
Machine Learning, 59, 161–205, 2005
2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Logistic Model Trees∗

NIELS LANDWEHR landwehr@informatik.uni-freiburg.de
Institute for Computer Science, University of Freiburg, Freiburg, Germany

MARK HALL mhall@cs.waikato.ac.nz

EIBE FRANK eibe@cs.waikato.ac.nz
Department of Computer Science, University of Waikato, Hamilton, New Zealand

Editor: Johannes Fürnkranz

Abstract. Tree induction methods and linear models are popular techniques for supervised learning tasks, both
for the prediction of nominal classes and numeric values. For predicting numeric quantities, there has been work
on combining these two schemes into ‘model trees’, i.e. trees that contain linear regression functions at the leaves.
In this paper, we present an algorithm that adapts this idea for classification problems, using logistic regression
instead of linear regression. We use a stagewise fitting process to construct the logistic regression models that
can select relevant attributes in the data in a natural way, and show how this approach can be used to build the
logistic regression models at the leaves by incrementally refining those constructed at higher levels in the tree.
We compare the performance of our algorithm to several other state-of-the-art learning schemes on 36 benchmark
UCI datasets, and show that it produces accurate and compact classifiers.
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1. Introduction

Two popular methods for classification are linear logistic regression and tree induction,
which have somewhat complementary advantages and disadvantages. The former fits a
simple (linear) model to the data, and the process of model fitting is quite stable, resulting
in low variance but potentially high bias. The latter, on the other hand, exhibits low bias
but often high variance: it searches a less restricted space of models, allowing it to capture
nonlinear patterns in the data, but making it less stable and prone to overfitting. So it is not
surprising that neither of the two methods is superior in general—earlier studies (Perlich,
Provost, & Simonoff, 2003) have shown that their relative performance depends on the size
and the characteristics of the dataset (e.g., the signal-to-noise ratio).

It is a natural idea to try and combine these two methods into learners that rely on simple
regression models if only little and/or noisy data is available and add a more complex
tree structure if there is enough data to warrant such structure. For the case of predicting
a numeric variable, this has lead to ‘model trees’, which are decision trees with linear
regression models at the leaves. These have been shown to produce good results (Quinlan,
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1992). Although it is possible to use model trees for classification tasks by transforming
the classification problem into a regression task by binarizing the class (Frank et al., 1998),
this approach produces several trees (one per class) and thus makes the final model harder
to interpret.

A more natural way to deal with classification tasks is to use a combination of a tree
structure and logistic regression models resulting in a single tree. Another advantage of
using logistic regression is that explicit class probability estimates are produced rather than
just a classification. In this paper, we present a method, called LMT (Logistic Model Trees),
that follows this idea. We discuss a new scheme for selecting the attributes to be included
in the logistic regression models, and introduce a way of building the logistic models at the
leaves by refining logistic models that have been trained at higher levels in the tree, i.e. on
larger subsets of the training data.

We evaluate the performance of LMT on 36 datasets taken from the UCI repository
(Blake & Merz, 1998). Included in the experiments are the standard decision tree learners
C4.5 (Quinlan, 1993) and CART (Breiman et al., 1984), linear logistic regression, and other
tree-based classifiers, such as boosted C4.5, model trees fit to the class indicator variables
(Frank et al., 1998), functional trees (Gama, 2004), naive Bayes trees (Kohavi, 1996), and
a different algorithm for building logistic model trees: Lotus (Chan & Loh, 2004). The
experiments show that LMT produces more accurate classifiers than C4.5, CART, logistic
regression, model trees, functional trees, naive Bayes trees and Lotus. It is competitive
with boosted decision trees, which are considered to be one of the best ‘off the shelf’
classification systems, while producing models that are easier to interpret. We also present
empirical evidence that LMT smoothly adapts the tree size to the complexity of the data
set.

The rest of the paper is organized as follows. In Section 2 we briefly discuss the two
learning methods that LMT is based on: tree induction and logistic regression. Section 3
discusses related work on tree-based learning. In Section 4 we present the LMT algorithm
for learning logistic model trees. Section 5 describes our experimental study, followed by
a discussion of results. Finally, we draw some conclusions in Section 6.

2. Tree induction and logistic regression

This section discusses the two basic approaches to learning that our method is based upon:
tree induction and logistic regression. We briefly introduce the process of tree induction,
discuss the application of regression to classification tasks, and then describe our imple-
mentation of logistic regression.

2.1. Tree induction

The goal of supervised learning is to find a subdivision of the instance space into regions
labeled with one of the target classes. Top-down tree induction finds this subdivision by
recursively splitting the instance space, stopping when the regions of the subdivision are
reasonably ‘pure’ in the sense that they contain examples with mostly identical class labels.
The regions are labeled with the majority class of the examples in that region.
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Figure 1. The artificial ‘polynomial-noise’ dataset and the uncorrupted class boundary.

Figure 2. Subdivisions of increasing complexity for the ‘polynomial-noise’ dataset, generated by (from left to
right) a decision stump learner, C4.5 with the ‘minimum instances’ parameter set to 20, and C4.5 with standard
options. Colors (from light to dark) indicate class probability estimates in the different regions.

Important advantages of tree models (with axis-parallel splits) are that they can be con-
structed efficiently and are easy to interpret. A path in a decision tree basically corresponds
to a conjunction of boolean expression of the form ‘attribute = value’ (for nominal at-
tributes) or ‘attribute ≤ value’ (for numeric attributes), so a tree can be seen as a set of rules
that say how to classify instances.

The goal of tree induction is to find a subdivision that is fine enough to capture the
structure in the underlying domain but does not fit random patterns in the training data.

As an example, Figure 1 shows a sample of 500 instances from an artificial domain,
namely the sign-boundary of the function

f (x1, x2) = x2
1 + x1 + x2 + e,

a polynomial of the two attributes x1, x2 that is corrupted by Gaussian noise e. The function
was uniformly sampled in [−1, 1]2. The original decision boundary of the polynomial
(without noise) is also given (black/white region). We refer to this dataset as the ‘polynomial-
noise’ dataset, it will be used again later.

Figure 2 shows three subdivision of the R2 instance space for the ‘polynomial-noise’
dataset, generated by a decision stump learner (i.e. a one-level decision tree), C4.5 (Quinlan,
1993) with the ‘minimum instances’ parameter set to 20, and C4.5 with standard options.
They are increasingly more complex; in this case, the center one would probably be
adequate, while the rightmost one clearly overfits the examples.
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The usual approach to the problem of finding the best number of splits is to first perform
many splits (build a large tree) and afterwards use a ‘pruning’ scheme to undo some of these
splits. Different pruning schemes have been proposed. For example, C4.5 uses a statistically
motivated estimate for the true error given the error on the training data, while the CART
(Breiman et al., 1984) method cross-validates a ‘cost-complexity’ parameter that assigns a
penalty to large trees.

2.2. Classification via regression

The term ‘regression’ sometimes refers to a particular kind of parametric model for esti-
mating a numeric target variable, and sometimes to the process of estimating a numeric
target variable in general (as opposed to a discrete one). For the moment, we take the latter
meaning—we explain how to solve a classification problem with a learner that can only
produce estimates for a numeric target variable.

Assume we have a class variable G that takes on values 1, . . . , J . The idea is to transform
this class variable into J numeric ‘indicator’ variables G1, . . . , G J to which the regression
learner can be fit. The indicator variable G j for class j takes on value 1 whenever class
j is present and value 0 everywhere else. A separate model is then fit to every indicator
variable G j using the regression learner. When classifying an unseen instance, predictions
u1, . . . , u J are obtained from the numeric estimators fit to the class indicator variables, and
the predicted class is

j∗ = argmax
j

u j .

