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Abstract Adding a transparent truth predicate to a language completely governed
by classical logic is not possible. The trouble, as is well-known, comes from para-
doxes such as the Liar and Curry. Recently, Cobreros, Egré, Ripley and van Rooij
have put forward an approach based on a non-transitive notion of consequence which
is suitable to deal with semantic paradoxes while having a transparent truth predicate
together with classical logic. Nevertheless, there are some interesting issues concern-
ing the set of metainferences validated by this logic. In this paper, we show that this
logic, once it is adequately understood, is weaker than classical logic. Moreover, the
logic is in a way similar to the paraconsistent logic LP .

Keywords Transparent truth · Strict-tolerant logic · Semantic paradoxes ·
Transitivity · Substructural logic

1 Introduction

Adding a transparent truth predicate to a language completely governed by classical
logic is not possible. The trouble, as is well-known, comes from paradoxes such as
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the Liar and Curry. Because of these paradoxes, theories of truth typically use a non-
transparent truth predicate to preserve classical reasoning. Revisionary approaches to
logic take a different path. They deal with semantic paradoxes by weakening classical
logic. However, Curry’s paradox makes this task really complicated. Any (non-
substructural) logic featuring a conditional connective validating Modus Ponens and
other plausible rules together with a transparent truth predicate has to face Curry’s
paradox.

Non-classical approaches that contain a transparent truth predicate are usually
based in some way on Kripke’s work [13]. For example, theories of this kind can be
found in [19], [4] and [10]. Kripke’s construction starts from a classical model for a
first-order base language L1 without any truth predicate, and provides a way to gen-
erate a model for the language L+ that adds a transparent truth predicate T (x) to L.
Kripke uses three-valued models for L+ with the set {1, 1

2 , 0} of values, and employs
Kleene’s strong valuation schema. According to this schema, negation ¬ is defined
as 1 minus the value of the negated formula; conjunction ∧ is defined as the mini-
mum of the values of the conjuncts, and universal quantification ∀ as the minimum
of the values over all assignments that differ at most on the object they assign to the
variable bounded by the quantifier. It is easy to define disjunction ∨, material con-
ditional ⊃, material biconditional ≡ and the existential quantifier ∃ using the other
logical expressions.

We will assume that the language in question has enough resources to talk about
itself. For this purpose it seems convenient to use Ripley’s method in [22]. The idea
is to divide the individual constants into two sets: the ordinary names, which work
as the usual individual constants, receiving their denotation from each model, and
the distinguished names, which get their denotations independently. Basically, they
get interpreted by a one-to-one function τ from distinguished names onto formulas
of L+ such that in each model, the denotation of a distinguished name n is τ(n).
This is enough to get the usual self-referential paradoxical sentences. For instance,
given a distinguished name n1, we can let τ(n1) be ¬T n1, which is a Liar sentence.
Following the usual practice, for any sentence A in L+, we use the notation 〈A〉 for
the name of A.2

Now, it is not complicated to produce different strong Kleene models, with the
additional feature that the value assigned to a sentence of the form T 〈A〉 is always
the same as the value assigned to A itself, for every sentence A. These models are
usually called transparent.

It is well-known that the notion of logical consequence can be defined in differ-
ent ways in this setting. Usually, logical consequence is understood as absence of

1It will be useful to assume that L contains a falsity constant ⊥ and a truth constant �, in addition to the
usual connectives and quantifiers.
2To simplify things, our language lacks an identity predicate. Notice that because of the way in which
we handle self-reference (denotations are fixed through the models), identity is not really needed for that
purpose. In any case, as Ripley himself points out, a different approach could be used -such as employing
Peano arithmetic as our naming system or having a quote-name forming device in the language. The results
we reach below do not depend in any way on this issue, although the proofs might have been slightly
different.
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a countermodel. Classically, a countermodel of an argument from a set of formulas
� to a set of formulas � is a model that assigns 1 to every member of � and 0 to
every member of �.3 Nevertheless, there are multiple ways to tweak this notion in a
three-valued framework. Some of these ways result in relatively familiar logics: one
strategy, resulting in the logic K+

3 with transparent truth, is to take a countermodel
to be an interpretation that assigns 1 to every member of � and some value less than
1 to every member of �. Another way, resulting in the logic LP + with transparent
truth, is to take a countermodel to be an interpretation that assigns some value greater
than 0 to every member of � and 0 to every member of �.4 The problems with this
kind of views are well-known. The material conditional exhibits an odd behavior in
these logics: LP + does not validate Modus Ponens (A , A ⊃ B �LP + B), while K+

3
does not validate Identity (�K+

3
A ⊃ A). Both Field [10] and Beall [4] have worked

on supplementing such theories with a suitable conditional, one that both detaches,
validates Identity and validates all T-biconditionals. But Curry’s paradox makes this
task quite complicated: any (non-substructural) theory with a transparent truth pred-
icate cannot have a conditional connective validating, for example, Modus Ponens
and Contraction, or Modus Ponens and Conditional Proof. As a result, neither Beall’s
nor Field’s conditional seem entirely satisfactory.5

2 The Logic ST +

The non-transitive approach we will consider provides a different way of using
Kripke models to define a logic of truth. It characterizes validity in a way that makes
the introduction of an extra conditional unnecessary. The key is to use different stan-
dards for the premises and the conclusions in the definition of validity. Roughly, a set
of formulas � is a consequence of a set of formulas � if whenever all the premises
in � hold up to some standard, the members of � hold to some other standard.

