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Abstract

We extend the language of the classical syllogisms with the sentence-
forms “At most 1 p is a q” and “More than 1 p is a q”. We show that
the resulting logic does not admit a finite set of syllogism-like rules whose
associated derivation relation is sound and complete, even when reductio

ad absurdum is allowed.

1 Introduction

By the classical syllogistic, we understand the set of English sentences of the
forms

No p is a q Some p is a q
Every p is a q Some p is not a q,

(1)

where p and q are common (count) nouns. By the extended classical syllogistic,
we understand the classical syllogistic together with the set of quasi-English
sentences of the forms

Every non-p is a q Some non-p is not a q. (2)

It is known that there exists a sound and complete proof system for the classical
syllogistic in the form of a finite set of syllogism-like proof-rules (Smiley, 1973,
Corcoran, 1972). Such a proof system also exists for the extended classical
syllogistic; moreover, in both cases, reductio ad absurdum—in other words, the
strategy of indirect proof—can be dispensed with (Pratt-Hartmann and Moss,
2009). The satisfiability problem for either of these languages is easily seen to
be NLogSpace-complete, by a routine reduction to (and from) the problem
2-SAT.

Both the classical syllogistic and its extended variant may be equivalently
reformulated using the numerical quantifiers “At most 0 . . . ” and “More than
0 . . . ”. The forms of the classical syllogistic thus become, respectively

At most 0 ps are qs More than 0 ps are qs
At most 0 ps are not qs More than 0 ps are not qs,

(3)
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while the additional forms of the extended classical syllogistic become

At most 0 non-ps are not qs More than 0 non-ps are not qs. (4)

These reformulations invite generalization. By the numerical syllogistic, we
understand the set of English sentences of the forms

At most i ps are qs More than i ps are qs
At most i ps are not qs More than i ps are not qs,

(5)

where p and q are common count nouns and i is a (decimal representation of
a) non-negative integer. By the extended numerical syllogistic, we understand
the numerical syllogistic together with the set of quasi-English sentences of the
forms

At most i non-ps are not qs More than i non-ps are not qs. (6)

In other words, the classical syllogistic is simply the fragment of the numerical
syllogistic in which all numbers are bounded by 0; and similarly for the ex-
tended variants. The first systematic investigation of the numerical syllogistic
known to the author is that of De Morgan (1847, Ch. VIII), though this work
was closely followed by treatments in Boole (1868) (reprinted as Boole, 1952,
Sec. IV), and Jevons (1871) (reprinted as Jevons, 1890, Part I, Sec. IV). For
a historical overview of this episode in logic, see Grattan-Guinness (2000). De
Morgan presented a list of what he took to be the valid numerical syllogisms;
and latter-day systems may be found in Hacker and Parry (1967) and Murphree
(1998). It can be shown, however, that there exists no sound and complete
syllogism-like proof system for the numerical syllogistic, even in the presence
of reductio ad absurdum; and similarly for the extended numerical syllogis-
tic (Pratt-Hartmann, 2009). In addition, the satisfiability problems for the
numerical syllogistic and the extended numerical syllogistic are both NPTime-
complete (Pratt-Hartmann, 2008).

Thus, the numerical syllogistic differs from the classical syllogistic in its
proof-theoretic and complexity-theoretic properties. The purpose of the present
paper is to locate the source of this difference more precisely. Specifically, we
consider the syllogistic with unity, which we take to consist of the classical
syllogistic together with the forms

At most 1 p is a q More than 1 p is a q
At most 1 p is not a q More than 1 p is not a q,

(7)

along with its extended variant, which additionally features the forms

At most 1 non-p is not a q More than 1 non-p is not a q. (8)

In other words, the syllogistic with unity is simply the fragment of the numerical
syllogistic in which all numbers are bounded by 1; and similarly for the extended
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variants. The syllogistic with unity gives rise to argument patterns having no
counterparts in the classical syllogistic. For example,

At most 1 o is a p
At most 1 o is not a p
At most 1 q is not an o
More than 1 q is not an r
At most 1 q is an r

(9)

is evidently a valid argument. For the first two premises ensure that there are
at most two os, whence the third premise ensures that there are at most three
qs; but the fourth premise states that at least two of these are not rs.

Syntactically speaking, the syllogistic with unity lies closer to the classi-
cal syllogistic than it does to the numerical syllogistic, because, like the for-
mer, but unlike the latter, it features only finitely many logical forms. This
fact notwithstanding, we show in the sequel that there exists no sound and
complete syllogism-like proof system for the syllogistic with unity, even in the
presence of reductio ad absurdum; and similarly for its extended variant. We
also observe that the satisfiability problem for either of these languages remains
NPTime-complete. Thus, the smallest conceivable extension of the classical
syllogistic by means of additional counting quantifiers yields the proof-theoretic
and complexity-theoretic properties of the entire numerical syllogistic. Gener-
alizing this result, we consider the family of languages obtained by restricting
the numerical syllogistic so that all numbers are bounded by z, where z is any
positive integer; and similarly for the extended numerical syllogistic. We show
that, for all these languages, there exists no sound and complete syllogism-like
proof system, even in the presence of reductio ad absurdum.

