
Machine Learning, 59, 31–54, 2005
2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

A Reinforcement Learning Scheme for a
Partially-Observable Multi-Agent Game

SHIN ISHII ishii@is.naist.jp
Nara Institute of Science and Technology, CREST, Japan Science and Technology Agency, 8916-5 Takayama,
Ikoma, 630-0192 Japan

HAJIME FUJITA
MASAOKI MITSUTAKE
Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan

TATSUYA YAMAZAKI
National Institute of Information and Communications Technology, 3-5 Hikaridai, Seika, Kyoto, 619-0289 Japan

JUN MATSUDA
Osaka Gakuin University, 2-36-1 Kishibeminami, Suita, 564–8511 Japan

YOICHIRO MATSUNO
Ricoh Co. Ltd. 1-1-17 Koishikawa, Tokyo, 112-0002 Japan

Editor: Risto Miikkulainen

Abstract. We formulate an automatic strategy acquisition problem for the multi-agent card game “Hearts” as
a reinforcement learning problem. The problem can approximately be dealt with in the framework of a partially
observable Markov decision process (POMDP) for a single-agent system. Hearts is an example of imperfect
information games, which are more difficult to deal with than perfect information games. A POMDP is a decision
problem that includes a process for estimating unobservable state variables. By regarding missing information as
unobservable state variables, an imperfect information game can be formulated as a POMDP. However, the game
of Hearts is a realistic problem that has a huge number of possible states, even when it is approximated as a single-
agent system. Therefore, further approximation is necessary to make the strategy acquisition problem tractable.
This article presents an approximation method based on estimating unobservable state variables and predicting
the actions of the other agents. Simulation results show that our reinforcement learning method is applicable to
such a difficult multi-agent problem.

Keywords: reinforcement learning, POMDP, multi-agent system, card game, model-based

1. Introduction

Many card games are imperfect information games; for each game player, there are unob-
servable state variables, e.g., cards in another player’s hand or undealt cards. Since card
games are well-defined as multi-agent systems, strategy acquisition problems for them have
been widely studied. However, the existing algorithms have not achieved the level of human

32 S. ISHII ET AL.

experts (Ginsberg, 2001), although some algorithms for perfect information games like the
game “Backgammon” can beat human champions (Tesauro, 1994). In order to deal with
imperfect information games, it is important to estimate missing information (Ginsberg,
2001).

A decision making problem or an optimal control problem in a stochastic but stationary
environment is often formulated as a Markov decision process (MDP). On the other hand,
if the information in the environment is partially unobservable, the problem can be formu-
lated as a partially observable Markov decision process (POMDP). By regarding missing
information as unobservable part of the environment, an imperfect information game is
formulated as a POMDP.

In many card games, coordination and competition among the players occur. Such a
situation is referred to as a multi-agent system. A decision making problem or an optimal
control problem in a multi-agent system has a high degree of difficulty due to interactions
among the agents. Reinforcement learning (RL) (Sutton & Barto, 1998), which is a machine
learning framework based on trial and error, has often been applied to problems within multi-
agent systems (Crites, 1996; Crites & Barto, 1996; Littman, 1994; Hu & Wellman, 1998;
Nagayuki, Ishii, & Doya, 2000; Salustowicz, Wiering, & Schmidhuber, 1998; Sandholm &
Crites, 1995; Sen, Sekaran, & Hale, 1994; Tan, 1993), and has obtained successful results.

This article in particular deals with the card game “Hearts”, which is an n-player (n > 2)
non-cooperative finite-state zero-sum imperfect-information game, and presents an auto-
matic strategy-acquisition scheme for the game. By approximately assuming that there is
a single learning agent, the environment can be regarded as stationary for the agent. The
strategy acquisition problem can then be formulated as a POMDP, and the problem is solved
by an RL method. Our RL method copes with the partial observability by estimating the
card distribution in the other agents’ hands and by predicting the actions of the other agents.
After that, we try to apply our POMDP-RL method to a multi-agent problem, namely, an
environment that has several agents that learn concurrently.

In a POMDP, the state transition for an observable part of the environment, i.e., observable
state variables, does not necessarily have a Markov property. A POMDP can be transformed
into an MDP whose state space consists of belief states. A belief state is typically the
probability distribution of possible states. After each state transition for the observable
state variables occurs, the belief state maintains the probability of the unobservable part
of the environment; namely, the belief state is estimated using the observations of actual
state transition events. If the correct model of the environmental dynamics is available, the
optimal control (i.e., “policy”) for a POMDP is obtained based on a dynamic programming
(DP) approach (Kaelbling, Littman, & Cassandra, 1998). The agent does not have a priori
knowledge of the environmental dynamics in usual RL problems, hence, it is important for
a POMDP-RL method to be able to estimate the environmental model.

In the game Hearts, the environmental model (state transition) depends on the cards held
by opponent agents and the strategies (actions) of the opponent agents. Therefore, a good
estimation for the state transition probability needs to approximate the card distribution and
the action prediction for the opponent agents. This approximation problem is difficult in
comparison to those in the existing POMDP-RL studies or the existing multi-agents studies;
namely, the learning of the game Hearts is a realistic problem.

REINFORCEMENT LEARNING FOR A MULTI-AGENT GAME 33

The game Hearts belongs to a class of perfect recall games, which is a subclass of the class
of imperfect information games. A perfect recall game assumes that an agent remembers
the complete history of state transitions in the past. Since obtaining the optimal strategy
in a perfect recall game with n players (n ≥ 2) is known to be NP-hard (Blair, Mutchler,
& Lent, 1995), we need some approximation to solve its optimal control problem within a
reasonable computational time.

Our RL scheme is derived based on a formulation of a single-agent POMDP. Then, the
most parts of this article assume that there is only one learning agent in the environment. If
there are two or more learning agents, the environment does not have a Markov property, and
it cannot be formulated rigorously as a POMDP. However, we assume that the environment
is approximately stationary for every learning agent. In order to let this assumption be valid,
the learning of the environmental model is faster than the changes of the other agents. If such
fast learning is realized, by using efficient function approximators for example, our method
can be applied to concurrent learning situations of multiple agents. Since the strategy of an
opponent agent may differ from that of another opponent agent, we individually prepare
a function approximator representing the policy of each opponent agent. If the strategy of
one agent changes, it is enough for a single function approximator to adapt to the change
independently; this provides us with an efficient and robust learning scheme for multi-agent
problems.

