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Abstract

We define a family of intuitionistic non-normal modal logics; they can
bee seen as intuitionistic counterparts of classical ones. We first consider
monomodal logics, which contain only one between Necessity and Possi-
bility. We then consider the more important case of bimodal logics, which
contain both modal operators. In this case we define several interactions
between Necessity and Possibility of increasing strength, although weaker
than duality. For all logics we provide both a Hilbert axiomatisation and
a cut-free sequent calculus, on its basis we also prove their decidability.
We then give a semantic characterisation of our logics in terms of neigh-
bourhood models. Our semantic framework captures modularly not only
our systems but also already known intuitionistic non-normal modal logics
such as Constructive K (CK) and the propositional fragment of Wijesek-
era’s Constructive Concurrent Dynamic Logic.

1 Introduction

Both intuitionistic modal logic and non-normal modal logic have been studied
for a long time. The study of modalities with an intuitionistic basis goes back to
Fitch in the late 40s (Fitch [7]) and has led to an important stream of research.
We can very schematically identify two traditions: so-called Intuitionistic modal
logics versus Constructive modal logics. Intuitionistic modal logics have been
systematised by Simpson [23], whose main goal is to define an analogous of
classical modalities justified from an intuitionistic point of view. On the other
hand, constructive modal logics are mainly motivated by their applications to
computer science, such as the type-theoretic interpretations (Curry–Howard cor-
respondence, typed lambda calculi), verification and knowledge representation,1

but also by their mathematical semantics (Goldblatt [11]).
On the other hand, non-normal modal logics have been strongly motivated

on a philosophical and epistemic ground. They are called “non-normal” as they
do not satisfy all the axioms and rules of the minimal normal modal logic K.
They have been studied since the seminal works of Scott, Lemmon, and Chellas
([22], [2], see Pacuit [21] for a survey), and can be seen as generalisations of
standard modal logics. They have found an interest in several areas such as

∗Preliminary version. This work was partially supported by the Project TICAMORE
ANR-16-CE91-0002-01.

1For a recent survey see Stewart et al. [25] and references therein.
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epistemic and deontic reasoning, reasoning about games, and reasoning about
probabilistic notions such as “truth in most of the cases”.

Although the two areas have grown up seemingly without any interaction, it
can be noticed that some intuitionistic or constructive modal logics investigated
in the literature contain non-normal modalities. The prominent example is the
logic CCDL proposed by Wijesekera [27], whose propositional fragment (that we
call CCDLp) has been recently investigated by Kojima [13]. This logic has a
normal ✷ modality and a non-normal ✸ modality, where ✸ does not distribute
over the ∨, that is

(C✸) ✸(A ∨B) ⊃ ✸A ∨✸B

is not valid. The original motivation by Wijesekera comes from Constructive
Concurrent Dynamic Logic, but the logic has also an interesting epistemic inter-
pretation in terms of internal/external observers proposed by Kojima. A related
system is Constructive K (CK), that has been proposed by Bellin et al. [1] and
further investigated by Mendler and de Paiva [19], Mendler and Scheele [20].
This system not only rejects C✸, but also its nullary version ✸⊥ ⊃ ⊥ (N✸). In
contrast all these systems assume a normal interpretation of ✷ so that

✷(A ∧B) ⊃⊂ (✷A ∧ ✷B)

is always assumed. A further example is Propositional Lax Logic (PLL) by
Fairtlough and Mendler [4], an intuitionistic monomodal logic for hardware ver-
ification where the modality does not validate the rule of necessitation.

Finally, all intuitionistic modal logics reject the interdefinability of the two
operators:

✷A ⊃⊂ ¬✸¬A

and its boolean equivalents.
To the best of our knowledge, no systematic investigation of non-normal

modalities with an intuitionistic base has been carried out so far. Our aim is
to lay down a general framework which can accommodate in a uniform way
intuitionistic counterparts of the classical cube of non-normal modal logics, as
well as CCDLp and CK mentioned above. As we shall see, the adoption of
an intuitionistic base leads to a finer analysis of non-normal modalities than
in the classical case. In addition to the motivations for classical non-normal
modal logics briefly recalled above, an intutionistic interpretation of non-normal
modalities may be justified by more specific interpretations, of which we mention
two:

• The deontic interpretation: The standard interpretation of deontic op-
erators ✷ (Obligatory), ✸ (Permitted) is normal: but it has been known
for a long time that the normal interpretation is problematic when deal-
ing for instance with “Contrary to duty obligations".2 One solution is
to adopt a non-normal interpretation, rejecting in particular the mono-
tonicity principle (from A ⊃ B is valid infer ✷A ⊃ ✷B). Moreover, a
constructive reading of the deontic modalities would further reject their
interdefinability: one may require that the permission of A must be jus-
tified explicitly or positively (say by a proof from a corpus of norms) and

2For a survey on puzzles related to a normal interpretation of the deontic modalities see
McNamara [18].
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not just established by the fact that ¬A is not obligatory (see for instance
the distinction between weak and strong permissions in von Wright [31]).

• The contextual interpretation: A contextual reading of the modal op-
erators is proposed in Mendler and de Paiva [19]. In this interpretation
✷A is read as “A holds in all contexts” and ✸A as “A holds in some con-
text”. This interpretation invalidates C✸, while retaining the distribution
of ✷ over conjunction (C✷). But this contextual interpretation is not the
only possible one. We can interpret ✷A as A is “justified” (proved) in
some context c, no matter what is meant by a context (for instance a
knowledge base), and ✸A as A is “compatible” (consistent) with every
context. With this interpretation both operators would be non-normal as
they would satisfy neither C✷, nor C✸.

As we said, our aim is to provide a general framework for non-normal modal
logics with an intuitionistic base. However, in order to identify and restrain the
family of logics of interest, we adopt some criteria, which partially coincide with
Simpson’s requirements (Simpson [23]):

• The modal logics should be conservative extensions of IPL.

• The disjunction property must hold.

• The two modalities should not be interdefinable.

• We do not consider systems containing the controversial C✸.

Our starting point is the study of monomodal systems, which extend IPL with
either ✷ or ✸, but not both. We consider the monomodal logics corresponding
to the classical cube generated by the weakest logic E extended with conditions
M, N, C (with the exception of C✸). We give an axiomatic characterisation
of these logics and equivalent cut-free sequent systems similar to the one by
Lavendhomme and Lucas [15] for the classical case.

Our main interest is however in logics which contain both ✷ and ✸, and
allow some form of interaction between the two. Their interaction is always
weaker than interdefinability. In order to define logical systems we take a proof-
theoretical perspective: the existence of a simple cut-free system, as in the
monomodal case, is our criteria to identify meaningful systems. A system is

retained if the combination of sequent rules amounts to a cut-free system.
It turns out that one can distinguish three degrees of interaction between ✷

and ✸, that are determined by answering to the question, for any two formulas
A and B:

under what conditions ✷A and ✸B are jointly inconsistent?

Since there are three degrees of interaction, even the weakest classical logic E

has three intuitionistic counterparts of increasing strength. When combined
with M, N, C properties of the classical cube, we end up with a family of 24
distinct systems, all enjoying a cut-free calculus and, as we prove, an equivalent
Hilbert axiomatisation. This shows that intuitionistic non-normal modal logic
allows for finer distinctions whence a richer theory than in the classical case.

The existence of a cut-free calculus for each of the logics has some important
consequences: We can prove that all systems are indeed distinct, that all of them
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are “good” extensions of intuitionistic logic, and more importantly that all of
them are decidable.

We then tackle the problem of giving a semantic characterisation of this
family of logics. The natural setting is to consider an intuitionistic version of
neighbourhood models for classical logics. Since we want to deal with the lan-
guage containing both ✷ and ✸, we consider neighbourhood models containing
two distinct neighbourhood functions N✷ and N✸. As in standard intuitionistic
models, they also contain a partial order on worlds. Different forms of inter-
action between the two modal operators correspond to different (but natural)
conditions relating the two neighbourhood functions. By considering further
closure conditions of neighbourhoods, analogous to the classical case, we can
show that this semantic characterises modularly the full family of logics. More-
over we prove, through a filtration argument, that most of the logics have the
finite model property, thereby obtaining a semantic proof of their decidability.

It is worth noticing that in the (easier) case of intuitionistic monomodal
logic with only ✷ a similar semantics and a matching completeness theorem
have been given by Goldblatt [11]. More recently, Goldblatt’s semantics for the
intuitionistic version of system E has been reformulated and extended to axiom
T by Witczak [29].

But our neighbourhood models have a wider application than the character-
isation of the family of logics mentioned above. We show that adding suitable
interaction conditions between N✷ and N✸ we can capture CCDLp as well as CK.
We show this fact first directly by proving that both CCDLp and CK are sound
and complete with respect to our models satisfying an additional condition. We
then prove the same result by relying on some pre-existing semantics of these
two logics and by transforming models. In case of CCDLp, there exists already a
characterisation of it in terms of neighbourhood models, given by Kojima [13],
although the type of models is different, in particular Kojima’s models contain
only one neighbourhood function.

The case of CK is more complicated, whence more interesting: this logic is
characterised by a relational semantics defined in terms of Kripke models of a
peculiar nature: they contain “fallible” worlds, i.e. worlds which force ⊥. We
are able to show directly that relational models can be transformed into our
neighbourhood models satisfying a specific interaction condition and vice versa.

All in all, we get that the well-known CK can be characterised by neighbour-
hood models, after all rather standard structures, alternative to non-standard
Kripke models with fallible worlds. This fact provides further evidence in favour
of our neighbourhood semantics as a versatile tool to analyse intuitionistic non-
normal modal logics.

2 Classical non-normal modal logics

2.1 Hilbert systems

Classical non-normal modal logics are defined on a propositional modal language
L based on a set Atm of countably many propositional variables. Formulas are
given by the following grammar, where p ranges over Atm:

A ::= p | ⊥ | A ∧ A | A ∨ A | A ⊃ A | ✷A | ✸A.
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a. Modal axioms and rules defining non-normal modal logics

E✷

A ⊃ B B ⊃ A
✷A ⊃ ✷B

E✸

A ⊃ B B ⊃ A
✸A ⊃ ✸B

M✷ ✷(A ∧B) ⊃ ✷A M✸ ✸A ⊃ ✸(A ∨B)

C✷ ✷A ∧ ✷B ⊃ ✷(A ∧B) C✸ ✸(A ∨B) ⊃ ✸A ∨✸B

N✷ ✷⊤ N✸ ¬✸⊥

b. Duality axioms

Dual✷ ✸A ⊃⊂ ¬✷¬A Dual✸ ✷A ⊃⊂ ¬✸¬A

c. Further relevant modal axioms and rules

K✷ ✷(A ⊃ B) ⊃ (✷A ⊃ ✷B) K✸ ✷(A ⊃ B) ⊃ (✸A ⊃ ✸B)

Nec
A
✷A

Mon✷
A ⊃ B

✷A ⊃ ✷B
Mon✸

A ⊃ B
✸A ⊃ ✸B

Figure 1: Modal axioms.

We use A,B,C as metavariables for formulas of L. ⊤, ¬A and A ⊃⊂ B
are abbreviations for, respectively, ⊥ ⊃ ⊥, A ⊃ ⊥ and (A ⊃ B) ∧ (B ⊃ A).
We take both modal operators ✷ and ✸ as primitive (as well as all boolean
connectives), as it will be convenient for the intuitionistic case. Their duality in
classical modal logics is recovered by adding to any system one of the duality
axioms Dual✷ or Dual✸ (Figure 1), which are equivalent in the classical setting.

The weakest classical non-normal modal logic E is defined in language L by
extending classical propositional logic (CPL) with a duality axiom and rule E✷,
and it can be extended further by adding any combination of axioms M✷, C✷

and N✷. We obtain in this way eight distinct systems (Figure 2), which compose
the family of classical non-normal modal logics.

Equivalent axiomatisations for these systems are given by considering the
modal axioms in the right-hand column of Figure 1(a). Thus, logic E could be
defined by extending CPL with axiom Dual✷ and rule E✸, and its extensions are
given by adding combinations of axioms M✸, C✸ and N✸.

It is worth recalling that axioms M✷, M✸ and N✷ are syntactically equivalent
with the rules Mon✷, Mon✸ and Nec, respectively, and that axiom K✷ is derivable
from M✷ and C✷. As a consequence, we have that the top system MCN is
equivalent to the weakest classical normal modal logic K.

2.2 Neighbourhood semantics

The standard semantics for classical non-normal modal logics is based on the
so-called neighbourhood (or minimal, or Scott-Montague) models.

Definition 2.1. A neighbourhood model is a triple M = 〈W ,N ,V〉, where W
is a non-empty set, N is a neighbourhood function W −→ P(P(W)), and V
is a valuation function W −→ Atm. A neighbourhood model is supplemented,
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E

M

EC EN

MC MN

ECN

MCN (K)

Figure 2: The classical cube.

closed under intersection, or contains the unit, if N satisfies the following prop-
erties:

If α ∈ N (w) and α ⊆ β, then β ∈ N (w) (Supplementation);
If α, β ∈ N (w), then α ∩ β ∈ N (w) (Closure under intersection);
W ∈ N (w) for all w ∈ W (Containing the unit).

The forcing relation w 
 A is defined inductively as follows:

w 
 p iff p ∈ V(w);
w 6
 ⊥;
w 
 B ∧ C iff w 
 A and w 
 B;
w 
 B ∨ C iff w 
 A or w 
 B;
w 
 B ⊃ C iff w 
 B implies w 
 C;
w 
 ✷B iff [B] ∈ N (w);
w 
 ✸B iff W \ [B] /∈ N (w);

where [B] denotes the set {v ∈ W | v 
 B}, called the truth set of B.

We can also recall that in the supplemented case, the forcing conditions for
modal formulas are equivalent to the following ones:

w 
 ✷B iff there is α ∈ N (w) s.t. α ⊆ [B];
w 
 ✸B iff for all α ∈ N (w), α ∩ [B] 6= ∅.

Theorem 2.1 (Chellas [2]). Logic E(M,C,N) is sound and complete with respect
to neighbourhood models (which in addition are supplemented, closed under
intersection and contain the unit).

3 Intuitionistic non-normal monomodal logics

Our definition of intuitionistic non-normal modal logics begins with monomodal
logics, that is logics containing only one modality, either ✷ or ✸. We first define
the axiomatic systems, and then present their sequent calculi.

Under “intuitionistic modal logics” we understand any modal logic L that
extends intuitionistic propositional logic (IPL) and satisfies the following re-
quirements:

(R1) L is conservative over IPL: its non-modal fragment coincides with IPL.

(R2) L satisfies the disjunction property: if A∨B is derivable, then at least one
formula between A and B is also derivable.

6



✷-IE

✷-IM

✷-IEC ✷-IEN

✷-IMC ✷-IMN

✷-IECN

✷-IMCN

✸-IE

✸-IM

✸-IEN

✸-IMN

Figure 3: The lattices of intuitionistic non-normal monomodal logics.