We will use this transformation process several times, for example when using model
trees for classification.

Transforming a classification task into a regression problem in this fashion, we can use
standard linear regression model for classification. Linear regression fits a parameter vector
β to a numeric target variable to form a model

f (x) = βT x

where x is the vector of attribute values for the instance (we assume a constant component
in the input vector to accommodate the intercept). The model is fit to minimize the squared
error:

β∗ = argmin
β

n∑
i=1

( f (xi ) − yi )
2,

where we have n training instances xi that have target values yi . However, this approach
has some disadvantages. Usually, the predictions given by the regression functions fit to the
class indicator variables are not confined to [0, 1] and can even become negative. Besides,
the approach is known to suffer from masking problems in the multiclass case: even if the
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class regions of the instance space are linearly separable, two classes can ‘mask’ a third
one such that the learned model cannot separate it from the other two—see for example
(Hastie, Tibshirani, & Friedman, 2001).

2.3. Logistic regression

A better way to use regression for classification tasks is to use a logistic regression model
that models the posterior class probabilities Pr(G = j | X = x) for the J classes. Given
estimates for the class probabilities, we can classify unseen instances by

j∗ = argmax
j

Pr(G = j | X = x).

Logistic regression models these probabilities using linear functions in x while at the same
time ensuring they sum to one and remain in [0, 1]. The model is specified in terms of J −1
log-odds that separate each class from the ‘base class’ J:

log
Pr(G = j | X = x)

Pr(G = J | X = x)
= βT

j x, j = 1, . . . , J − 1

or, equivalently,

Pr(G = j | X = x) = e
βT

j

j

1 + ∑J−1
l=1 eβT

l x
, j = 1, . . . , J − 1

Pr(G = J | X = x) = 1

1 + ∑J−1
l=1 eβT

l x
.

Note that this model still produces linear boundaries between the regions in the instance
space corresponding to the different classes. For example, the x lying on the boundary
between a class j and the class J are those for which Pr(G = j | X = x) = Pr(G = J |
X = x), which is equivalent to the log-odds being zero. Since the equation for the log-odds
is linear in x, this class boundary is effectively a hyperplane. The formulation of the logistic
model given here uses the last class as the base class in the odds-ratios; however, the choice
of the base class is arbitrary in that the estimates are equivariant under this choice.

Fitting a logistic regression model means estimating the parameter vectors β j . The
standard procedure in statistics is to look for the maximum likelihood estimate: choose
the parameters that maximize the probability of the observed data points. For the logistic
regression model, there are no closed-form solutions for these estimates. Instead, we have
to use numeric optimization algorithms that approach the maximum likelihood solution
iteratively and reach it in the limit.

In a recent paper that links boosting algorithms like AdaBoost to additive modeling
in statistics, Friedman et al. propose the LogitBoost algorithm for fitting additive logistic
regression models by maximum likelihood (Friedman, Hastie, & Tibshirani, 2000). These
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models are a generalization of the (linear) logistic regression models described above.
Generally, they have the form

Pr(G = j | X = x) = eFj (x)∑J
k=1 eFk (x)

,

J∑
k=1

Fk(x) = 0,

where Fj (x) = ∑M
m=1 fmj (x) and the fmj are (not necessarily linear) functions of the input

variables. Indeed, the authors show that if regression trees are used as the fmj , the resulting
algorithm has strong connections to boosting decision trees with algorithms like AdaBoost.

Figure 3 gives the pseudocode for the algorithm. The variables y∗
i j encode the observed

class membership probabilities for instance xi , i.e.

y∗
i j =

{
1 if yi = j,

0 if yi �= j
(1)

(recall that yi is the class label of example xi ). The p j (x) are the estimates of the class
probabilities for an instance x given by the model fit so far.

LogitBoost performs forward stagewise fitting: in every iteration, it computes ‘response
variables’ zi j that encode the error of the currently fit model on the training examples (in

Figure 3. LogitBoost algorithm (Friedman, Hastie, & Tibshirani, 2000).
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terms of probability estimates), and then tries to improve the model by adding a function
fmj to the committee Fj , fit to the response by least-squared error. As shown in Friedman,
Hastie, and Tibshirani (2000), this amounts to performing a quasi-Newton step in every
iteration, where the Hessian matrix is approximated by its diagonal.

Any class of functions fmj can be used as the ‘weak learner’ in the algorithm, as long as
they are fit by a (weighted) least-squares regression. Depending on the class of functions,
we get a more expressive or more restricted overall model. In the special case that the
fmj (x) and so the Fj (x) are linear functions of the input variables, the additive logistic
regression model is equivalent to the linear logistic model introduced above. Assuming that
Fj (x) = αT

j x , the equivalence of the two models is established by setting α j = β j − βJ

for j = 1 . . . J − 1 and αJ = βJ . Note that the condition
∑J

k=1 Fk(x) = 0 is for stability
only, adding a constant to all Fk(x) does not change the model.

This means we can use the LogitBoost algorithm to learn linear logistic regression
models, by fitting a standard least-squares regression function as the fmj in step 2(a)ii. of
the algorithm. In fact, in the two-class case this algorithm is equivalent to the standard
‘iterative reweighted least squares’ method used for fitting linear logistic regression models
(Hastie, Tibshirani, & Friedman, 2001).

2.3.1. Attribute selection. Typical real-world data includes various attributes, only a few of
which are actually relevant to the true target concept. If non-relevant attributes are included
in, for example, a logistic regression model, they will usually allow the training data to be
fitted with a smaller error, because there is by chance some correlation between the class
labels and the values of these attributes for the training data. They will not, however, increase
predictive power over unseen cases, and can sometimes even significantly reduce accuracy.
Furthermore, including attributes that are not relevant will make it harder to understand
the structure of the domain by looking at the final model, because it is ‘distorted’ by the
influence of these attributes. Therefore, it is important to find some way to select the most
relevant attributes to include in the logistic regression models.

When we say that we fit a linear regression function fmj by least squares regression in
a LogitBoost iteration, we may consider a multiple linear regression that makes use of all
the attributes. However, it is also possible to use even simpler functions for the fmj : simple
regression functions, that perform a regression on only one attribute present in the training
data. Fitting simple regression by least-squared error means fitting a simple regression
function to each attribute in the data using least-squares as the error criterion, and then
selecting the attribute that gives the smallest squared error.

Because every multiple linear regression can be expressed as a sum of simple linear
regression functions, the general model does not change if we use simple instead of multiple
regression for the fmj . Furthermore, the final model found by LogitBoost will be the same
because quasi-Newton stepping is guaranteed to actually find the maximum likelihood
solution if the likelihood function is convex, which it is for linear logistic regression. Using
simple regression functions instead of multiple ones will basically slow down the learning
process, building gradually more complex models that include more and more attributes.
However, all this only holds provided the algorithm is run until convergence (i.e., until the
likelihood does not change anymore between two successive iterations). If it is stopped
before it converges to the maximum likelihood solution, using simple regression will result
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in automatic attribute selection, because the model will only include the most relevant
attributes present in the data. The stopping criterion can be based on cross-validation: only
perform more iterations (and include more attributes) if this actually improves predictive
accuracy over unseen instances.

