideas used in the correctness proofs,
right from the 1970s [11, 13].

The black-to-white invariant (corresponding to P1, P3 and P3a in [11]) says
that there are no black-to-white edges in the graph (because all paths from
black nodes to white nodes are mediated by gray nodes). Unfortunately, this
invariant can be violated by the mutator actions “modify left edge(k, j)” and
“modify right edge(k, j).” If k and j are the addresses of a black node and
white node respectively, then the modification introduces a black-to-white
edge. Even though the algorithm greys the new target node in:

modify left edge(k, j): [k.left] := j; atleastgrey(j);

the invariant can still be falsified in between the two steps of this operation.
Hence it is necessary to weaken the invariant to say that there is at most one
black-to-white edge in the graph, and this can occur precisely when the mutator
is in the middle of such a modify operation.

Gries’s proof [13] makes do with this weaker version of the invariant
because of the way Owicki-Gries interference freedom works, but this version
is not actually a global invariant. So, Dijkstra et al. define a further variation.
They define a C-edge to be a gray-to-white edge which occurs in the marking
phase in the midst of greying the (original) children of a node. A C-edge can
turn into a black-to-white edge in the course of marking. The black-to-white
invariant above is now strengthened to say that there is at most one edge that
is either a black-to-white edge or a C-edge leading to a white node.
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The white invariant (corresponding to P2 of [11]) is a consequence of the
original black-to-white invariant which does not need to be weakened to
account for the mutator actions: every white node is reachable from a gray
node by a path consisting only of white nodes.

This pretty picture of the collector can be potentially spoiled by the mutator,
which can get and modify nodes, changing the data graph and the free list.
Hence it can violate the collector’s invariant. However, the trick mentioned
above of greying the target of every new edge created by the mutator is
adequate for ensuring that the mutator maintains the white invariant.

A gray invariant is also used in the proof of the marking phase: if there is a
gray node among those already processed by the collector during its run, then
(this gray node could only have been coloured gray by the mutator and because
of the white invariant it follows that) there is a gray node among those not
yet processed by the collector during its run. This gray invariant is preserved
by the marking actions of the collector. So the updates of the mutator and
the collector’s marking phase preserve the conjunction of the white and gray
invariants.

C Proving the Operations

We gather all the resource and local invariants into Table 6 for easy reference.

C.1 Mutator Getting a Node from the Free List

The proof of the get operation of the mutator, outlined in Table 7 is also
interesting, since a node has to be extricated while carefully avoiding tres-
passing on the free list except for the first free node, and the node must not
get detached from both the structures at any time. (The procedure addleft
is called with different preconditions/postconditions in different occurrences.
For instance, if n �∈ U in the precondition then, in the postcondition, we have
reachGraphρ(U, V ∪ {n}). These specifications should be easy for the reader
to reconstruct if needed.) Note that f reeHeadρ( f, g, V) means

FREE
ρ	−→ ( f, NIL, _) �

(
(¬avail ∧ f = g ∧ V = ∅ ∧ emp)

∨ (
avail ∧ f �= g ∧ f

ρ	−→ (g, NIL, _) ∧ V = { f }))

The freeHead could be either empty or a singleton list segment. Which it is
depends on whether the free list has any nodes other than the end node. The
auxiliary variable avail makes this information available to the mutator.

1. In the first step, the header node FREE is read using the read-complement
permission available for the freeHead.

2. After the second step, a busy wait, we are assured that f is distinct from
ENDFREE, and hence the free list is nonempty. The node f is now a free
node.
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Table 6 Resource and local invariants

RI
def= ∃U, V, W, X : RP(U, V, W) ∧ X = {NIL} ∪ U ∪ V ∧ [0..N] = X ∪ W ∧

whiteI(X) ∧ grayI(X) ∧ bwI(X) ∧ blackI

RP(U, V, W)
def=

cellF (NIL) � f reeListρFρ(V) � reachGraphρ(U, V ∪ {NIL}) � cellsF (W)

whiteI(X)
def= ∀i ∈ X : i.colour

ρ
↪−→ w =⇒

(in_marking =⇒ ∃ j : j ∈ X ∧ propath( j, i)) ∧
(¬in_marking =⇒ ¬scanned[i])

grayI(X)
def= in_marking =⇒ (∃i : i ∈ X ∧ i.colour

ρ
↪−→ g) =⇒

(∃ j : j ∈ [0..N] ∧ j.colour
ρ

↪−→ g ∧ ¬scanned[ j])
bwI(X)

def= in_marking =⇒
∀k, j ∈ X : (bwedge(k, j) ∨ Cwedge(k, j)) =⇒ (k = ladd ∧ k.left