3.1 Hilbert systems

From the point of view of axiomatic systems, two different classes of intuitionistic
non-normal monomodal logics can be defined by analogy with the definition of
classical non-normal modal logics (cf. Section 2). Intuitionistic modal logics are
modal extensions of IPL, for which we consider the following axiomatisation:

⊃-1 A ⊃ (B ⊃ A) ∧-1 A ∧B ⊃ A
⊃-2 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)) ∧-2 A ∧B ⊃ B
∨-1 A ⊃ A ∨B ∧-3 A ⊃ (B ⊃ A ∧B)
∨-2 B ⊃ A ∨B efq ⊥ ⊃ A

∨-3 (A ⊃ C) ⊃ ((B ⊃ C) ⊃ (A ∨B ⊃ C)) mp
A A ⊃ B

B

We define over IPL two families of intuitionistic non-normal monomodal log-
ics, that depend on the considered modal operator, and are called therefore the
✷- and the ✸-family. The ✷-family is defined in language L✷ := L \ {✸} by
adding to IPL the rule E✷ and any combination of axioms M✷, C✷ and N✷. The
✸-family is instead defined in language L✸ := L\{✷} by adding to IPL the rule
E✸ and any combination of axioms M✸ and N✸. It is work remarking that we
don’t consider intuitionistic non-normal modal logics containing axiom C✸. We
denote the resulting logics by, respectively, ✷-IE∗ and ✸-IE∗, where E∗ replaces
any system of the classical cube (for ✸-logics, any system non containing C✸).

Notice that, having rejected the definability of the lacking modality, ✷- and
✸-logics are distinct, as ✷ and ✸ behave differently. Moreover, as a consequence
of the fact that the systems in the classical cube are pairwise non-equivalent,
we have that the ✷-family contains eight distinct logics, while the ✸-family
contains four distinct logics (something not derivable in a classical system is
clearly not derivable in the corresponding intuitionistic system). It is also worth
noticing that, as it happens in the classical case, axioms M✷, M✸ and N✷ are
interderivable, respectively, with rules Mon✷, Mon✸ and Nec, and that K✷ is
derivable from M✷ and C✷ (as the standard derivations are intuitionistically
valid).

3.2 Sequent calculi

We now present sequent calculi for intuitionistic non-normal monomodal logics.
The calculi are defined as modal extensions of a given sequent calculus for
IPL. We take G3ip as base calculus (Figure 4), and extend it with suitable
combinations of the modal rules in Figure 5. The ✷-rules can be compared
with the rules given in Lavendhomme and Lucas [15], where sequent calculi for
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Ax p,Γ ⇒ p L⊥ ⊥,Γ ⇒ A

A,B,Γ ⇒ C
L∧

A ∧B,Γ ⇒ C
Γ ⇒ A Γ ⇒ B

R∧
Γ ⇒ A ∧B

A,Γ ⇒ C B,Γ ⇒ C
L∨

A ∨B,Γ ⇒ C

Γ ⇒ Ai
R∨ (i = 0, 1)

Γ ⇒ A0 ∨ A1

A ⊃ B,Γ ⇒ A B,Γ ⇒ C
L⊃

A ⊃ B,Γ ⇒ C

A,Γ ⇒ B
R⊃

Γ ⇒ A ⊃ B

Figure 4: Rules of G3ip (Troelstra and Schwichtenberg [26]).

A ⇒ B B ⇒ A
E
seq
✷ Γ,✷A ⇒ ✷B

A ⇒ B B ⇒ A
E
seq
✸ Γ,✸A ⇒ ✸B

A ⇒ B
M

seq
✷ Γ,✷A ⇒ ✷B

A ⇒ B
M

seq
✸ Γ,✸A ⇒ ✸B

⇒ A
N

seq
✷ Γ ⇒ ✷A

A ⇒
N

seq
✸ Γ,✸A ⇒ B

A1, ..., An ⇒ B B ⇒ A1 ... B ⇒ An
E✷C

seq (n ≥ 1)
Γ,✷A1, ...,✷An ⇒ ✷B

A1, ..., An ⇒ B
M✷C

seq (n ≥ 1)
Γ,✷A1, ...,✷An ⇒ ✷B

Figure 5: Modal rules for Gentzen calculi.

classical non-normal modal logics are presented. However, our rules are slightly
different as (i) they have a single formula in the right-hand side of sequents;
and (ii) contexts are added to the left-hand side of sequents appearing in the
conclusion. Restriction (i) is adopted in order to have single-succedent calculi
(as G3ip is), while with (ii) we implicitly embed weakening in the application
of the modal rules. We consider the sequent calculi to be defined by the modal
rules that are added to G3ip. The calculi are the following.

G.✷-IE := E
seq
✷ G.✷-IEC := E✷C

seq

G.✷-IM := M
seq
✷ G.✷-IMC := M✷C

seq

G.✷-IEN := E
seq
✷ + N

seq
✷ G.✷-IECN := E✷C

seq + N
seq
✷

G.✷-IMN := M
seq
✷ + N

seq
✷ G.✷-IMCN := M✷C

seq + N
seq
✷

G.✸-IE := E
seq
✸

G.✸-IM := M
seq
✸

G.✸-IEN := E
seq
✸ + N

seq
✸

G.✸-IMN := M
seq
✸ + N

seq
✸

Notice that - as in Lavendhomme and Lucas [15] - axiom C✷ doesn’t have a
corresponding sequent rule, but it is captured by modifying the rules E

seq
✷ and

M
seq
✷ . In particular, these rules are replaced by E✷C

seq and M✷C
seq, respectively,

that are the generalisations of Eseq
✷ and M

seq
✷ with n principal formulas (instead
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of just one) in the left-hand side of sequents. Observe that E✷C
seq and M✷C

seq

are non-standard, as they introduce an arbitrary number of modal formulas
with a single application, and that E

seq
✷ has in addition an arbitrary number of

premisses. An other way to look at E✷C
seq and M✷C

seq is to see them as infinite
sets of rules, each set containing a standard rule for any n ≥ 1. Under the
latter interpretation the calculi are anyway non-standard as they are defined by
infinite sets of rules.

We now prove the admissibility of some structural rules, and then show the
equivalence between the sequent calculi and the Hilbert systems.

Proposition 3.1. The following weakening and contraction rules are height-
preserving admissible in any monomodal calculus:

Γ ⇒ B
Lwk

Γ, A ⇒ B
Γ ⇒

Rwk
Γ ⇒ A

Γ, A,A ⇒ B
ctr

Γ, A ⇒ B
.

Proof. By induction on n, we show that whenever the premiss of an application
of Lwk, Rwk or ctr has a derivation of height n, then its conclusion has a deriva-
tion of the same height. As usual, the proof considers the last rule applied in
the derivation of the premiss (when the premiss is not an initial sequent). For
rules of G3ip the proof is standard. For modal rules, left and right weakening
are easily handled. For istance, the premiss Γ ⇒ of Rwk is necessarily derived
by N

seq
✸ . Then Γ contains a formula ✸B that is principal in the application of

N
seq
✸ , which in turn has B ⇒ as premiss. By a different application of Nseq

✸ to
B ⇒ we can derive Γ ⇒ A for any A.

The proof is also immediate for contraction, where the most interesting case
is possibly when both occurrences of A in the premiss Γ, A,A ⇒ B of ctr are
principal in the last rule applied in its derivation. In this case, the last rule is
either E✷C

seq or M✷C
seq. If it is M✷C

seq, then A ≡ ✷C for some C, and the
sequent is derived from D1, ..., Dn, C, C ⇒ for some ✷D1, ...,✷Dn in Γ. By i.h.
we can apply ctr to the last sequent and obtain D1, ..., Dn, C ⇒, and then by
M✷C

seq derive sequent Γ, A ⇒ B, which is the conclusion of ctr (the proof is
analogous for E✷C

seq).

We now show that the cut rule

Γ ⇒ A Γ, A ⇒ B
Cut

Γ ⇒ B

is admissible in any monomodal calculus. The proof is based on the following
notion of weight of formulas:

Definition 3.1 (Weight of formulas). Function w assigning to each formula
A its weight w(A) is defined as follows: w(⊥) = 0; w(p) = 1; w(A ◦ B) =
w(A) + w(B) + 1 for ◦ ≡ ∧,∨,⊃; and w(✷A) = w(✸A) = w(A) + 2.

Observe that, given the present definition, ¬A has a smaller weight than ✷A
and ✸A. Although irrelevant to the next theorem, this will be used in Section
4 for the proof of cut elimination in bimodal calculi.

Theorem 3.2. Rule Cut is admissible in any monomodal calculus.

Proof. Given a derivation of a sequent with some applications of Cut, we show
how to remove any such application and obtain a derivation of the same sequent

9



without Cut. The proof is by double induction, with primary induction on the
weight of the cut formula and subinduction on the cut height. We recall that,
for any application of Cut, the cut formula is the formula which is deleted by
that application, while the cut height is the sum of the heights of the derivations
of the premisses of Cut.

We just consider the cases in which the cut formula is principal in the last
rule applied in the derivation of both premisses of Cut. Moreover, we treat
explicitly only the cases in which both premisses are derived by modal rules,
as the non-modal cases are already considered in the proof of cut admissibility
for G3ip, and because modal and non-modal rules don’t interact in any relevant
way.

• (E✷C
seq; E✷C

seq). Let Γ1 = A1, ..., An and Γ2 = C1, ..., Cm. We have the
following situation:

Γ1 ⇒ B B ⇒ A1 ... B ⇒ An
E✷C

seq

Γ,✷Γ1,✷Γ2 ⇒ ✷B

B,Γ2 ⇒ D D ⇒ B D ⇒ C1 ... D ⇒ Cm
E✷C

seq

Γ,✷B,✷Γ1,✷Γ2 ⇒ ✷D
Cut

Γ,✷Γ1,✷Γ2 ⇒ ✷D

The proof is converted as follows, with several applications of Cut with B as cut
formula, hence with a cut formula of smaller weight. First we derive

Γ1 ⇒ B
wk

Γ1,Γ2 ⇒ B

B,Γ2 ⇒ D
wk

B,Γ1,Γ2 ⇒ D
Cut

Γ,Γ1,Γ2 ⇒ D

Then for any 1 ≤ i ≤ n, we derive

D ⇒ B

B ⇒ Ai
wk

B,D ⇒ Ai
Cut

D ⇒ Ai

Finally we can apply E✷C
seq as follows

Γ1,Γ2 ⇒ D D ⇒ A1 ... D ⇒ An D ⇒ C1 ... D ⇒ Cm
E✷C

seq

Γ,✷Γ1,✷Γ2 ⇒ ✷D

• (M✷C
seq; M✷C

seq) is analogous to (E✷C
seq; E✷C

seq). (Eseq
✷ ; Eseq

✷ ) and (Mseq
✷ ;

M
seq
✷ ) are the particular cases where n,m = 1.
• (Nseq

✷ ; E✷C
seq). Let Γ1 = B1, ..., Bn. The situation is as follows:

⇒ A
N

seq
✷ Γ,✷Γ1 ⇒ ✷A

A,Γ1 ⇒ C C ⇒ A C ⇒ B1 ... C ⇒ Bn
E✷C

seq

Γ,✷A,✷Γ1 ⇒ ✷C
Cut

Γ,✷Γ1 ⇒ ✷C

The proof is converted as follows, with an application of Cut on a cut formula
of smaller weight.

⇒ A
wk

Γ1 ⇒ A A,Γ1 ⇒ C
Cut

Γ1 ⇒ C C ⇒ B1 ... C ⇒ Bn
E✷C

seq

Γ,✷Γ1 ⇒ ✷C

10



• (Nseq
✷ ; M✷C

seq) is analogous to (Nseq
✷ ; E✷C

seq). (Nseq
✷ ; Eseq

✷ ) and (Nseq
✷ ; Mseq

✷ )
are the particular cases where n = 1.

• (Eseq
✸ ; Eseq

✸ ) and (Mseq
✸ ; Mseq

✸ ) are analogous to (Eseq
✷ ; Eseq

✷ ) and (Mseq
✷ ; Mseq

✷ ),
respectively.

• (Eseq
✸ ; Nseq

✸ ). We have

A ⇒ B B ⇒ A
E
seq
✸ Γ,✸A ⇒ ✸B

B ⇒
N

seq
✸Γ,✸A,✸B ⇒ C

Cut
Γ,✸A ⇒ C

which become

A ⇒ B
B ⇒

wk
A,B ⇒

Cut
A ⇒

N
seq
✸Γ,✸A ⇒ C

• (Mseq
✸ ; Nseq

✸ ) is analogous to (Eseq
✸ ; Nseq

✸ ).

As a consequence of the admissibility of Cut we obtain the equivalence be-
tween the sequent calculi and the axiomatic systems.

Proposition 3.3. Let L be any intuitionistic non-normal monomodal logic.
Then calculus G.L is equivalent to system L.

Proof. The axioms and rules of L are derivable in G.L. For the axioms of IPL

and mp we can consider their derivations in G3ip, as G.L enjoys admissibility of
Cut. Here we show that any modal rule allows us to derive the corresponding
axiom:

⇒ A ⊃ B
wk

A ⇒ A ⊃ B A,A ⊃ B ⇒ B
Cut

A ⇒ B

⇒ B ⊃ A
wk

B ⇒ B ⊃ A B,B ⊃ A ⇒ A
Cut

B ⇒ A
E
seq
✷

✷A ⇒ ✷B
R⊃

⇒ ✷A ⊃ ✷B

A,B ⇒ A A,B ⇒ B
R∧

A,B ⇒ A ∧B

A,B ⇒ A
L∧

A ∧B ⇒ A

A,B ⇒ B
L∧

A ∧B ⇒ B
E✷C

seq

✷A,✷B ⇒ ✷(A ∧B)
L∧

✷A ∧ ✷B ⇒ ✷(A ∧B)
R⊃

⇒ ✷A ∧ ✷B ⊃ ✷(A ∧B)
⇒ ⊤

N
seq
✷⇒ ✷⊤

⊥ ⇒
N

seq
✸

✸⊥ ⇒
R¬

⇒ ¬✸⊥

A,B ⇒ A
L∧

A ∧B ⇒ A
M

seq
✷

✷(A ∧B) ⇒ ✷A
R⊃

⇒ ✷(A ∧B) ⊃ ✷A

A ⇒ A
R∨

A ⇒ A ∨B
M

seq
✸

✸A ⇒ ✸(A ∨B)
R⊃

⇒ ✸A ⊃ ✸(A ∨B)

Moreover, the rules of G.L are derivable in L. As before, it suffices to consider
the modal rules. The derivations are in most cases straightforward, we just
consider the following.

• If L contains N✷, then N
seq
✷ is derivable. Assume ⊢L A. Then by Nec

(which is equivalent to N✷), ⊢L ✷A.