On the other hand, slowing down the model fitting process can lead to higher compu-
tational costs. Although fitting a simple regression is computationally more efficient than
fitting a multiple regression model, it could be necessary to consider the same attribute
multiple times if the overall model has changed because other attributes have been in-
cluded. This means many iterations have to be performed before the algorithm converges
to a reasonable model. The computational complexity of a simple linear regression on one
attribute is O(n), so one iteration of LogitBoost would take O(n · a) because we have
to build a simple regression model on all attributes in order to find out which one is the
best (where n denotes the number of training examples and a the number of attributes
present in the data). The computational complexity for performing a multiple regression is
O(n · a2 + a3).1 The relative speed of the two methods depends on how many LogitBoost
iterations are required when using simple regression functions, but it is reasonable to expect
that using multiple regression does converge faster.

We decided to use simple regression functions in our implementation because that
approach improved predictive accuracy and significantly reduced the number of attributes
included in the final model for some datasets (see Section 5.3 for an empirical comparison
of this method to building a ‘full’ logistic model on all attributes). Note that we used simple
regression in both the logistic model tree algorithm LMT that builds logistic regression
functions at the nodes of a decision tree (see Section 4) and the standalone logistic regression
learner we use as a benchmark in our experimental evaluation.

We determine the optimum number of LogitBoost iterations by a five fold cross-
validation: we split the data five times into training and test sets, run LogitBoost on every
training set up to a maximum number of iterations (500) and log the classification error on
the respective test set. Afterwards, we run LogitBoost again on all data using the number
of iterations that gave the smallest error on the test set averaged over the five folds. We will
refer to this implementation as SimpleLogistic.

2.3.2. Handling nominal attributes and missing values. In real-world domains important
information is often carried by nominal attributes whose values are not necessarily ordered
in any way and thus cannot be treated as numeric (for example, the make of a car in the
‘autos’ dataset from the UCI repository). However, the regression functions used in the
LogitBoost algorithm can only be fit to numeric attributes, so we have to convert those
attributes to numeric ones. We followed the standard approach for doing this: a nominal
attribute with k values is converted into k numeric indicator attributes, where the l-th
indicator attribute takes on value 1 whenever the original attribute takes on its l-th value
and value 0 everywhere else. Note that a disadvantage of this approach is that it can lead
to a high number of attributes presented to the logistic regression if the original attributes
each have a high number of distinct values. It is well-known that a high dimensionality
of the input data (in relation to the number of training examples) increases the danger of
overfitting. On such datasets, attribute selection techniques like the one implemented in
SimpleLogistic will be particularly important.
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Another problem with real-world datasets is that they often contain missing values, i.e.
instances for which not all attribute values are observed. For example, an instance could
describe a patient and attributes correspond to results of medical tests. For a particular
patient results might only be available for a subset of all tests. Missing values can occur
both during training and when predicting the class of an unseen instance. The regression
functions that have to be fit in an iteration of LogitBoost cannot directly handle missing
values, so one has to fill in the missing values for such instances.

We used a simple global scheme for this: at training time, we calculate the mean (for
numeric attributes) or the mode (for nominal attributes) of the values for each attribute and
use these to replace missing values in the training data. When classifying unseen instances
with missing values, the same mean/mode is used to fill in the missing value.

3. Related tree-based learning schemes

Starting from simple decision trees, several advanced tree-based learning schemes have
been developed. In this section we will describe some of the methods related to logistic
model trees, to show what our work builds on and where we improve on previous solutions.
Some of the related methods will also be used as benchmarks in our experimental study,
described in Section 5.

3.1. Model trees

This section describes the ‘model tree’ algorithm developed by Quinlan, which combines
regression and tree induction for tasks where the target variable to be predicted is numeric
(Quinlan, 1992). The logistic model trees developed in this paper are an analogue to model
trees for categorical target variables, so a description of model trees is a good starting point
for understanding our method.

Model trees, like ordinary regression trees, predict a numeric value for an instance that is
defined over a fixed set of numeric or nominal attributes. Unlike ordinary regression trees,
model trees construct a piecewise linear (instead of a piecewise constant) approximation to
the target function. The final model tree consists of a tree with linear regression functions
at the leaves (Frank et al., 1998), and the prediction for an instance is obtained by sorting
it down to a leaf and using the prediction of the linear model associated with that leaf.

The M5’ model tree algorithm (Wang & Witten, 1997), which is a ‘rational reconstruc-
tion’ of Quinlan’s M5 algorithm (Quinlan, 1992), constructs trees as follows. First, after all
nominal attributes have been replaced by binary ones, an unpruned regression tree is grown,
using variance reduction as the splitting criterion. Then, linear regression models are placed
at every node of the tree, where the attributes considered in the regression are restricted to
those that occur in the subtree rooted at the corresponding node. Further attribute selection
in the linear models is performed by greedily dropping terms to minimize an error estimate
that introduces a penalty for every parameter used in the model. Once all linear models are
in place, subtrees are considered for replacement based on the final error estimate for each
linear model.
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At prediction time, the algorithm generates a ‘smoothed’ output by averaging the pre-
diction of the linear model at a leaf node with the predictions obtained from the models on
the path from that leaf to the root. The smoothing heuristic effectively performs a linear
combination of linear models, which can be written as a linear model itself. Hence it is
possible to achieve the same effect by replacing the original unsmoothed model at each leaf
node with a smoothed version (Frank et al., 1998).

Model trees have been shown to produce good results for numeric prediction problems
(Wang & Witten, 1997). They have also been successfully applied to classification problems
using the transformation described in Section 2.2 (Frank et al., 1998). In our experimental
section, we will give results for this M5’ for classification algorithm and compare it to our
method.

3.2. Stepwise model tree induction

In this section, we will briefly discuss a different algorithm for inducing (numeric) model
trees called ‘Stepwise Model Tree Induction’ or SMOTI (Malerba, etal., 2002) that builds
on an earlier system called TSIR (Lubinsky, 1994). Although we are more concerned
with classification problems, SMOTI uses a scheme for constructing the linear regression
functions associated with the leaves of the model tree that is related to the way our method
builds the logistic regression functions at the leaves of a logistic model tree. The idea is to
construct the final multiple regression function at a leaf from simple regression functions
that are fit at different levels in the tree, from the root down to that particular leaf. This
means that the final regression function takes into account ‘global’ effects of some of the
variables—effects that were not inferred from the examples at that leaf but from some
superset of examples found on the path to the root of the tree. An advantage of this
technique is that only simple linear regressions have to be fitted at the nodes of the tree,
which is faster than fitting a multiple regression every time (that has to estimate the global
influences again and again at the different nodes). The global effects should also smooth the
predictions because there will be less extreme discontinuities between the linear functions
at adjacent leaves if some of their coefficients have been estimated from the same (super)set
of examples.

To implement these ideas, SMOTI trees consist of two types of nodes: split nodes and
regression nodes. Split nodes partition the sample space in the usual way, while regression
nodes perform simple linear regression on one attribute. A regression node fits a simple
regression to the examples passed down to it from the parent node, and passes on a modified
version of the examples to its only child node, removing the linear effect of the attribute
used in the simple regression. This means the model at a leaf of the tree is constructed
incrementally, adding more and more variables to it at the different regression nodes on the
path to the leaf while the tree is grown. Our method uses a similar scheme for constructing
the logistic regression models at the leaves: the simple regression functions produced in the
iterations of the LogitBoost algorithm are fit on the nested sequence of sets of examples
associated with the nodes on the path from the leaf to the root of the tree. Note, however,
that our method is not restricted to a single simple linear model at each node. We will give
a detailed description of this in Section 4.
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3.3. Logistic regression trees with unbiased selection

Lotus (Chan & Loh, 2004) is a logistic regression tree learner for two class problems
that has come from the statistics community. The algorithm constructs (binary) logistic
regression trees in a top-down fashion, emphasizes the importance of unbiased split variable
selection through the use of a modified chi-square test, and uses only numeric attributes for
constructing logistic models. Lotus can fit either multiple or simple logistic regressions at
the nodes.