The syllogistic with unity exhibits some similarities with the intriguing logi-
cal system proposed by Hamilton (1860, pp. 249–317). According to Hamilton,
the predicates of traditional syllogistic sentence-forms contain implicit existen-
tial quantifiers, so that, for example, “All p is q” is to be understood as “All p
is some q”. Further, these implicit existential quantifiers can be meaningfully
dualized to yield novel sentence-forms, thus: “All p is all q.” (A similar language
was actually proposed in the earlier, but lesser-known Bentham, 1827). Hamil-
ton’s account of the meanings of these sentences is, it must be said, unclear.
However, a natural interpretation is obtained by taking the copula simply to
denote the relation of identity. Thus, for example, the sentence “All p is all q”
is formalized by ∀x(p(x) → ∀y(q(y) → x = y))—equivalently, either there are
no ps, or there are no qs, or there is exactly 1 p and exactly 1 q, and they are
identical (see, e.g. Fogelin, 1976). Under this interpretation, the pair of Hamil-
tonian sentences “All p are all p” and “Some p are some p” then states that
there exists exactly one p—something assertable in the syllogistic with unity.
In general, however, the two languages are expressively incomparable; in par-
ticular, the Hamiltonian syllogistic provides no means of stating that exactly
one p is a q (with p and q different). Moreover, they exhibit different proof-
theoretic properties: unlike the syllogistic with unity, Hamilton’s language does
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indeed have a sound and complete syllogistic proof-system, though some form
of indirect proof is essential (Pratt-Hartmann, 2011).

2 Syntax and semantics

Fix a countably infinite set P. We refer to any element of P as an atom. A
literal is an expression of either of the forms p or p̄, where p is an atom. A literal
which is an atom is called positive, otherwise, negative. If ℓ = p̄ is a negative
literal, then we denote by ℓ̄ the positive literal p. If z is a non-negative integer,
an Sz-formula is any expression of the forms

∃≤i(p, ℓ) ∃>i(p, ℓ), (10)

where p is an atom, ℓ is a literal and 0 ≤ i ≤ z. An S†
z -formula is any expression

of the forms
∃≤i(ℓ,m) ∃>i(ℓ,m), (11)

where ℓ and m are literals and 0 ≤ i ≤ z. We denote the set of Sz-formulas
simply by Sz , and similarly for S†

z . Where the language is clear from context,

we speak simply of formulas. Evidently: Sz ⊆ S†
z , Sz ⊆ Sz+1, and S†

z ⊆ S†
z+1.

We denote the union of all the languages Sz by N , and the union of all the
languages S†

z by N †.
A structure is a pair A = 〈A, {pA}p∈P〉, where A is a non-empty set, and

pA ⊆ A, for every p ∈ P. The set A is called the domain of A. We extend the
map p 7→ pA to negative literals by setting, for any atom p,

p̄A = A \ pA.

Intuitively, we may think of the elements of P as common count-nouns, such as
“pacifist”, “quaker”, “republican”, etc., and if a ∈ ℓA, we say that a satisfies ℓ
in A, and regard a as having the property denoted by ℓ. Thus, we may gloss any
negative literal p̄ as “non-p” or “not a p” depending on grammatical context.
If A is a structure, we write A |= ∃≤i(ℓ,m) if |ℓA ∩mA| ≤ i, and A |= ∃>i(ℓ,m)
if |ℓA ∩mA| > i. If A |= ϕ, we say that ϕ is true in the structure A. Thus, we
may gloss ∃≤i(ℓ,m) as “At most i ℓs are ms”, and ∃>i(ℓ,m) as “‘More than i ℓs
are m”. If i > 0, we write ∃=i(ℓ,m) as an abbreviation for the pair of formulas
{∃>(i−1)(ℓ,m), ∃≤i(ℓ,m)}. Where no confusion results, we occasionally treat
this pair as a single formula, which we may gloss as “Exactly i ℓs are ms.”

Evidently, the languages S0, S1 and N formalize the classical syllogistic,
the syllogistic with unity, and the numerical syllogistic, respectively; similarly,
S†
0 , S

†
1 and N † formalize their respective extended variants. Observe that the

above semantics render formulas symmetric in their arguments: for example,
A |= ∃≤i(ℓ,m) if and only if A |= ∃≤i(m, ℓ), and similarly for formulas featuring
the quantifiers ∃>i. Accordingly, we shall henceforth regard these arguments
as unordered: that is, we identify the formulas ∃≤i(ℓ,m) and ∃≤i(m, ℓ), and
similarly for ∃>i. This will help to reduce notational clutter in some of the
proofs.
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If Θ is a set of formulas, we write A |= Θ if, for all θ ∈ Θ, A |= θ. A formula
θ is satisfiable if there exists a structure A such that A |= θ; a set of formulas
Θ is satisfiable if there exists A such that A |= Θ. We call a formula of the
form ∃>i(p, p̄) an absurdity, and use ⊥ to denote, indifferently, any absurdity.
Evidently, ⊥ is unsatisfiable. If, for all structures A, A |= Θ implies A |= ψ, we
say that Θ entails ψ, and write Θ |= ψ. In the case where Θ = {θ}, we say that
θ entails ψ. Thus, for example, the entailment