11



• If L contains N✸, then N
seq
✸ is derivable. Assume ⊢L A ⊃ ⊥. Since

⊢L ⊥ ⊃ A, by E
seq
✸ , ⊢L ✸A ⊃ ✸⊥. Then ⊢L ¬✸⊥ ⊃ ¬✸A, and, since ⊢L ¬✸⊥,

we have ⊢L ¬✸A.
• If L contains C✷, then E✷C

seq is derivable. Assume ⊢L A1 ∧ ... ∧ An ⊃ B
and ⊢L B ⊃ Ai for all 1 ≤ i ≤ n. Then ⊢L B ⊃ A1 ∧ ... ∧ An. By E✷,
⊢L ✷(A1 ∧ ... ∧ An) ⊃ ✷B. In addition, by several applications of C✷, ⊢L

✷A1 ∧ ... ∧ ✷An ⊃ ✷(A1 ∧ ... ∧ An). Therefore ⊢L ✷A1 ∧ ... ∧ ✷An ⊃ ✷B.

4 Intuitionistic non-normal bimodal logics

In this section we present intuitionistic non-normal modal logics with both ✷

and ✸. In this case we first present their sequent calculi, and then give equivalent
axiomatisations.

A simple way to define intuitionistic non-normal bimodal logics would be
by considering the fusion of two monomodal logics that belong respectively to
the ✷- and to the ✸-family. Given two logics ✷-IE∗ and ✸-IE∗, their fusion in
language L✷ ∪ L✸ is the smallest bimodal logics containing ✷-IE∗ and ✸-IE∗

(for the sake of simplicity we can assume that L✷ and L✸ share the same set of
propositional variables, and differ only with respect to ✷ and ✸). The resulting
logic is axiomatised simply by adding to IPL the modal axioms and rules of
✷-IE∗, plus the modal axioms and rules of ✸-IE∗.

It is clear, however, that in the resulting systems the modalities don’t in-
teract at all, as there is no axiom involving both ✷ and ✸. On the contrary,
finding suitable interactions between the modalities is often the main issue when
intuitionistic bimodal logics are concerned. In that case, by reflecting the fact
that in IPL connectives are not interderivable, it is usually required that ✷ and
✸ are not dual. We take the lacking of duality as an additional requirement for
the definition of intuitionistic non-normal bimodal logics:

(R3) ✷ and ✸ are not interdefinable.

In order to define intuitionistic non-normal bimodal logics by the axiomatic
systems, we would need to select the axioms between a plethora of possible
formulas satisfying (R3). If we look for instance at the literature on intuitionistic
normal modal logics, we see that many different axioms have been considered,
and the reasons for the specific choices are varied. We take therefore a different
way, and define the logics starting with their sequent calculi. In particular we
proceed as follows.

(i) Intuitionistic non-normal bimodal logics are defined by their sequent cal-
culi. The calculi are conservative extensions of a given calculus for IPL, and
have as modal rules some characteristic rules of intuitionistic non-normal
monomodal logics, plus some rules connecting ✷ and ✸. In addition, we
require that the Cut rule is admissible. As usual, this means that adding
rule Cut to the calculus does not extend the set of derivable sequents.

(ii) To the purpose of defining the basic systems, we consider only interactions
between ✷ and ✸ that can be seen as forms of “weak duality principles”. In
order to satisfy (R3), we require that these interactions are strictly weaker
than Dual✷ and Dual✸, in the sense that Dual✷ and Dual✸ must not be
derivable in any corresponding system.
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⇒ A B ⇒weakseqa Γ,✷A,✸B ⇒ C
A ⇒ ⇒ B

weak
seq

b Γ,✷A,✸B ⇒ C

A,B ⇒ ¬A ⇒ B
negseqa Γ,✷A,✸B ⇒ C

A,B ⇒ ¬B ⇒ A
neg

seq
b Γ,✷A,✸B ⇒ C

A,B ⇒
strseq

Γ,✷A,✸B ⇒ C

Figure 6: Interaction rules for sequent calculi.

(iii) We will distinguish logics that are monotonic and logics that are non-
monotonic. Moreover, the logics will be distinguished by the different
strength of interactions between the modalities.

The above points are realised in practice as follows. As before, we take
G3ip (Figure 4) as base calculus for intuitionistic logics. This is extended with
combinations of the characteristic rules of intuitionistic non-normal monomodal
logics in Figure 5. The difference is that now the calculi contain both some
rules for ✷ and some rules for ✸. In order to distinguish monotonic and non-
monotonic logics, we require that the calculi contain either both E

seq
✷ and E

seq
✸

(in this case the corresponding logic will be non-monotonic), or both M
seq
✷ and

M
seq
✸ (corresponding to monotonic logics). In addition, the calculi will contain

some of the interaction rules in Figure 6. Since the logics are also distinguished
according to the different strenghts of the interactions between the modalities,
we require that the calculi contain either both weakseqa and weak

seq

b , or both
negseqa and neg

seq

b , or strseq.
In the following we present the sequent calculi for intuitionistic non-normal

bimodal logics obtained by following our methodology. After that, for each
sequent calculus we present an equivalent axiomatisation.

4.1 Sequent calculi

In the first part, we focus on sequent calculi for logics containing only axioms
between M✷, M✸, N✷ and N✸ (that is, we don’t consider axiom C✷). The
calculi are obtained by adding to G3ip (Figure 4) suitable combinations of the
modal rules in Figures 5 and 6. Although in principle any combination of rules
could define a calculus, we accept only those calculi that satisfy the restrictions
explained above. This entails in particular the need of studying cut elimination.
As usual, the first step to do towards the study of cut elimination is to prove
the admissibility of the other structural rules.

Proposition 4.1. Weakening and contraction are height-preserving admissible
in any sequent calculus defined by a combination of modal rules in Figures 5
and 6 that satisfies the restrictions explained above.

Proof. By extending the proof of Proposition 3.1 with the examination of the
interaction rules in Figure 6. Due to their form, however, it is immediate to
verify that if the premiss of wk or ctr is derivable by any interaction rule, then
the conclusion is derivable by the same rule.
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We can now examine the admissibility of Cut. As it is stated by the fol-
lowing theorem, following our methodology we obtain 12 sequent calculi for
intuitionistic non-normal bimodal logics.

Theorem 4.2. We let the sequent calculi be defined by the set of modal rules
which are added to G3ip. The Cut rule is admissible in the following calculi:

G.IE1 := E
seq
✷ + E

seq
✸ + weakseqa + weak

seq

b

G.IE2 := E
seq
✷ + E

seq
✸ + negseqa + neg

seq

b

G.IE3 := E
seq
✷ + E

seq
✸ + strseq

G.IM := M
seq
✷ + M

seq
✸ + strseq

Moreover, letting G∗ be any of the previous calculi, Cut is admissible in

G∗N✸ := G∗ + N
seq
✸

G∗N✷ := G∗ + N
seq
✸ + N

seq
✷

Proof. The structure of the proof is the same as the proof of Theorem 3.2.
Again, we consider only the cases where the cut formula is principal in the last
rule applied in the derivation of both premisses, with the further restriction that
the last rules are modal ones.

The combinations between ✷-rules, or between ✸-rules, have been shown in
the proof of Theorem 3.2. Here we consider the possible combinations of ✷- or
✸-rules with rules for interaction.

• (Eseq
✷ ; weakseqa ). We have

A ⇒ B B ⇒ A
E
seq
✷ Γ,✷A,✸C ⇒ ✷B

⇒ B C ⇒ weakseqaΓ,✷A,✷B,✸C ⇒ D
Cut

Γ,✷A,✸C ⇒ D

which become

⇒ B B ⇒ A
Cut

⇒ A C ⇒ weakseqaΓ,✷A,✸C ⇒ D

• (Eseq
✸ ; weakseqa ). We have

A ⇒ B B ⇒ A
E
seq
✸ Γ,✸A,✷C ⇒ ✸B

⇒ C B ⇒ weakseqaΓ,✸A,✷C,✸B ⇒ D
Cut

Γ,✸A,✷C ⇒ D

which become

⇒ C
A ⇒ B B ⇒

Cut
A ⇒ weakseqaΓ,✸A,✷C ⇒ D

• (Eseq
✷ ; weakseqb ). We have

A ⇒ B B ⇒ A
E
seq
✷ Γ,✷A,✸C ⇒ ✷B

B ⇒ ⇒ C
weak

seq

bΓ,✷A,✷B,✸C ⇒ D
Cut

Γ,✷A,✸C ⇒ D

which become

A ⇒ B B ⇒
Cut

A ⇒ ⇒ C
weak

seq

bΓ,✷A,✸C ⇒ D
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• (Eseq
✸ ; weakseqb ). We have

A ⇒ B B ⇒ A
E
seq
✸ Γ,✸A,✷C ⇒ ✸B

C ⇒ ⇒ B
weak

seq
bΓ,✸A,✷C,✸B ⇒ D

Cut
Γ,✸A,✷C ⇒ D

which become

⇒ C
⇒ B B ⇒ A

Cut
⇒ A

weak
seq

bΓ,✸A,✷C ⇒ D

• (Eseq
✷ ; negseqa ). We have:

A ⇒ B B ⇒ A
E
seq
✷ Γ,✷A,✸C ⇒ ✷B

B,C ⇒ ¬B ⇒ C
negseqaΓ,✷A,✷B,✸C ⇒ D
Cut

Γ,✷A,✸C ⇒ D

which is converted into the following derivation:

A ⇒ B
wk

A,C ⇒ B

B,C ⇒ A
wk

A,B,C ⇒
Cut

A,C ⇒

B ⇒ A
¬A ⇒ ¬B

¬B ⇒ C
wk

¬A,¬B ⇒ C
Cut

¬A ⇒ C
negseqaΓ,✷A,✸C ⇒ D

Observe that the former derivation has two application of Cut, both of them
with a cut formula of smaller weight as, in particular, w(¬B) < w(✷B) (cf.
Definition 3.1).

• (Eseq
✷ ; strseq) is analogous to the next case (Mseq

✷ ; strseq).
• (Mseq

✷ ; strseq). We have:

A ⇒ B
M

seq
✷ Γ,✷A,✸C ⇒ ✷B

B,C ⇒
strseq

Γ,✷A,✷B,✸C ⇒ D
Cut

Γ,✷A,✸C ⇒ D

which is converted into the following derivation:

A ⇒ B
wk

A,C ⇒ B

B,C ⇒
wk

A,B,C ⇒
Cut

A,C ⇒
str

Γ,✷A,✸C ⇒ D

• (Nseq
✷ ; strseq). We have

⇒ A
N

seq
✷ Γ,✸B ⇒ ✷A

A,B ⇒
strseq

Γ,✷A,✸B ⇒ C
Cut

Γ,✸B ⇒ C

which become

⇒ A
wk

B ⇒ A A,B ⇒
Cut

B ⇒
N

seq
✸Γ,✸B ⇒ C
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It is worth noticing that all cut-free calculi containing rule N
seq
✷ also contain

rule N
seq
✸ . In fact, combinations of rules containing N

seq
✷ and not N

seq
✸ would

give calculi where the Cut rule is not admissible. This is due to the form of the
interaction rules, that for instance allow us to derive the sequent ✸⊥ ⇒ using
Cut and N

seq
✷ . A possible derivation is the following:

⇒ ⊤
N

seq
✷

✸⊥ ⇒ ✷⊤
⇒ ⊤ ⊥ ⇒ weakseqa
✷⊤,✸⊥ ⇒

Cut
✸⊥ ⇒

Instead, sequent ✸⊥ ⇒ doesn’t have any cut-free derivation where N
seq
✸ is not

applied, as no rule different from N
seq
✸ has ✸⊥ ⇒ in the conclusion. We will

consider in Section 7 a calculus containing N
seq
✷ and not N

seq
✸ . As we shall see,

that calculus has interaction rules of a different form.
An additional remark concerns the possible choices of interaction rules in

presence of Mseq
✷ and M

seq
✸ . In particular, we notice that whenever we take M

seq
✷

and M
seq
✸ , rule strseq is the only interaction that gives cut-free calculi. It can be

interesting to consider a case of failure of cut elimination when other interaction
rules are considered.

Example 4.1. Sequent ✷¬p,✸(p ∧ q) ⇒ is derivable from M
seq
✷ + negseqa +

neg
seq

b + Cut, but it is not derivable from M
seq
✷ + negseqa + neg

seq

b without Cut.
A possible derivation is as follows:

¬p, p ∧ q ⇒
R¬

¬p ⇒ ¬(p ∧ q)
M

seq
✷

✷¬p ⇒ ✷¬(p ∧ q)
wk

✷¬p,✸(p ∧ q) ⇒ ✷¬(p ∧ q)

¬(p ∧ q), p ∧ q ⇒ ¬(p ∧ q) ⇒ ¬(p ∧ q)
neg

seq

b
✷¬(p ∧ q),✸(p ∧ q) ⇒

wk
✷¬(p ∧ q),✷¬p,✸(p ∧ q) ⇒

Cut
✷¬p,✸(p ∧ q) ⇒

Let us now try to derive bottom-up the sequent without using Cut. As
last rule we can only apply negseqa or neg

seq

b , as they are the only rules with a
conclusion of the right form. In the first case the premisses would be ¬p, p∧q ⇒,
and ¬¬p ⇒ p ∧ q; while in the second case the premisses would be ¬p, p ∧ q ⇒,
and ¬p ⇒ ¬(p ∧ q). It is clear, however, that in both cases the second premiss
is not derivable.

We now consider sequent calculi for logics containing axiom C✷. As it hap-
pens in the case of calculi for monomodal logics, C✷ is not captured by adding
a specific rule, but we need instead to modify most of the modal rules already
given. In addition to the previous modifications of Eseq

✷ and M
seq
✷ , we now need

to modify also the interaction rules. In particular, we must take their generali-
sations that allow to introduce n boxed formulas by a single application (rules in
Figure 7). Rule weakseqa is an exception as the boxed formula which is principal
in the rule application occurs as unboxed in the right-hand side of the premiss,
and therefore doesn’t need to be changed.

As before, it can be easily shown that weakening and contraction are height-
preserving admissible.

Proposition 4.3. Weakening and contraction are height-preserving admissible
in any sequent calculus defined by a combination of modal rules in Figures 5
and 7 that satisfies our restrictions.
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A1, ..., An ⇒ ⇒ B
weakbC

seq

Γ,✷A1, ...,✷An,✸B ⇒ C

A1, ..., An, B ⇒
strCseq

Γ,✷A1, ...,✷An,✸B ⇒ C

A1, ..., An, B ⇒ ¬B ⇒ A1 ... ¬B ⇒ An
negaC

seq

Γ,✷A1, ...,✷An,✸B ⇒ C

A1, ..., An, B ⇒ ¬Ai ⇒ B ... ¬An ⇒ B
negbC

seq

Γ,✷A1, ...,✷An,✸B ⇒ C

Figure 7: Modified interaction rules for C✷. In any rule n ≥ 1.