In particular, to deal with semantic paradoxes (and also with the Sorites para-
dox), it is useful to focus on the three-valued strict-to-tolerant consequence relation
�ST + (see [6–9, 21] and [22]). Namely, strict-to-tolerant consequence goes from a
strictly true set of premises (that is, every premise takes the value 1) to a tolerantly
true set of conclusions (that is, at least one conclusion does not take value 0). More
formally:

3We will work in a multiple conclusions setting. Nothing important hangs on this, but the approach we
are going to consider below makes use of multiple conclusions, so working with them from the start will
simplify the discussion.
4We use the notation L+ to stress that the logic L already contains a transparent truth predicate, that is, a
predicate T (x) such that for any formula A and any valuation v, v(T 〈A〉) = v(A).
5There are also additional problems with these theories. For instance, the weakness of the conditional
produces complications with restricted quantifications (see [4]). Also, these theories cannot include a naive
notion of validity because of the Validity Paradox (see [5]). However, we will not address these issues here.
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Definition 1 (Strict-Tolerant consequence) We say that � is a strict-tolerant conse-
quence of � (i.e. � �ST + �) if and only if for every valuation v, if v(γ ) = 1 for every
γ ∈ �, then v(δ) > 0 for some δ ∈ �.

Hence, a countermodel of an argument from a set of premises � to a set of con-
clusions � is a model that assigns 1 to every member of � and 0 to every member of
� (just like a classical countermodel!).

Since we want to discuss a transparent truth predicate, the models of ST +, just
like those of K+

3 and LP +, respect the transparency requirement:

For every valuation v, v(T 〈A〉) = v(A)

A different way to compare ST + with K+
3 and LP + is as follows: in many-valued

logics, falsity and non-truth do not coincide. In K+
3 validity is based on strict-truth

preservation (or true-only preservation) and in LP + on tolerant-truth preservation
(or non-falsity preservation). K+

3 and LP + are different logics, because both sys-
tems have different designated values. The duality between K+

3 and LP + is such
that the relative merits one logic may claim over the other can usually be turned into
relative limitations. In ST + validity is no longer defined as the preservation of some
designated truth-value from premises to conclusions, but rather as a weakening of
standards when going from premises to conclusions.

It is easy to see that ST + is, in a sense, stronger than both K+
3 and LP +: any ST +-

countermodel is automatically both a K+
3 - and an LP +-countermodel, but there are

K+
3 - and LP +-countermodels that are not ST +-countermodels. According to [9],

p.841:

the key advantage of our approach, from which a number of other advantages
will follow, lies in its keeping to classical logic.

In fact considering its T -free fragment, ST + is exactly classical logic aug-
mented with quote-names. An argument from a set of premises � to a set
of conclusions � is ST +-valid if it is CL-valid (where CL stands for clas-
sical logic). So ST + captures classical validity. Moreover, ST + conservatively
extends CL: the only differences appear with arguments that involve the truth
predicate.

Theorem 1 (Conservativeness, [22]) For any �, � ⊆ L, � �ST � iff � �ST + �.

For the extended language, things change though. For example, λ ∧ ¬λ (where
λ is a Liar sentence) is a valid sentence of ST +, whereas in classical logic no
contradiction can be valid.

Moreover, the following stronger result holds in this approach:

Theorem 2 (Uniform substitution on L, [22]) If � �ST � and � ∪ � ⊆ L, then
�∗ �ST + �∗, where * is any uniform substitution (of open formulas for predicates,
avoiding bound variable conflict in the usual ways) on L+.
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This means that Excluded Middle, Explosion, Modus Ponens, and other classically
valid principles that have been given up by other approaches in the face of paradox
are valid in this framework. The first result ensures that these continue to hold where
T (x) is not involved, and the latter ensures that they extend to all cases where T (x)

is involved.
Nevertheless, in order to avoid triviality, ST + has to lose some traditional prop-

erties concerning what we will call ‘metainferences’. Metainferences are principles
about the consequence relation. It is important to be clear on the difference between
a valid argument and a metainference. A valid argument establishes a certain relation
between sets of formulas. A metainference is a closure property on the set of valid
arguments (see [22], p. 354). Clear cases of metainferences are the following, where
A, B and C are schematic formulas:

– if A � B, then � A ⊃ B (Conditional Proof)
– if A � B and B � C, then A � C (Transitivity)
– if A � B and C � B, then A ∨ C � B (Proof by Cases)

Not all metainferences usually associated with classical logic will hold in ST +.
First among these is transitivity. There are some wffs A, B and C such that A �ST + B

and B �ST + C, but A �ST + C. For example, consider a Liar sentence λ again. This
sentence has to take value 1

2 on every ST + model. Since ST + requires countermod-
els to go from 1 to 0, there is no ST +-countermodel of the argument from p to λ

(where p is any atomic formula); thus, p �ST + λ. In the same way, there is no ST +-
countermodel of the argument from λ to q (where q is another atomic formula); hence
λ �ST + q. However, it is easy to find an ST +-countermodel of the argument from p

to q; just assign 1 to p and 0 to q. Therefore, p �ST + q. So, �ST + is not transitive.
To be fair, let us note that it is precisely this sort of failures that allow ST + to avoid
the Liar paradox and Curry’s paradox, among other things.

The failure of transitivity implies -given the Deduction Theorem, which holds for
ST +- that the following version of Modus Ponens fails as well. Suppose we have
valid sentences of the form A and A ⊃ B. It does not follow that B is also a valid
sentence. An easy way to see this is by taking A to be λ and B to be ⊥.

A version of Modus Tollens fails too: even if ¬B and A ⊃ B were valid sentences,
it does not follow that ¬A is valid as well (take B as λ and A as �). Furthermore,
Explosion, Disjunctive Syllogism and certain versions of Reductio do not hold as
metainferences either.

Observe that all these metainferences are invalid LP + inferences. So there seems
to be a similarity between LP +’s inferences and ST +’s metainferences. However,
whereas LP +’s notion of validity is clear enough, the non-standard features of ST +’s
concept of validity make it hard to grasp exactly what this logic amounts to. Below
we will argue that the correct metainferences of ST + can be understood as the valid
inferences of LP +.