2. Partially-observable Markov decision process

A POMDP is defined by state transition probability P(st+1 | st , at), observation proba-
bility P(xt | st), and reward function rt ≡ R(st , at) (Kaelbling, Littman, & Cassandra,
1998). Let the agent be in state st at time t . By taking an action at , the agent reaches
a new state st+1 with probability P(st+1 | st , at). An observation xt is obtained at state
st with probability P(xt | st). Since the state transition is dependent on the unobserv-
able state variables in state st , the Markov property for observation xt does not hold.
One way to overcome the non-Markov property is to regard a history of the observa-
tion ht = {(xt , −, −), (xt−1, at−1, rt−1), . . . , (x1, a1, r1)} as a state, and to apply an MDP
formulation to such a state space. Since the capacity to maintain such a history is often
limited, however, an MDP formulation whose state is a compressed representation of the
history (internal state) is often used. A belief state is an example of such an internal state
representation.

An optimal control problem for a POMDP can be classified into: (I) a problem in which
the agent knows the environmental model, and (II) a problem in which the environmental
model is unknown. In case (I), a DP approach is often used after the non-Markov property
is resolved. In case (II), it is necessary to obtain the environmental model simultaneously
with the resolution of the non-Markov property. This latter problem is an RL problem
for a POMDP, and methods to deal with such a problem are developed by extending the
conventional RL methods devised for MDPs. Case (II) can be further classified into: (IIa)
the environmental model is explicitly learned, or (IIb) not. As a method for case (IIb),
the temporal-difference (TD) based learning like Q-learning has often been applied to an
observation state space in a POMDP. Such a method is a “naive” approach to POMDPs; it

34 S. ISHII ET AL.

is based on a direct approximation into an MDP. In the methods in case (IIa), on the other
hand, the environmental model is explicitly learned in order to calculate the current internal
state of the agent.

The methods in case (IIa) can be further classified into: (IIa-i) the environmental model
is dependent on the learning of the evaluation of the current state, i.e., the value function
(Lin & Mitchell, 1992; McCallum, 1995), or (IIa-ii) not (Lin & Mitchell, 1992; Whitehead
& Lin, 1995). In a recurrent model (Lin & Mitchell, 1992; Whitehead & Lin, 1995), which
is the method in case (IIa-ii), two independent learning modules are prepared and they learn
the action-value function (Q-function) and the state transition of the environment. In this
model, even when the reward function changes without a change of the state transition, there
is no need to train the module for the state transition learning. We also presented a similar
RL scheme in which the state transition of a partial observable environment is estimated
based on Bayes inference (Ishii, Yoshida, & Yoshimoto, 2002). Such an RL scheme is often
called a model-based RL.

In the RL method presented in this article, action selection is done by estimating ex-
plicitly the state transition of the environment, i.e., an environmental model, while a state
evaluation module approximates the value function. Since we assume the independence be-
tween the environmental model and the value function, our method belongs to (IIa-ii), that
is, it is a kind of a model-based RL method. The action selection is executed based on the
estimation of unobservable state variables and action prediction of the opponent agents. The
action prediction is executed by a learning unit, which approximates the action selection
probability of the corresponding opponent agent. These action predictors learn indepen-
dently for each agent. If one agent changes its strategy, it is necessary to retrain only the
corresponding unit. This is an advantage of our method in that it reduces the computational
time, over that of the existing recurrent model that approximates the whole environmental
model.

When our method formulated in a single-agent system is applied to a multi-agent system,
it is necessary for the action predictors to adapt to the action selection probability that may
change with time. Our architecture in which action predictors are individually prepared for
the opponent agents can be suitable for such multi-agent systems.

3. Preparation

3.1. The card game “Hearts”

A four-player card game, Hearts, is considered a typical example of POMDP problems.
Here, we explain the rules of the game used in our study.

The game Hearts is played by four players and uses the ordinary 52-card deck. There are
four suits, i.e., spades (♠), hearts (♥), diamonds (♦), and clubs (♣), and there is an order of
strength within each suit (i.e., A, K, Q, . . ., 2). There is no strength order among the suits.
Cards are distributed to the four players so that each player has in his hand 13 cards at the
beginning of the game. Thereafter, according to the rules below, each player plays a card
clock-wisely in order. When each of the four players has played a card, it is called a trick.
Namely, each player plays a card once in one trick. The first card played in a trick is called

REINFORCEMENT LEARNING FOR A MULTI-AGENT GAME 35

the leading card and the player who plays the leading card is called the leading player. A
single game ends when 13 tricks are carried out.

– Except for the first trick, the winner of the current trick becomes the leading player of
the subsequent trick.

– In the first trick, ♣2 is the leading card, denoting that the player holding this card is the
leading player.

– Each player must play a card of the same suit as the leading card.
– If a player does not have a card of the same suit as the leading card, he can play any card.

When a heart is in such a case played for the first time in a single game, the play is called
“breaking hearts”.

– Until the breaking hearts occurs, the leading player may not play a heart. If the leading
player has only hearts, it is an exceptional case and the player may lead with a heart.

– After a trick, the player that has played the strongest card of the same suit as the leading
card becomes the winner of that trick.

– Each heart equals a one-point penalty and the ♠Q equals a 13-points penalty. The winner
of a trick receives all of the penalty points of the cards played in the trick.

According to the rules above,1 a single game is played, and at the end of a single game,
the score of each player is determined as the sum of the received points. The lower the
score, the better.

3.2. State transition of Hearts

For the time being, we assume there are in the environment a single learning agent and three
opponent agents that do not learn.

A single state transition of the game is represented by: (1) real state s that includes every
card (observable and unobservable) allocation, (2) observation x for the learning agent,
i.e., the cards in the agent’s hand and the cards that have already been played in the past
tricks and the current trick, (3) the agent’s action a, i.e., a single play at his turn, and (4)
strategy φ of each of the opponent agents. Let t indicate a playing turn of the learning agent.
t = 14 indicates the end state of the game. At the t-th playing turn, the learning agent does
not know the real state st , and all he can do is to estimate it by considering the history of
observations and actions in the past tricks. In the following descriptions, we assume that
there are three opponent agents intervening between the t-th play and the (t + 1)-th play of
the learning agent. If the leading player of the t-th trick and that of the (t + 1)-th trick are
different, the number of intervening opponent agents is not three. Although the following
explanation can be easily extended to a general case in which the number of intervening
agents is not necessarily three, this assumption is beneficial to simplifying the explanation.
Between the t-th play and the (t + 1)-th play of the learning agent, there are three state
transitions due to actions by the three opponent agents. These state transitions are indexed
by t . It should be noted that this index is different from the trick index, e.g., ai

t may be a play
in the (t + 1)-th trick. Each of the opponent agents is also in a partial observation situation;
state, observation, action and strategy at his t-th playing turn are denoted by si

t , xi
t , ai

t and
φi

t , respectively, where i is the index of an opponent agent.

36 S. ISHII ET AL.

Figure 1. State transition diagram for the game Hearts. Variables st , xt , at , and φt denote a real state, an
observation, an action and a strategy, for the learning agent at his t-th playing turn, variables si

t , xi
t , and ai

t denote
a real state, an observation and an action, for opponent agent Mi at the t-th turn. Variable φi does not depend on
t , which corresponds to a POMDP approximation.