Following our methodology we obtain again 12 sequent calculi, as it is stated
by the following theorem:

Theorem 4.4. The Cut rule is admissible in the following calculi:

G.IE1C := E✷C
seq + E

seq
✸ + weakseqa + weakbC

seq

G.IE2C := E✷C
seq + E

seq
✸ + negaC

seq + negbC
seq

G.IE3C := E✷C
seq + E

seq
✸ + strCseq

G.IMC := M✷C
seq + M

seq
✸ + strCseq

Moreover, letting GC∗ be any of the previuos calculi, Cut is admissible in

GC∗N✸ := GC∗ + N
seq
✸

GC∗N✷ := GC∗ + N
seq
✸ + N

seq
✷

Proof. As before, we only show some relevant cases.

• (E✷C
seq; weakseqa ). Let Γ1 be the multiset A1, ..., An, and ✷Γ1 be ✷A1, ...,✷An.

We have:

Γ1 ⇒ B B ⇒ A1 ... B ⇒ An
E✷C

seq

Γ,✷Γ1,✸C ⇒ ✷B
⇒ B C ⇒ weakseqaΓ,✷Γ1,✷B,✸C ⇒ D

Cut
Γ,✷Γ1,✸C ⇒ D

which become

⇒ B B ⇒ A1
Cut

⇒ A1 C ⇒
weakseqaΓ,✷A1,✷A2, ...,✷An,✸C ⇒ D

• (E✷C
seq; negbC

seq). Let Γ1 = A1, ..., An and Γ2 = C1, ..., Ck. We have:

Γ1 ⇒ B B ⇒ A1 ... B ⇒ An
E✷C

seq

Γ,✷Γ1,✷Γ2,✸D ⇒ ✷B

B,Γ2, D ⇒ ¬B ⇒ D ¬C1 ⇒ D ... ¬Ck ⇒ D
negbC

seq

Γ,✷Γ1,✷B,✷Γ2,✸D ⇒ E
Cut

Γ,✷Γ1,✷Γ2,✸D ⇒ E

which is converted as follows: First we derive sequent Γ1,Γ2, D ⇒ and, for all
1 ≤ i ≤ n, sequent ¬Ai ⇒ D as follows:

Γ1 ⇒ B
wk

Γ1,Γ2 ⇒ B

B,Γ2, D ⇒
wk

B,Γ1,Γ2, D ⇒
Cut

Γ1,Γ2, D ⇒

B ⇒ Ai

¬Ai ⇒ ¬B
¬B ⇒ D

wk
¬Ai,¬B ⇒ D

Cut
¬Ai ⇒ D
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Then we can apply negbC
seq:

Γ1,Γ2, D ⇒ ¬A1 ⇒ D ... ¬An ⇒ D ¬C1 ⇒ D ... ¬Ck ⇒ D
negbC

seq

Γ,✷Γ1,✷Γ2,✸D ⇒ E

• (E✷C
seq; strCseq). Let Γ1 = A1, ..., An and Γ2 = C1, ..., Ck. We have:

Γ1 ⇒ B B ⇒ A1 ... B ⇒ An
E✷C

seq

Γ,✷Γ1,✷Γ2,✸D ⇒ ✷B

B,Γ2, D ⇒
strCseq

Γ,✷Γ1,✷B,✷Γ2,✸D ⇒ E
Cut

Γ,✷Γ1,✷Γ2,✸D ⇒ E

which become

Γ1 ⇒ B
wk

Γ1,Γ2, D ⇒ B

B,Γ2, D ⇒
wk

Γ1, B,Γ2, D ⇒
Cut

Γ1,Γ2, D ⇒
strCseq

Γ,✷Γ1,✷Γ2,✸D ⇒ E

• (M✷C
seq; strCseq) is similar to the previous case.

Notably, the cut-free calculi in Theorem 4.4 are the C✷-versions of the cut-
free calculi in Theorem 4.4. This means that, once the interaction rules are
opportunely modified, the generalisation of the rules to n principal formulas
doesn’t give problems with respect to cut elimination.

We have also seen that rule weakseqa doesn’t need to be changed. Instead,
if we don’t modify the other interaction rules we obtain calculi in which Cut is
not eliminable, as it is shown by the following example.

Example 4.2. Sequent ✷p,✷¬p,✸⊤ ⇒ is derivable by M✷C
seq + weak

seq

b +
Cut, but is not derivable by M✷C

seq + weak
seq

b without Cut. The derivation is
as follows:

p,¬p ⇒ ⊥
M✷C

seq

✸⊤,✷p,✷¬p ⇒ ✷⊥
⊥ ⇒ ⇒ ⊤

weak
seq

b
✷p,✷¬p,✷⊥,✸⊤ ⇒

Cut
✷p,✷¬p,✸⊤ ⇒

Without Cut the sequent is instead not derivable, as the only applicable rule
would be weak

seq

b , but neither p nor ¬p is a contradiction.

4.2 Hilbert systems

For each sequent calculus we now define an equivalent Hilbert system. To this
purpose, in addition the formulas in Figure 1, we also consider the axioms and
rules in Figure 8. As before, the Hilbert systems are defined by the set of modal
axioms and rules that are added to IPL. The systems are axiomatised as follows.

IE1 := E✷ + E✸ + weaka + weakb
IE2 := E✷ + E✸ + nega + negb
IE3 := E✷ + E✸ + str

IM := E✷ + E✸ + M✷ + M✸ + str

Moreover, letting H∗ be any of the four systems listed above, we have the fol-
lowing additional systems:
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weaka ¬(✷⊤ ∧✸⊥) weakb ¬(✸⊤ ∧✷⊥)
str

¬(A ∧B)

¬(✷A ∧✸B)nega ¬(✷A ∧✸¬A) negb ¬(✷¬A ∧✸A)

Figure 8: Hilbert axioms and rules for interactions between ✷ and ✸.

IM

IE3

IE2

IE1

IE2N✸

IE3N✸

IMN⋄ IE2N✷

IE3N✷

IMN✷

IE1N✸

IE1N✷

IE1C

IE1CN✷

IE1CN✸

IE2C

IE3C

IMC IE2CN✸

IE3CN✸

IMCN✸ IE2CN✷

IE3CN✷

IMCN✷

Figure 9: The lattice of intuitionistic non-normal bimodal logics.

H∗C := H∗ + C✷

H∗N✸ := H∗ + N✸

H∗N✷ := H∗ + N✷

H∗CN✸ := H∗ + C✷ + N✸

H∗CN✷ := H∗ + C✷ + N✷

Proposition 4.5. Let G.L be any sequent calculus for intuitionistic non-normal
bimodal logics. Then G.L is equivalent to system L.

Proof. Any axiom and rule of L is derivable in G.L. Here we only consider the
interactions between the modalities, as the derivations of the other axioms have
been already given in Proposition 3.3.

⇒ ⊤ ⊥ ⇒ weakseqa
✷⊤,✸⊥ ⇒

L∧
✷⊤ ∧✸⊥ ⇒

R¬
⇒ ¬(✷⊤ ∧✸⊥)

⇒ ⊤ ⊥ ⇒
weak

seq
b

✸⊤,✷⊥ ⇒
L∧

✸⊤∧ ✷⊥ ⇒
R¬

⇒ ¬(✸⊤ ∧ ✷⊥)
⇒ ¬(A ∧B)

wk
A,B ⇒ ¬(A ∧B) A,B,¬(A ∧B) ⇒

Cut
A,B ⇒

strseq
✷A,✸B ⇒

L∧
✷A ∧✸B ⇒

R¬
⇒ ¬(✷A ∧✸B)

A,¬A ⇒ ¬A ⇒ ¬A
negseqa

✷A,✸¬A ⇒
L∧

✷A ∧✸¬A ⇒
R¬

⇒ ¬(✷A ∧✸¬A)

A,¬A ⇒ ¬A ⇒ ¬A
neg

seq

b
✷¬A,✸A ⇒

L∧
✷¬A ∧✸A ⇒

R¬
⇒ ¬(✷¬A ∧✸A)
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Moreover, any rule of G.L is derivable in L. As before we only need to consider
the interaction rules. The derivations are immediate, we show as example the
following.

• If L contains axiom weaka, then rule weakseqa is derivable. Assume ⊢L A
and ⊢L B ⊃ ⊥. Then ⊢L ⊤ ⊃ A, and, since ⊢L A ⊃ ⊤, by E✷ we have
⊢L ✷A ⊃ ✷⊤. Moreover, since ⊢L ⊥ ⊃ B, by E✸ we have ⊢L ✸B ⊃ ✸⊥, hence
⊢L ¬✸⊥ ⊃ ¬✸B. By weaka we also have ⊢L ✷⊤ ⊃ ¬✸⊥. Thus ⊢L ✷A ⊃ ¬✸B,
which gives ⊢L ¬(✷A ∧✸B).

• If L contains axiom negb, then rule negseqb is derivable. Assume ⊢L A ⊃ ¬B
and ⊢L ¬B ⊃ A. Then by E✷, ⊢L ✷A ⊃ ✷¬B. By negb we have ⊢L ✷¬B ⊃
¬✸B. Thus ⊢L ✷A ⊃ ¬✸B, which gives ⊢L ¬(✷A ∧✸B).

5 Decidability and other consequences of cut elim-

ination

Analytic cut-free sequent calculi are a very powerful tool for proof analysis. In
this section we take advantage of the fact that Cut is admissible in all sequent
calculi defined in Sections 3 and 4 in order to prove some additional proper-
ties of the corresponding logics. By looking at the form of the rules, we first
observe that all calculi satisfy the requirements on intuitionistic non-normal
modal logics that we have initially made, i.e. that they are conservative over
IPL (R1); that they satisfy the disjunction property (R2); and that the duality
principles Dual✷ and Dual✸ are not derivable (R3). In a similar way we show
that all calculi are pairwise non-equivalent, hence the lattices of intuitionistic
non-normal modal logics contain, respectively, 8 distinct monomodal ✷-logics,
4 distinct monomodal ✸-logics, and 24 distinct bimodal logics.

Some form of subformula property often follows from cut elimination. For
calculi containing rules negseqa and neg

seq

b we must consider a property that is
slightly different to the usual one, as ¬A can appear in a premiss of a rule where
✷A or ✸A appears in the conclusion. As we shall see, the considered property
is strong enough to provide, together with the admissibility of contraction, a
standard proof of decidability for G3 calculi.

We conclude the section with some further remarks about the logics that we
have defined, that in particular concern the relations between intuitionistic and
classical modal logics.

Fact 5.1. Any intuitionistic non-normal modal logic defined in Section 3 and
Section 4 satisfies requirements R1, R2 and R3 (the latter one being relevant
only for bimodal logics).

Proof. (R1) Any logic is conservative over IPL. In fact, the non-modal rules of
each sequent calculus are exactly the rules of G3ip.

(R2) Any logic satisfies the disjunction property. In fact, given a derivable
sequent of the form ⇒ A ∨ B, since no modal rule has such a conclusion, the
last rule applied in its derivation is necessarily R∨. This has premiss ⇒ A or
⇒ B, which in turn is derivable.

(R3) Axioms Dual✷ and Dual✸ are not derivable in L for any system L.
In particular, neither ¬✷¬A ⊃ ✸A, nor ¬✸¬A ⊃ ✷A (i.e. the right-to-left
implications of Dual✷ and Dual✸) is derivable. For instance, if we try to derive
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bottom-up the sequent ¬✷¬A ⇒ ✸A in G.L, the only applicaple rule would
be L⊃. This has premiss ¬✷¬A ⇒ ✷¬A. Again, L⊃ is the only applicable
rule, with the same sequent as premiss. Since this is not an initial sequent,
we have that ¬✷¬A ⇒ ✸A is not derivable. The situation is analogous for
¬✸¬A ⇒ ✷A.

Theorem 5.2. The lattice of intuitionistic non-normal bimodal logics contains
24 distinct systems.

Proof. We leave to the reader to check that taken two logics L1 and L2 of the
lattice, we can always find some formulas (or rules) that are derivable in L1

and not in L2, or vice versa. This can be easily done by considering the corre-
sponding calculi G.L1 and G.L2. In particular, if L1 is stronger than L2, then
the characteristic axiom of L1 is not derivable in L2. If instead L1 and L2 are
incomparable, then they both have some characteristic axioms (or rules) that
are not derivable in the other. For rule str we can consider the counterexample
to cut elimination in Example 4.1

Definition 5.1 (Strict subformula and negated subformula). For any formulas
A and B, we say that A is a strict subformula of B if A is a subformula of B
and A 6≡ B. Moreover, we say that A is a negated subformula of B if there is a
formula C such that C is a strict subformula of B and A ≡ ¬C.

Definition 5.2 (Subformula property and negated subformula property). We
say that a sequent calculus G.L enjoys the subformula property if all formulas in
any derivation are subformulas of the endsequent. We say that G.L enjoys the
negated subformula property if all formulas in any derivation are either subfor-
mulas or negative subformulas of the endsequent.

As an immediate consequence of cut elimination we have the following result.

Theorem 5.3. Any sequent calculus different from G.IE2(C,N✸,N✷) enjoys the
subformula property. Moreover, calculi G.IE2(C,N✸,N✷) enjoy the negated sub-
formula property.

Having that the calculi enjoy the above subformula properties we can easily
adapt the proof of decidability for G3ip in Troelstra and Schwichtenberg [26]
and obtain thereby a proof of decidability for our calculi.

Theorem 5.4 (Decidability). For any intuitionistic non-normal modal logic
defined in Section 3 and Section 4 it is decidable whether a given formula is
derivable.

We conclude this section with some remarks about the logics we that have
defined. Firstly, we notice that there are three different systems (that is IE1,
IE2, IE3) that we can make correspond to the same classical logic (that is logic
E), and the same holds for some of their extensions. This is essentially due to
the lost of duality between ✷ and ✸, that permits us to consider interactions
of different strengths that are equally derivable in classical logic but are not
intuitionistically equivalent. We see therefore that the picture of systems that
emerge from a certain set of logic principles is much richer in the intuitionistic
case than in the classical one.
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Furthermore, logic IE3 (as well as its non-monotonic extensions) leads us to
the following consideration. It is normally expected that an intuitionistic modal
logic is strictly weaker than the corresponding classical modal logic, mainly
because IPL is weaker than CPL. However, if we make correspond IE3 to classical
E, this is not the case anymore. In fact, rule str is classically equivalent to Mon✷,
and hence not derivable in E. At the same time, however, it would be odd to
consider IE3 as corresponding to classical M, as neither M✷ nor M✸ is derivable.

As a consequence, this particular case suggests that assuming an intuition-
istic base not only allows us to make subtle distinctions between principles that
are not distinguishable in classical logic, but also gives us the possibility to in-
vestigate systems that in a sense lie between two different classical logics, and
don’t correspond essentially to any of the two.