There is another interesting notion which is related to the concept of a metainfer-
ence. Informally, we say that an argument is externally valid relative to a theory T if
the result of adding the premises of the argument as axioms to T is enough to prove
as theorems the conclusions of the argument (we will provide a more rigorous defi-
nition below). For classical logic there is no difference between validity and external
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validity. Every valid argument is externally valid and viceversa. It turns out that for
substructural logics such as ST + these two notions no longer coincide. Although
every classically valid argument is ST +-valid, it is not the case that every classically
valid argument is externally valid according to ST +. Moreover, we will prove that
the set of externally valid ST +-arguments is exactly the set of LP +-valid arguments.

We will claim that these facts can be used to argue that ST + is similar to LP +
and, moreover, that the acknowledged weaknesses of LP + are in a way weaknesses
of ST + too.

The next three sections of the paper are structured as follows. In the next one
we prove that the set of valid ST +-metainferences is just the set of valid LP +-
inferences. So, there is a sense in which ST +’s notion of consequence is exactly
LP +. In Section 4 we introduce the notion of external logic and prove, using a
three-sided sequent calculus, that the external logic of ST + is just the logic of
LP +. Section 5 contains some additional conceptual considerations against ST + that
follow from the results of Sections 3 and 4.

3 LP + and ST +’s Metainferences

In this section, we will prove that there is a way in which the ‘logic’ of the metain-
ferences of ST + is just the logic LP +. As expected, the proof we will offer in this
section uses some new notions.

Definition 2 (Schematic formula) A schematic formula is a propositional formula
that, instead of propositional letters p, q, ... has schematic letters A, B, C....

For example, A ∧ B, A and A ⊃ (B ⊃ C) are schematic formulas.

Definition 3 (Replacement function) A replacement function is a function σ from
schematic formulas to formulas of L+ such that:

σ(φ)6 is an arbitrary formula of L+, when φ is an atomic schematic formula.
σ(φ)= σ(ψ) ∧ σ(ξ) when φ is a schematic formula ψ ∧ ξ .
σ(φ)= σ(ψ) ∨ σ(ξ) when φ is a schematic formula ψ ∨ ξ .
σ(φ)= ¬σ(ψ) when φ is a schematic formula ¬ψ .
Sometimes we will use the terminology σ(�), when � is a set of sentences. The

intended meaning is:
σ(�) = {σ(δ)|δ ∈ �}

Definition 4 (Metainference) We will say that a metainference is a sentence of the
following kind, where every formula ψi or δ ∈ �i is schematic:

6In the proof we use Greek letters to represent meta-schematic variables. We need meta-schematic letters
because the proof is about schematic formulas. For example, φ may represent A ∨ B; and A ∨ B may
represent (p ∧ q) ∨ (r ∧ s) under some replacement function.
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(For every uniform replacement of ψi and δ ∈ �i by formulas of the language) If
σ(�1) � σ(ψ1) and ... and σ(�n) � σ(ψk), then σ(�) � σ(ψ).7

This general meta-schema is meant to include all the examples we gave before.
For example, Conditional Proof becomes: (For every uniform replacement σ of A, B

by formulas of the language) if σ(A) � σ(B), then � σ(A ⊃ B).
It could be useful to clarify what a (schematic) metainference is not. For instance,

the claim ‘if p � q, then p � p ∨ q’, is not a metainference but an instance of a
metainference, because p and q are formulas belonging to the object language. A
metainference is a general claim to the effect that if certain kinds of inferences hold,
then another kind of inference holds as well. This explains why we use schematic
formulas.

We will argue that every ST + schematic metainference can be translated into an
LP + schematic inference using a conditional instead of a consequence symbol. More
precisely, the idea is the following (where t is a translation function):

Definition 5 If � � ψ is an ST + inference schema, its LP + translation t (� � ψ)

is defined as follows:
t (� � ψ) = ∧

� ⊃ ψ , and
t (� ψ) = ψ .

The result we are after can be stated as follows:

Theorem 3 (First Collapse Result) The following two sentences are equivalent:
(a) (For every uniform replacement σ of δ ∈ �i and ψi by formulas of the language)
if σ(�1) �ST + σ(ψ1) and ... and σ(�n) �ST + σ(ψn), then σ(�) �ST + σ(ψ).
(b) (For every uniform replacement σ of δ ∈ �i and ψi by formulas of the language),
σ(t (�1 � ψ1)), ..., σ(t (�n � ψn)) �LP + σ(t (� � ψ)).8,9

7To keep things as simple as possible, in this section we will not use multiple conclusions, and we will
assume that the sets �i are always finite. Nothing important hangs on this though.
8Notice that we need to quantify over uniform replacements in both sentences. If the quantifiers were to
range over the entire equivalence, the statement would be false. In other words, it is false that:
(For every uniform replacement σ of δ ∈ �i and ψi by formulas of the language), the following sentences
are equivalent:
(a) if σ(�1) �ST + σ(ψ1) and ... and σ(�n) �ST + σ(ψn), then σ(�) �ST + σ(ψ).
(b) σ (t (�1 � ψ1)), ..., σ(t (�n � ψn)) �LP + σ(t (� � ψ)).
Just as a counterexample, take
(a) A,A ⊃ B �LP + B, and
(b) if �ST + A and A �ST + B, then �ST + B.
Now replace A by p and B by q. So the first claim, ‘p, p ⊃ q �LP + q’, would be false, while the second
claim, ‘if �ST + p and p �ST + q, then �ST + q’, would be true, because its antecedent is false (p is not a
tautology in ST +).
9An anonymous referee has suggested the following counterexample:
(a) It is true that (for every replacement): if A �ST + B ∧ ¬B, then A �ST + C.
(b) But it is false that (for every replacement): A ⊃ (B ∧ ¬B) �LP + A ⊃ C.
However, this is not a counterexample to our theorem. Because while observation (b) is correct,
observation (a) is incorrect. In particular, p �ST + λ ∧ ¬λ, but p �ST + q.
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We will provide a proof of the (b) to (a) direction first. For that we need to prove
the following lemma:

Lemma 1 For every replacement function σ , if σ(�i) �ST + σ(ψi), then �LP +
σ(

∧
�i ⊃ ψi) (in other words, �LP + σ(t (�i � ψi))).