Let Mi (i = 1, 2, 3) denote the i-th opponent agent. We assume

– assumption (a)
Agent Mi probabilistically determines his action ai

t for his own observation xi
t at his t-th

playing turn.

Under this assumption, the state transition between the t-th play and the (t + 1)-th play of
the learning agent is given by

P(st+1 | st , at , �t)

=
∑

s1
t ,s2

t ,s3
t

∑

a1
t ,a2

t ,a3
t

3∏

j=0

P
(
s j+1

t

∣∣ s j
t , a j

t

) 3∏

i=1

∑

xi
t

P
(
ai

t

∣∣ xi
t , φ

i
t

)
P

(
xi

t

∣∣ si
t

)
, (1)

where s0
t = st , a0

t = at , s4
t = st+1 and x0

t = xt . �t ≡ {φi
t : i = 1, 2, 3}, where φi

t denotes
the strategy of opponent agent Mi at his t-th play.

3.3. POMDP approximation

The incomplete information game Hearts is approximated as a POMDP (see figure 1); the
approximated incomplete game is called a partial observation game. In a partial observation
game, it is assumed that there is only one learning agent, and the strategies of the other
(opponent) agents are fixed, that is, the other agents constitute the stationary environment.
Due to this POMDP approximation, φi (i = 1, 2, 3) does not depend on the play index t .

Since the game process of Hearts is deterministic, there are two facts:

– New state si+1
t , which is reached from a previous state si

t by an action ai
t , is uniquely

determined. Namely, P(si+1
t | si

t , ai
t) is 1 for a certain state and 0 for the other states.

– Observation, xt or xi
t , is uniquely determined at state, st or si

t . Namely, P(xt | st) or
P(xi

t | si
t) is 1 for a certain observation state and 0 for the other observation states.

REINFORCEMENT LEARNING FOR A MULTI-AGENT GAME 37

Since state st is not observable for the learning agent, it should be estimated using
the history of the current game, Ht ≡ {(xt , −, −), (xt−1, at−1, a1,2,3

t−1), . . . , (x1, a1, a1,2,3
1)},

actions ai
t (i = 1, 2, 3) at the t-th turn, and game knowledge (game rules, etc.) K .

The transition probability for the observation state is given by

P(xt+1 | at , �, Ht , K)

=
∑

st+1∈St+1

P(xt+1 | st+1)
∑

st ∈St

P(st+1 | st , at , �)P(st | Ht , K), (2)

where St is the set of possible states at the t-th play of the learning agent.
From the above two facts and Eq. (1),

P(xt+1 | at , �, Ht , K)

=
∑

st ∈St

P(st | Ht , K)
∑

(a1
t ,a2

t ,a3
t)∈A−

t (xt+1,st)

3∏

i=1

P
(
ai

t

∣∣ xi
t , φ

i , Ht , K
)
. (3)

Here,A−
t (xt+1, st) denotes the set of possible (a1

t , a2
t , a3

t) by which the previous state-action
pair (st , at) reaches any new state whose observation state is xt+1 and P(st | Ht , K) is a belief
state. Equation (3) provides a model of the environmental dynamics.

However, the calculation in Eq. (3) has two difficulties. One is the intractability of the
belief state; since the state space of the game Hearts is huge, the rigorous calculation of
the summation

∑
st ∈St

is difficult. The other is the difficulty in retrieving the game tree;
especially when there are a lot of unobservable state variables, i.e., unobservable cards,
A−

t is a huge set and then the calculation of the summation
∑

(a1
t ,a2

t ,a3
t)∈A−

t (xt+1,st) is also
difficult.

In order to cope with the former difficulty, we use the following approximation. Since
the real observation xi

t by agent Mi cannot be observed by the learning agent during the
game, it is estimated using the history of the current game Ht and the game knowledge K .
The estimated observation state is denoted by yi

t . First, the probability P(yi
t | at , Ht , K) is

estimated using Ht and K ; the estimation method in the game Hearts will be specifically
explained in Section 4.2. Using this probability, we calculate the mean estimated observation
for agent Mi as

ŷi
t (at , Ht , K) ≡

∑

yi
t

yi
t P

(
yi

t | at , Ht , K
)
. (4)

Using the mean estimated observation, the transition probability (3) is approximated as

P(xt+1 | at , �, Ht , K)

≈
∑

(a1
t ,a2

t ,a3
t)∈A−

t (xt+1,xt)

3∏

i=1

P
(
ai

t

∣∣ ŷi
t (at , Ht , K), φ̂i

)
. (5)

38 S. ISHII ET AL.

From assumption (a), each opponent agent determines its action ai
t with probability P(ai

t | xi
t ,

φi , Ht , K). However, this action selection probability and the real observation state xi
t are

unknown for the learning agent and they should be estimated in some way. Therefore,
the learning agent assumes that the action selection process is approximately done by a
stochastic process that is dependent on the mean estimated observation ŷi

t (at , Ht , K). It
should be noted that the approximated strategy φ̂i in Eq. (5) is different from the real
strategy φi in Eq. (3). Since the mean estimated observation ŷi

t (at , Ht , K) incorporates the
history of the current game Ht and the game knowledge K , it provides essential informa-
tion of the belief state P(si

t | at , Ht , K). Therefore, the stochastic process dependent on a
discrete but unobservable observation state is approximated as a stochastic process depen-
dent on an analog (mean) and estimated observation state. There is possibility to introduce
bias in the estimation, due to the difference between the real observation state xi

t and the
estimated observation state yi

t or its mean ŷi
t , and to the difference between the real ac-

tion selection process P(ai
t | xi

t , φ
i , Ht , K) and the approximated action selection process

P(ai
t | ŷi

t (at , Ht , K), φ̂i). With this approximation, however, the summation
∑

st ∈St
is no

more necessary for the calculation of the transition probability (5).
Strategy φi represents the policy that determines actions of agent Mi . The approximated

policy φ̂i is represented and learned by using a function approximator. For a game finished
in the past, an observation state and an action taken by an opponent agent at that state can
be reproduced by replaying the game from the end to the start. In order to train the function
approximator for φ̂i , the input and the target output are given by ŷi

t (at , Ht , K) and the
action ai

t actually taken by agent Mi at that turn, respectively. Since the game of Hearts is a
perfect recall game and there is no probabilistic factor in the game process, xi

t can also be
reproduced and available for the input. If we use xi

t as an input, however, the input-output
relationship during the training, (xi

t , ai
t), and that during the playing, (ŷi

t , ai
t), have different

characteristics. In order to avoid this inconsistency, we reproduce again ŷi
t in the learning of

the opponent agent’s strategy φ̂i . This learning is done according to a similar algorithm to
the actor learning in the actor-critic algorithm (Barto, Sutton, & Anderson, 1983); namely,
a merit function for (ŷ, a) is updated so that an action a is selected with a higher probability
for a mean estimated observation ŷ. The parameter of the function approximator represents
the approximated policy φ̂i of agent Mi .