6 Semantics

In this section we present a semantics for all systems defined in Sections 3 and
4. As we shall see, the present semantics represents a general framework for
intuitionistic modal logics, that is able to capture modularly further intuition-
istic non-normal modal logics as CK and CCDLp. The models are obtained by
combining intuitionistic Kripke models and neighbourhood models (Definition
2.1) in the following way:

Definition 6.1. A coupled intuitionistic neighbourhood model (CINM) is a tuple
M = 〈W ,�,N✷,N✸,V〉, where W is a non-empty set, � is a preorder over
W , V is a hereditary valuation function W −→ Atm (i.e. w � v implies
V(w) ⊆ V(v)), and N✷, N✸ are two neighbourhood functions W −→ P(P(W))
such that:

w � v implies N✷(w) ⊆ N✷(v) and N✸(w) ⊇ N✸(v) (hp).

Functions N✷ and N✸ can be supplemented, closed under intersection, or contain

the unit (cf. properties in Definition 2.1). Moreover, letting −α denote the set
{w ∈ W | for all v � w, v /∈ α}, N✷ and N✸ can be related in the following
ways:

For all w ∈ W , N✷(w) ⊆ N✸(w) Weak interaction (weakInt);
If α ∈ N✷(w), then W \−α ∈ N✸(w) Negation closure int_a (negInta);
If −α ∈ N✷(w), then W \ α ∈ N✸(w) Negation closure int_b (negIntb);
If α ∈ N✷(w) and α ⊆ β, then β ∈ N✸(w) Strong interaction (strInt).

The forcing relation w 
 A associated to CINMs is defined inductively as
follows:

w 
 p iff p ∈ V(w);
w 6
 ⊥;
w 
 B ∧ C iff w 
 A and w 
 B;
w 
 B ∨ C iff w 
 A or w 
 B;
w 
 B ⊃ C iff for all v � w, v 
 B implies v 
 C;
w 
 ✷B iff [B] ∈ N✷(w);
w 
 ✸B iff W \ [B] /∈ N✸(w).

CINMs for monomodal logics ✷-IE∗ and ✸-IE∗ are defined by removing, respec-
tively, N✸ or N✷ from the above definition (as well as the forcing condition for
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the lacking modality), and are called ✷-INMs and ✸-INMs.
As usual, given a class C of CINMs, we say that a formula A is satisfiable in

C if there are M ∈ C and w ∈ M such that w 
 A, and that A is valid in C if
for all M ∈ C and w ∈ M, w 
 A.

Observe that we are taking for ⊃ the satisfaction clause of intuitionistic
Kripke models, while for ✷ and ✸ we are taking the satisfaction clauses of clas-
sical neighbourhood models. Differently from classical neighbourhood models,
however, we have here two neighbourhood functions N✷ and N✸ (instead of
one). This allows us to consider different relations between the two functions
(i.e. the interaction conditions in Definition 6.1) that we make correspond to
interaction axioms (and rules) with different strength.

The way functions N✷ and N✸ are related to the order � by condition (hp)
guarantees that CINMs preserve the hereditary property of intuitionistic Kripke
models:

Proposition 6.1. CINMs satisfy the hereditary property: for all A ∈ L, if
w 
 A and w � v, then v 
 A.

Proof. By induction on A. For the non-modal cases the proof is standard. For
A ≡ ✷B,✸B it is immediate by (hp).

Depending on its axioms, to each system are associated models with specific
properties, as summarised in the following table:

M✷ N✷ is supplemented weaka + weakb weakInt
N✷ N✷ contains the unit nega + negb negInt
C✷ N✷ is closed under ∩ str strInt
M✸ N✸ is supplemented
N✸ N✸ contains the unit

Conditions negInta and negIntb are always considered together and summarised
as negInt. In case of supplemented models (i.e. when both N✷ and N✸ are
supplemented) it suffices to consider weakInt as the semantic condition corre-
sponding to any interaction axiom (or rule). In fact, it is immediate to verify
that whenever a model M is weakInt, and N✷ or N✸ is supplemented, then M
also satisfies negInt and strInt.

Given the semantic properties in the above table, we have that ✷-INMs
coincide essentially with the neighbourhood spaces by Goldblatt [11] (although
there the property of containing the unit is not considered). The only difference
is that in Goldblatt’s spaces the neighbourhoods are assumed to be closed with
respect to the order, that is:

If α ∈ N✷(w), v ∈ α and v � u, then u ∈ α (�-closure).

As already observed by Goldblatt, however, this property is irrelevant from the
point of view of the validity of formulas, as a formula A is valid in ✷-INMs (that
are supplemented, closed under intersection, contain the unit) if and only of it is
valid in the corresponding ✷-INMs that satisfy also the �-closure. It is easy to
verify that the same equivalence holds if we consider CINMs for bimodal logics,
provided that the �-closure is demanded only for the neighbourhoods in N✷,
and not for those in N✸.

It is immediate to prove soundness of intuitionistic non-normal modal logics
with respect to the corresponding CINMs.
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Theorem 6.2 (Soundness). Any intuitionistic non-normal modal logic is sound
with respect to the corresponding CINMs.

Proof. It is immediate to prove that a given axiom is valid whenever the corre-
sponding property is satisfied. For nega and negb notice that −[A] = [¬A].

We now prove completeness by the canonical model construction. In the
following, let L be any intuitionistic non-normal modal logic and L be the cor-
responding language. We call L-prime any set X of formulas of L which is
consistent (X 6⊢L ⊥), closed under derivation (X ⊢L A implies A ∈ X) and such
that if (A∨B) ∈ X , then A ∈ X or B ∈ X . For all A ∈ L, we denote with ↑prA
the class of prime sets X such that A ∈ X . The standard properties of prime
sets hold, in particular:

Lemma 6.3. (a) If X 6⊢L A ⊃ B, then there is a L-prime set Y such that
X ∪{A} ⊆ Y and B /∈ Y . (b) For any A,B ∈ L, ↑prA ⊆↑prB implies ⊢L A ⊃ B.

Lemma 6.4. Let L be any logic non containing axioms M✷ and M✸. The
canonical model Mc for L is defined as the tuple 〈Wc,�c,N c

✷
,N c

✸
,Vc〉, where:

• Wc is the class of L-prime sets;
• for all X,Y ∈ Wc, X �c Y if and only if X ⊆ Y ;
• N c

✷
(X) = {↑prA | ✷A ∈ X};

• N c
✸
(X) = P(Wc) \ {Wc\ ↑prA | ✸A ∈ X};

• Vc(X) = {p ∈ L | p ∈ X}.

Then for all X ∈ Wc and all A ∈ L we have

X 
 A iff A ∈ X .

Moreover: (i) If L contains N✷, then N c
✷

contains the unit;
(ii) If L contains C✷, then N c

✷
is closed under intersection;

(iii) If L contains N✸, then N c
✸

contains the unit;
(iv) If L contains weaka and weakb, then Mc is weakInt;
(v) If L contains nega, then Mc is negInta;
(vi) If L contains negb, then Mc is negIntb;
(vii) If L contains str, then Mc is strInt.

Proof. By induction on A we prove that X 
 A if and only if A ∈ X . If
A ≡ p,⊥, B ∧ C,B ∨ C,B ⊃ C the proof is immediate. If A ≡ ✷B: From
right to left, assume ✷B ∈ X . Then by definition ↑prB ∈ N c

✷
(X), and by

inductive hypothesis, ↑prB = [B]Mc , therefore X 
 ✷B. From left to right,
assume X 
 ✷B. Then we have [B]Mc ∈ N c

✷
(X), and, by inductive hypothesis,

[B]Mc =↑prB. By definition, this means that there is C ∈ L such that ✷C ∈ X
and ↑prC =↑prB. Then by Lemma 6.3, ⊢L C ⊃ B and ⊢L B ⊃ C. Thus by
E✷, ⊢L ✷C ⊃ ✷B, and, by closure under derivation, ✷B ∈ X . If A ≡ ✸B:
From right to left, assume ✸B ∈ X . Then by definition Wc\ ↑prB /∈ N c

✸
(X),

and by inductive hypothesis, ↑prB = [B]Mc , therefore X 
 ✸B. From left to
right, assume X 
 ✸B. Then we have Wc \ [B]Mc /∈ N c

✸
(X), and, by inductive

hypothesis, Wc\ ↑prB /∈ N c
✸
(X). This means that there is C ∈ L such that

✸C ∈ X and ↑prC =↑prB. Thus, ⊢L C ⊃ B and ⊢L B ⊃ C, therefore by E✸,
⊢L ✸C ⊃ ✸B. By closure under derivation we then have ✸B ∈ X .

Notice also that Mc is well defined: It follows immediately by the definition
that X �c Y implies both N c

✷
(X) ⊆ N c

✷
(Y ) and N c

✸
(X) ⊇ N c

✸
(Y ).
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Points (i)–(vi) are proved as follows: (i) ✷⊤ ∈ X for all X ∈ Wc. Then
by definition Wc =↑pr⊤ ∈ N c

✷
(X). (ii) Assume α, β ∈ N c(X). Then there are

A,B ∈ L such that ✷A,✷B ∈ X , α =↑prA and β =↑prB. By closure under
derivation we have ✷(A ∧ B) ∈ X , and, by definition, ↑pr(A ∧ B) ∈ N c

✷
(X),

where ↑pr(A ∧ B) =↑prA∩ ↑prB = α ∩ β. (iii) ¬✸⊥ ∈ X for all X ∈ Wc, thus
by consistency, ✸⊥ /∈ X . If Wc\ ↑pr⊥ /∈ N c

✷
(X), then there is A ∈ L such that

↑prA =↑pr⊥ and ✸A ∈ X , that implies ✸⊥ ∈ X . Therefore Wc = Wc\ ↑pr⊥ ∈
N c

✷
(X).
(iv) Assume by contradiction that α ∈ N c

✷
(X) and α /∈ N c

✸
(X). Then

there are A,B ∈ L such that α =↑prA, α = Wc\ ↑prB, and ✷A,✸B ∈ X ,
therefore ↑prA = Wc\ ↑prB. By the properties of prime sets, this implies
⊢L ¬(A ∧ B) and ⊢L A ∨ B, and by the disjunction property, ⊢L A or ⊢L B. If
we assume ⊢L A, then ⊢L A ⊃⊂ ⊤ and ⊢L B ⊃⊂ ⊥. Therefore by E✷ and E✸,
⊢L ✷A ⊃ ✷⊤ and ⊢L ✸B ⊃ ✸⊥, thus by closure under derivation, ✷⊤,✸⊥ ∈ X .
But ¬(✷⊤∧✸⊥) ∈ X , against the consistency of prime sets. If we now assume
⊢L B, then ⊢L B ⊃⊂ ⊤ and ⊢L A ⊃⊂ ⊥. We obtain an analogous contradiction
by ¬(✸⊤ ∧✷⊥).

(v) Assume α ∈ N c
✷
(X). Then there is A ∈ L such that α =↑prA and ✷A ∈

X . Thus, by nega and consistency of X , ✸¬A /∈ X . Therefore Wc\ ↑pr¬A ∈
N c

✸
(X) (otherwise there would be B ∈ L such that ↑prB =↑pr¬A and ✸B ∈

X , which implies ✸¬A ∈ X). Since ↑pr¬A = − ↑prA (↑pr¬A = [¬A]Mc =
−[A]Mc = − ↑prA) and − ↑prA = −α, we have the claim.

(vi) By contraposition, assume Wc \ α /∈ N c
✸
(X). Then there is A ∈ L

such that Wc \ α = Wc\ ↑prA and ✸A ∈ X . Thus α =↑prA, and by negb,
✷¬A /∈ X . Therefore ↑pr¬A /∈ N c

✷
(X) (otherwise there would be ✷B ∈ X such

that ↑pr¬A =↑prB, which implies ✷¬A ∈ X). Since ↑pr¬A = − ↑prA = −α,
we have the claim.

(vii) Assume by contradiction that α ∈ N c
✷
(X), α ⊆ β, and β /∈ N c

✸
(X).

Then there are A,B ∈ L such that α =↑prA, β = Wc\ ↑prB and ✷A,✸B ∈ X .
Moreover, ↑prA ⊆ Wc\ ↑prB, which implies ↑prA∩ ↑prB = ∅. Thus ⊢L ¬(A∧B);
and by str we have ⊢L ¬(✷A ∧✸B), against the consistency of X .

For logics containing M✷ or M✸ we slightly change the definition of canon-
ical model. We shorten the proof by considering, instead of M✷ and M✸, the
syntactically equivalent rules Mon✷ and Mon✸.

Lemma 6.5. Let L be any logic containing axioms M✷ and M✸. The canonical

model Mc
+ for L is the tuple 〈Wc,�c,N+

✷
,N+

✸
,Vc〉, where Wc,�c,Vc are defined

as in Lemma 6.4, and:

N+
✷
(X) = {α ⊆ Wc | there is A ∈ L s.t. ✷A ∈ X and ↑prA ⊆ α};

N+
✸
(X) = P(Wc) \ {α ⊆ Wc | there is A ∈ L s.t. ✸A ∈ X and α ⊆

Wc\ ↑prA}.

Then we have that X 
 A if and only if A ∈ X . Moreover, points (i)–(iii) of
Lemma 6.4 still hold. Finally, (iv) if L contains str, then Mc

+ is weakInt.

Proof. It is immediate to verify that both N+
✷

and N+
✸

are supplemented. As
before, the proof is by induction on A. We only show the modal cases. If A ≡
✷B: From right to left, assume ✷B ∈ X . Then by definition ↑prB ∈ N+

✷
(X),

and by inductive hypothesis, ↑prB = [B]Mc

+
, therefore X 
 ✷B. From left to

right, assume X 
 ✷B. Then we have [B]Mc

+
∈ N+

✷
(X), and, by inductive
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hypothesis, [B]Mc

+
=↑prB. By definition, this means that there is C ∈ L such

that ✷C ∈ X and ↑prC ⊆↑prB, which implies ⊢L C ⊃ B. Thus by Mon✷,
⊢L ✷C ⊃ ✷B, and, by closure under derivation, ✷B ∈ X . If A ≡ ✸B: From
right to left, assume ✸B ∈ X . Then by definition Wc\ ↑prB /∈ N+

✸
(X), and

by inductive hypothesis, ↑prB = [B]Mc

+
, therefore X 
 ✸B. From left to right,

assume X 
 ✸B. Then we have Wc \ [B]Mc /∈ N+
✸
(X), and, by inductive

hypothesis, Wc\ ↑prB /∈ N+
✸
(X). This means that there is C ∈ L such that

✸C ∈ X and Wc \B ⊆ Wc \C, that is ↑prC ⊆↑prB. Thus, ⊢L C ⊃ B, therefore
by E✸, ⊢L ✸C ⊃ ✸B. By closure under derivation we then have ✸B ∈ X .

Points (i)–(iii) are very similar to points (i)–(iii) in Lemma 6.4. (iv) By
contradiction, assume α ∈ N+

✷
(X) and α /∈ N+

✸
(X). Then there are A,B ∈ L

such that ↑prA ⊆ α, α ⊆ Wc\ ↑prB, and ✷A,✸B ∈ X . Therefore ↑prA ⊆
Wc\ ↑prB, which implies ⊢L ¬(A ∧B). By str we then have ¬(✷A ∧✸B) ∈ X ,
against the consistency of X .