Proof Since Conditional Proof holds in ST +, if for every σ , σ(�i) �ST + σ(ψi),
then of course for every σ , �ST + σ(

∧
�i ⊃ ψi). And given that every valid ST +-

sentence is a valid LP +-sentence, we can obtain �LP + σ(
∧

�i ⊃ ψi).

Now we can proceed to prove the first part of Theorem 3.

Proof (From (b) to (a)) Assume that σ(�1) �ST + σ(ψ1) and ... and σ(�n) �ST +
σ(ψn). By Lemma 1, we obtain �LP + σ(t (�1 � ψ1) ∧ ... ∧ t (�n � ψn)). Therefore,
given (b), �LP + σ(t (� � ψ)). This step is justified because LP + has a transi-
tive consequence relation (unlike ST +).This means that �LP + σ(

∧
� ⊃ ψ). Since

every LP +-valid sentence is an ST +-valid sentence, �ST + σ(
∧

� ⊃ ψ). By the
Deduction Theorem, which holds in ST +, we can obtain σ(�) �ST + σ(ψ).

The (a) to (b) direction is a bit more complicated. We will need to prove a few
lemmata in the way.

Proof (From (a) to (b)) Let σ be a replacement of the schematic formu-
las δ ∈ � and ψi by formulas of the language L+ and v a valuation such
that:
v(σ (t (�1 � ψ1)))= 1 or 1

2 , ..., v(σ (t (�n � φn)))=1 or 1
2 , and

v(σ (t (� � ψ)))=0.
We want to prove that for some uniform replacement σ ′ of the schematic formulas

δ ∈ �i and ψi , the following obtains: σ ′(�1) �ST + σ ′(ψ1) and ... and σ ′(�n) �ST +
σ ′(ψn), but σ ′(�) �ST + σ ′(ψ).

Now we should define a function r that will help us to get the needed formulas
from the valuation v. The composed function r ◦ σ will be the function σ ′ we are
looking for.

Definition 6 The function r goes from formulas P of the object language L+ to
formulas of L+ and is such that:

– When P has the form Fa1...an or T (〈Q〉) or ∀xQ, then

– rv(P ) = ⊥ when v(P) = 0.
– rv(P ) = � when v(P) = 1.
– rv(P ) = λ when v(P) = 1

2 .
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– rv(P ∨ Q) = rv(P ) ∨ r(Q).
– rv(P ∧ Q) = rv(P ) ∧ r(Q).
– rv(¬P) = ¬rv(P ).

Now we can prove the following lemma:

Lemma 2 If v(P ) = 1
2 , then rv(P ) ≡ λ. If v(P ) = 1, then rv(P ) ≡ �. If v(P ) = 0,

then rv(P ) ≡ ⊥.

Proof By induction over complexity. If P has the form Fa1...an o T 〈A〉 or ∀xA,
then it is trivial.

If P has the form Q ∧ R, then:

– Suppose that v(Q ∧ R) = 1. Then v(Q) = v(R) = 1. Therefore by the induc-
tive hypothesis rv(Q) ≡ rv(R) ≡ �, so rv(Q ∧ R) = rv(Q) ∧ rv(R) ≡
�.

– Suppose that v(Q ∧ R) = 0. Then v(Q) = 0 or v(R) = 0. Suppose without
loss of generality that v(Q) = 0. By the inductive hypothesis, rv(Q) ≡ ⊥, so
rv(Q ∧ R) = rv(Q) ∧ rv(R) ≡ ⊥.

– Suppose that v(Q ∧ R) = 1
2 . Then v(Q) = v(R) = 1

2 , or v(Q) = 1
2 and

v(R) = 1, or v(Q) = 1 and v(R) ≡ 1
2 . In the first case, it follows that rv(Q) ≡

λ ≡ rv(R), so rv(Q ∧ R) ≡ λ. In the second case (without loss of generality),
it follows that rv(Q) ≡ λ and rv(R) ≡ �. So rv(Q ∧ R) = rv(Q) ∧ rv(R) ≡
(λ ∧ �) ≡ λ.

The remaining cases are similar.

Now we can show that:

Lemma 3 For every replacement function σ , if v(σ ((
∧

�i) ⊃ ψi)) = 0, then
rv(σ (�i)) �ST + rv(σ (ψi)).

Proof Assume that v(σ (
∧

�i ⊃ ψi)) = 0. Then for all δ ∈ �i , v(σ (δ)) = 1, and
v(σ (ψi)) = 0. By Lemma 2, this implies that r(σ (�i)) ≡ �, while r(σ (ψ)) ≡ ⊥.
Therefore, rv(σ (�)) �ST + rv(σ (ψ)), since all valuations will make the premises
true and the conclusion false.

On the other hand, we can prove:

Lemma 4 If v(σ (�i ⊃ ψi)) = 1 or 1
2 , then r(σ (�i)) �ST + rv(σ (ψi)).
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Proof CASE 1. Assume that v(σ (�i ⊃ ψi))= 1. Then v(σ (ψi)) = 1 or
v(σ (

∧
�i))= 0. If v(σ (ψi)) = 1, then by Lemma 2, rv(σ (ψi)) ≡ �.

Therefore rv(σ (�i)) �ST + rv(σ (ψi)). If v(σ (�i))= 0, then for some
δ ∈ �i , v(σ (δ)) = 0. So by Lemma 2, rv(σ (δ)) ≡ ⊥. Therefore
rv(σ (�i)) �ST + rv(σ (ψi)).