{∃≤1(o, p), ∃≤1(o, p̄), ∃≤1(q, ō), ∃>1(q, r̄)} |= ∃≤1(q, r). (12)

formalizes the valid argument (9).
If ϕ = ∃≤i(ℓ,m), we write ϕ̄ to denote ∃>i(ℓ,m); and if ϕ = ∃>i(ℓ,m), we

write ϕ̄ to denote ∃≤i(ℓ,m). Thus, ¯̄ϕ = ϕ, and, in any structure A, A |= ϕ
if and only if A 6|= ϕ̄. Informally, we may regard ϕ̄ as the negation of ϕ. It
will sometimes be convenient to restrict attention to formulas featuring only a
limited selection of atoms. If P′ ⊆ P, and L is any of the languages Sz or S†

z ,
we denote the set of L-formulas ϕ involving only atoms in P′ by L(P′). Since
ϕ ∈ L(P′) evidently implies ϕ̄ ∈ L(P′), we may regard all these languages as
closed under negation. We call a subset Φ ⊆ L(P′) complete for L(P′) if, for
every ϕ ∈ L(P′), either ϕ ∈ Φ or ϕ̄ ∈ Φ; reference to L(P′) is suppressed if
clear from context.

Complete sets of formulas will play an important role in the sequel, and we
employ the following abbreviations to help define them. Where the language
(Sz or S†

z) is clear from context, and 0 ≤ i ≤ z, we write ∃∗≤i(ℓ,m) for the set
of formulas

{∃≤i(ℓ,m), . . . , ∃≤z(ℓ,m)},

and ∃∗>i(ℓ,m) for the set of formulas

{∃>0(ℓ,m), . . . , ∃>i(ℓ,m)}.

In addition, for 0 < i ≤ z, we write ∃∗=i(ℓ,m) for the set of formulas

{∃>0(ℓ,m), . . . , ∃>i−1(ℓ,m), ∃≤i(ℓ,m), . . . , ∃≤z(ℓ,m)}.

(Thus, in the languages S1 and S†
1 , ∃

∗
=1(ℓ,m) and ∃=1(ℓ,m) coincide.) It is

easy to see that, for any literals ℓ, m, any structure A, and any i (0 ≤ i ≤ z),
A |= ∃∗≤i(ℓ,m) if and only if A |= ∃≤i(ℓ,m); similarly, A |= ∃∗>i(ℓ,m) if and
only if A |= ∃>i(ℓ,m). In addition, for 0 < i ≤ z, A |= ∃∗=i(ℓ,m) if and only if
A |= ∃=i(ℓ,m); moreover, exactly one of A |= ∃∗

≤(i−1)(ℓ,m), A |= ∃∗=i(ℓ,m) or

A |= ∃∗>i(ℓ,m) holds.

As mentioned above, the satisfiability problems for S0 and S†
0—i.e. the clas-

sical syllogistic and the extended classical syllogistic—are both NLogSpace-
complete. We end this section with a contrasting result on the complexity of
satisfiability for Sz and S†

z , where z > 0.

Theorem 2.1. For all z > 0, the problem of determining the satisfiability of a
given set of Sz-formulas is NPTime-complete, and similarly for S†

z -formulas.
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Proof. Let Φ be any satisfiable set of S†
z -formulas; we claim that Φ has a model

over a domain of size at most (z + 1)|Φ|. Indeed, suppose A |= Φ. For any
formula ∃>i(ℓ,m), select (i + 1) elements satisfying ℓ and m. Let B be the set
of selected elements, and let B be the restriction of A to B. It is obvious that
B |= Φ, and |B| ≤ (z+1)|Φ|, proving the claim. Membership of the satisfiability
problem for S†

z in NPTime follows.
It remains to showNPTime-hardness of the satisfiability problem for S1. Let

T be the language consisting of S1 together with formulas of the forms ∃≤3(p, p),
where p is an atom. It is shown in Pratt-Hartmann (2008, Lemma 1) that the
satisfiability problem for T is NPTime-hard, using a straightforward reduction
of graph-3-colourability. We need only reduce the satisfiability problem for
T to that for S1. Let Φ be any set of T -formulas, then. For any formula
ϕ = ∃≤3(p, p), let o, o

′ be new atoms, and replace ϕ by the set of S1-formulas
{∃≤1(p, ō), ∃≤1(o, o

′), ∃≤1(o, ō
′)}. Let the resulting set of S1-formulas be

Ψ. Evidently, Ψ entails every formula of Φ; conversely, any structure A such
that A |= Φ can easily be expanded to a structure A′ such that A |= Ψ. This
completes the reduction.

We remark that, when considering the satisfiability problem for S†
z , the inte-

ger z is a constant: thus, there is only a fixed number of quantifiers ∃≤i or ∃>i, so
that we do not need to worry about the coding scheme (unary or binary) for the
numerical subscripts. By contrast, for the language N †, which features all these
quantifiers, the coding of numerical subscripts is a significant issue. That the
satisfiability problem for N † remains in NPTime—even when numerical sub-
scripts are coded as bit-strings—requires a clever combinatorial argument due
to Eisenbrand and Shmonin (2006); for details, see Pratt-Hartmann (2008).