After the initial tree is grown, it is pruned back using a pruning method similar to
the one employed in the CART algorithm (Breiman et al., 1984). The idea is to use a
‘cost-complexity measure’ that combines the error of the tree on the training data with a
penalty term for the model complexity, as measured by the number of terminal nodes. The
cost-complexity-measure in CART is based on the misclassification error of a (sub)tree,
whereas in Lotus it is based on the deviance. The deviance of a set of instances M is defined
as

deviance = −2 · log P(M | T )

where P(M | T ) denotes the probability of the data M as a function of the current model T
(which is the tree being constructed).

3.4. Functional trees

The LTree algorithm embodies a general framework for learning functional trees (Gama,
2004)—that is, multivariate classification or regression trees that can use combinations of
attributes at decision nodes, leaf nodes, or both.

The algorithm uses a standard top-down recursive partitioning strategy to construct a
decision tree. Splitting at each node is univariate, but considers both the original attributes
in the data and new attributes constructed using an attribute constructor function: multiple
linear regression in the regression setting and linear discriminants or multiple logistic
regression in the classification setting. The value of each new attribute is the prediction of
the constructor function for each example that reaches the node. In the classification case,
one new attribute is created for each class and the values are predicted probabilities. In
the regression case, a single new attribute is created. In this way the algorithm considers
oblique splits based on combinations of attributes in addition to standard axis-parallel splits
based on the original attributes. For split point selection, information gain is used in the
classification case and variance reduction in the regression case.

Once a tree has been grown, it is pruned back using a bottom-up procedure. At each
non-leaf node three possibilities are considered: performing no pruning (i.e, leaving the
subtree rooted at the node in place), replacing the node with a leaf that predicts a constant,
or replacing it with a leaf that predicts the value of the constructor function that was learned
at the node during tree construction. C4.5’s error-based criterion (Quinlan, 1993) is used to
make the decision.
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Predicting a test instance using a functional tree is accomplished by traversing the tree
from the root to a leaf. At each decision node the local constructor function is used to
extend the set of attributes and the decision test determines the path that the instance will
follow. Once a leaf is reached, the instance is classifier using either the constant or the
constructor function at that leaf (depending on what was put in place during the pruning
procedure).

3.5. Naive bayes trees

NBTree is an algorithm that constructs decision trees with naive Bayes models at the
leaves (Kohavi, 1996). A tree is grown in a top-down fashion with univariate splits chosen
according to information gain. A pre-pruning strategy is employed during the construction
of the tree that considers, at each node, whether the data at that node should be split, or
a leaf created that contains a local naive Bayes model trained on the data at that node.
The pruning decision at each node is made by comparing the cross-validated accuracy
(computed using discretized data) of the local naive Bayes model at a node to the weighted
sum of the accuracy of the leaves resulting from splitting at the node. A split is considered
if there are at least 30 instances at a node and the relative reduction in error gained by
splitting is greater than five percent.

It has been shown that naive Bayes trees often improve performance over standard
decision trees or naive Bayes (Kohavi, 1996), although there are only a few cases where
they improve significantly over both.

3.6. Boosting trees

A well-known technique to improve the classification accuracy of tree-based classifiers is
the boosting procedure. The idea of boosting is to combine the prediction of many ‘weak’
classifiers to form a powerful ‘committee’. The weak classifiers are trained on reweighted
versions of the training data, such that training instances that have been misclassified by
the classifiers built so far receive a higher weight and the new classifier can concentrate on
these ‘hard’ instances.

Although a variety of boosting algorithms have been developed, we will here concentrate
on the popular AdaBoost.M1 algorithm (Freund & Schapire, 1996). The algorithm starts
with equal weights assigned to all instances in the training set. One weak classifier (for,
example, a C4.5 decision tree) is built and the data is reweighted such that correctly
classified instances receive a lower weight: their weights are updated by

weight ← weight · e

1 − e

where e is the weighted error of the classifier on the current data. In a second step, the
weights are renormalized such that their sum remains unchanged. This is repeated until the
error e of a classifier reaches zero or exceeds 0.5 (or some pre-defined maximum for the
number of boosting iterations is reached).
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This procedure yields a set of classifiers with corresponding error values, which are used
to predict the class of an unseen instance at classification time by a weighted majority vote.
The vote of a classifier with error e is weighted by

α = −log
e

1 − e
.

For all classes, the weights of the classifiers that vote for it are summed up and the class
with the largest sum of votes is chosen as the predicted class.

Boosting trees has received a lot of attention, and has been shown to outperform simple
classification trees on many real-world domains. In fact, boosted decision trees are consid-
ered one of the best ‘off-the-shelf’ classifiers (learners that are not optimized with regard
to a particular domain). On the other hand, boosted trees have some disadvantages com-
pared to simple classification trees. One obvious disadvantage is the higher computational
complexity, because the basic tree induction algorithm has to be run several times. But
since basic tree induction is very fast, it is still feasible to build boosted models for most
datasets. A more serious disadvantage is the reduced interpretability of a committee of trees
as compared to a single tree. The interpretation of a tree as a set of rules does not translate
to a whole set of trees which produce a classification by a weighted majority vote. However,
information contained in the individual trees can still be used to yield some insight into the
data, for example, the frequency of attributes occurring in the trees can tell us something
about the relevance of that attribute for the class variable (see e.g. Hastie, Tibshirani, &
Friedman, 2001).

4. Logistic model trees

In this section, we will present our Logistic Model Tree algorithm, or LMT for short. It
combines the logistic regression models described in Section 2 with tree induction, and
thus is an analogue of model trees for classification problems.

4.1. The model

A logistic model tree basically consists of a standard decision tree structure with logistic
regression functions at the leaves, much like a model tree is a regression tree with regression
functions at the leaves. As in ordinary decision trees, a test on one of the attributes is
associated with every inner node. For a nominal (enumerated) attribute with k values, the
node has k child nodes, and instances are sorted down one of the k branches depending on
their value of the attribute. For numeric attributes, the node has two child nodes and the
test consists of comparing the attribute value to a threshold: an instance is sorted down the
left branch if its value for that attribute is smaller than the threshold and sorted down the
right branch otherwise.

More formally, a logistic model tree consists of a tree structure that is made up of a set
of inner or non-terminal nodes N and a set of leaves or terminal nodes T. Let S denote the
whole instance space, spanned by all attributes that are present in the data. Then the tree
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structure gives a disjoint subdivision of S into regions St , and every region is represented
by a leaf in the tree:

S =
⋃
t∈T

St , St ∩ St ′ = ∅ for t �= t ′

Unlike ordinary decision trees, the leaves t ∈ T have an associated logistic regression
function ft instead of just a class label. The regression function ft takes into account a
subset Vt ⊆ V of all attributes present in the data (where we assume that nominal attributes
have been binarized for the purpose of regression), and models the class membership
probabilities as

Pr(G = j | X = x) = eFj (x)∑J
k=1 eFk (x)

where

Fj (x) = α
j
0 +

∑
v∈Vt

α j
v · v,

or, equivalently,

Fj (x) = α
j
0 +

m∑
k=1

α j
vk

· vk

if α
j
vk = 0 for vk /∈ Vt . The model represented by the whole logistic model tree is then

given by

f (x) =
∑
t∈T

ft (x) · I (x ∈ St )

where I (x ∈ St ) is 1 if x ∈ St and 0 otherwise.
Note that both standalone logistic regression and ordinary decision trees are special cases

of logistic model trees, the first is a logistic model tree pruned back to the root, the second
a tree in which Vt = ∅ for all t ∈ T .