In addition, we use another approximation technique to cope with the latter difficulty,
i.e., the difficulty in the calculation of the summation

∑
(a1

t ,a2
t ,a3

t)∈A−
t
. This technique will be

specifically explained in Section 4.3.

3.4. Action control

According to our RL method, an action is selected based on the expected TD error, which
is defined by

〈δt 〉(at) = 〈R(xt+1)〉(at) + γ 〈V (xt+1)〉(at) − V (xt), (6)

where

〈 f (xt+1)〉(at) ≡
∑

xt+1

P(xt+1 | at , �, Ht , K) f (xt+1) (7)

REINFORCEMENT LEARNING FOR A MULTI-AGENT GAME 39

and P(xt+1 | at , �, Ht , K) is given by Eq. (5). The expected TD error considers the estima-
tion of the unobservable states and the strategies of the other agents.

Using the expected TD error, the action selection probability is determined as

P(at | xt) = exp(〈δt 〉(at)/Tm)∑
at ∈A exp(〈δt 〉(at)/Tm)

, (8)

where Tm is a parameter controlling the action randomness.
Our RL method uses the TD error expected with respect to the estimated transition

probability for the observation state. An action is then determined based on the estimated
environmental model. Such an RL method is often called a model-based RL method. Our
idea that the action priority is determined based on the expected TD error is similar to that
in the prioritized sweep algorithm by Moore and Atkeson (1993), which has been reported
to be effective in problems consisting of a large number of states.

3.5. Actor-critic algorithm

Although the actor-critic algorithm (Barto, Sutton, & Anderson, 1983) is not used in our
RL method, it is briefly introduced here for the convenience of explanation. According to
the actor-critic algorithm, the critic maintains the value function V (xt) that evaluates state
xt at the t-th turn of the learning agent, and the actor determines its action at based on a
merit function U (xt , at).

The critic calculates the TD error for a given state transition for observable states:

δt = R(xt+1) + γ V (xt+1) − V (xt), (9)

where R(xt+1) is the reward function that is assumed to be dependent only on the observation
state xt+1. In the case of Hearts, the reward function represents the (negative) penalty points
that the learning agent receives at the t-th trick.

Using the TD error, the critic updates the value function and the actor updates the merit
function as

V (xt) ← V (xt) + ηcδt (10a)

U (xt , at) ← U (xt , at) + ηaδt , (10b)

where ηc and ηa are the learning rates for the critic and the actor, respectively.
Using the merit function, the actor selects an action according to the Boltzmann policy

P(at | xt) = exp(U (xt , at)/Te)∑
at ∈A exp(U (xt , a)/Te)

, (11)

where Te is a parameter controlling the action randomness and A denotes the set of possible
actions.

40 S. ISHII ET AL.

Figure 2. The architecture that realizes our RL method. It consists of a state evaluation module and an action
control module. The action control module consists of three action predictors and an action selector.

4. Method

This section describes in detail our RL method. The architecture implementing our method
roughly consists of two modules (see figure 2): a state evaluation module and an action
control module. The action control module consists of three action predictors each corre-
sponding to each of the three opponent agents and one action selector.

4.1. State evaluation module

The state evaluation module has the same role as the critic in the actor-critic algorithm. In
our previous preliminary study, the input and the output of the state evaluation module were
the current observation state xt and the corresponding value function V (xt), respectively
(Matsuno et al., 2001). With this implementation, however, the input dimension was equal
to or larger than the number of cards, and the approximation of the value function was
time consuming even with a function approximator. Therefore, we use a feature extraction
technique. An input to the function approximator, pt , is given mainly by the transformation
from an observation state xt as follows.

– pt (1): the number of club cards that have been played in the current game, or are held by
the learning agent.

– pt (2): the number of diamond cards that have been played in the current game, or are
held by the learning agent.

– pt (3): the number of spade cards (♠2, . . . ,♠J) that have been played in the current game,
or are held by the learning agent.

– pt (4), pt (5) and pt (6): the probability that agent M1, M2 and M3 have the ♠Q, respec-
tively.

REINFORCEMENT LEARNING FOR A MULTI-AGENT GAME 41

– pt (7): the status of the ♠K.
– pt (8): the status of the ♠A.
– pt (9) to pt (21): the status of each of the heart cards.
– pt (22) to pt (25): a bit sequence representing who is the leading player in the current

trick.

Since the most important card is the ♠Q in the game of Hearts, we use three dimensions to
represent its predictive allocation. The game rules tell us the following facts.

1. If agent Mi did not play a spade card when the leading card was a spade card in a past
trick of the current game, pt (i + 3) is zero.

2. pt (4) + pt (5) + pt (6) = 1.

Under the limitation from these two facts, the probability that agent Mi has the♠Q, pt (i + 3),
is calculated as a uniform probability. The status of the ♠K, the ♠A, or a heart card is
represented by one of three values, −1, 0 or 1, corresponding to the cases when the card has
already been played in the current game, when it is held by the opponent agents, or when it is
held by the learning agent, respectively. The bit sequence represents the playing order in the
current trick. For example, when the learning agent is the second player in the current trick
(the t-th playing turn of the learning agent), [pt (22), pt (23), pt (24), pt (25)] = [0, 1, 0, 0].

In this study, the state evaluation module is trained so as to approximate V (pt) for an
input pt . This learning is done by Eqs. (9) and (10a) where xt and xt+1 are replaced by pt

and pt+1, respectively. It should be noted that the value function represented by the state
evaluation module depends not only on the observation state xt but partly on the estimation
of the unobservable state; namely, pt (4), pt (5) and pt (6) reflect the estimation.

4.2. Action predictor

In the action selection module, there are three action predictors. The action predictor for
agent Mi predicts a card played by that agent, in a similar manner to the action selection by
the actor in the actor-critic algorithm. In order to predict an action by agent Mi at his t-th
turn, the i-th action predictor calculates a merit function value U i (ŷi

t (at , Ht , K), ai
t) for the

mean estimated observation ŷi
t (at , Ht , K) and a possible action ai

t . After calculating the
merit value for every possible action, an action ai

t is selected with the predicted probability

P
(
ai

t

∣∣ ŷi
t (at , Ht , K), φi

) = exp
(
U i

(
ŷi

t (at , Ht , K), ai
t

)/
T i

)
∑

ai
t ∈Ai exp

(
U i

(
ŷi

t (at , Ht , K), ai
t

)/
T i

) . (12)

Here, Ai denotes the set of possible actions for agent Mi , and T i is a constant parameter
that denotes the assumed randomness of the action selection of agent Mi .