3 Syllogistic proof systems

Let L be any of the languages Sz or S†
z (z ≥ 0). A syllogistic rule in L is a pair

Θ/θ, where Θ is a finite set (possibly empty) of L-formulas, and θ an L-formula.
We call Θ the antecedents of the rule, and θ its consequent. We generally display
rules in ‘natural-deduction’ style. For example,

∃≤0(q, ō) ∃>0(p, q)

∃>0(p, o)

∃≤0(q, o) ∃>0(p, q)

∃>0(p, ō)
, (13)

where p, q and o are atoms, are syllogistic rules in S0 (hence in all larger
languages); they correspond to the traditional syllogisms Darii and Ferio, re-
spectively:

Every q is an o
Some p is a q
Some p is an o

No q is an o
Some p is a q
Some p is not an o.
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We call a syllogistic rule sound if its antecedents entail its consequent. Thus, the
syllogistic rules (13) are sound. More generally, for all i, j, z (0 ≤ i ≤ j ≤ z),

∃≤i(q, ō) ∃>j(p, q)

∃>(j−i)(p, o)

∃≤i(q, o) ∃>j(p, q)

∃>(j−i)(p, ō)

are sound syllogistic rules in Sz (and again in all larger languages).
Let X be a set of syllogistic rules in L. A substitution is a function g : P →

P; we extend g to L-formulas and to sets of L-formulas in the obvious way.
An instance of a syllogistic rule Θ/θ is the syllogistic rule g(Θ)/g(θ), where
g is a substitution. Denote by P(L) the set of subsets of L. We define the
direct syllogistic derivation relation ⊢X to be the smallest relation on P(L) × L
satisfying:

1. if θ ∈ Θ, then Θ ⊢X θ;

2. if {θ1, . . . , θn}/θ is a syllogistic rule in X, g a substitution, Θ = Θ1 ∪ · · · ∪
Θn, and Θi ⊢X g(θi) for all i (1 ≤ i ≤ n), then Θ ⊢X g(θ).

Where the language L is clear from context, we omit reference to it; further,
we typically contract syllogistic rule to rule. Instances of the relation ⊢X can
always be established by derivations in the form of finite trees in the usual way.
For instance, the derivation

∃≤0(o, r)

∃≤0(q, ō) ∃>0(p, q)

∃>0(p, o)

∃>0(p, r̄)

establishes that, for any set of syllogistic rules X containing the rules (13),

{∃≤0(o, r), ∃≤0(q, ō), ∃>0(p, q)} ⊢X ∃>0(p, r̄).

In the sequel, we reason freely about derivations in order to establish properties
of derivation relations.

The derivation relation ⊢X is said to be sound if Θ ⊢X θ implies Θ |= θ,
and complete (for L) if Θ |= θ implies Θ ⊢X θ. (Of course, this use of the
word ‘complete’ is unrelated to the notion of a complete set of L(P′)-formulas
defined in Sec. 2.) Evidently, it is the existence of sound and complete derivation
relations that interest us, because they would yield convenient procedures for
discovering entailments such as (12). A set Θ of formulas is inconsistent (with
respect to ⊢X) if Θ ⊢X ⊥ for some absurdity ⊥; otherwise, consistent. It is
obvious that, for any set of rules X, ⊢X is sound if and only if every rule in X is
sound.

In the sequel, we will need to consider a stronger notion of syllogistic deriva-
tion, incorporating a form of indirect reasoning. Let L be one of the languages
considered above, and X a set of syllogistic rules in L. We define the indi-
rect syllogistic derivation relation X to be the smallest relation on P(L) × L
satisfying:

7



1. if θ ∈ Θ, then Θ X θ;

2. if {θ1, . . . , θn}/θ is a syllogistic rule in X, g a substitution, Θ = Θ1 ∪ · · · ∪
Θn, and Θi X g(θi) for all i (1 ≤ i ≤ n), then Θ X g(θ).

3. if Θ ∪ {θ} X ⊥, where ⊥ is any absurdity, then Θ X θ̄.

The only difference is the addition of the final clause, which allows us to derive
a formula θ̄ from premises Θ if we can derive an absurdity from Θ together with
θ. Instances of the indirect derivation relation X may also be established by
constructing derivations, except that we need a little more machinery to keep
track of premises. This may be done as follows. Suppose we have a derivation
(direct or indirect) showing that Θ ∪ {θ} X ⊥, for some absurdity ⊥. Let this
derivation be displayed as

θ1 · · · θn θ · · · θ....
⊥,

where θ1, . . . , θn is a list of formulas of Θ (not necessarily exhaustive, and with
repeats allowed). Applying Clause 3 of the definition of X, we have Θ X θ̄,
which we take to be established by the derivation

θ1 · · · θn [θ]1 · · · [θ]1
....
⊥
θ̄

(RAA)1.

The tag (RAA) stands for reductio ad absurdum; the square brackets indicate
that the enclosed instances of θ have been discharged, i.e. no longer count among
the premises; and the numerical indexing is simply to make the derivation his-
tory clear. Note that there is nothing to prevent θ from occurring among the
θ1, . . . , θn; that is to say, we do not have to discharge all (or indeed any) in-
stances of the premise θ if we do not want to.

The notions of soundness and completeness are defined for indirect derivation
relations in exactly the same way as for direct derivation relations. Again, it
should be obvious that, for any set of rules X, X is sound if and only if every
rule in X is sound. It is important to understand that reductio ad absurdum
cannot be formulated as a syllogistic rule in the technical sense defined here;
rather, it is part of the proof-theoretic machinery that converts any set of rules
X into the derivation relation X. It is shown in Pratt-Hartmann and Moss
(2009) that, for both the classical syllogistic, S0, and its extension S†

0 , there
exist finite sets of rules X such that the direct derivation relation ⊢X is sound
and complete. (That is: reductio ad absurdum is not needed.) However, the
same paper considers various extensions of the classical syllogistic for which
there are sound and complete indirect syllogistic derivation relations, but no
sound and complete direct ones. Thus, it is in general important to distinguish
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these two kinds of proof systems. We show below that neither Sz nor S†
z has

even a sound and complete indirect syllogistic proof system, for all z > 0.
We end this section with two simple results on syllogistic derivations.