Theorem 6.6 (Completeness). Any intuitionistic non-normal bimodal logic is
complete with respect to the corresponding CINMs.

Proof. Assume 6⊢L A. Then 6⊢L ⊤ ⊃ A, thus, by Lemma 6.3, there is a L-
prime set Π such that A /∈ Π. By definition, Π ∈ Mc

(+), and by Lemma 6.4,
Mc

(+),Π 6
 A. By the properties of Mc
(+) we obtain completeness with respect

to the corresponding models.

It is immediate to verify that by removing N c
✸

(N+
✸

) or N c
✷

(N+
✷

) from the
definition of Mc (Mc

+), we obtain analogous results for monomodal logics.

Theorem 6.7. Any intuitionistic non-normal monomodal logic is complete with
respect to the corresponding CINMs.

6.1 Finite model property and decidability

We have seen that all intuitionistic non-normal modal logics defined in Section
3 and 4 are sound and complete with respect to a certain class of CINMs. By
applying the technique of filtrations to this kind of models, we now show that
most of them have also the finite model property, thus providing an alternative
proof of decidability. The proofs are given explicitly for bimodal logics, while
the simpler proofs for monomodal logics can be easily extracted.

Given a CINM M and a set Φ of formulas of L that is closed under subfor-
mulas, we define the equivalence relation ∼ on W as follows:

w ∼ v iff for all A ∈ Φ, w 
 A iff v 
 A.

For any w ∈ W and α ⊆ W , we denote with w∼ the equivalence class containing
w, and with α∼ the set {w∼ | w ∈ α} (thus in particular [A]∼

M
is the set

{w∼ | w ∈ [A]M}).

Definition 6.2. Let M = 〈W ,�,N✷,N✸,V〉 be any CINM and Φ be a set
of formulas of L closed under subformulas. A filtration of M through Φ (or
Φ-filtration) is any model M∗ = 〈W∗,�∗,N ∗

✷
,N ∗

✸
,V∗〉 such that:

• W∗ = {w∼ | w ∈ W};

• w∼ �∗ v∼ iff for all A ∈ Φ, M, w 
 A implies M, v 
 A;

26



• for all ✷A ∈ Φ, [A]∼
M

∈ N ∗
✷
(w∼) iff [A]M ∈ N✷(w);

• for all ✸A ∈ Φ, W∗ \ [A]∼
M

∈ N ∗
✸
(w∼) iff W \ [A]M ∈ N✸(w);

• for all p ∈ Φ, p ∈ V∗(w∼) iff p ∈ V(w).

Observe that model M∗ is well-defined, as for all ✷A,✸B, p ∈ Φ we have that
w ∼ v implies (i) [A]∼

M
∈ N ∗

✷
(w∼) iff [A]∼

M
∈ N ∗

✷
(v∼); (ii) W∗\ [B]∼

M
∈ N ∗

✸
(w∼)

iff W∗ \ [B]∼
M

∈ N ∗
✸
(v∼); and (iii) p ∈ V∗(w∼) iff p ∈ V∗(v∼). Moreover, it is

immediate to verify that (iv) �∗ is a preorder; (v) V∗ is hereditary; (vi) if
w∼ �∗ v∼ and ✷A ∈ Φ, then [A]∼

M
∈ N ∗

✷
(w∼) implies [A]∼

M
∈ N ∗

✷
(v∼); (vii)

if w∼ �∗ v∼ and ✸B ∈ Φ, then W∗ \ [B]∼
M

∈ N ∗
✸
(v∼) implies W∗ \ [B]∼

M
∈

N ∗
✸
(w∼); and (viii) for all α ⊆ W∗, α ∈ N ∗

✷
(w∼) implies α ∈ N ∗

✸
(w∼). Thus

M∗ is a CINM.

Lemma 6.8 (Filtrations lemma). For any formula A ∈ Φ,

M∗, w∼ 
 A iff M, w 
 A.

Proof. Notice that this is equivalent to prove that [A]M∗ = [A]∼
M

. The proof is
by induction on A. For A ≡ p,⊥, B ∧ C,B ∨ C the proof is immediate.

A ≡ B ⊃ C. Assume M, w 6
 B ⊃ C. Then there is v � w such that M, v 


B and M, v 6
 C. By inductive hypothesis M∗, v∼ 
 B and M∗, v∼ 6
 C.
Moreover, by definition of �∗ (and monotonicity of M), w∼ �∗ v∼. Therefore
M∗, w∼ 6
 B ⊃ C. Now assume M∗, w∼ 6
 B ⊃ C. Then there is v∼ ∈ W∗

such that w∼ �∗ v∼, M∗, v∼ 
 B and M∗, v∼ 6
 C. By inductive hypothesis
M, v 
 B and M, v 6
 C, thus M, v 6
 B ⊃ C. By definition of �∗ we then
have M, w 6
 B ⊃ C.

A ≡ ✷B. M∗, w∼ 
 ✷B iff [B]M∗ ∈ N ∗
✷
(w∼) iff (i.h.) [B]∼

M
∈ N ∗

✷
(w∼) iff

[B]M ∈ N✷(w) iff M, w 
 ✷B.
A ≡ ✸B. M∗, w∼ 
 ✸B iff W∗ \ [B]M∗ /∈ N ∗

✸
(w∼) iff (i.h.) W∗ \ [B]∼

M
/∈

N ∗
✸
(w∼) iff W \ [B]M /∈ N✸(w) iff M, w 
 ✸B.

Lemma 6.9. Let M∗ be a Φ-filtration of M. (i) If N✷(w) contains the unit
and ✷⊤ ∈ Φ, then N ∗

✷
(w∼) contains the unit. (ii) If N✸(w) contains the unit

and ✸⊥ ∈ Φ, then N ∗
✸
(w∼) contains the unit.

Proof. Immediate by Definition 6.2 and Lemma 6.8.

Definition 6.3. We call finest Φ-filtration (cf. Chellas [2]) any Φ-filtration M∗

of M such that:

N ∗
✷
(w∼) = {[A]∼

M
| ✷A ∈ Φ and [A]M ∈ N✷(w)}; and

N ∗
✸
(w∼) = P(W∗) \ {W∗ \ [A]∼

M
| ✸A ∈ Φ and W \ [A]M /∈ N✸(w)}.

Moreover, let M◦ = 〈W∗,�∗,N ◦
✷
,N ◦

✸
,V∗〉 be a CINM where W∗, �∗ and V∗

are as in M∗. We say that:

• M◦ is the supplementation of M∗ if:

α ∈ N ◦
✷
(w∼) iff there is β ∈ N ∗

✷
(w∼) s.t. β ⊆ α;

α /∈ N ◦
✸
(w∼) iff there is β /∈ N ∗

✸
(w∼) s.t. α ⊆ β.

• M◦ is the intersection closure of M∗ if N ◦
✸
(w∼) = N ∗

✸
(w∼), and

α ∈ N ◦
✷
(w∼) iff there are α1, ..., αn ∈ N ∗

✷
(w∼) s.t. α1 ∩ ... ∩ αn = α.

• M◦ is the quasi-filtering of M∗ if:
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α ∈ N ◦
✷
(w∼) iff there are α1, ..., αn ∈ N ∗

✷
(w∼) s.t. α1 ∩ ... ∩ αn ⊆ α;

α /∈ N ◦
✸
(w∼) iff there is β /∈ N ∗

✸
(w∼) s.t. α ⊆ β.

It is immediate to verify that the supplementation of a model M is sup-
plemented, its intersection closure is closed under intersection, and its quasi-
filtering is both supplemented and closed under intersection.

Lemma 6.10. Let M∗ be a finest Φ-filtration of M. (i) If M is weakInt, then
M∗ is weakInt. (ii) If M is strInt, then M∗ is strInt.

Proof. (i) Assume by contradiction that α ∈ N ∗
✷
(w∼) and α /∈ N ∗

✸
(w∼). Then

α = [A]∼
M

for a A ∈ L such that ✷A ∈ Φ and [A]M ∈ N✷(w). Moreover
α = W∗ \ [B]∼

M
for a B ∈ L such that ✸B ∈ Φ and W \ [B]M /∈ N✸(w).

Thus [A]∼
M

= W∗ \ [B]∼
M

, which implies [A]M = W \ [B]M (w ∈ [A]M iff
w∼ ∈ [A]∼

M
iff w∼ ∈ W∗ \ [B]∼

M
iff w ∈ W \ [B]M). Then, since M is weakInt,

W \ [B]M ∈ N✸(w), which gives a contradiction.
(ii) Assume by contradiction that α ∈ N ∗

✷
(w∼), α ⊆ β and β /∈ N ∗

✸
(w∼).

Then α = [A]∼
M

for a A ∈ L such that ✷A ∈ Φ and [A]M ∈ N✷(w). Moreover
β = W∗ \ [B]∼

M
for a B ∈ L such that ✸B ∈ Φ and W \ [B]M /∈ N✸(w). Thus

[A]∼
M

⊆ W∗ \ [B]∼
M

, which implies [A]M ⊆ W \ [B]M. Then, since M is strInt,
W \ [B]M ∈ N✸(w), which gives a contradiction.

Lemma 6.11. Let M, M∗ and M◦ be CINMs, where M∗ is a finest Φ-filtration
of M for a set Φ of formulas that is closed under subformulas. We have:

(i) If M is supplemented and weakInt, and M◦ is the supplementation of
M∗, then M◦ is weakInt and is a Φ-filtration of M.

(ii) If M is closed under intersection and weakInt, and M◦ is the closure
under intersection of M∗, then M◦ is weakInt and is a Φ-filtration of M.

(iii) If M is supplemented, closed under intersection, and weakInt, and M◦

is the quasi-filtering of M∗, then M◦ is weakInt and is a Φ-filtration of
M.

(iv) If M is closed under intersection and strInt, and M◦ is the closure under
intersection of M∗, then M◦ is strInt and is a Φ-filtration of M.

Proof. Points (i)–(iv) are proved similarly. We show as example the proof
of point (iii). Firstly we prove by contradiction that M◦ is weakInt. As-
sume α ∈ N ◦

✷
(w∼) and α /∈ N ◦

✸
(w∼). Then there are α1, ..., αn ∈ N ∗

✷
(w∼)

s.t. α1 ∩ ... ∩ αn ⊆ α; and there is β /∈ N ∗
✸
(w∼) s.t. α ⊆ β. By def-

inition, this means that there are ✷A1, ...,✷An ∈ Φ s.t. α1 = [A1]
∼
M

, ...,
αn = [An]

∼
M

, and [A1]M, ..., [An]M ∈ N✷(w). Moreover, there is ✸B ∈ Φ s.t.
β = W∗ \ [B]∼

M
and W \ [B]M /∈ N✸(w). As a consequence, we also have

[A1]
∼
M

∩ ... ∩ [An]
∼
M

⊆ W∗ \ [B]∼
M

. Since M∗ is a Φ-filtration of M, by the
filtration lemma this implies [A1]M∩ ...∩ [An]M ⊆ W\ [B]M. Then by intersec-
tion closure of N✷, [A1]M ∩ ... ∩ [An]M ∈ N✷(w), and by its supplementation,
W \ [B]M ∈ N✷(w). Finally, since M is weakInt, W \ [B]M ∈ N✸(w), which
gives a contradiction.

We now prove that M◦ is a Φ-filtration of M. Let ✷A ∈ Φ. If [A]M ∈
N✷(w), then [A]∼

M
∈ N ∗

✷
(w∼), and also [A]∼

M
∈ N ◦

✷
(w∼). Now assume [A]∼

M
∈

N ◦
✷
(w∼). Then there are α1, ..., αn ∈ N ∗

✷
(w∼) s.t. α1 ∩ ... ∩ αn ⊆ [A]∼

M
.
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By definition, this means that there are ✷A1, ...,✷An ∈ Φ s.t. α1 = [A1]
∼
M

,
..., αn = [An]

∼
M

, and [A1]M, ..., [An]M ∈ N✷(w). Then, since M∗ is a Φ-
filtration of M, [A1]M ∩ ... ∩ [An]M ⊆ [A]M. By intersection closure of N✷,
[A1]M ∩ ... ∩ [An]M ∈ N✷(w), then by supplementation, [A]M ∈ N✷(w).

Now let ✸A ∈ Φ. If W \ [A]M /∈ N✸(w), then W∗ \ [A]∼
M

/∈ N ∗
✸
(w∼), and

also W∗ \ [A]∼
M

/∈ N ◦
✸
(w∼). Now assume W∗ \ [A]∼

M
/∈ N ◦

✸
(w∼). Then there

is β /∈ N ∗
✸
(w∼) s.t. W∗ \ [A]∼

M
⊆ β. By definition, β = W∗ \ [B]∼

M
for a

✸B ∈ Φ s.t. W \ [B]M /∈ N✸(w). Since M∗ is a Φ-filtration of M, we have
W \ [A]M ⊆ W \ [B]M. Then by supplementation, W \ [A]M /∈ N✸(w).

Theorem 6.12. If a formula A is satisfiable in a CINM M that is weakInt or
strInt, then A is satisfiable in a CINM M′ with the same properties of M and
in addition is finite.

Proof. Standard, by taking Φ = Sbf(A) ∪ {✷⊤,✸⊥,⊤,⊥} and, depending on
the properties of M, the right transformation M′ of M. Observe that whenever
Φ is finite, any Φ-filtration M′ of M is finite as well.

Corollary 6.13. Any intuitionistic non-normal bimodal logic different from
IE2(C,N✸,N✷) enjoys the finite model property. Moreover, any intuitionistic
non-normal monomodal logic enjoys the finite model property.

7 Constructive K and propositional CCDL

We have seen in Section 6 that ✷-INMs coincide essentially with Goldblatt’s
neighbourhood spaces. In Fairtlough and Mendler [4], Goldblatt’s spaces are
considered in order to provide a semantics for Propositional Lax Logic (PLL),
an intuitionistic monomodal logic for hardware verification that fails to validate
the rule of necessitation.

We show in this section that the framework of CINMs is also adapted to cover
two additional well-studied intuitionistic non-normal bimodal logics, namely CK

(for “constructive K”) by Bellin et al. [1], and CCDLp, as we call the propositional
fragment of Wijesekera’s first-order logic CCDL (Wijesekera [27]). In particular,
we show that the two systems can be included in our framework by considering
a very simple additional property.

Different possible worlds semantics have already been given for the two logics.
In particular, logic CCDLp has both a relational semantics (Wijesekera [27]) and
a neighbourhood semantics (Kojima [13]), while a relational semantics for CK

has been given in Mendler and de Paiva [19] by adding inconsistent worlds to
the relational models for CCDLp. However, if compared to the existing ones,
our semantics has the advantage of including CK and CCDLp in a more general
framework, that shows how the two systems can be obtained as extensions
of weaker logics in a modular way. In addition, two further benefits concern
specifically CK. In particular, to the best of our knowledge we are presenting
the first neighbourhood semantics for this system. Moreover, and most notably,
this kind of models don’t make use of inconsistent worlds.