CASE 2. Assume that v(σ (
∧

�i ⊃ ψi))= 1
2 . Then:

2A. v(σ (
∧

�i)) = 1
2 and v(σ (ψi)) = 1

2 . By Lemma 2, this means that
rv(σ (ψi)) ≡ λ. Therefore, rv(σ (�i)) �ST + rv(σ (ψi)).
2B. v(σ (

∧
�i)) = 1 and v(σ (ψi)) = 1

2 .By Lemma 2, this means that
rv(σ (ψi)) ≡ λ. Therefore, rv(σ (�i)) �ST + rv(σ (ψi)).
2C. v(σ (

∧
�i)) = 1

2 and v(σ (ψi)) = 0. By Lemma 2, this means
that for some δ ∈ �i , rv(σ (δi)) ≡ λ. Therefore, rv(σ (�i)) �ST + rv
(σ (ψi)).

Now we can prove the main result. Suppose there is a replacement σ of the for-
mulas δ ∈ �i and ψi by formulas of the object language, and a valuation v such
that:
v(σ (t (�1 � ψ1))) = 1 or 1

2 , ... , v(σ (t (�n � ψk))) = 1 or 1
2 , and

v(σ (t (� � ψ))) = 0.
In other words, v(σ (

∧
�1 ⊃ ψ1)) = 1 or 1

2 , ... , v(σ (
∧

�n ⊃ ψn)) = 1 or 1
2 ,

and v(σ (
∧

� ⊃ ψ)) = 0.
Now take the function rv . By Lemma 4, rv(σ (�1)) �ST + rv(σ (ψ1)) and...

and rv(σ (�n)) �ST + rv(σ (ψn)). By Lemma 3, rv(σ (�)) �ST + rv(σ (ψ)). rv is
a uniform and recursive function, so the composition rv ◦ σ is also a uniform
replacement function. Therefore, there are some formulas that can be replaced for
δ ∈ �i and ψi that can be used as a counterexample for the metainference in
ST +.

An example can illustrate this point. Suppose we are analyzing the failure of tran-
sitivity in ST + and its relation to the LP + conditional. The conditional of LP + is
non-transitive. In other words, there are uniform replacements σ of A, B and C by
formulas of the language such that σ(A ⊃ B), σ (B ⊃ C) �LP + σ(A ⊃ C). For
example, when σ(A) = p, σ(B) = q ∨ w, σ(C) = s, we obtain a counterexample
to the transitivity of the conditional, since p ⊃ (q ∨ w), (q ∨ w) ⊃ s �LP + p ⊃ s.
This feature of LP + will correspond to the failure of transitivity in ST +. To see
this we take an LP + valuation v that witnesses this invalidity. Let v be a valua-
tion such that v(p) = 1 and v(s) = 0, and v(w) = 0, so necessarily v(q) = 1

2 .
Now r(p) = �, r(s) = ⊥, and r(q ∨ w) = (λ ∨ ⊥) ≡ λ. It is easy to see that
� �ST + λ ∨ ⊥, and λ ∨ ⊥ �ST + ⊥; however � � ⊥. In other words, there are
some uniform replacements σ of A, B and C by formulas of the language such that
σ(A) �ST + σ(B), σ(B) �ST + σ(C) but σ(A) �ST + σ(C). Therefore, the failure of
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transitivity for LP +’s conditional can be represented as the failure of transitivity for
ST +’s consequence relation.10

4 LP + and ST +’s External Logic

In this section we will set up a proof procedure for both ST + and LP +. Since these
logics use three-valued models, it turns out that the task of comparing them proof-
theoretically becomes much easier if they are presented by means of a three-sided
sequent calculus.11

The idea of a two-sided sequent calculus is familiar enough. An expression of
the form �|� means that the set of formulas � follows from the set of formulas �.
If there are only two truth values, it is straightforward to provide a semantic read-
ing for sequents of the form �|�. We say that �|� holds if some formula in � has
value 1 whenever all formulas in � have value 1. Equivalently, we can say that �|�
holds if either some formula in � has value 0 or some formula in � has value 1.
Three-sided sequents are of the form �|�|�. The semantic reading of this is a gen-
eralization of the semantic reading for the two-sided sequents (bearing in mind that
there is now a third semantic value 1

2 ). The sequent �|�|� holds if either some for-
mula in � has value 0 or some formula in � has value 1

2 or some formula in � has
value 1.12

Definition 7 (The system S) Let A and B be any formulas, C an atomic formula
and �, �, �, �′, �′, and �′ any sets of formulas such that � ⊆ �′, � ⊆ �′, and
� ⊆ �′. Also, for the ∀-rules, let t be any term, and a a variable not occurring in the
rule’s conclusion sequent. The proof system S has the following initial sequents and
rules:

10As an anonymous referee pointed out to us, a similar result applies to K+
3 . In particular, the First Collapse

Result would still hold after replacing LP + by K+
3 and ST + by T S+ (where T S+ is the tolerant-to-strict

consequence relation, dual to ST +).
11As far as we know, the first to give a precise formulation of multiple-sided sequents was G. Rousseau
in [23]. A more modern and complete presentation can be found in the work of Baaz and others (see for
example [3] and [2]) and in Paoli’s book [18].
12In the literature it is common to find an alternative reading of three-sided sequents in terms of negative
conjunctions. On that reading, �|�|� holds if it is not the case that: all members of � have value 1 and all
members of � have value 1