Lemma 3.1. Let L be any of the languages Sz or S†
z (z ≥ 0), X a set of

syllogistic rules in L, and P′ a non-empty subset of P. Let θ ∈ L(P′) and
Θ ⊆ L(P′). If there is a derivation (direct or indirect) of θ from Θ using X,
then there is such a derivation involving only the atoms of P′. Further, if there
is a derivation of an absurdity from Θ, then there is a derivation of an absurdity
⊥ from Θ such that ⊥ ∈ L(P′).

Proof. Given a derivation of θ from Θ, uniformly replace any atom not in P′

with one that is. Similarly for the second statement.

Lemma 3.2. Let L be any of the languages Sz or S†
z (z ≥ 0), and X a set

of syllogistic rules in L. Let P′ ⊆ P be non-empty, and Ψ a complete set of
L(P′)-formulas. If Ψ X ⊥, then Ψ ⊢X ⊥.

Proof. Suppose that there is an indirect derivation of some absurdity ⊥ from Ψ,
using the rules X. By Lemma 3.1, we may assume all formulas involved are in
L(P′). Let the number of applications of (RAA) employed in this derivation be
k; and assume without loss of generality that ⊥ is chosen so that this number k
is minimal. If k > 0, consider the last application of (RAA) in this derivation,
which derives a formula, say, ψ̄, discharging a premise ψ. Then there is an
(indirect) derivation of some absurdity ⊥′ from Ψ ∪ {ψ}, employing fewer than
k applications of (RAA). By minimality of k, ψ 6∈ Ψ, and so, by the completeness
of Ψ, ψ̄ ∈ Ψ. But then we can replace our original derivation of ψ̄ with the trivial
derivation, so obtaining a derivation of ⊥ from Ψ with fewer than k applications
of (RAA), a contradiction. Therefore, k = 0, or, in other words, Ψ ⊢X ⊥.

4 No sound and complete syllogistic systems for

Sz or S†
z

In this section, we prove that none of the langauges Sz or S†
z (z > 0) has a

sound and complete indirect syllogistic proof system. The strategy we adopt is
identical to that employed in Pratt-Hartmann (2009) to obtain analogous results
for the langaugesN andN †. However, the specific construction required to cope
with the restriction to Sz and S†

z is new, and more involved.
To reduce clutter in the proof, we begin with the most interesting case:

z = 1.

Theorem 4.1. There is no finite set X of syllogistic rules in either S1 or S†
1

such that 
X

is sound and complete.

Proof. We first prove the result for S†
1 ; the result for S1 will then follow by an

easy adaptation. Henceforth, then, let X be a finite set of sound syllogistic rules
in S†

1 . We show that 
X

is not complete.
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Let n ≥ 4, and let Pn be a subset of P of cardinality 4n+ 2: we shall write
Pn = {p0, . . . , p2n−1, q0, . . . , q2n+1}. Now let Γn be the set of S†

1(P
n)-formulas

given in (14)–(34), which, for perspicuity, we divide into groups. (Recall that
the arguments of formulas are taken to be unordered.) The first group concerns
the literals pi only:

∃=1(pi, pi+1) (0 ≤ i ≤ 2n− 2) (14)

∃=1(pi, pi+3) (i even) ∧ (0 ≤ i ≤ 2n− 4) (15)

∃∗≤0(p0, p2n−1) (16)

∃∗>1(pi, pj) (0 ≤ i ≤ j ≤ 2n− 1) ∧ (j 6= i+ 1)∧ (17)

(i odd ∨ j 6= i+ 3) ∧ (i 6= 0 ∨ j 6= 2n− 1)

∃∗≤0(pi, p̄i) (0 ≤ i ≤ 2n− 1) (18)

∃∗>1(pi, p̄j) (0 ≤ i ≤ 2n− 1) ∧ (0 ≤ j ≤ 2n− 1) ∧ (i 6= j) (19)

∃∗>1(p̄i, p̄j) (0 ≤ i ≤ j ≤ 2n− 1). (20)

The second group concerns the literals qi only:

∃=1(qi, qi+1) (i even) ∧ (0 ≤ i ≤ 2n) (21)

∃∗>1(qi, qj) (0 ≤ i ≤ j ≤ 2n+ 1)∧ (22)

(i odd ∨ j 6= i+ 1)

∃∗≤0(qi, q̄i) (0 ≤ i ≤ 2n+ 1) (23)

∃∗>1(qi, q̄j) (0 ≤ i ≤ 2n+ 1) ∧ (0 ≤ j ≤ 2n+ 1) ∧ (i 6= j) (24)

∃∗>1(q̄i, q̄j) (0 ≤ i ≤ j ≤ 2n+ 1). (25)

The third group mixes the literals pi and qi:

∃=1(pi+1, qi) (i even) ∧ (0 ≤ i ≤ 2n− 2) (26)

∃=1(pi, qi+1) (0 ≤ i ≤ 2n− 1) (27)