In the following we first present logics CK and CCDLp by giving both the
axiomatisations and the sequent calculi. After that we define their CINMs
and prove soundness and completeness. Finally, we present their pre-existing
possible worlds semantics and prove directly their equivalence with CINMs.
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7.1 Hilbert systems and sequent calculi

Logic CK (Bellin et al. [1]) is Hilbert-style defined by adding to IPL the following
axioms and rules:

K✷ ✷(A ⊃ B) ⊃ (✷A ⊃ ✷B), K✸ ✷(A ⊃ B) ⊃ (✸A ⊃ ✸B),
A

Nec
✷A

.

Logic CCDLp is the extension of CK with axiom N✸ (¬✸⊥).3 It is worth noticing
that, given the syntactical equivalences that we have recalled in Section 3, an
equivalent axiomatisation for CK is obtained by extending IPL with rules E✷ and
E✸, and axioms M✷, N✷, C✷, and K✸ (as before, by adding also N✸ we obtain
logic CCDLp; notice that axiom M✸ is derivable in both systems, e.g. from Nec

and K✸).
Logics CK and CCDLp are non-normal as they reject some form of distribu-

tivity of ✸ over ∨. In particular, CCDLp rejects binary distributivity (C✸), while
CK rejects both binary and nullary distributivity (C✸, N✸). The modality ✷ is
instead normal as the systems contain axiom K✷ and the rule of necessitation.

Sequent calculi for CK and CCDLp (denoted here as G.CK and G.CCDLp) are
defined, respectively, in Bellin et al. [1] and Wijesekera [27]. In order to present
the calculi we consider the following rule, that we call Wseq (for “Wijesekera”):

A1, ..., An, B ⇒ C
Wseq (n ≥ 1)

Γ,✷A1, ...,✷An,✸B ⇒ ✸C
.

Both [1] and [27] allow the set {A1, ..., An} in Wseq to be empty, thus including
implicitly M

seq
✸ . By uniformity with the formulation of the other rules, we require

it to contain at least one formula. Then, given the present formulation, G.CK

and G.CCDLp are defined by extending G3ip as follows:

G.CK := M✷C
seq + M

seq
✸ + N

seq
✷ + Wseq

G.CCDLp := M✷C
seq + M

seq
✸ + N

seq
✷ + Wseq + strCseq + N

seq
✸

Observe that G.CCDLp can be seen as an extension of our top calculus
G.IMCN✷, as it is G.IMCN✷ + Wseq. Instead, G.CK is not comparable with
any our bimodal calculus, as it contains rule N

seq
✷ and doesn’t contain N

seq
✸ ,

what is never the case in the calculi of our cube.

Theorem 7.1 ([1] for G.CK, [27] for G.CCDLp). Cut is admissible in G.CK and
G.CCDLp. Moreover, G.CK and G.CCDLp are equivalent with the corresponding
axiomatisations.

Notice that having Wseq istead of our “weak interaction” rules, allows us to
take Nseq

✷ and not Nseq
✸ (as in G.CK), and still obtain a cut-free calculus. If instead

we take both Wseq and N
seq
✸ (an in G.CCDLp), we need to take also strCseq in

order to have the Cut rule admissible, as it is shown by the following derivation:

p,¬p ⇒ ⊥
Wseq

✷p,✸¬p ⇒ ✸⊥
⊥ ⇒

N
seq
✸

✷p,✸¬p,✸⊥ ⇒
Cut✷p,✸¬p ⇒

3The axiomatisation given by Wijesekera [27] includes also ✸(A ⊃ B) ⊃ (✷A ⊃ ✸B);
however this formula is derivable from the other axioms (cf. e.g. Simpson [23], p. 48).
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It is immediate to verify that the endsequent ✷p,✸¬p ⇒ is derivable in G.CCDLp\
{strCseq} if and only if the Cut rule is applied, but it has a cut-free derivation
in G.CCDLp by applying strCseq to p,¬p ⇒. Notice also that adding strCseq to
the calculus preserve the equivalence with the axiomatisation, as str is derivable
from K✸, Mon✸ and N✸.

7.2 Intuitionistic neighbourhood models for CK and CCDLp

We now define CINMs for CK and CCDLp, and prove soundness and complete-
ness of the two systems.

Definition 7.1 (Intuitionistic neighbourhood models for CK and CCDLp). A
CINM for CK (CK-model in the following) is any CINM in which N✷ is supple-
mented, closed under intersection and contains the unit; N✸ is supplemented;
and such that:

If α ∈ N✷(w) and β ∈ N✸(w), then α ∩ β ∈ N✸(w) (WInt).

A CINM for CCDLp (CCDLp-model in the following) is any CINM for CK satis-
fying also the condition of weakInt (N✷(w) ⊆ N✸(w)).

Notice that, as a consequence, function N✸ in CCDLp-models contains the
unit. We now show that logics CK and CCDLp are sound and complete with
respect to the corresponding models.

Theorem 7.2 (Soundness). Logics CK and CCDLp are sound with respect to
CK- and CCDLp-models, respectively.

Proof. We just consider axiom K✸. Assume w 
 ✷(A ⊃ B) and w 6
 ✸B. Then
[A ⊃ B] ∈ N✷(w) and W\[B] ∈ N✸(w). By WInt, [A ⊃ B]∩(W\[B]) ∈ N✸(w).
Since [A ⊃ B] ∩ (W \ [B]) ⊆ (W \ [A]), by supplementation W \ [A] ∈ N✸(w);
therefore w 6
 ✸A.

Completeness is proved as before by the canonical model construction.

Lemma 7.3. Let the canonical models Mc
CK

for CK, and Mc
CCDL

p for CCDLp, be
defined as in Lemma 6.5. Then Mc

CK
and Mc

CCDL
p are, respectively, a CK-model

and a CCDLp-model.

Proof. We show that both Mc
CK

and Mc
CCDL

p satisfy the condition of WInt:
Assume α ∈ N+

✷
(X) and α ∩ β 6∈ N+

✸
(X). Then there are A,B ∈ L such

that ↑prA ⊆ α, α ∩ β ⊆ Wc\ ↑prB and ✷A,✸B ∈ X . As a consequence,
↑prA ∩ β ⊆ Wc\ ↑prB, that by standard properties of set inclusion implies
β ⊆ (Wc\ ↑prA)∪(Wc\ ↑prB) = Wc\ ↑pr(A∧B). Moreover, since (✷A∧✸B) ⊃
✸(A ∧ B) is derivable (from A ⊃ (B ⊃ A ∧ B), by Mon✷ and K✸), we have
✸(A ∧ B) ∈ X . Thus by definition, β /∈ N+

✸
(X). In addition, by Lemma 6.5

(iv) Mc
CCDL

p is also weakInt, as str is derivable in CCDLp.

Theorem 7.4 (Completeness). Logics CK and CCDLp are complete with respect
to CK- and CCDLp-models, respectively.

Proof. Same proof of Theorem 6.6, using Lemma 7.3.
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7.3 Pre-existing semantics and direct proofs of equiva-

lence

7.3.1 Semantic equivalence for CCDLp

We now consider pre-existing possible worlds semantics for systems CK and
CCDLp, and prove directly their equivalence with CINMs. We begin with system
CCDLp, and consider the relational models by Wijesekera [27] as well as the
neighbourhood models by Kojima [13].

Definition 7.2 (Relational models for CCDLp (Wijesekera [27])). A relational
model for CCDLp is a tuple M = 〈W ,�,R,V〉, where W , � and V are as in
Definition 6.1, and R is any binary relation on W . The forcing relation w 
r A
is defined as w 
 A (Definition 6.1) for A ≡ p,B ∧C,B ∨C,B ⊃ C; and in the
following way for modal formulas:

w 
r ✷B iff for all v � w, for all u ∈ W , vRu implies u 
r B;
w 
r ✸B iff for all v � w, there is u ∈ W s.t. vRu and u 
r B.

Definition 7.3 (Kojima’s neighbourhood models for CCDLp (Kojima [13])).
Kojima’s neighbourhood models for CCDLp are tuples M = 〈W ,�,Nk,V〉,
where W , � and V are, respectively, a non-empty set, a preorder on W and
a hereditary valuation function; and Nk is a neighbourhood function W −→
P(P(W)) such that:

• w � v implies Nk(v) ⊆ Nk(w);
• Nk(w) 6= ∅ for all w ∈ W .

The forcing relation w 
k A is defined as usual for A ≡ p,⊥, B∧C,B∨C,B ⊃ C;
and for modal formulas it is defined as follows:

w 
k ✷B iff for all α ∈ Nk(w), for all v ∈ α, v 
k B;
w 
k ✸B iff for all α ∈ Nk(w), there is v ∈ α s.t. v 
k B.

Theorem 7.5 (Wijesekera [27], Kojima [13]). Logic CCDLp is sound and com-
plete w.r.t. relational models for CCDLp, as well as w.r.t. Kojima’s models for
CCDLp.

That relational, Kojima’s and CINMs for CCDLp are equivalent is a corollary
of the respective completeness theorems. It is instructive, however, to prove the
equivalence directly. A proof of equivalence of Kojima’s and relational models
is given in Kojima [13]. Here we prove directly the equivalence of Kojima’s
and CINMs for CCDLp. By combining the two proofs we then obtain direct
transformations between relational and CINMs.

The following property will be considered in the proof of some of the next
lemmas:

For all α ∈ N✸(w), there is β ∈ N✸(w) s.t. β ⊆ α and β ⊆
⋂
N✷(w) (WInt′).

This property is satisfied by all CINMs for CCDLp and for CK, as it follows from
the intersection closure of N✷ and the WInt.

Lemma 7.6. Let Mk = 〈W ,�,Nk,V〉 be a Kojima’s model for CCDLp, and
let Mn be the model 〈W ,�,N✷,N✸,V〉 where W , � and V are as in Mk, and:

N✷(w) = {α ⊆ W |
⋃
Nk(w) ⊆ α};

N✸(w) = {α ⊆ W | there is β ∈ Nk(w) s.t. β ⊆ α}.
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Then Mn is a CINM for CCDLp and is pointwise equivalent to Mk.

Proof. It is immediate to verify that N✷ and N✸ are supplemented and contain
the unit; that N✷ is closed under intersection; and that w � v implies N✷(w) ⊆
N✷(v) and N✸(v) ⊆ N✸(w). We show that Mn satisfies the other properties of
CCDLp-models.

(weakInt) Assume α ∈ N✷(w). Then
⋃
Nk(w) ⊆ α, and, since Nk(w) 6= ∅,

there is β ∈ Nk(w) such that β ⊆ α. Therefore α ∈ N✸(w).
(WInt) Assume α ∈ N✷(w) and β ∈ N✸(w). Then

⋃
Nk(w) ⊆ α and there

is γ ∈ Nk(w) such that γ ⊆ β. Thus γ ⊆
⋃
Nk(w), which implies γ ⊆ α ∩ β.

Therefore α ∩ β ∈ N✸(w).
By induction on A we now prove that for all A ∈ L and all w ∈ W ,

Mn, w 
 A iff Mk, w 
k A.

We only consider the inductive cases A ≡ ✷B,✸B.
A ≡ ✷B. Mn, w 
 ✷B iff [B]Mn

∈ N✷(w) iff
⋃
Nk(w) ⊆ [B]Mn

iff (i.h.)⋃
Nk(w) ⊆ [B]Mk

iff for all α ∈ Nk(w), α ⊆ [B]Mk
iff Mk, w 
k ✷B.

A ≡ ✸B. Mn, w 
 ✸B iff W \ [B]Mn
/∈ N✸(w) iff for all α ∈ Nk(w),

α∩ [B]Mn
6= ∅ iff (i.h.) for all α ∈ Nk(w), α∩ [B]Mk

6= ∅ iff Mk, w 
k ✸B.

Lemma 7.7. Let Mn = 〈W ,�,N✷,N✸,V〉 be a CINM for CCDLp, and let Mk

be the model 〈W ,�,Nk,V〉 where W , � and V are as in Mn, and:

Nk(w) = {α ∈ N✸(w) | α ⊆
⋂
N✷(w)}.

Then Mk is a Kojima’s model for CCDLp and is pointwise equivalent to Mn.

Proof. First notice that Mk is a Kojima’s model: By intersection closure,⋂
N✷(w) ∈ N✷(w), hence by weakInt,

⋂
N✷(w) ∈ N✸(w). Thus

⋂
N✷(w) ∈

Nk(w), which implies Nk(w) 6= ∅. Moreover assume w � v and α ∈ Nk(v). So
α ∈ N✸(v) and α ⊆

⋂
N✷(v). Since N✸(v) ⊆ N✸(w) and N✷(w) ⊆ N✷(v), we

have both α ∈ N✸(w) and α ⊆
⋂
N✷(w), therefore α ∈ Nk(w).

By induction on A we show that for all A ∈ L and all w ∈ W ,

Mn, w 
 A iff Mk, w 
k A.

As before we only consider the inductive cases A ≡ ✷B,✸B:
A ≡ ✷B. Mk, w 
k ✷B iff for all α ∈ Nk(w), α ⊆ [B]Mk

iff (since⋂
N✷(w) ∈ Nk(w))

⋂
N✷(w) ⊆ [B]Mk

iff (i.h.)
⋂
N✷(w) ⊆ [B]Mn

iff (by
properties of N✷(w)) [B]Mn

∈ N✷(w) iff Mn, w 
 ✷B.
A ≡ ✸B. Assume Mk, w,
k ✸B. Then for all α ∈ Nk(w), α ∩ [B]Mk

6= ∅,
and, by i.h., α ∩ [B]Mn

6= ∅. Thus for all α ∈ N✸(w) s.t. α ⊆
⋂
N✷(w),

α ∩ [B]Mn
6= ∅. Let β be any neighbourhood in N✸(w). By WInt′, there is

γ ⊆ β s.t. γ ∈ N✸(w) and γ ⊆
⋂
N✷(w). Then γ ∩ [B]Mn

6= ∅, which implies
β ∩ [B]Mn

6= ∅. Therefore Mn, w 
 ✸B. Now assume Mn, w 
 ✸B. Then for
all α ∈ N✸(w), α ∩ [B]Mn

6= ∅. Thus for all α ∈ Nk(w), α ∩ [B]Mn
6= ∅, and,

by i.h., α ∩ [B]Mk
6= ∅. Therefore Mk, w 
k ✸B.

Theorem 7.8. A formula A is valid in Kojima’s models for CCDLp if and only
if it is valid in CINMs for CCDLp.

Proof. By Lemmas 7.6 and 7.7. If a Kojima’s model for CCDLp falsifies A, then
there is a CINM for CCDLp that falsifies A; and vice versa if a CINM for CCDLp

falsifies A, then there is a Kojima’s model for CCDLp that falsifies A.
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Given the previous lemmas and Theorems 4.3 and 4.7 in Kojima [13], we
can also see how to obtain an equivalent relational model starting from a CINM
for CCDLp, and vice versa.