When training the action predictor for agent Mi , the merit function, U i (ŷi
t (at , Ht , K), ai

t)
is updated similarly to the actor learning (Eqs. (9) and (10b)). ŷi

t (at , Ht , K) is reproduced

42 S. ISHII ET AL.

by replaying a past game, and ai
t is the action actually taken by agent Mi at his t-th play in

the past game.
We use a function approximator for representing the merit function. In order to faithfully

implement the above learning of the action predictor, however, the dimensions of the input
and output of the function approximator become equal to or larger than the number of cards.
This learning is difficult and often needs a large amount of computation time even with an
efficient function approximator. Therefore, we use a feature extraction technique as well as
in the state evaluation module.

An input to the function approximator, qi
t , is given by the transformation from the mean

estimated observation ŷi
t as follows.

– qi
t (1): if the leading card is a club card, the expected number of club cards held by agent

Mi , which are weaker than the strongest card already played in the current trick, otherwise
zero.

– qi
t (2): if the leading card is a club card, the expected number of club cards held by

agent Mi , which are stronger than the strongest card already played in the current trick,
otherwise the expected number of club cards held by the agent.

– qi
t (3): similar to qi

t (1), but the suit is diamond.
– qi

t (4): similar to qi
t (2), but the suit is diamond.

– qi
t (5): if the leading card is a spade card, the expected number of spade cards (♠2, . . . ,♠J)

held by agent Mi , which are weaker than the strongest card already played in the current
trick, otherwise zero.

– qi
t (6): if the leading card is a spade card, the expected number of spade cards (♠2, . . . ,♠J)

held by agent Mi , which are stronger than the strongest card already played in the current
trick, otherwise the expected number of spade cards (♠2, . . . ,♠J) held by the agent.

– qi
t (7): the expectation value for that agent Mi has the ♠Q.

– qi
t (8): the expectation value for that agent Mi has the ♠K.

– qi
t (9): the expectation value for that agent Mi has the ♠A.

– qi
t (10) to qi

t (22): the expectation value for that agent Mi has each of the heart cards.
– qi

t (23) to qi
t (26): a bit sequence representing who is the leading player in the current trick.

Let Ci
t (♠Q) be 1 or 0 when agent Mi has or does not have, respectively, the ♠Q in his

hand just before his t-th turn, for example. The expectation value of the binomial variable
Ci

t (♠Q) is equivalent to the probability that agent Mi has the ♠Q in his hand:

Ĉ i
t (♠Q | at , Ht , K) = P

(
Ci

t (♠Q) = 1 | at , Ht , K
)
. (13)

The game rules tell us the following facts.

1. If agent Mi did not play a card of the same suit as the leading card in a past trick of the
current game, Mi does not have at present any card of this suit.

2. The cards, except for those held by the learning agent and those that have already been
played in the current game, may exist in the hand of agent Mi .

REINFORCEMENT LEARNING FOR A MULTI-AGENT GAME 43

Under the limitation from these two facts, the card existence probability in the hand of agent
Mi is assumed to be uniform. The value Ĉ i

t (a-card | at , Ht , K) ∈ [0, 1], which represents the
expectation value for that agent Mi has ‘a-card’ in his hand, is then calculated with respect
to the distribution. The values qi

t (7), . . . , qi
t (22) correspond to Ĉ i

t (♠Q | at , Ht , K), . . . ,
Ĉ i

t (♥A | at , Ht , K), respectively. The values qi
t (1), . . . , qi

t (6) are calculated by using
Ĉ i

t (♣2 | at , Ht , K), . . . , Ĉ i
t (♠J | at , Ht , K). Namely, qi

t is given by the transformation from
the estimated card existence probability Ĉ i

t . It should be noted that Ĉ i
t is similar to the

mean expected observation ŷi
t . An input to the function approximator is thus given by the

transformation from the mean estimated observation ŷi
t .

The action predictor is trained so as to output the following 26-dimensional vector:

1. r i
t (1): if the leading card is a club card, the merit value for that agent Mi plays a weaker

club card than the strongest card already played in the current trick.
2. r i

t (2): if the leading card is a club card, the merit value for that agent Mi plays a club
card that is stronger than the strongest card already played in the current trick, and the
weakest in the hand of Mi .

3. r i
t (3): if the leading card is a club card, the merit value for that agent Mi plays a club

card that is stronger than the strongest card already played in the current trick, and
neither the weakest nor the strongest in the hand of Mi .

4. r i
t (4): if the leading card is a club card, the merit value for that agent Mi plays a club

card that is stronger than the strongest card already played in the current trick, and the
strongest in the hand of Mi .

5. r i
t (5): similar to r i

t (1), but the suit is diamond.
6. r i

t (6): similar to r i
t (2), but the suit is diamond.

7. r i
t (7): similar to r i

t (3), but the suit is diamond.
8. r i

t (8): similar to r i
t (4), but the suit is diamond.

9. r i
t (9): if the leading card is a spade card, the merit value for that agent Mi plays a

weaker spade card among ♠2, . . . , ♠J than the strongest card already played in the
current trick.

10. r i
t (10): if the leading card is a spade card, the merit value for that agent Mi plays a

stronger spade card among ♠2, . . . ,♠J than the strongest card already played in the
current trick.

11. r i
t (11): the merit value for that agent Mi plays the ♠Q.

12. r i
t (12): the merit value for that agent Mi plays the ♠K.

13. r i
t (13): the merit value for that agent Mi plays the ♠A.

14. r i
t (14) to r i

t (26): the merit value for that agent Mi plays each of the heart cards.

The input and output of the function approximator for the i-th action predictor are qi
t

and r i
t , respectively. From the 26-dimensional output r i

t , the merit value of every possible
card, i.e., U i (qi

t , ai
t) for every possible action ai

t , is calculated. The 26-dimensional output
r i

t focuses on which player becomes the winner of the t-th trick. Since the specific cards
that will be played in that trick is necessary for evaluating V (pt+1) by the state evaluation
module, however, we transform r i

t into U i (qi
t , ai

t) and evaluate every possible combination

44 S. ISHII ET AL.

of cards that will be played in the i-th trick. If there are more than one possible cards to
be played in this transformation, the merit values for those cards are set at the same value,
e.g., U i (qi

t , ♣8) = U i (qi
t , ♣9) = r i

t (3) might be such a case. As a consequence, both of
the input dimension and the output dimension of the function approximator are 26. This
dimension number is much smaller than that in our previous study (Matsuno et al., 2001).
It is expected that this dimension reduction accelerates the learning of the action predictor
and hence accelerates the strategy acquisition of the learning agent.

Here, the prediction by the action predictor is summarized. The action predictor for agent
Mi calculates the estimated card existence probability Ĉ i

t , and then the input to the function
approximator, qi

t , is calculated from Ĉ i
t . In the actual implementation, we directly calculate

qi
t without calculating Ĉ i

t . This calculation corresponds to the process expressed by Eq. (4).
Then, the function approximator of the action predictor outputs the reduced merit function
r i

t for the input qi
t . After that, r i

t is transformed into the merit function U i (qi
t , ai

t), and then
a possible action is selected by Eq. (12), in which U i (ŷi

t , ai
t) is replaced by U i (qi

t , ai
t).