Ideally, we want our algorithm to adapt to the dataset in question: for small datasets
where a simple linear model offers the best bias-variance tradeoff, the logistic model ‘tree’
should just consist of a single logistic regression model, i.e. be pruned back to the root. For
other datasets, a more elaborate tree structure is adequate.

The same reasoning also applies to the subsets of the original dataset that are encountered
while building the tree. Recall that tree induction works in a divide-and-conquer fashion:
a classifier for a set of examples is build by performing a split and then building separate
classifiers for the two resulting subsets. There is strong evidence that building trees for very
small datasets is usually not a good idea, it is better to use simpler models (like logistic
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Figure 4. Class probability estimates from a C4.5 and a LMT model for the ‘polynomial-noise’ dataset. Colors
(from light to dark) indicate class probability estimates in the different regions.

regression) (Perlich, Provost, & Simonoff, 2003). Because the subsets encountered at lower
levels in the tree become smaller and smaller, it can be preferable at some point to build a
linear logistic model instead of calling the tree growing procedure recursively. This is one
motivation for the logistic model tree algorithm.

Figure 4 visualizes the class probability estimates of a logistic model tree and a C4.5
decision tree for the ‘polynomial-noise’ dataset introduced in Section 2.1. The logistic
model tree initially divides the instance space into 3 regions and uses logistic regression
functions to build the (sub)models within the regions, while the C4.5 tree partitions the
instance space into 12 regions. It is evident that the tree built by C4.5 overfits some patterns
in the training data, especially in the lower-right region of the instance space.

Figures 5 and 6 depict the corresponding models. At the leaves of the logistic model tree,
the functions F1, F2 determine the class membership probabilities by

Pr(G = 1 | X = x) = eF1(x)

eF1(x) + eF2(x)
,

Pr(G = 2 | X = x) = eF2(x)

eF1(x) + eF2(x)
.

The entire left subtree of the root of the ‘original’ C4.5 tree has been replaced in the logistic
model tree by the linear model with

F1(x) = −0.39 + 5.84 · x1 + 4.88 · x2

F2(x) = 0.39 − 5.84 · x1 − 4.88 · x2 = −F1(x)

Note that this logistic regression function models a similar influence of the attributes x1, x2

on the class variable as the subtree it replaced, if we follow the respective paths in the tree
we will see it mostly predicts class one if x1 and x2 are both large. However, the linear
model is simpler than the tree structure, and so less likely to overfit.
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Figure 5. Decision tree constructed by the C4.5 algorithm for the ‘polynomial-noise’ dataset.

4.2. Building logistic model trees

In the following we present our new algorithm for learning logistic model trees. We discuss
how the initial tree is grown, the splitting and stopping criteria used, how the tree is pruned,
and the handling of missing values and nominal attributes.

4.2.1. Growing the initial tree. There is a straightforward approach for growing logistic
model trees that follows the way trees are built by M5’. This involves first building a standard
classification tree, using, for example, the C4.5 algorithm, and afterwards building a logistic
regression model at every node trained on the set of examples at that node (note that we
need a logistic regression model at every node of the tree because every node is a ‘candidate
leaf’ during pruning). In this approach, the logistic regression models are built in isolation
on the local training examples at a node, not taking into account the surrounding tree
structure.

Instead, we chose a different approach for constructing the logistic regression functions,
namely by incrementally refining logistic models already fit at higher levels in the tree.
Assume we have split a node and want to build the logistic regression function at one of
the child nodes. Since we have already fit a logistic regression at the parent node, it is



LOGISTIC MODEL TREES 177

Figure 6. Logistic model tree constructed by the LMT algorithm for the ‘polynomial-noise’ dataset.

reasonable to use it as a basis for fitting the logistic regression at the child. We expect that
the parameters of the model at the parent node already encode ‘global’ influences of some
attributes on the class variable; at the child node, the model can be further refined by taking
into account influences of attributes that are only valid locally, i.e. within the set of training
examples associated with the child node.

The LogitBoost algorithm (discussed in Section 2.3) provides a natural way to do just
that. Recall that it iteratively changes the linear class functions Fj (x) to improve the fit to
the data by adding a simple linear regression function fmj to Fj , fit to the response variable.
This means changing one of the coefficients in the linear function Fj or introducing a
new variable/coefficient pair. After splitting a node we can continue running LogitBoost
iterations, fitting the fmj to the response variables of the training examples at the child node
only.

As an example, consider a tree with a single split at the root and two successor nodes. The
root node n has training data Dn and one of its children t has a subset of the training data
Dt ⊂ Dn . Fitting the logistic regression models in isolation means the model fn would be
built by iteratively fitting simple regression functions to Dn and the model ft by iteratively
fitting simple regression functions to Dt . In contrast, in the ‘iterative refinement’ approach,
the tree is constructed as follows. We start by building a logistic model fn at n by running
LogitBoost on Dn , including more and more variables in the model by adding simple
regressions fmj to the Fn

j (the linear class function for each class j at node n). At some
point, adding more variables does not increase the accuracy of the model,2 but splitting
the instance space and refining the logistic models locally in the two subdivisions created
by the split might give a better model. So we split the node n and build refined logistic
models at the child nodes by proceeding with the LogitBoost algorithm on the smaller set
of examples Dt , adding more simple regression functions to the Fn

j to form the Ft
j . These

simple linear regressions are fit to the response variables of the set of training examples Dt

given the (partial) logistic regression already fit at the parent node. Figure 7 illustrates this
scheme for building the logistic regression models.

An additional advantage of this approach is that it is computationally more efficient to
build the logistic models at lower levels of the tree by extending models already built at
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Figure 7. Building logistic models by incremental refinement. The parameters a0, a1 are estimated from the
training examples at n, the parameters a2, a3 and a′

2, a′
3 from the training examples at t and t ′ respectively. Attribute

x1 has a global influence, x2, x3 have a local influence.

higher levels, rather than building the models at lower levels from scratch. Note that this
approach of iteratively refining logistic regression models based on local structure in the
data is related to the way SMOTI (discussed in Section 3.2) constructs linear models. In
the terminology of the SMOTI system, our approach would amount to building a chain of
‘regression nodes’ as long as this improves the fit (as determined by the cross-validation),
then a single ‘split node’ and again a chain of regression nodes.

These ideas lead to the following algorithm for building logistic model trees:

– Tree growing starts by building a logistic model at the root using the LogitBoost algorithm
to iteratively fit simple linear regression functions, using five fold cross-validation to
determine the appropriate number of iterations (i.e. using the SimpleLogistic algorithm
described in Section 2.3).

– A split for the data at the root is constructed. Splits are either binary (for numeric
attributes) or multiway (for nominal ones), the splitting criterion will be discussed in
more detail below. Tree growing continues by sorting the appropriate subsets of data to
the child nodes and building the logistic models at the child nodes in the following way:
the LogitBoost algorithm is run on the subset associated with the child node, but starting
with the committee Fj (x), weights wi j and probability estimates pi j of the last iteration
performed at the parent node (it is ‘resumed’ at step 2.a of Figure 3). Again, the optimum
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Figure 8. Pseudocode for the LMT algorithm.

number of iterations to perform (the number of f jm to add to Fj ) is determined by a five
fold cross validation.

– Splitting of the child nodes continues in this fashion until some stopping criterion is met
(the stopping criterion is discussed in Section 4.2.2).

– Once the tree has been built it is pruned using CART-based pruning.