2 and all members of � have value 0. While for two-sided sequents these two
readings are equivalent, this is not necessarily so for three-sided sequents. In fact, in [22] Ripley offers two
proof procedures for ST +, one based on the disjunctive reading and the other on the negative conjunctive
reading. Although both systems characterize the same set of valid inferences, they are quite different in
many respects. In any case, we think that the disjunctive reading is less cumbersome, and that’s why we
use it in this section. However, by appropriately modifying the corresponding definitions, a version of the
result we obtain below can be proved for Ripley’s other system as well (unfortunately, substantiating this
claim would take too much space).
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A few remarks on the proof system are in order. First, in a two-sided sequent
calculus the rule of Cut can be taken to express an exclusivity constraint on the for-
mulas of the language. It tells us, roughly, that no formula can be true and false at the
same time. In a three-sided sequent calculus, like the one we are considering, the rule
of Cut also expresses an exclusivity constraint. But since there are now three truth-
values, it tells us that no formula can receive more than one of the three truth-values,
that is, no formula can be 1 and 1

2 , or 1
2 and 0, or 1 and 0. This is usually captured by

having three Cut rules in the system.13

However, the Cut rule above is simpler and it is equivalent to these three rules (see
[22] for a proof that it can be derived from the three rules; that the three rules are
derivable from it is easy to see).

But hold on! Wasn’t S supposed to be a Cut-free system? Not exactly, S has Cut.
This might be surprising, but it is as it should be. Even though Cut and transitivity
amount to the same thing in a two-sided sequent calculus, this is not the case for
three-sided sequents. In fact, it can be shown that Cut is not an admissible rule of
S.14 The sequent ∅|λ|∅ is provable using Cut but not without it (see again [22], Fact
4.2). Given that Cut is available in S, the reader might be curious as to how the Liar
paradox is blocked in this framework. With two-sided sequents, the absence of Cut
prevents us from inferring the empty sequent from ∅ ⇒ λ and λ ⇒ ∅. In S, the
Liar paradox is prevented because the sequent λ|∅|λ is not provable. If it were, an
application of Cut would deliver the empty sequent, since both λ|λ|∅ and ∅|λ|λ are
provable.

Second, the Reflexivity axioms are formulated only for atomic formulas, but later
on we will use the fact that they also hold for any formula. This is unproblematic. A
straightforward induction on complexity shows that if Reflexivity holds for atomic
formulas, it also holds for any formulas.

Third, there is an uninteresting difference between S and the system in [22].
Weakening is not officially a structural rule of the later system (rather it is built in).
However, to make the proof of Theorem 4.1 below more clear we add it explicitly to
the system S.

13These rules have the form:

14Interestingly, since S can be used to represent not only ST + but also K+
3 and LP + (all that changes is

the definition of validity, the structural and operational rules remain the same), Cut is not admissible for
K+

3 and LP + either. Cut does become admissible in the proof procedure based on the negative conjunctive
reading. Thanks to an anonymous referee for bringing up this issue.
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Fourth, we assume that �, �, � and so on, are finite sets of formu-
las. So every sequent of the form �|�|� can always be represented as
γ1, ..., γn|σ1, ..., σm|δ1, ..., δj .

Now we turn to the notion of proof-theoretic validity. The system is compatible
with several definitions of proof-theoretic validity. Since we want to compare ST +
with LP +, it will be useful to define what counts as a valid argument in these logics.

Definition 8 (Proof-theoretic validity for ST+) We say that an argument from the
set � to the set � is proof-theoretically-valid in ST+ (notationally, � �ST + �) if the
sequent �|�, �|� is provable in S.

Definition 9 (Proof-theoretic validity for LP+) We say that an argument from the set
� to the set � is proof-theoretically-valid in LP + (notationally, � �LP + �) if the
sequent �|�|� is provable in S.15

Observe that there is absolutely no difference regarding the rules and axioms of
ST + and LP +. The only difference between them has to do with the sort of sequent
that should be derivable for an argument to be proof-theoretically valid.

At this point we have what we need to introduce the notion of external validity.
Let’s fix a language L and a certain theory T formulated by means of a (two-sided)
sequent calculus SC. For a set � of L-formulas and a single L-formula A, we say that
� externally implies A in T whenever the sequent ∅|A is provable in the calculus
obtained from SC by adding as initial sequents all sequents ∅|γ, for γ ∈ �. This is
the notion of external validity for the theory T .16

The problem is that this notion of external logic is not applicable to the theory
ST + as we have presented it in this section. ST + was presented with the aid of
the system S which, on the one hand, works with multiple conclusions and, on the
other, has three-sided sequents. However, the problem can be easily solved by slightly
modifying the characterization given above. This can be done in the following way:

Definition 10 (External validity for ST+) We say that an argument from the set � to
the set � is externally valid in ST+ (notationally, � �ST +

E
�) if the sequent ∅|�|�

is provable from S together with ∅|γ |γ for every γ in � (i.e. from the system that
results from adding these as initial sequents to S).17

15Notice that we can also define proof-theoretic validity for K3 and other three-valued logics using the
system S. For K3 the definition would be straightforward. An argument from the set � to the set � is
proof-theoretically-valid in K+

3 (notationally, � �K+
3

�) if the sequent �|�|� is provable in S.
16A similar notion was introduced by Avron in [1] to study the properties of certain linear logics (the
only difference being that he considers multisets instead of sets). More recently, Mares and Paoli use this
notion in [15] to argue in favor of a substructural approach to paradoxes. Finally, Paoli has applied it more
specifically to determine the strength of the logic ST + when it is formulated using a two-sided sequent
calculus.
17Thanks to Francesco Paoli for this definition.
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The reason for defining external validity in this way is that the provable formulas
of ST + should be the formulas that receive in every model either the value 1 or the
value 1

2 . There is no difference between ST + and LP + regarding the set of formulas
each theory considers as valid. One immediate fact that follows from the previous
definition is that for formulas (but not for inferences, as we will shortly see), ST +’s
external logic is the same as its internal logic which, of course, contains all classically
valid formulas.

The previous definition is useful to compare �ST +
E

with �LP + in yet another way.
What the next theorem shows is that there is no real difference between �ST +

E
and

�LP + , a result analogous to the one reached in the previous section.