∃=1(pi, qi+3) (i even ∧ 0 ≤ i ≤ 2n− 2) (28)

∃∗>1(pi, qj) (0 ≤ i ≤ 2n− 1) ∧ (0 ≤ j ≤ 2n+ 1) ∧ (j 6= i+ 1)∧ (29)

(i odd ∨ j 6= i+ 3) ∧ (j odd ∨ i 6= j + 1)

∃∗≤0(pi, q̄i) (0 ≤ i ≤ 2n− 1) (30)

∃∗≤0(pi, q̄i+2) (0 ≤ i ≤ 2n− 1) (31)

∃∗>1(pi, q̄j) (0 ≤ i ≤ 2n− 1) ∧ (0 ≤ j ≤ 2n+ 1) ∧ (j 6= i)∧ (32)

(j 6= i+ 2)

∃∗>1(p̄i, qj) (0 ≤ i ≤ 2n− 1) ∧ (0 ≤ j ≤ 2n+ 1) (33)

∃∗>1(p̄i, q̄j) (0 ≤ i ≤ 2n− 1) ∧ (0 ≤ j ≤ 2n+ 1) (34)

In fact, the formulas that will be doing most of the work here are (14), (16),
(21), (30) and (31). The others are required only to ensure that we have a
complete set of formulas.
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Claim 4.2. Γn is a complete set of S†
1(P

n)-formulas. On the other hand, Γn

contains no absurdities.

Proof. Consider first any formula of S†
1(P

n) whose arguments are {pi, pj} (0 ≤
i ≤ j ≤ n−1). Since the conditions on i and j in (14)–(17) are clearly exhaustive
(taking account of the fact that the arguments of formulas are unordered), we
see that Γn contains one of ∃≤0(pi, pj) or ∃>0(pi, pj), and one of ∃≤1(pi, pj) or
∃>1(pi, pj). The other argument-patterns are dealt with similarly. The second
part of the lemma is ensured by the condition (i 6= j) in the sets of formulas (19)
and (24).

Claim 4.3. Γn is unsatisfiable.

Proof. Suppose A |= Γn. From (14), let ah satisfy p2h and p2h+1 (0 ≤ h ≤
n−1). From (30) and (31), ah also satisfies q2h, q2h+1, q2h+2 and q2h+3. Hence,
from (21), we have a0 = a1 = · · · = an−1. But then this common element
satisfies p0 and p2n−1, contradicting (16).

We now proceed to define a collection of satisfiable variants of Γn
t . For all t

(1 ≤ t ≤ n− 2), let

Γn
t = (Γn \ {∃>0(p2t−1, p2t), ∃>0(p2t−2, p2t+1), ∃≤1(q2t, q2t+1)})∪

{∃≤0(p2t−1, p2t), ∃≤0(p2t−2, p2t+1), ∃>1(q2t, q2t+1)}.

Since Γn is complete, so is Γn
t . The difference between Γn and Γn

t that will be do-
ing most of the work here is that the latter set lacks the formula ∃≤1(q2t, q2t+1).
This disrupts the argument of Claim 4.3: the best we can now infer is that
a0 = a1 = · · · = at−1, and at = at+1 = · · · = an−1, so that there need be no
element satisfying both p0 and p2n−1.

Claim 4.4. If 1 ≤ t < t′ ≤ n− 2, then Γn
t ∩ Γn

t′ ⊆ Γn.

Proof. Straightforward check.

To show that Γn
t is satisfiable, we define a structure Bn

t as follows. The
domain ofBn

t consists of elements a, a′, bi,j, b
′
i,j , ci,j , c

′
i,j , di,j , d

′
i,j , e and e

′, with
indices subject to the conditions in the middle column of Table 1 (interpreted
conjunctively); the atoms satisfied by these elements in Bn

t are listed in the
right-most column of Table 1. Note that the elements e and e′ satisfy no atoms
at all. Roughly, the elements a and a′ ensure the truth of formulas in Γn

t of
the form ∃>0(ℓ,m) for which the corresponding ∃≤1(ℓ,m) is also in Γn

t (i.e. a
uniqueness claim), while the remaining elements ensure the truth of formulas in
Γn
t of the form ∃>1(ℓ,m). The main task in the proof of Claim 4.5 below is to

ensure that these latter elements do not spoil any uniqueness claims.

Claim 4.5. For all n ≥ 4 and all t (1 ≤ t ≤ n− 2), Bn
t |= Γn

t .

Proof. We consider the formulas (14)–(34) in turn, taking account of the differ-
ences between Γn and Γn

t as we encounter them.
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Element name index conditions atoms satisfied
a p0, . . . , p2t−1, q0, . . . , q2t+1,
a′ p2t, . . . , p2n−1, q2t, . . . , q2n+1,
bi,j , b

′
i,j (0 ≤ i ≤ j ≤ 2n− 1) pi, qi, qi+2, pj, qj , qj+2

(j 6= i+ 1)
(i odd ∨ j 6= i+ 3)
(i 6= 0 ∨ j 6= 2n− 1)

ci,j , c
′
i,j (0 ≤ i ≤ 2n− 1) pi, qi, qi+2, qj

(0 ≤ j ≤ 2n+ 1)
(j 6= i+ 1)
(i odd ∨ j 6= i+ 3)
(j odd ∨ i 6= j + 1)

di,j , d
′
i,j (0 ≤ i ≤ j ≤ 2n+ 1) qi, qj

(i odd ∨ j 6= i+ 1)
e, e′

Table 1: Definition of the model Bn
t : elements bi,j , b

′
i,j , ci,j , c

′
i,j , di,j and

d′i,j exist only for those pairs of indices i, j satisfying all the indicated index
conditions.