Figure 8 gives the pseudocode for this algorithm, which we call LMT. The method LMT
constructs the tree given the training data examples. It calls getCARTAlpha to cross-
validate the ‘cost-complexity-parameter’ for the CART pruning scheme implemented in
CARTPrune.3 The method buildTree grows the logistic model tree by recursively split-
ting the instance space. The argument initialLinearModels contains the simple linear
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regression functions already fit by LogitBoost at higher levels of the tree. The method
initLogitBoost initializes the probabilities/weights for the LogitBoost algorithm as if it
had already fitted the regression functions initialLinearModels (resuming LogitBoost
at step 2.a). The method CV_Iterations determines the number of LogitBoost iterations
to perform, and logitBoostIteration performs a single iteration of the LogitBoost
algorithm (step 2), updating the probabilities/weights and adding a regression function to
linearModels.

Some points in this sketch of the algorithm for growing logistic model trees need to be
explained in more detail: how to select the attribute to split on, when to stop growing the
tree, how to prune, and how to deal with missing values and nominal attributes.

4.2.2. Splitting and stopping. We implemented two different criteria to select the attribute
to split on. One is the C4.5 splitting criterion that tries to improve the purity of the class
variable. The other splitting criterion attempts to divide the training data according to the
current values of the working responses in the LogitBoost procedure in Figure 3.

In our experiments, we could not detect any significant differences between either clas-
sification accuracy or tree size between the two methods. A disadvantage of splitting on the
response is that the final tree structure is less intelligible. Hence we made splitting on the
class variable (using the C4.5 splitting criterion) the default option in our algorithm, and
all experimental results reported for LMT in Section 5 refer to that version.

Tree growing stops for one of three reasons:

– A node is not split if it contains less than 15 examples. This number is somewhat larger
than for standard decision trees, however, the leaves in logistic model trees contain more
complex models, which need more examples for reliable model fitting.

– A particular split is only considered if there are at least 2 subsets that contain 2 examples
each. Furthermore, a split is only considered if it achieves a minimum information gain.
This is a heuristic used by the C4.5 algorithm to avoid overly fragmented splits. When
no such split exists, we stop growing the tree.

– A logistic model is only built at a node if it contains at least 5 examples, because we
need 5 examples for the cross-validation to determine the best number of iterations for
the LogitBoost algorithm. Note that this can lead to ‘partially expanded’ nodes, where
for some branches no additional iterations of LogitBoost are performed and so the model
at the child is identical to the model of the parent.

We have found that the exact stopping criterion is not very important because the final
tree (after pruning) is usually much smaller than the tree that is initially grown anyway.

4.2.3. Pruning the tree. As for standard decision trees, pruning is an essential part of
the LMT algorithm. Standard decision trees are usually grown to minimize the training
error, which decreases monotonically as more and more splits are performed and the tree
becomes larger and larger. Large trees, however, are complex models with many degrees
of freedom, which means they can easily overfit random patterns in the training data that
are not representative of the true structure of the domain.

The complexity of trees can be measured by the number of splits they contain: every
new split further refines the subdivision of the instance space, and so makes the decision
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function represented by the tree more complex. Furthermore, splits usually introduce new
parameters into the model (unless the same attribute has already been used in a different
split). Pruning methods for decision trees make use of this fact by trading off tree size
(which is roughly equivalent to the number of splits) versus training error.

For logistic model trees, the situation is slightly different compared to ordinary clas-
sification trees, because the logistic regression functions at the leaves are so much more
complex than simple leaves (that just use the majority class in their set of examples for
predictions). For logistic model trees, sometimes a single leaf (a tree pruned back to the
root) leads to the best generalization performance, which is rarely the case for ordinary
decision trees (there it would mean that the best thing to do is to predict the majority class
for every unseen instance). So (correctly pruned) logistic model trees will usually be much
smaller than ordinary classification trees, but the same principle still applies: every split and
subsequent local refinement of the logistic regression models at the child nodes increases
the complexity of the model. This means that pruning algorithms for decision trees that
trade off tree size versus accuracy on the training set are still applicable. Note that if we had
decided to build isolated logistic models at every node, it would not have been clear that a
split really increases model complexity. Because the logistic models use variable selection,
it could happen that a split plus two simple logistic models is actually less complex than a
complex logistic model at the original node. This might lead to problems with a pruning
algorithm that penalizes splits.

We spent a lot of time experimenting with different pruning schemes. Since our work was
originally motivated by the model tree algorithm, we first tried adapting the pruning scheme
used by this algorithm. However, we could not find a way to compute reliable estimates for
the expected error rate (resulting in an unstable pruning algorithm), hence we abandoned that
approach. Instead, we employed the pruning method from the CART algorithm (Breiman
et al., 1984). Like M5’s method, the CART pruning method uses a combination of training
error and penalty term for model complexity to make pruning decisions. While estimating
this parameter by cross-validation (or, if enough data is available, by using an independent
test set) sacrifices some of the computational efficiency of M5’s method, it leads to much
more reliable pruning. The reader is referred to Breiman et al. (1984) for details of the
pruning procedure.

4.2.4. Handling of missing values and nominal attributes. As explained in Section 2.3.2,
missing values must be filled in before fitting the logistic regression models with the
LogitBoost algorithm. This is done globally before tree building commences, by replacing
the missing values with the means/modes of the respective attribute. This means that,
unlike the C4.5 algorithm, LMT does not do any ‘fractional splits’ for instances with
missing values (Quinlan, 1993). On the datasets we looked at, this simple approach seemed
to work reasonably well, however, more sophisticated techniques could be an interesting
area for future work.

Nominal attributes have to be converted to numeric ones in order to fit the logistic
regression models. This is done locally at all nodes in our algorithm, i.e. the logistic model
is fit to a local copy of the examples at a node where the nominal attributes have been
transformed into binary ones. The procedure for this is the same as the one described
in Section 2.3.2: a nominal attribute with k values is transformed into k binary indicator
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attributes that are then treated as numeric. The reason why this is not done globally is that
splitting on nominal attributes (that often capture a specific characteristic of the domain)
can be better than splitting on the binary ones that are the result of the conversion, both in
terms of information gain and interpretability of the produced model.

4.3. Computational complexity

This section discusses the computational complexity of building logistic regression models
with SimpleLogistic and of building logistic model trees with LMT. It also describes two
heuristics used to speed up the LMT algorithm.

Generally speaking, the stagewise model fitting approach used in SimpleLogistic means
that a potentially large number of LogitBoost iterations have to be performed, because it
might be necessary to fit a simple linear function to the same variable many times. The
optimum number of iterations to be performed is selected by a five fold cross-validation.
We used a maximum number of 200 iterations for the logistic regression at the nodes of
the tree, as opposed to the 500 iterations used in stand-alone SimpleLogistic. The rationale
for this is that the logistic regression functions in the tree do not have to be as complex as
those for standalone logistic regression (because of the additional tree structure).

If the maximum number of iterations is taken as a constant, the asymptotic complexity of
building a single logistic regression model is of the order O(n ·a) (recall that n is the number
of training examples and a the number of attributes). However, this ignores the constant
factor of the number of LogitBoost iterations and the cross-validation. It is reasonable to
expect that the maximum number of iterations should at least be linear in the number a of
attributes present in the data (after all, the number of attributes that can be included in the
final model is bounded by the number of LogitBoost iterations that can be performed). It is
not clear whether our hard-coded limit is really enough for all datasets, though it seemed to
work fine in our experiments. Therefore, a more realistic estimate of the asymptotic runtime
of SimpleLogistic is O(n · a2).