ρ
↪−→ j) ∨

(k = radd ∧ k.right
ρ

↪−→ j)

blackI
def= (∀i ∈ [0..N] : i.colour

ρ
↪−→ b =⇒ tested[i]) ∧

(∀i ∈ [0..N] : tested[i] =⇒ i.colour
ρ

↪−→ g ∨ i.colour
ρ

↪−→ b)

mutI
def= ∃U, V0 : mutP(U, V0) ∧ ladd = NIL = radd ∧ ¬avail

mutP(U, V)
def= reachGraphρ(U, {NIL}) � f reeHeadρ(_, _, V)

colP
def= ∃e. ENDFREE

ρ	−→ (e,NIL, _) � listsegρ(e, NIL, _) � tested_colours

tested_colours
def= �k∈[0..N](¬tested[k] ∧ emp) ∨

(∃c : tested[k] ∧ k.colour
ρ	−→ c ∧ c ∈ {g, b})

colI
def= colP ∧ lgray = (NIL, NIL) = rgray ∧ reclaim = NIL

markI(i)
def= colI ∧ in_marking ∧ i ∈ [0..N + 1] ∧ ∀k ∈ [0..N] : (scanned[k] ⇐⇒ k < i)

sweepI(i)
def= colI ∧ ¬in_marking ∧ i ∈ [0..N + 1]∧

∀k ∈ [0..N] : (k < i =⇒ ¬scanned[k] ∧ ¬tested[k]) ∧ (k ≥ i =⇒ scanned[k])

3. In the third step, the node f is read.
4. In the fourth step, the node f is attached to the graph at the node k.

However, we are careful not to count the node f as part of the reachable
graph because it is still a part of the free list. The reachable graph and
the free list are required to be separate in our invariants. The predicate
reachGraph(U, { f, NIL}) spans all the cells reachable from ROOT except
for f and NIL.

5. Next the node f is detached from the free list by advancing the pointer
FREE.left. It becomes an integral part of the reachable graph (and, hence,
the set U). However, since the node f still points into the free list starting
at node m, the reachable graph must be blocked from encroaching into the
free list at node m.

6. Finally, f ’s left pointer is reset to NIL and the local invariant is reestab-
lished.

Note that the last three commands have to be ordered carefully. If they are
reordered, for instance, as:

addleft(FREE, m); addleft(k, f); addleft(f, NIL);
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Table 7 Mutator get operation

get new left edge(k):
{∃U : reachGraphρ(U, {NIL}) � f reeHeadρ(_, _,∅) ∧ k ∈ U ∧ ¬avail}
〈f := [FREE.left]〉;
{∃U : reachGraphρ(U, {NIL}) � f reeHeadρ( f, _,∅) ∧ k ∈ U ∧ ¬avail}
〈e := [ENDFREE.left]; avail := (f �= e)〉;
{∃U, V : reachGraphρ(U, {NIL}) � freeHeadρ( f, _, V) ∧ k ∈ U ∧ avail = ( f �= e)}
do f = e ⇒ 〈e := [ENDFREE.left]; avail := (f �= e)〉 od;
{∃U : reachGraphρ(U, {NIL}) � f reeHeadρ( f, _, { f }) ∧ k ∈ U ∧ avail}
〈m := [f.left]〉;
{∃U : reachGraphρ(U, {NIL}) � f reeHeadρ( f, m, { f }) ∧ k ∈ U ∧ avail}
addleft(k, f);
{∃U : reachGraphρ(U, { f, NIL}) � freeHeadρ( f, m, { f }) ∧ k ∈ U ∧ avail}
{∃U : reachGraphρ(U, { f, NIL}) � FREE