(14): For 0 ≤ i ≤ 2t− 2, a satisfies the atoms pi and pi+1, whereas a
′ does not;

for 2t ≤ i ≤ 2n − 2, a′ satisfies the atoms pi and pi+1, whereas a does
not; for i = 2t− 1, neither a nor a′ satisfies (both) these atoms, but then
Γn
t replaces ∃>0(p2t−1, p2t) by ∃≤0(p2t−1, p2t). It remains to check that

no other element satisfies these atoms. The only danger is from bi′,j′ and
b′i′,j′ , where i

′ = i and j′ = i + 1; but the condition j′ 6= i′ + 1 (middle
column of Table 1) rules this combination of indices out.

(15): Almost identical to the argument for (14).

(16): Almost identical to the argument for (14).

(17): The elements bi,j and bi′,j′ both satisfy the atoms pi and pj. Notice that
the conditions on the indices in (17) are matched by the relevant conditions
in the middle column of Table 1, so that all formulas are accounted for.

(18): Trivially satisfied.

(19): If i 6= j, then both ci,i and c′i,i, which exist for all i (0 ≤ i ≤ 2n − 1),
satisfy the literals pi, and p̄j .

(20): Both e and e′ satisfy the literals p̄i and p̄j.

(21): For 0 ≤ i ≤ 2t − 2, a satisfies the atoms qi and qi+1, whereas a
′ does

not; for 2t + 2 ≤ i ≤ 2n, a′ satisfies the atoms qi and qi+1, whereas a
does not; for i = 2t, both a and a′ satisfy (both) these atoms, but then
Γn
t replaces ∃≤1(q2t, q2t+1) by ∃>1(q2t, q2t+1). It remains to check that no
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other element satisfies these atoms. Considering the right-hand column
of Table 1, the only danger is from: (i) bi′,j′ and b′i′,j′ , where i

′ = i and
j′ = i + 1; (ii) bi′,j′ and b′i′,j′ , where i

′ + 2 = i and j′ = i + 1 (with i′

even); (iii) bi′,j′ and b′i′,j′ , where i
′ + 2 = i and j′ + 2 = i + 1; (iv) bi′,j′

and b′i′,j′ , where i
′ + 2 = i + 1 and j′ = i; (v) ci′,j′ and c

′
i′,j′ , where i

′ = i
and j′ = i + 1; (vi) ci′,j′ and c

′
i′,j′ , where i

′ + 2 = i and j′ = i + 1 (with
i′ even); (vii) ci′,j′ and c′i′,j′ , where j

′ = i and i′ = i + 1 (with j′ even);
(viii) ci′,j′ and c

′
i′,j′ , where i

′ + 2 = i + 1 and j′ = i; (ix) di′,j′ and d
′
i′,j′ ,

where i′ = i and j′ = i+ 1 (with i′ even). However, the conditions in the
middle column of Table 1 rule these combinations of indices out.

(22): The elements di,j and di′,j′ both satisfy the atoms qi and qj . Notice that
the conditions on the indices in (22) are matched by the relevant conditions
in the middle column of Table 1, so that all formulas are accounted for.

(23): Trivially satisfied.

(24): If i 6= j, then both di,i and d′i,i, which exist for all i (0 ≤ i ≤ 2n + 1),
satisfy the literals qi, and q̄j .

(25): Both o and o′ satisfy the literals q̄i and q̄j .

(26): For 0 ≤ i ≤ 2t− 2, a satisfies the atoms pi+1 and qi, whereas a
′ does not;

for 2t ≤ i ≤ 2n − 2, a′ satisfies the atoms pi+1 and qi, whereas a does
not. We check that no other element satisfies these atoms. Considering
the right-hand column of Table 1, the only danger is from: (i) bi′,j′ and
b′i′,j′ , where i

′ = i and j′ = i+ 1; (ii) bi′,j′ and b
′
i′,j′ , where i

′ + 2 = i and
j′ = i + 1 (with i′ even); (iii) ci′,j′ and c

′
i′,j′ , where i

′ = i + 1 and j′ = i
(with j′ even). However, the conditions in the middle column of Table 1
rule these combinations of indices out.

(27): For 0 ≤ i ≤ 2t− 1, a satisfies the atoms pi and qi+1, whereas a
′ does not;

for 2t ≤ i ≤ 2n − 1, a′ satisfies the atoms pi and qi+1, whereas a does
not. We check that no other element satisfies these atoms. Considering
the right-hand column of Table 1, the only danger is from: (i) bi′,j′ and
b′i′,j′ , where i

′ = i and j′ = i + 1; (ii) bi′,j′ and b
′
i′,j′ , where i

′ + 2 = i+ 1
and j′ = i; (iii) ci′,j′ and c′i′,j′ , where i

′ = i and j′ = i + 1. However,
the conditions in the middle column of Table 1 rule these combinations of
indices out.