4.3. Action selector

The action selector determines an action based on the Boltzmann selection rule (8). In order
to obtain the expected TD error (6), it is necessary to estimate the transition probability
P(xt+1 | at , �, Ht , K), as specified in Eq. (5). In order to calculate Eq. (5), it is necessary to
estimate ŷi

t (at , Ht , K), as shown in Eq. (4) and then to calculate P(ai
t | ŷi

t (at , Ht , K), φi).
The estimation of ŷi

t (at , Ht , K) is replaced by the estimation of qi
t (at , Ht , K), and the

calculation of P(ai
t | ŷi

t (at , Ht , K), φi) is approximately done by Eq. (12). By producing
every possible combination of actions, (a1

t , a2
t , a3

t), Eq. (5) is calculated, and then the
expected TD error is obtained using the probability (5) for every possible new observation
state xt+1.

Especially when there are a lot of cards that can be played in the t-th trick, however,
the complete retrieval for every possible combination of cards played in the trick and for
every possible new observation state is difficult. This difficulty partly corresponds to the
difficulty of the calculation of the summation

∑
(a1

t ,a2
t ,a3

t)∈A−
t

in Eq. (3). In order to overcome
this difficulty, we use the following pruning technique. For each possible action for agent
Mi at his t-th play, ai

t , the action predictor calculates a merit value U i (qi
t , ai

t) for a pair of the
reduced mean estimated observation qi

t (at , Ht , K) and action ai
t . After that, by calculating

the mean and the standard deviation (s.d.) of the merit values over the possible actions,
a probability for selecting an action whose merit value is smaller than (mean) − (s.d.) is
determined as 0. Namely, a state transition due to an action whose merit value is fairly small
is dropped in the further evaluation; this introduces pruning within the game tree, in order
to obtain efficiently the summation in Eqs. (5) and (7).

For the remaining actions, the action probability is determined as

P
(
ai

t

∣∣ qi
t (at , Ht , K), φi

) ≈ exp
(
U i

(
qi

t (at , Ht , K), ai
t

)/
T i

)
∑

ai
t ∈Ai− exp

(
U i

(
qi

t (at , Ht , K), ai
t

)/
T i

) (14)

instead of Eq. (12), where Ai− denotes the set of actions that are not dropped.

REINFORCEMENT LEARNING FOR A MULTI-AGENT GAME 45

4.4. Function approximator

If the learning uses function approximators, the merit functions and the value function
for an unknown state can be estimated owing to the generalization ability of the function
approximators. Since the state space of a realistic problem like that of the game Hearts
is huge and it is difficult for the learning system to experience every possible state, the
generalization ability of function approximators is very important.

In this study, we use normalized Gaussian networks (NGnet) (Moody & Darken, 1989)
as function approximators. NGnet is defined as

O =
m∑

k=1

Gk(I)∑m
l=1 Gl(I)

(Wk I + bk) (15a)

Gk(I) = (2π)−N/2 | �k |−1/2 exp

[
−1

2
(I − µk)′�−1

k (I − µk)

]
, (15b)

where I denotes an N -dimensional input vector and O denotes an Na-dimensional output
vector, m denotes the number of units, �k is an N × N covariance matrix, µk is an N -
dimensional center vector, Wk is an Na × N weight matrix, and bk is an Na-dimensional
bias vector, for the k-th unit. Prime (′) denotes a transpose.

The NGnet can be defined as a probabilistic model, and its maximum likelihood inference
is done by an on-line expectation-maximization (EM) algorithm (Sato & Ishii, 2000). The
on-line EM algorithm is based on a stochastic gradient method, and is faster than gradient
methods. Therefore, the learning of the action predictors is so fast that our RL method can
be applicable to a situation where the strategies of the opponent agents change with time.
Although the approximation accuracy is dependent on the number of units, m in Eq. (15), its
automatic determination method based on the probabilistic interpretation is implemented
in the on-line EM algorithm (Sato & Ishii, 2000).

5. Computer simulations

During a single game, each action of the learning agent is determined by the action control
module that includes the three action predictors. Concurrently with this action control, the
state evaluation module is trained according to the TD-learning (Eqs. (9) and (10a)) for
the transformed observation pt . After a single game ends, the three action predictors are
trained by using a reproduced mean estimated observation ŷi

t and the action actually taken at
that time, by replaying the previous single game. This procedure is called a single training
game, and the learning proceeds by repeating training games. Since we use an efficient
on-line algorithm for training the function approximators, it is expected that our RL method
adapts gradually to the strategies of the opponent agents, not only when they are stationary
but also when they change within a slower time-scale than the adaptation by the on-line
learning.

46 S. ISHII ET AL.

5.1. Single agent learning in a stationary environment

We carried out computer simulation experiments using one learning agent based on our RL
method and three rule-based opponent agents.

The rule-based agent has more than 50 rules so that it is an “experienced” level player of
the game Hearts. The penalty ratio was 0.41 when an agent who only took out permitted
cards at random from its hand challenged the three rule-based agents. The penalty ratio is
the ratio of penalty points acquired by the learning agent to the total penalty points of the
four agents. That is, a random agent acquired about 2.1-fold penalty points of rule-based
agents on average.

Figure 3 shows the learning curve of an agent trained by our RL method when it challenged
the three rule-based agents. This learning curve is an average over twenty learning runs,
each of which consisted of 120,000 training games. After about 80,000 games playing with
the three rule-based agents, our RL agent came to acquire a smaller penalty ratio than the
rule-based agents. Namely, the RL agent got stronger than the rule-based agents, which is
statistically significant as the top panel in figure 3 shows. By observing the results of the
twenty learning runs (detailed data not shown), we have found that the automatic strategy
acquisition can be achieved in a stable fashion by our RL method.

In our previous study, an agent trained by our model-based RL method could not beat
the rule-based agents after 5,000 learning games (Matsuno et al., 2001). The present RL
method is similar to our previous preliminary model-based RL method in principle, but
includes newly devised feature extraction techniques used in the state evaluation module
and the three action predictors. Due to the dimension reduction by the feature extraction
techniques, the learning process has been accelerated much and then 120,000 training games
could be executed to train the learning agent.

5.2. Learning of multiple agents in a multi-agent environment

So far, our RL method has been based on the POMDP approximation, namely, it is assumed
that there is only one learning agent in the environment. In this section, we try to apply our
RL method directly to multi-agent environments, in which there are multiple learning and
hence dynamic agents.