ρ	−→ ( f, NIL, _) � f
ρ	−→ (m, NIL, _) ∧ avail}

〈addleft(FREE, m); avail := false〉;
{∃U : (reachGraphρ(U, {m, NIL}) ∧ f

ρ
↪−→ (m, NIL, _)) � FREE

ρ	−→ (m, NIL, _) ∧ ¬avail}
{∃U : (reachGraphρ(U, {m, NIL}) ∧ f

ρ
↪−→ (m, NIL, _)) � freeHeadρ(m, _,∅) ∧ ¬avail}

addleft(f, NIL);
{∃U : reachGraphρ(U, {NIL}) � f reeHeadρ(_, _,∅) ∧ ¬avail}

then the node f is detached from the free list too early. It becomes a gar-
bage node and it is liable to be garbage collected in between the first two com-
mands. Our invariants prohibit this order. Recall that the resource permission
RP(U, V, W) specifies all the nodes outside U , V and {NIL} to be in W, and
the central resource has full permission for the nodes in W. So it is not possible
to satisfy the precondition for addleft(k, f) which requires ρ permission for f .

The first assertion to be proved is RI � {P0} C1 {P1} with

P0 ≡ ∃U : (reachGraphρ(U, {NIL}) ∧ k ∈ U) � f reeHeadρ(_, _, ∅) ∧ ¬avail
C1 ≡ f := [FREE.left];
P1 ≡ ∃U : (reachGraphρ(U, {NIL}) ∧ k ∈ U) � f reeHeadρ( f, _, ∅) ∧ ¬avail

This only requires read permission on the node pointed to by FREE. The
next assertion RI � {P1} 〈C2〉 {P2} with

C2 ≡ (e := [ENDFREE.left]; avail := ( f �= e))
P2 ≡ ∃U, V : (reachGraphρ(U, {NIL}) ∧ k ∈ U) � f reeHeadρ( f, _, V)

∧ avail = ( f �= e)

establishes the invariant for the loop that follows. Note that ENDFREE can be
read by borrowing such a permission from the resource invariant but since the
mutator has no permission on it, it cannot be mentioned in the assertion. Thus
the auxiliary avail, using the inequality of the local copies f and e, transfers
information from the central resource about whether there is a node available
for the mutator to obtain.

The next assertion RI � {P2} C3 {P3} with

C3 ≡ do f = e ⇒ 〈e := [ENDFREE.left]; avail := ( f �= e)〉od;
P3 ≡ ∃U : (reachGraphρ(U, {NIL}) ∧ k ∈ U) � freeHeadρ( f, _, { f }) ∧ avail
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is more interesting. The exit condition of the busy wait, f �= e, relates through
the auxiliary avail to the existence of a left successor for f and enables
freeHead to extend to it. Using the next RI � {P3} C4 {P4}, mutator gets a
local copy in m.

C4 ≡ m := [ f.left];
P4 ≡ ∃U : (reachGraphρ(U, {NIL}) ∧ k ∈ U) � freeHeadρ( f, m, { f }) ∧ avail

Now we have the sequence of three addleft commands mentioned above,
where mutator attaches the free node to k, and advances the head of the free
list to m (avail being reset to its old status), and the local variable f is cleaned
up.

C.2 Operations During the Collector’s Sweeping Phase

We illustrate the proof of the raison d’être of this program, the collect action in
Table 8. From the white invariant, we see that a white scanned node must be
in the unreachable garbage. The invariant has full permission on its links, and,
since tested[i] is false by the black invariant, the colour field as well. By setting
reclaim to i, the collector process extracts the full permission to the node i from
the resource invariant. This is represented in the pre-condition of the collect
action.

Table 8 Collect and other actions

Collect white node(i):

{sweepI(i) � i
1	−→ (_, _, w) ∧ i ≤ N ∧ reclaim = i)}

〈scanned[i] := false〉;
{sweepI(i + 1) � i

1	−→ (_, _, w) ∧ i ≤ N ∧ reclaim = i}
〈[i.left] := NIL〉; 〈[i.right] := NIL〉;
{sweepI(i + 1) � i

1	−→ (NIL, NIL, w) ∧ i ≤ N ∧ reclaim = i}
〈e := [ENDFREE.left]〉;
{sweepI(i + 1) � i