There is only a moderate increase in computational complexity from building logistic
regression models to building logistic model trees. Using the more realistic estimate for
the complexity of building the logistic models, the asymptotic complexity of the LMT
algorithm is O(d · n · logn + n ·a2 · d + k2), where d is the depth of the initial unpruned tree
and k the number of nodes in the tree. The first part of the sum derives from building an
unpruned decision tree, the second one from building the logistic regression models, and
the third one from the CART pruning scheme. In our experiments, the time for building the
logistic regression models accounted for most of the overall runtime. Note that the initial
depth d of the unpruned logistic model tree is usually smaller than the depth of an unpruned
standard classification tree, because tree growing is stopped earlier. The cross-validation
performed by the CART pruning algorithm constitutes another constant multiplying factor
of about six if five-fold cross-validation is used.

The asymptotic complexity is not too high compared to other machine learning meth-
ods, although it is higher than for simple tree induction. However, the two nested cross-
validations—one for determining the optimum number of boosting iterations and one for
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the pruning—increase the runtime by a large constant factor, which makes the algorithm
quite slow in practice.

4.3.1. Heuristics to speed up the algorithm. In this section we discuss two simple heuris-
tics to speed up the LMT algorithm. The first one concerns the ‘inner’ cross-validation
that determines the number of LogitBoost iterations to perform at a particular node. In
order to avoid cross-validating this number at every node, we tried performing just one
cross-validation to determine the optimum number of iterations for LogitBoost in the be-
ginning (at the root of the tree) and then used that number everywhere in the tree. Although
it is not very intuitive, this approach worked surprisingly well. It never produced results
that were significantly worse than those of the original algorithm. It seems that the LMT
algorithm is not too sensitive to the number of LogitBoost iterations that are performed at
every node, as long as the number is roughly in the right range for the dataset. We also
tried using some fixed number of iterations for every dataset, but that gave significantly
worse results in some cases. It seems that the best number of iterations for LogitBoost
does depend on the domain, but that it does not change so much for different subsets of a
particular dataset (as encountered in lower levels in the tree).

As a second heuristic, we tried to stop performing LogitBoost iterations early in case
it is obvious that the optimum number of iterations is relatively small. Recall that we run
LogitBoost on the training set of a fold while monitoring the error on the test set, afterwards
summing up the errors over the different folds to find the optimum number of iterations
to perform. Examining the error curve on the test set produced by LogitBoost shows that
the error usually decreases first, then reaches a minimum and later starts to increase again
because the model is overfitting the training data. If the minimum is reached early, we
can stop performing more iterations after a while because we know the best number must
be relatively low. To account for spikes and irregularities in the error curve, we do not
stop performing iterations immediately if the error increases, but instead keep track of the
current minimum and stop if it has not changed for 50 iterations.

This second heuristic does not change the behavior of the algorithm significantly, and
can give a considerable speed-up on datasets where the optimum number of LogitBoost
iterations is small. Note that it can be used together with the first heuristic, by speeding
up the initial cross-validation that determines the best number of LogitBoost iterations. By
default, both heuristics are used in our implementation of LMT. All results shown for the
LMT algorithm in this paper refer to the default version that uses the heuristics.

Figure 9 plots the training time as a function of training set size (note the log scales) of
our implementations of LMT (including the heuristics) and C4.5 on the letter dataset from
the UCI repository (Blake & Merz, 1998). The graph shows that LMT is several orders of
magnitude slower than C4.5 in practice, although the shapes of their growth functions are
comparable.

5. Experiments

In order to evaluate the performance of our method and compare it against other state-of-
the-art learning schemes, we applied it to several real-world problems. More specifically,
we seek to answer the following questions in our experimental study:
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Figure 9. Training time as a function of the number of training instances for C4.5 and LMT on the letter dataset.
Note the logarithmic scale of the axes.

1. How does our version of logistic regression that uses parameter selection (SimpleLogis-
tic) compare to a standard version of logistic regression that builds a full logistic model
on all attributes present in the data?

2. How does LMT compare to the two algorithms that form its basis, i.e., logistic regression
and C4.5? Ideally it should never perform worse than either of these algorithms.

3. How does LMT compare to other enhanced decision tree learners, i.e., those that make
oblique splits or include other learning algorithms in the tree structure?

4. How does LMT compare to methods that build multiple trees? We include results for
boosted C4.5 trees, where the final model is a ‘voting committee’ of trees, and for the
M5’ algorithm, building one tree per class.

5. How big are the trees constructed by LMT? We expect them to be much smaller than
simple classification trees because the leaves contain more information. We also expect
the trees to be pruned back to the root if a linear logistic model is the best solution for
the dataset.

5.1. Algorithms included in experiments

The following algorithms are used in our experiments:4

– C4.5
The C4.5 classification tree inducer (Quinlan, 1993). C4.5 is run with the standard
options: The confidence threshold for pruning is 0.25, the minimum number of instances
per leaf is 2. For pruning, both subtree replacement and subtree raising are considered.

– CART
The CART tree inducer (Breiman et al., 1984). We used the implementation of CART
provided in the R statistical package (Ihaka & Gentleman, 1996).5 The cost-complexity
parameter for pruning is optimized using 10-fold cross-validation on the training data.

– LTree
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The functional tree learning algorithm LTree (Gama, 2004). Linear discriminants or
logistic regression can be used at interior nodes of the tree to provide oblique splits and
at the leaves for prediction. We provide results for both types of discriminant functions.
We used version 5.1 of LTree.6

– NBTree
The naive Bayes tree learning algorithm (Kohavi, 1996). NBTree is run using the settings
recommended by Kohavi—a split is considered if there are at least 30 instances reaching
a node and accepted if the relative reduction in error (computed by five-fold cross-
validation) is greater than five percent.

– M5’
The model tree learning algorithm M5’ (Wang & Witten, 1997). The classification
problems are transformed into regression problems as described in Section 2.2. M5’
is run with the standard options: the minimum number of instances per leaf is four,
smoothing is enabled.

– AdaBoost.M1
The AdaBoost.M1 algorithm as described in Section 3.6. C4.5 with standard options is
used as the base learner, and the maximum number of iterations is set to 10 or 100.

– MultiLogistic
An implementation of logistic regression that finds a maximum-likelihood solution for a
full logistic model. See Section 5.3 for more details.

– SimpleLogistic
The standalone logistic regression with attribute selection as described in Section 2.3.

– Lotus
The Lotus algorithm for inducing logistic regression trees with unbiased splits (Chan &
Loh, 2004).7 The algorithm can only handle two class datasets and can learn either simple
or multiple logistic regression models at the leaves of the tree. We provide results for
both cases. CART’s cost-complexity pruning method is used with “cost” being predicted
deviance estimated using 10-fold cross-validation on the training data. All other options
(aside from logistic model type) are those computed as default by the Lotus software.
We used version 1.03 of Lotus.

– LMT
The LMT algorithm, using the heuristics discussed in Section 4.3.1.

All algorithms except where noted are part of the Weka machine learning workbench
(Witten & Frank, 2000) release 3.4.0.8

5.2. Datasets and methodology

For the experiments we used the 36 benchmark datasets from the UCI repository (Blake
& Merz, 1998) given in Table 1. Their size ranges from under one hundred to a few
thousand instances. They contain varying numbers of numeric and nominal attributes
and some contain missing values. Note that the original zoo and splice datasets had an
identifier attribute (that takes on a different value for every instance) which was removed
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Table 1. Datasets used for the experiments, sorted by size.