Figure 4 shows the result when one learning agent trained by our RL method, one
learning agent based on the actor-critic algorithm, and two rule-based agents played against
each other. In order to clarify the advantage of our model-based RL method, regardless of
the feature extraction techniques we use, this actor-critic agent also incorporates feature
extraction techniques for its actor and critic, which are similar to those used in our RL
method. Due to the feature extraction techniques, this new actor-critic agent learns much
faster than an actor-critic agent without the feature extraction (Matsuno et al., 2001; data
not shown). Although the average penalty ratio of our RL agent became smaller than those
of the rule-based agents after about 50,000 training games, the learning agent trained by
the actor-critic algorithm was not improved much. This result implies that our model-based
approach within the POMDP formulation is more efficient than a model-free approach, i.e.,
the actor-critic algorithm.

REINFORCEMENT LEARNING FOR A MULTI-AGENT GAME 47

Figure 3. A computer simulation result using one learning agent trained by our RL method and three rule-based
agents. Bottom panel: Abscissa denotes the number of training games, and ordinate denotes the penalty ratio
acquired by each agent, which is smoothed by using 2,000 games just before that number of training games. We
executed twenty learning runs, each consisting of 120,000 training games, and each line in the figure represents
the average over the twenty runs. If the four agents have equal strength, the penalty ratio becomes 1/4, which is
denoted by the horizontal line in the figure. Top panel: P-values of the statistical t test. The null hypothesis is
“the RL agent is equal in strength to the rule-based agents”, and the alternative hypothesis is “the RL agent is
stronger than the rule-based agents”. The statistical test was done independently at each point on the abscissa.
The horizontal line denotes the significance level of 1%. Because we have twenty samples, the t test was applied
here. The non-parametric Wilcoxon’s rank-sum test also showed a similar result (not shown). After about 70,000
training games, the RL agent significantly (p < 0.01) became stronger than the rule-based agents.

48 S. ISHII ET AL.

Figure 4. A computer simulation result when one learning agent trained by our RL method, one learning agent
based on the actor-critic algorithm, and two rule-based agents played against each other. Bottom panel: Abscissa
denotes the number of training games, and ordinate denotes the penalty ratio acquired by each agent, which is
smoothed by using 2,000 games just before that number of training games. Top panel: P-values of the statistical
t test. The null and alternative hypotheses are the same as those in figure 3. After about 60,000 training games,
the RL agent significantly (p < 0.01) became stronger than the rule-based agents. The actor-critic agent was
significantly (p < 0.01) weaker than the rule-based agents throughout the training games (figure now shown).

Figure 5 shows the result when two learning agents trained by our RL method and two
rule-based agents played with each other. In this simulation, the sitting positions of the
four agents were fixed throughout the training run. After about 50,000 training games, both
of the two learning agents became stronger than the rule-based agents; this is statistically
significant as the top panel in figure 5 shows.

REINFORCEMENT LEARNING FOR A MULTI-AGENT GAME 49

Figure 5. A computer simulation result when two learning agents trained by our RL method and two rule-based
agents played against each other. The meanings of the axes are the same as those in figure 4. After about 50,000
training games, the two RL agents significantly (p < 0.01) became stronger than the two rule-based agents. In
this simulation, the sitting positions of the four agents were fixed throughout the training run. This is the reason
why the RL agent A got stronger than the RL agent B.

These two simulation results, figures 4 and 5, show that our RL method can be applied to
the concurrent learning of multiple agents in a multi-agent environment. This applicability is
partly attributed to the fast learning by efficient function approximators. In our RL method,
we individually prepare an action predictor that approximates the policy of each opponent
agent. We consider this implementation is suitable for application to multi-agent environ-
ments. Each action evaluator is able to deal with the characteristics of the corresponding
opponent agent independently of the other opponent agent. In addition, if the strategy of

50 S. ISHII ET AL.

one agent changes, it is enough for a single function approximator to adapt to the change
independently. It is then expected that the RL process is stable even in a concurrent learning
setting in a multi-agent environment.

Although the learning agents trained by our RL method got stronger than the rule-based
agents, one may think that the RL agents adapted themselves such to pick fault of the rule-
based agents. To examine the general strength of the learning agents, they were evaluated
by playing against a human expert player (the designer of the rule-based agent). Figure 6
shows the result; this figure shows that the learning agents successfully acquired general
strategy to become as strong as the human expert player.

6. Discussion

The automatic player for the card game “Bridge”, called “GIB” (Ginsberg, 2001), resolves
the partial observability using a sampling technique. In the GIB, the distribution of the
unobservable cards is assumed to be random, and a possible allocation is sampled from
the distribution. Using a large number of such samples and their evaluation, the expected
evaluation over the samples are calculated, and then the optimal action is selected so as
to maximize the expected evaluation. Therefore, a lot of samples are necessary for the
determination of a single action.

In our RL method, on the other hand, the strategies of opponent agents are obtained by
function approximators, which are trained by using a reproduced mean expected observation
state and the action actually taken in the past. Therefore, the learning of the environmental
dynamics is done by experiencing a lot of games. That is, the sampling used for the model
estimation is equivalent to actual game playing. In the proposed method, it is necessary for
the expected TD error to be able to calculate the expectations of the reward and the value
with respect to the next observation state, as can be seen in Eq. (7). One of the advantages
of our method is that sampling is not necessary for these expectations, i.e., the resolution
of the partial observability; instead, we use function approximators to calculate them. The
benefit derived is a reduction of the computational time.

However, we used several important approximations, one of which is that the policy of
the opponent agents can be described by the mean expected observation state (Eq. (5)),
and the mean observation state is also estimated from the observation of the learning agent
(Eq. (4)). This approximation may introduce a bias (inaccuracy) to the estimation of the
expected TD error. Since we deal with a realistic POMDP-RL problem comprised of a huge
number of possible states, however, a reduction of the computation time is crucial. The
computer simulation results showed that our RL method is applicable to such a realistic
problem and also to a more difficult problem within a multi-agent system.

Although RL methods have been successfully applied to perfect information games, e.g.,
to the game Backgammon (Tesauro, 1994), there have been few applications to imperfect
information games. One reason is the state transition in an imperfect information game does
not have a Markov property, while the conventional RL methods devised for MDPs is not
suitable for such non-Markov problems.

This article aimed at presenting an RL method applicable to realistic multi-agent prob-
lems, and we have successfully created an experienced-level player of the game Hearts.

REINFORCEMENT LEARNING FOR A MULTI-AGENT GAME 51

Figure 6. In the same training condition as that in figure 5, the two RL agents (the RL agents A and B in Figure
5) were evaluated by playing 100 test games against a rule-based agent and a human expert player. After 10,000,
30,000, 50,000, 70,000 and 90,000 training games, 100 test games were done. We repeated the training and
evaluation run above twice. Bottom panel: the meanings of the axes are the same as those in figure 4. Each point
denotes the average of 200 (2 × 100) test games. Top panel: P-values of the statistical t test. The null hypothese
is “the human expert is equal in strength to the RL agent A or B”, and the alternative hypothesis is “the human
expert is stronger than the RL agent A or B”. The horizontal line denotes the significance level of 1%. After 50,000
training games, the human expert was not significantly stronger than the RL agent A or B, with the significance
level of 1%.