1	−→ (NIL, NIL, w) ∧ i ≤ N ∧ reclaim = i ∧ ENDFREE
ρ

↪−→ (e, NIL, _)}
〈[e.left] := i; reclaim := NIL〉;
{sweepI(i + 1) ∧ i ≤ N ∧ reclaim = NIL

∧ ENDFREE
ρ

↪−→ (e, NIL, _) ∧ e
ρ

↪−→ (i, NIL, _) ∧ i
ρ

↪−→ (NIL, NIL, _)}
〈[ENDFREE.left] := i〉;
{sweepI(i + 1) ∧ i ≤ N ∧ reclaim = NIL ∧ ENDFREE

ρ
↪−→ (i, NIL, _) ∧ i

ρ
↪−→ (NIL, NIL, _)}

{sweepI(i + 1) ∧ reclaim = NIL}
i := i+1
{sweepI(i) ∧ reclaim = NIL}

Whiten black node(i):

{sweepI(i) ∧ reclaim = NIL ∧ i ≤ N ∧ i.colour
ρ

↪−→ b}
〈[i.colour] := white; scanned[i] := false; tested[i] := false〉;
{sweepI(i + 1) ∧ reclaim = NIL ∧ i ≤ N}
i := i+1
{sweepI(i) ∧ reclaim = NIL}



Fine-grained Concurrency with Separation Logic 631

The action starts by setting the scanned flag of i to false, a necessary step
to preserve the white invariant before the node i is made accessible. Next, the
link fields of i are set to NIL using the 1 permission.

Since the collector has ρ permission for ENDFREE as well as the sentinel
node e of the free list, it is able to link in the node i as the successor to e.
This is done in the command 〈[e.left] := i; reclaim := NIL〉. Once the node i is
linked in, it becomes reachable from ENDFREE and, so, ρ permission should
be given to the resource invariant. Thus it is necessary to set reclaim to NIL.
The collector now retains only ρ permission for node i.

When the pointer ENDFREE is moved to i, the former sentinel node e
becomes part of the usable portion of the free list, and its ρ permission is
transferred to the resource invariant. The node i becomes the new sentinel
node. None of the resource invariants are affected by these actions.

The operations skip gray node and whiten black node are straightforward.
In both cases, we know that the node i must have been tested (as per the
black invariant) and, so, the collector has ρ permission to its colour field. By
combining with the resource invariant’s ρ permission, the collector is able to
change the colour field of a black node to white. The scanned flag is set to false
simultaneously in order to preserve the white invariant.

References

1. Andrews, G. R. (1991). Concurrent programming: Principles and practice. Menlo Park: Addi-
son Wesley.

2. Ashcroft, E. A. (1975). Proving assertions about parallel programs. Journal of Computer and
System Sciences, 10(1), 110–135.

3. Ben-Ari, M. (1984). Algorithms for on-the-fly garbage collection. ACM Transactions on Pro-
gramming Languages and Systems, 6(3), 333–344.

4. Bornat, R., Calcagno, C., O’Hearn, P. W., & Parkinson, M. (2005). Permission accounting in
separation logic. In Symposium on principles of programming languages (pp. 59–70). ACM
Press.

5. Boyland, J. (2003). Checking interference with fractional permissions. In R. Cousot (Ed.), Stat
ic anlysis: 10th intern. symp.. Springer lecture notes in computer science (Vol. 2694, pp. 55–72).
Springer.

6. Brinch Hansen, P. (1973). Operating system principles. Englewood Cliffs: Prentice-Hall.
7. Brookes, S. D. (2007). A semantics for concurrent separation logic. Theoretical Computer

Science, 375(1–3), 227–270.
8. de Roever, W.-P. (2001). Concurrency verif ication: Introduction to compositional and noncom-

positional methods. Cambdridge: Cambridge University Press.
9. Dijkstra, E. W. (1968). Cooperating sequential processes. In F. Genuys (Ed.), Programming

languages (pp. 43–112). New York: Academic Press.
10. Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S., & Steffens, E. F. M. (1975). On-the-

fly garbage collection: An exercise in cooperation. Technical Report EWD496B, University of
Texas.

11. Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S., & Steffens, E. F. M. (1978). On-
the-fly garbage collection: An exercise in cooperation. Communications of the ACM, 21(11),
966–975.

12. Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50, 1–102.
13. Gries, D. (1977). An exercise in proving parallel programs correct. Communications of the

ACM, 20(12), 921–930.



632 K. Kapoor et al.

14. Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communications of
the ACM, 12, 576–583.

15. Hoare, C. A. R. (1972). Towards a theory of parallel programming. In C. A. R. Hoare & R. H.
Perrott (Eds.), Operating systems techniques (pp. 61–71). Academic Press.

16. Hoare, C. A. R. (1974). Monitors: An operating system structuring concept. Communications
of the ACM, 17(10), 549–558.

17. Ishtiaq, S. S., & O’Hearn, P. W. (2001). BI as an assertion language for mutable data structures.
In Symposium on principles of programming languages (pp. 14–26).

18. Lamport, L. (1976). Garbage collection with multiple processes: An exercise in parallelism.
In Parallel processing (pp. 50–54).

19. Lamport, L. (1980). The “Hoare logic” of concurrent programs. Acta Informatica, 14, 21–37.
20. Prensa Nieto, L., & Esparza, J. (2000). Verifying single and multi-mutator garbage collectors

with Owicki/Gries in Isabelle/HOL. In M. Nielson & B. Rovan (Eds.), MFCS. Springer lecture
notes in computer science (Vol. 1893, pp. 619–628).

21. O’Hearn, P. W. (2007). Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1–3), 271–307.

22. O’Hearn, P. W., & Pym, D. J. (1999). The logic of bunched implications. Bulletin Symbolic
Logic, 5(2), 215–244.

23. Owicki, S., & Gries, D. (1976). Verifying properties of parallel programs: An axiomatic
approach. Communications of the ACM, 19(5), 279–285.

24. Owicki, S. S., & Gries, D. (1976). An axiomatic proof technique for parallel programs. Acta
Informatica, 6, 319–340.

25. Parkinson, M., Bornat, R., & O’Hearn, P. W. (2007). Modular verification of a non-blocking
stack. In Principles of programming languages (pp. 297–302). ACM.

26. Pratt, V. R. (1976). Semantical considerations on Floyd–Hoare logic. In Proc. 17th symp.
found. comp. sci. (pp. 109–121). IEEE.

27. Pym, D. J. (2002). The semantics and proof theory of the logic of the logic of bunched implica-
tions. Applied logic series (Vol. 26). Kluwer Academic Publishers.

28. Read, S. (1988). Relevant logic: A philosophical examination of inference. Basil Blackwell.
29. Reynolds, J. C. (2000). Intuitionistic reasoning about shared mutable data structure.

In J. Davis, B. Roscoe, & J. Woodcock (Eds.), Millennial perspectives in computer science.
Palgrave, Houndsmill, Hampshire.

30. Reynolds, J. C. (2002). Separation logic: A logic for shared mutable data structures. In LICS
(pp. 55–74).

31. Russinoff, D. M. (1994). A mechanically verified incremental garbage collector. Formal As-
pects Computing, 6(4), 359–390.

32. Torp-Smith, N., Birkedal, L., & Reynolds, J. C. (2008). Local reasoning about a copying
garbage collector. ACM Transactions on Programming Lamguages and Systems, 30(4), 1–58.

33. Vafeiadis, V., & Parkinson, M., (2007). A marriage of rely/guarantee and separation logic.
In CONCUR 2007. Springer lecture notes in computer science (Vol. 4703, pp. 256–271).


	Fine-grained Concurrency with Separation Logic
	Abstract
	Introduction
	Background
	Concurrent Separation Logic
	Treatment of Variables
	Access Permissions
	Permission transfer

	The DLMSS garbage collection algorithm
	Proving the DLMSS algorithm
	Augmented algorithm

	Storage, permissions and colours
	Distributing the permissions
	Colour properties and the resource invariant

	The proof
	The mutator process
	The collector process
	Marking phase
	Sweeping phase

	Example proofs of operations
	Addleft
	Restart run

	Multiple Mutators
	Conclusion
	Appendix
	A Review of Separation Logic
	A.1 Programming Language Notation
	A.2 Proof Rules

	B The Invariants Used in Proving the DLMSS Algorithm
	C Proving the Operations
	C.1 Mutator Getting a Node from the Free List
	C.2 Operations During the Collector's Sweeping Phase

	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