(28): For 0 ≤ i ≤ 2t− 2, a satisfies the atoms pi and qi+3, whereas a
′ does not;

for 2t ≤ i ≤ 2n − 2, a′ satisfies the atoms pi and qi+3, whereas a does
not. We check that no other element satisfies these atoms. Considering
the right-hand column of Table 1, the only danger is from: (i) bi′,j′ and
b′i′,j′ , where i

′ = i and j′ = i+ 3 (with i′ even); (ii) bi′,j′ and b
′
i′,j′ , where

i′ = i and j′ + 2 = i + 3; (iii) ci′,j′ and c
′
i′,j′ , where i

′ = i and j′ = i + 3
(with i′ even). However, the conditions in the middle column of Table 1
rule these combinations of indices out.
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(29): The elements ci,j and ci′,j′ both satisfy the atoms pi and qj . Notice that
the conditions on the indices in (29) are matched by the relevant conditions
in the middle column of Table 1, so that all formulas are accounted for.

(30): It is readily checked that every element satisfying pi also satisfies qi.

(31): It is readily checked that every element satisfying pi also satisfies qi+2.

(32): The elements ci,i and c
′
i,i both satisfy the literals pi and q̄j , as long as j 6= i

and j 6= i+2. Note that these elements exist for all i (0 ≤ i ≤ 2n− 1), so
all the relevant formulas are accounted for.

(33): The elements dj,j and d′j,j both satisfy the literals p̄i and qj . Note that
these elements exist for all j (0 ≤ i ≤ 2n+1), so all the relevant formulas
are accounted for.

(25): Both e and e′ satisfy the literals p̄i and q̄j .

The key step in the proof is to show that, for any finite set of sound syllogistic
rules, we can make n sufficiently large that those rules cannot be used to infer
anything new from Γn. For suppose X is a finite set of sound rules in S†

1 . Let r
be the maximum number of premises in any rule in X, and let n ≥ r + 4.

Claim 4.6. If Γn ⊢X θ, then θ ∈ Γn.

Proof. Consider any derivation establishing that Γn ⊢X θ. By Lemma 3.1,
we may assume that that derivation features only atoms in Pn. We show by
induction on the number of steps (proof-rule instances) in the derivation that
θ ∈ Γn. If there are no steps, then θ ∈ Γn by definition. Otherwise, consider
the last proof rule instance, and let its antecedents be Θ. Thus, |Θ| ≤ n − 4;
moreover, since the elements of Θ have shorter derivations than θ, Θ ⊆ Γn, by
inductive hypothesis. Now consider the formulas

∃>0(p2h−1, p2h), ∃>0(p2h−2, p2h+1), ∃≤1(q2h, q2h+1),

where 1 ≤ h ≤ n − 2; and let us arrange these formulas on a rectangular grid,
thus:

h = 1 h = 2 · · · h = n− 2
∃>0(p1, p2) ∃>0(p3, p4) · · · ∃>0(p2n−5, p2n−4)
∃>0(p0, p3) ∃>0(p2, p5) · · · ∃>0(p2n−6, p2n−3)
∃≤1(q2, q3) ∃≤1(q4, q5) · · · ∃≤1(q2n−4, q2n−3)

Since |Θ| ≤ n−4, we can find two columns in this grid which do not intersect Θ:
in other words, there exist two values of h (1 ≤ h ≤ n−2) such that Θ ⊆ Γn

h. For
these values of h, Bn

h |= Θ by Claim 4.5, and hence Bn
h |= θ, by the supposed

soundness of the rules in X. By the completeness of Γn
h, θ ∈ Γn

h, whence θ ∈ Γn,
by Claim 4.4.
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We now complete the proof of the theorem. Pick any absurdity ⊥. By
Claim 4.2, ⊥ 6∈ Γn, and so, by Claim 4.6, Γn 6⊢X ⊥. By Lemma 3.2, Γn 6X ⊥.
Yet, Γn |= ⊥, by Claim 4.3. Thus, X is not complete, as required.

For S1, simply delete from Γn and Γn
t all formulas not in that language, and

define Bn
t as before. Since the formulas (14), (16), (21), (30) and (31) featuring

in the proof of Claim 4.3 are all in S1, and Γn and Γn
t also differ only in respect

of S1-formulas, the proof proceeds as for S†
1 .

Corollary 4.7. For all z ≥ 1, there is no finite set X of syllogistic rules in
either Sz or S†

z such that 
X

is sound and complete.

Proof. For z > 1, we make the following changes to the proof of Theorem 4.1.
(i) In the definition of Γn, all occurrences of ∃∗>1 are replaced by ∃∗>z; and all
occurrences of ∃=1 are replaced by ∃∗=1. (ii) The definition of Γn

t in terms of Γn

is unaffected, namely:

Γn
t = (Γn \ {∃>0(p2t−1, p2t), ∃>0(p2t−2, p2t+1), ∃≤1(q2t, q2t+1)})∪

{∃≤0(p2t−1, p2t), ∃≤0(p2t−2, p2t+1), ∃>1(q2t, q2t+1)}.

Thus, Γn
t contains (more precisely: includes) ∃∗≤0(p2t−1, p2t), ∃

∗
≤0(p2t−2, p2t+1)

and ∃∗=2(q2t, q2t+1). (iii) In the definition of Bn
t , instead of taking just two

elements, bi,j and b′i,j , we instead take (z + 1) elements, bi,j , b
′
i,j , . . . , b

′...′
i,j ; and

similarly with ci,j and di,j . The argument then proceeds exactly as for Theo-
rem 4.1.
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