There have been a lot of multi-agent RL studies applied to simplified problems (Littman,
1994; Hu & Wellman, 1998; Nagayuki, Ishii, & Doya, 2000; Salustowicz, Wiering, &
Schmidhuber, 1998; Sandholm & Crites, 1995; Sen, Sekaran, & Hale, 1994; Tan, 1993).
One of the existing realistic multi-agent RL studies is an application to an elevator dispatch

52 S. ISHII ET AL.

problem (Crites, 1996; Crites & Barto, 1996), while it was suggested that the performance
was not good when there was unobservable information.

In this study, we have presented a model-based RL method in order to deal with large-
scale POMDPs. When we assume that there is only one learning agent in a multi-agent
environment, an optimal control problem in such an environment is formulated as a POMDP.
In order to overcome the information incompleteness that inevitably occurs in a multi-agent
problem, we used an estimation of the unobservable state variables and the policy prediction
of the other agents. The experimental results showed that our RL method can be applied
to a realistic multi-agent problem, in which there are more than one learning agent in the
environment.

One of the features of our RL method is that we prepare an individual action predictor for
each of the other agents. If the strategy of the other agents are similar to each other, one action
predictor will be enough and its learning will be much faster than our method. Although
our RL method assumes a single-agent POMDP in principle, however, our motivation is in
the learning scheme in multi-agent environments. It is considered that the learning of each
agent’s characteristics, e.g., idiosyncrasies, is important in a multi-agent environment.

Our RL method is significantly dependent on the opponent agents. In our simulation
experiments, we prepared rule-based agents that were fairly strong. Whether or not our RL
method is also effective in a self-play problem, in which there are only learning agents that
are initially very weak, is an important future issue.

7. Conclusion

This article presented an RL method applicable to an n-players (n ≥ 2) non-cooperative,
finite-state, incomplete-information game “Hearts”. The presented method is based on the
formulation of a POMDP, and the information incompleteness is resolved based on the
distribution estimation of the unobservable cards and the strategy prediction of the other
agents. Although the rigorous solution of a POMDP and the learning of the environmental
model need heavy computation, the approximations introduced in the proposed method
were shown to successfully reduce the computation time so that the RL can be executed as
a computer simulation. As a consequence, a learning agent trained by our method became
an experienced-level player of the game Hearts. The proposed RL method is a single-agent
learning that assumes the strategies of opponent agents are fixed. However, experimental
results showed that the method is potential to deal with a multi-agent system in which there
were two learning agents. As a future work, we will extend our RL method so as to make
it applicable to other multi-agent coordination/competition problems.

Acknowledgment

The authors wish to thank the editor and the reviewers for their valuable comments in
improving the quality of this paper. This study was partly supported by Grant-in-Aid for
Scientific Research (B) (No. 16014214) from Japan Society for the Promotion of Science.

REINFORCEMENT LEARNING FOR A MULTI-AGENT GAME 53

Note

1. A standard game setting of Hearts has some other rules. For example, each player selects two or three cards
from his hand to pass to another player before the first trick. If such rules are added, the learning agent is
required to acquire complicated strategies in order to cope with them. In this study, we simplify the game
setting and make the learning easier. However, still the learning is not easy, because the state space of the game
of Hearts is huge.

References

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Trans. Syst., Man. & Cybern., 13, 834–846.

Blair, J. R. S., Mutchler, D., & Lent, M. (1995). Perfect recall and pruning in games with imperfect information.
Computational Intelligence, 12, 131–154.

Crites, R. H. (1996). Large-scale dynamic optimization using teams of reinforcement learning agents. Ph.D. thesis,
University of Massachusetts, Amherst.

Crites, R. H., & Barto, A. G. (1996). Elevator group control using multiple reinforcement learning agents. Machine
Learning, 33, 235–262.

Ginsberg, M. (2001). Gib: Imperfect information in a computationally challenging fame. Journal of Artificial
Intelligence Research, 14, 303–358.

Hu, J., & Wellman, M. P. (1998). Multiagent reinforcement learning: Theoretical framework and an algorithm. In
Proceedings of the Fifteenth International Conference on Machine Learning (pp. 242–250).

Ishii, S., Yoshida, W., & Yoshimoto, J. (2002). Control of exploitation-exploration meta-parameter in reinforcement
learning. Neural Networks, 15, 665–687.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. (1998). Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101, 99–134.

Lin, L.-J., & Mitchell, T. (1992). Memory approaches to reinforcement learning in non-markovian domains. Tech.
rep., CMU-CS-92-138.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Proceedings of
the 11th International Conference on Machine Learning (pp. 157–163).

Matsuno, Y., Yamazaki, T., Matsuda, J., & Ishii, S. (2001). A multi-agent reinforcement learning method for a
partially-observable competitive game. In Proceedings of the Fifth International Conference on Autonomous
Agents (pp. 39–40).

McCallum, A. (1995). Reinforcement learning with selective perception and hidden state. Ph.D. thesis, Univercity
of Rochester.

Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation,
1, 281–294.

Moore, A., & Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less data and less real time.
Machine Learning, 13, 103–130.

Nagayuki, Y., Ishii, S., & Doya, K. (2000). Multi-agent reinforcement learning: An approach based on the other
agent’s internal model. In Proceedings of the Fourth International Conference on MultiAgent Systems (pp. 215–
221).

Salustowicz, R. P., Wiering, M. A., & Schmidhuber, J. (1998). Learning team strategies: Soccer case studies.
Machine Learning, 33, 263–282.

Sandholm, T. W., & Crites, R. H. (1995). Multiagent reinforcement learning in the iterated prisoner’s dilemma,.
Biosystems, 37, 147–166.

Sato, M., & Ishii, S. (2000). On-line em algorithm for the normalized gaussian network. Neural Computation, 12,
407–432.

Sen, S., Sekaran, M., & Hale, J. (1994). Learning to coordinate without sharing information. In Proceedings of
the Twelfth National Conference on Artificial Intelligence (pp. 426–431).

Sutton, R., & Barto, A. (Eds.). (1998). Reinforcement learning: An introduction. MIT Press.

54 S. ISHII ET AL.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the
Tenth International Conference on Machine Learning (pp. 330–337).

Tesauro, G. J. (1994). Td-gammon, a self-teaching backgammon program, achieves masterlevel play. Neural
Computation, 6, 215–219.

Whitehead, S., & Lin, L.-J. (1995). Reinforcement learning of non-markov decision processes. Artificial Intelli-
gence, 73, 271–306.

Received March 29, 2002
Revised September 15, 2004
Accepted October 27, 2004