Lemma 7.9. Let Mr = 〈W ,�,R,V〉 be a relational model for CCDLp, and
let R(w) = {v | wRv}. We define the neighbourhood model Mn = 〈W ,�
,N✷,N✸,V〉 by taking W , �, V as in Mr, and the following neighbourhood
functions:

N✷(w) = {α ⊆ W | for all v � w,R(v) ⊆ α};
N✸(w) = {α ⊆ W | there is v � w s.t. R(v) ⊆ α}.

Then Mn is a CINM for CCDLp, and it is pointwise equivalent to Mr.

Lemma 7.10. Let Mn = 〈W ,�,N✷,N✸,V〉 be a CINM for CCDLp. The
relational model M∗ = 〈W∗,�∗,R∗,V∗〉 is defined as follows:

• W∗ = {(w,α) | w ∈ W , α ∈ N✸(w), and α ⊆
⋂
N✷(w)};

• (w,α) �∗ (v, β) iff w � v;

• (w,α)R∗(v, β) iff v ∈ α;

• V∗((w,α)) = {p | p ∈ V(w)} for all w ∈ W .

Then M∗ is a relational model for CCDLp. Moreover, for all A ∈ L and w ∈ W ,
the following claims are equivalent:

1) Mn, w 
 A.

2) For all (w,α) ∈ W∗, M∗, (w,α) 
r A.

3) There is (w,α) ∈ W∗ such that M∗, (w,α) 
r A.

Theorem 7.11. A formula A is valid in relational models for CCDLp if and
only if it is valid in CINMs for CCDLp.

Proof. By Lemma 7.9 and Lemma 7.10. A direct proof of the two lemmas is
left to the reader.

7.3.2 Semantic equivalence for CK

We now present the relational models for CK by Mendler and de Paiva [19],
and prove directly their equivalence with CINMs. Relational models for CK

are defined by enriching Wijesekera’s models for CCDLp with inconsistent (or
“fallible”) worlds (i.e. worlds satisfying ⊥) as follows.

Definition 7.4 (Relational models for CK). Relational models for CK are de-
fined exactly as relational models for CCDLp (Definition 7.2), except that the
standard forcing relation for ⊥ (w 6
r ⊥ ) is replaced by the following ones:

If w 
r ⊥, then for all v, w � v or wRv implies v 
r ⊥;
If w 
r ⊥, then w 
r p for all propositional variables p ∈ L.

Observe that fallible worlds are related through � and R only to other
fallible worlds. Moreover, the above definition preserves the validity of ⊤ and
⊥ ⊃ A, for all A.
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Theorem 7.12 (Mendler and de Paiva [19]). Logic CK is sound and complete
w.r.t. relational models for CK.

In order to prove the equivalence between relational and CINMs for CK, we
consider transformations of models that are relatively similar to those in Lem-
mas 7.9 and 7.10. However, the transformations are now a bit more complicated
due to the presence of inconsistent worlds.

Lemma 7.13. Let Mr = 〈W ,�,R,V〉 be a relational model for CK. Moreover,
for all w ∈ W , let R(w) = {v | wRv}. We denote with W+ the set {w ∈ W |
Mr, w 6
r ⊥} (i.e. the set of consistent worlds of Mr), and for all α ⊆ W , we
denote with α+ the set α ∩W+.

We define the neighbourhood model Mn = 〈W+,�+,N✷,N✸,V+〉, where
�+ and V+ are the restrictions to W+ of � and V , and N✷, N✸ are the following
neighbourhood functions:

N✷(w) = {α+ ⊆ W | for all v � w,R(v) ⊆ α};
N✸(w) = {α+ ⊆ W | there is v � w s.t. R(v) ⊆ α+}.

Then Mn is a CINM for CK. Moreover, for all A ∈ L and w ∈ W+,

Mn, w 
 A iff Mr, w 
r A.

Proof. It is imediate to verify that Mn is a CINM for CK. In particular, for
the WInt, assume α+ ∈ N✷(w) and β+ ∈ N✸(w). Then there is v � w s.t.
R(v) ⊆ β+; thus R(v) ⊆ α. Then R(v) ⊆ α ∩ β+ = (α ∩ β)+. Therefore
(α ∩ β)+ = α+ ∩ β+ ∈ N✸(w).

We now prove that for all w ∈ W+, Mn, w 
 A if and only if Mr, w 
r A.
This is equivalent to say that [A]Mn

= [A]+
Mr

. As usual we only consider the
modal cases.

A ≡ ✷B. Let w ∈ W+. Mn, w 
 ✷B iff [B]Mn
∈ N✷(w) iff (i.h.) [B]+

Mr
∈

N✷(w) iff for all v � w, R(v) ⊆ [B]Mr
iff Mr, w 
r ✷B.

A ≡ ✸B. Assume Mr, w 
r ✸B and w ∈ W+. Then for all v � w, there
is u ∈ W s.t. vRu and Mr, u 
r B. Thus for all v � w, R(v) 6⊆ W \ [B]Mr

,
which in particular implies R(v) 6⊆ (W \ [B]Mr

)+. Moreover, (W \ [B]Mr
)+ =

W+ \ [B]+
Mr

= (i.h.) W+ \ [B]Mn
. Then W+ \ [B]Mn

/∈ N✸(w), therefore
Mn, w 
 ✸B. Now assume Mn, w 
 ✸B. Then W+ \ [B]Mn

/∈ N✸(w). This
implies that for all v � w, R(v) 6⊆ W+ \ [B]Mn

; that is, there is u ∈ W s.t.
vRu and u /∈ W+ \ [B]Mn

. Thus u /∈ W+ or u ∈ [B]Mn
. If u /∈ W+, then

Mr, u 
r ⊥, hence Mr, u 
r B. If u ∈ [B]Mn
, by i.h. u ∈ [B]+

Mr
, thus

Mr, u 
r B. Therefore Mr, w 
r ✸B.

Lemma 7.14. Let Mn = 〈W ,�,N✷,N✸,V〉 be a CINM for CK, and take
f /∈ W . The relational model M∗ = 〈W∗,�∗,R∗,V∗〉 is defined as follows:

• W∗ = {(w,α) | w ∈ W , N✸(w) 6= ∅, α ∈ N✸(w), and α ⊆
⋂
N✷(w)}

∪ {(v,
⋂
N✷(v) ∪ {f}) | v ∈ W and N✸(v) = ∅}

∪ {(f , {f})};
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• (w,α) �∗ (v, β) iff w � v or w, v = f ;

• (w,α)R∗(v, β) iff v ∈ α;

• V∗((w,α)) = {p | p ∈ V(w)} for all w ∈ W ; and V∗((f , {f})) = Atm;

• M∗, (f , {f}) 
r ⊥.

Then M∗ is a relational model for CK. Moreover, for all A ∈ L and w ∈ W , the
following claims are equivalent:

1) Mn, w 
 A.

2) For all (w,α) ∈ W∗, M∗, (w,α) 
r A.

3) There is (w,α) ∈ W∗ such that M∗, (w,α) 
r A.

Proof. It is immediate to show M∗ is a relational model for CK, in particular
the conditions on inconsistent worlds are satisfied. We prove by induction on A
that points 1), 2) and 3) are equivalent. As usual we only consider the inductive
cases A ≡ ✷B,✸B.

• A ≡ ✷B.

− 1) implies 2). Assume Mn, w 
 ✷B. Then [B]Mn
∈ N✷(w), that implies⋂

N✷(w) ⊆ [B]Mn
. Let (w,α) ∈ W∗, and (w,α) �∗ (v, β). Then w � v,

so
⋂

N✷(v) ⊆
⋂
N✷(w). We distinguish two cases:

(a) f ∈ β. Then (v, β)R∗(u, γ) implies u ∈
⋂

N✷(v) or u = f .

If u = f , then (u, γ) = (f , {f}), so M∗, (u, γ) 
r B.

If u ∈
⋂
N✷(v), then u ∈ [B]Mn

. By i.h. we have M∗, (u, γ) 
r B
for all γ s.t. (u, γ) ∈ W∗.

(b) f /∈ β. Then β ⊆
⋂
N✷(v), thus β ⊆ [B]Mn

. Let (v, β)R∗(u, γ).
Then u ∈ β, so Mn, u 
 B. By i.h. we have M∗, (u, γ) 
r B.

By (a) and (b) we have that for all (v, β) �∗ (w,α) and all (u, γ) s.t.
(v, β)R∗(u, γ), M∗, (u, γ) 
r B. Therefore for all α s.t. (w,α) ∈ W∗,
M∗, (w,α) 
r ✷B.

− 2) implies 3). Immediate because for all w ∈ W there is α s.t. (w,α) ∈ W∗.

− 3) implies 1). Assume M∗, (w,α) 
r ✷B for an α s.t. (w,α) ∈ W∗. Then
for all (v, β) �∗ (w,α) and all (u, γ) s.t. (v, β)R∗(u, γ), M∗, (u, γ) 
r

B. Thus in particular, for all δ s.t. (w, δ) ∈ W∗, for all (u, γ) s.t.
(w, δ)R∗(u, γ), M∗, (u, γ) 
r B. Take any world z ∈

⋂
N✷(w). There

exists γ s.t. (z, γ) ∈ W∗. Then (w,
⋂

N✷(w))R
∗(z, γ) or (w,

⋂
N✷(w) ∪

{f})R∗(z, γ) (depending on whether N✸(w) 6= ∅ or N✸(w) = ∅; in the first
case

⋂
N✷(w) ∈ N✸(w)). Thus M∗, (z, γ) 
r B; and by i.h., Mn, z 


B. So
⋂
N✷(w) ⊆ [B]Mn

, which implies [B]Mn
∈ N✷(w). Therefore

Mn, w 
 ✷B.

• A ≡ ✸B.

− 1) implies 2). Assume Mn, w 
 ✸B, and let (w,α) ∈ W∗ and (w,α) �∗

(v, β). We distinguish two cases:
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(a) f ∈ β. Then (y, β)R∗(f , {f}), and M∗, (f , {f}) 
r B.

(b) f /∈ β. Then β ∈ N✸(y), so β ∈ N✸(y). By Mn, w 
 ✸B, we
have that for all γ ∈ N✸(w), γ ∩ [B]Mn

6= ∅; thus β ∩ [B]Mn
6= ∅.

Then there is u ∈ β s.t. Mn, u 
 B. By i.h., for all δ s.t. (u, δ) ∈
W∗, M∗, (u, δ) 
r B. Moreover, there is ǫ s.t. (u, ǫ) ∈ W∗. Thus
(v, β)R∗(u, ǫ) and M∗, (u, ǫ) 
r B.

By (a) and (b) we have that for all (v, β) �∗ (w,α), there is (u, γ) s.t.
(v, β)R∗(u, γ) and M∗, (u, γ) 
r B. Therefore, for all α s.t. (w,α) ∈ W∗,
M∗, (w,α) 
r ✸B.

− 2) implies 3). Immediate because for all w ∈ W there is α s.t. (w,α) ∈ W∗.

− 3) implies 1). Assume M∗, (w,α) 
r ✸B for a α s.t. (w,α) ∈ W∗. Then
for all (v, β) �∗ (w,α), there is (u, γ) s.t. (v, β)R∗(u, γ) and M∗, (u, γ) 
r

B. Thus in particular, for all δ s.t. (w, δ) ∈ W∗, there is (u, γ) s.t.
(w, δ)R∗(u, γ) and M∗, (u, γ) 
r B. We distinguish two cases:

(a) f ∈ δ for a (w, δ) ∈ W∗. Then N✸(w) = ∅, so Mn, w 
 ✸B.

(b) f /∈ δ for all (w, δ) ∈ W∗. Then by i.h. we have that for all (w, δ) ∈
W∗, there is (u, γ) s.t. (w, δ)R∗(u, γ) and Mn, u 
 B. So u ∈ δ.
This means that for all δ ∈ N✸(w) s.t. δ ⊆

⋂
N✷(w), δ∩ [B]Mn

6= ∅.
Then by WInt′, we have that for all ǫ ∈ N✸(w), ǫ ∩ [B]Mn

6= ∅.
Therefore Mn, w 
 ✸B.

Theorem 7.15. A formula A is valid in relational models for CK if and only if
it is valid in CINMs for CK.

Proof. Assume A not valid in relational models for CK. Then there are a rela-
tional model Mr and a world w such that Mr, w 6
r A. World w is consistent
(i.e. Mr, w 6
r ⊥) as inconsistent worlds satisfy all formulas. Then by Lemma
7.13, there is a CINM Mn for CK such that Mn, w 6
 A.

Now assume A not valid in CINMs for CK. Then there are Mn and w such
that Mn, w 6
 A. By Lemma 7.14, there are a relational model M∗ and a world
(w,α) such that M∗, (w,α) 6
r A.

8 Conclusion and further work

This work represents the initial step towards a general investigation of non-
normal modalities with an intuitionistic base. We have defined a new family of
intuitionistic non-normal modal logics that can be seen as intuitionistic coun-
terparts of classical non-normal modal logics. In particular, we have defined
12 monomodal logics – 8 logics with ✷ modality and 4 logics with ✸ modal-
ity – and 24 bimodal logics. For each of them we have provided both a Hilbert
axiomatisation and a cut-free sequent calculus. All logics are decidable and con-
tain some of the modal axioms characterising the classical cube. In addition,
bimodal logics contain interactions between the modalities that can be seen as
“weak duality principles”, and express under which conditions two formulas ✷A
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and ✸B are jointly inconsistent. On the basis of the different strength of such
interactions we identify different intuitionistic counterparts of a given classical
logic.

Subsequently, we have given a modular semantic characterisation of the log-
ics by means of so-called coupled intuitionistic neighbourhood models. The
models contain an order relation and two neighbourhood functions handling the
modalities separately. For the two functions we consider the standard prop-
erties of neighbourhood models, moreover they can be combined in different
ways reflecting the possible interactions between ✷ and ✸. Through a filtration
argument we have also proved that most of the logics enjoy the finite model
property. Our semantics turned out to be a versatile tool to analyse intuition-
istic non-normal modal logics, which is capable of capturing further well-known
intuitionistic non-normal bimodal logics as Constructive K and the propositional
fragment of Wijesekera’s CCDL.

Our results can be extended in several directions. First of all we can study
further extensions of the cube by axioms analogous to the standard modal ones
such as T, D, 4, 5, etc. (some cases have already been considered by Witczak
[29]). Furthermore, we can study computational and proof-theoretical proper-
ties such as complexity bounds and interpolation. To this regard we plan to
develop sequent calculi with invertible rules and that allow for direct counter-
model extraction.

From the semantical side we intend to investigate whether it can be given
a semantic characterisation of axiom C✸, that to our knowledge has not been
captured yet.

Finally, it would be interesting to see whether these logics, similarly to CK,
can be given a type-theoretical interpretation by a suitable extension of the
typed lambda-calculus. All of this will be part of our future research.
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