Theorem 4 (Second Collapse Result) � �ST +
E

� if and only if � �LP + �.

Proof sketch Let � be the set {γ1, ..., γn}. First we will prove the left-to-right direc-
tion. Assume that S together with the initial sequents ∅|γi |γi for 1 ≤ i ≤ n, proves
∅|�|�. Then there is a proof of ∅|�|� that only uses the rules and axioms of S
plus (possibly) the initial sequents ∅|γ1|γ1, ....,∅|γn|γn. This proof can be easily
transformed into an S-proof of γ1, ..., γn|�|� in the following way. First take each
sequent �′|�′|�′ in the proof and add γi on the left side of the sequent for each γi in
�, thus obtaining γ1, ..., γn, �

′|�′|�′. Now the bottom sequent is no longer ∅|�|�
but γ1, ..., γn|�|�, and it is clear that every step involving a connective rule is still
valid (as the reader can check for herself), since none of the rules of S for the con-
nectives becomes invalid by uniformly changing the context. This is also true in the
case of the ∀-rules, but we need to make sure to change variables so that clashes
are avoided. The resulting object may not be a proof of γ1, ..., γn|�|� because it
may have tips of the form γ1, ..., γn, A|A|A, or of the form γ1, ..., γn|γi |γi , which
are not initial sequents of S. However, given that the rule of Weakening is in S, we
can take those tips and extend them upwards reaching sequents which are in fact
initial sequents of S. Now the resulting object is indeed an S-proof of the sequent
γ1, ..., γn|�|�.

To prove the right-to-left direction assume that � �LP + �. Then there is an S-
proof of γ1, ..., γn|�|�. We can transform this proof into a proof of the sequent
∅|�|� from S together with the initial sequents ∅|γ1|γ1, ....,∅|γn|γn. The idea is
to cut the γi’s in � one by one. For γ1 we do the following:

Once we have the sequent γ2, ..., γn|�|�, the same can be done for γ2:

It should be clear that this procedure can be performed on each γi . The final part
of the proof looks like this.
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This completes the proof.

So, again, it turns out that ST +’s external logic, this time spelled out proof-
theoretically, just amounts to the logic of LP +.

There is a sense in which this result comes as no surprise. If the notion of external
validity is exactly the same for LP + and ST +, then it immediately follows that
ST +’s external logic is just LP +, given that for non-substructural logics such as the
ones we have been considering, external validity and internal validity amount to the
same thing. In other words, it could be argued that the notion of external validity we
introduced is tailored-made to be LP +-validity.

However, we believe this claim is incorrect. While it is true that in principle there
are other options for defining external validity for ST +, none of them seem adequate.
In particular, we could consider the following three alternative characterizations of
external validity:

1. � �ST +
E

� if and only if the sequent ∅|∅|� is provable from S together with
∅|∅|γ for each γ in �; or

2. � �ST +
E

� if and only if the sequent ∅|∅|� is provable from S together with
∅|γ |γ for each γ in �; or

3. � �ST +
E

� if and only if the sequent ∅|�|� is provable from S together with
∅|∅|γ for each γ in �.

In the first case, �ST +
E

is just K+
3 -validity, and in the second case, �ST +

E
is just

T S+-validity.18 The third case is more interesting. It can be proved that �ST +
E

is

just ST +-validity, that is, ST +’s external notion of validity would coincide with its
internal notion of validity, a point that, we think, would be welcome by advocates
of ST +. The proofs of these facts are straightforward modifications of the proof of
theorem 4.1.

Nevertheless, we think that none of these alternative characterizations of external
validity are adequate for ST +. The reason is that they do not capture what it is for
a formula to be valid in ST +. Recall that the notion of external validity works with
formulas, not with arguments, and the valid formulas of ST + are simply the ones that
have a value greater than 0 in every model.

The characterization we favor, on the other hand, captures this feature. More
specifically, it rests on a natural generalization of the notion of external validity for
two-sided sequents plus the fact that valid ST +-formulas can take either the value 1
or the value 1

2 . Furthermore, there is independent evidence that we are getting things
right. As we have seen, the logic of the metainferences of ST + is also the logic LP +.

18We say that � �T S+ � if and only if �|∅|� is provable in S.
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5 The Costs of Losing Transitivity

It seems prima facie desirable that anything claimed in the internal logic, should also
be claimed in the “external” logic (whatever this external notion amounts to). The
results of the previous sections seem to show that supporters of the non-transitive
view do not care about this desideratum. In ST + the internal and the external notions
of consequence are not the same. Either if we understand ‘external’ in the sense of
the previous section (i.e. as ‘proof-theoretic external validity’) or if we understand
it in the sense of section 3 (i.e. in terms of metainferences), ST +’s external logic is
weaker than its internal logic. In [9], the authors claim that Leitgeb’s desiderata in
[14] concerning theories of truth are satisfied. They say (p. 864) that

The argument that they cannot be jointly satisfied turns crucially on the assump-
tion of transitivity, but transitivity is not among the eight desiderata, nor does it
follow from them.

Of course, they are right, but it seems that when dealing with substructural theories,
the utopic theory of truth envisioned by Leitgeb should include an extra requirement,
namely that its internal and external logics coincide. From the arguments of the pre-
vious two sections is seem clear that this new desideratum is not satisfied by ST +.
Whether failing to fulfill this requirement is more costly than failing to fulfill the
others is a matter that we will not settle here.

Now, it might argued that the lack of coincidence between the internal and the
external consequence relations is not something the ST + theorist would be bothered
by.

She could claim that the agreement between the external and the internal logic
is just a classical desideratum (like, for example, the rule of Explosion). But it is
important to see that it is not necessarily so. For not only classical logic, but also some
non-classical systems such as intuitionistic logic, K3, and LP fulfill this constraint as
well. It is not a matter of classical vs. non-classical, but of structural vs. substructural,
and as we know, most non-classical approaches in philosophical logic are structural.

There are many reasons why this desideratum is usually taken into account. For
one thing, supporting a logic in which the external and the internal points of view do
not coincide seems to be at least inconvenient, because the question ‘which logic do
you support?’ has now an ambiguous answer. Moreover, it brings up the issue of the
universality of logic: the question ‘which logic does it right?’ cannot have only one
right response anymore. Of course, a pluralist view about logic could be put forward
to deal with this difficulty. In fact, a quite elaborate response has been developed by
Mares and Paoli [15], who argue that classical logic is an ambiguous logic: it not only
fails to take into account the distinction between intensional and extensional connec-
tives, but also the distinction between external and internal consequence. According
to them, as a result of this ambiguity, semantic paradoxes are nothing more than fal-
lacies of equivocation. However, although this sort of response seems to go well with
an approach were the rules of Structural Contraction and Structural Weakening do
not hold in general, it is hard to see how it can be adapted for a Cut-free approach.

Still, as an anonymous referee suggested to us, the ST + theorist might be skeptical
about the importance of this problem for her main project, which is giving a theory
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of truth. But we want to stress that the external validity relation is as a matter of
fact very relevant for the theory of truth. Therefore, the problem is not just with the
disagreement between the external and the internal consequence relations, but with
the weakness of the external notion (which we proved to be equivalent to LP +).

It is usually acknowledged that one of the roles (if not the only role) fulfilled by
the truth predicate is that of allowing the expression of certain kinds of generaliza-
tions that would otherwise be inexpressible. And we not only want to express such
generalizations, but we also want to have a theory powerful enough to reason with
them.

For example, sometimes we would like to endorse everything someone said even
if we do not know exactly what she said, and on some occassions we would like to
endorse a theory that has infinitely many theorems. In such cases, we usually appeal
to truth generalizations, which have this form:

∀x(φ(x) → T r(x))

(φ(x) might mean ‘x is a theorem of arithmetic’, ‘the Pope said x’, etc.)
But these generalizations can be effective just when the following inference is

valid:

∀x(φ(x) → T r(x)), φ〈ψ〉 � ψ.

Given the failure of Modus Ponens in LP +, it does not validate this inference.
Therefore, we can say that LP + cannot represent one of the main features of the
truth predicate.19 Given what we have proved in the previous sections, an analogous
difficulty affects ST +. The reason is that the failure of Meta Modus Ponens yields
statements such that

�ST + ∀x(φ(x) → T r(x))

and

�ST + φ〈ψ〉
are both the case, but

�ST + ψ

is not. There are situations where the first two claims are (tolerantly) assertible, but
the third one is not. So we have cases where the truth predicate is not fulfilling its
role as a device for truth generalizations, even though it is fully transparent.20

Finally, the previous results also shed light on another interesting aspect of ST +
which has not been considered (as far as we know) in the literature: the meaning of
ST +’s logical expressions. Inferentialism can be identified roughly with the claim

19In order to cope with this and related problems, some supporters of LP -based theories of truth introduce
a stronger conditional which validates Modus Ponens.
20Thanks to Lavinia Picollo and Thomas Schindler for this argument.
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that the meaning of a logical expression is given by the rules governing its use.21

Since the proof-theoretically valid inferences according to �ST + extend those of clas-
sical logic, one would expect ∧, ¬, and so on, to be just the classical connectives, at
least if one thinks that the meaning of a logical expression is specified by the class of
provable sequents containing that expression. However, it is usually acknowledged
that this criterion for sameness of meaning is problematic, given that it renders many
logical disputes as verbal. A different criterion is given by what is usually called oper-
ational minimalism (see for instance [17] and [12]), where the meaning of a logical
expression is fully specified by the operational rules for that expression. The notion
of operational meaning is introduced to give a stable “core” meaning for logical
constants over a range of systems. Then, according to this approach, classical logic
and ST + determine the same meaning for logical constants given that both systems
have the same operational rules. This idea is attractive, but it becomes quite hard to
apply when substructural logics are considered (see [11]). The results in the previous
sections point to a third idea: basically, the meaning of a logical expression is (at least
partly) given by the metainferences (or external inferences) involving that expres-
sion. So to determine the meaning of a logical expression it is necessary to consider
not only its operational rules but also the lines and the sequent arrow in the metain-
ferences. But as far as metainferences are concerned, classical logic and ST + come
apart. Hence, under this criterion, it is no longer clear that the logical expressions
in ST + are the logical expressions in classical logic. The set of classically derivable
sequents is closed under certain rules under which the set of ST +-derivable sequents
is not closed under. For example, in some cases (i.e. some replacement of A and B by
formulas) while A �ST + B∧¬B, we have �ST + ¬A. But this does hold if the logical
expressions involved are the classical ones. For another example, this time involv-
ing the external logic, having �ST + A and �ST + A ⊃ B does not give us �ST + B.
But again, it does if the conditional used there is the material conditional of classical
logic.

To put the point a bit differently, we have shown that there is a strong disanal-
ogy between classical logic and ST +. Both the logic of the metainferences of ST +
and its proof-theoretical external logic are very different from classical logic. These
facts should impinge in some way on the meaning of the logical expressions of
ST +.

6 Conclusion

Supporters of ST + claim that this theory respects classical logic. They claim that the
only difference with classical logic is that the consequence relation they propose is
non-transitive. We have shown that, in a way, this non-transitive consequence rela-
tion bears a striking resemblance to LP +’s conditional. Therefore, on the one hand,
adopting ST + as a solution to the paradoxes is no more illuminating than adopt-
ing LP +, because all the problems usually attributed to LP + will also affect ST +

21Of course, inferentialism can take many forms, but for now we will work with this vague characterization.
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external notion of consequence. On the other hand, there is a sense in which LP + is
better, because there is no mismatch between its internal and its external consequence
relations.
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