Dataset Instances
Missing values

(%)
Numeric
attributes

Binary
attributes

Nominal
attributes Classes

Labor 57 35.7 8 3 5 2

Zoo 101 0.0 1 15 0 7

Lymphography 148 0.0 3 9 6 4

Iris 150 0.0 4 0 0 3

Hepatitis 155 5.6 6 13 0 2

Glass (G2) 163 0.0 9 0 0 2

Autos 205 1.1 15 4 6 6

Sonar 208 0.0 60 0 0 2

Glass 214 0.0 9 0 0 6

Audiology 226 2.0 0 61 8 24

Heart-statlog 270 0.0 13 0 0 2

Breast-cancer 286 0.3 0 3 6 2

Heart-h 294 20.4 6 3 4 2

Heart-c 303 0.2 6 3 4 2

Primary-tumor 339 3.9 0 14 3 21

Ionosphere 351 0.0 33 1 0 2

Horse-colic 368 23.8 7 2 13 2

Vote 435 5.6 0 16 0 2

Balance-scale 625 0.0 4 0 0 3

Soybean 683 9.8 0 16 19 19

Australian 690 0.6 6 4 5 2

Breast-w 699 0.3 9 0 0 2

Pima-indians 768 0.0 8 0 0 2

Vehicle 846 0.0 18 0 0 4

Anneal 898 0.0 6 14 18 5

Vowel 990 0.0 10 2 1 11

German 1000 0.0 6 3 11 2

Segment 2310 0.0 19 0 0 7

Splice 3190 0.0 0 0 60 3

Kr-vs-kp 3196 0.0 0 35 1 2

Hypothyroid 3772 5.5 7 20 2 4

Sick 3772 5.5 7 20 2 2

Waveform 5000 0.0 40 0 0 3

Optdigits 5620 0.0 64 0 0 10

Pendigits 10992 0.0 16 0 0 10

Letter 20000 0.0 16 0 0 26
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for our experiments, because it leads to a sharp degradation in performance for M5’ for
classification.

For every dataset and algorithm, we performed ten runs of ten-fold stratified cross-
validation (using the same splits into training/test set for every method). This gives a
hundred data points for each algorithm and dataset, from which the average classification
accuracy and standard deviation are calculated. Furthermore, we used a corrected resampled
t-test (Nadeau & Bengio, 2003) instead of the standard t-test to identify if one method
significantly outperforms another, at a 5 percent significance level. This test corrects for the
dependencies in the estimates of the different data points, and is less prone to false-positive
significance results. The statistic of the “corrected resampled t-test” is:

t =
1
N

∑N
j=1 x j√

( 1
N + n2

n1
)σ̂ 2

where N is the number of data points (a hundred in our case), x j is the difference in accuracy
between two learning algorithms on one of the one hundred folds, n1 is the number of
instances used for training (ninety percent of the data in a ten-fold cross-validation) and n2

is the number of test instances (ten percent of the data).

5.3. The impact of variable selection for logistic regression

This section explores the effectiveness of our parameter selection method for SimpleLogis-
tic, comparing it to MultiLogistic. There are two motivations for doing variable selection
in logistic regression: one is the hope that controlling the number of parameters that enter
the model can decrease the risk of building overly complex models that overfit the training
data. This means that attribute selection should increase the classification accuracy. The
other motivation is that models with many parameters are usually harder to interpret than
models with few parameters; in particular, parameters that have no real relation to the target
variable can be misleading when interpreting the final model.

Table 2 gives the classification accuracy for the two methods, and indicates significant
wins/losses according to the modified t-test discussed above. The test reports four significant
accuracy differences in favor of SimpleLogistic. Ignoring the significance of the differences,
SimpleLogistic is better than MultiLogistic on 24 datasets and worse on 12 datasets.
According to a two-tailed sign test, SimpleLogistic is more accurate than MulitLogistic at
the 10 percent significance level (p-value is 0.0652). Hence attribute selection leads to better
predictive performance for some datasets and never significantly decreases performance.

Figure 10 gives the percentage of attributes (after converting nominal attributes to binary
ones) included in the final model for SimpleLogistic. Although the fraction of attributes
that are discarded varies wildly (from more than 95 percent for the breast-cancer dataset
to none for balance-scale, vehicle, vowel, pendigits and letter), in most cases the number
of attributes included in the final model is reduced substantially. On average, the biggest
reduction takes place for datasets with a high number of attributes that are not too large
(datasets are sorted by size from left to right).
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Table 2. Mean classification accuracy and standard deviation for SimpleLogistic and MultiLogistic.

Dataset SimpleLogistic MultiLogistic

Labor 91.97 ± 10.54 94.07 ± 10.01

Zoo 94.69 ± 6.59 94.85 ± 6.34

Lymphography 84.37 ± 9.97 77.58 ± 10.59

Iris 95.93 ± 4.82 97.07 ± 4.77

Hepatitis 84.20 ± 8.20 83.89 ± 8.12

Glass (G2) 76.32 ± 8.89 69.56 ± 10.77

Autos 75.30 ± 9.97 69.99 ± 9.86

Sonar 75.93 ± 8.51 72.47 ± 8.90

Glass 65.29 ± 8.03 63.12 ± 9.16

Audiology 84.10 ± 7.35 79.71 ± 8.36

Heart-statlog 83.30 ± 6.48 83.67 ± 6.43

Breast-cancer 74.94 ± 6.25 67.77 ± 6.92 •
Heart-h 84.61 ± 6.03 84.23 ± 5.93

Heart-c 83.30 ± 6.35 83.70 ± 6.64

Primary-tumor 47.87 ± 6.04 41.56 ± 7.63 •
Ionosphere 87.78 ± 4.99 87.72 ± 5.57

Horse-colic 81.93 ± 5.80 80.87 ± 6.06

Vote 95.93 ± 2.58 95.65 ± 3.12

Balance-scale 88.74 ± 2.91 89.44 ± 3.29

Soybean 93.43 ± 2.54 92.91 ± 2.67

Australian 85.04 ± 3.97 85.33 ± 3.85

Breast-w 96.21 ± 2.19 96.50 ± 2.18

Pima-indian 77.10 ± 4.65 77.47 ± 4.39

Vehicle 80.45 ± 3.37 79.81 ± 4.04

Anneal 99.48 ± 0.70 99.24 ± 0.79

Vowel 84.31 ± 3.78 82.71 ± 3.96

German 75.34 ± 3.50 75.24 ± 3.54

Segment 95.40 ± 1.50 95.60 ± 1.59

Splice 95.86 ± 1.17 90.57 ± 1.85 •
Kr-vs-kp 97.46 ± 0.79 97.56 ± 0.76

Hypothyroid 96.78 ± 0.73 96.69 ± 0.72

Sick 96.74 ± 0.71 96.79 ± 0.69

Waveform 86.96 ± 1.58 86.73 ± 1.49

Optdigits 97.12 ± 0.68 93.89 ± 0.98 •
Pendigits 95.51 ± 0.64 95.50 ± 0.65

Letter 77.42 ± 0.80 77.40 ± 0.83

•, ◦ Statistically significant win or loss for SimpleLogistic.
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Figure 10. Percentage of attributes used by SimpleLogistic.

As an example for parameter selection, consider the breast-cancer dataset. After trans-
forming the nominal attributes into binary ones, the dataset has 48 numeric attributes
(plus the class). SimpleLogistic builds a model including only two of the parameters.
The function determining the class probability membership (cf. Section 2.3) for class 1,
no-recurrence-events, is

F1(x) = 0.53 + [inv − nodes = 0 − 2] · 1.07 − [deg − malig = 3] · 1.32.

The function F2 for the class membership probability of class 2 is F2(x) = −F1(x) because
there are only two classes. The binary attribute [inv-nodes = 0–2] has been generated from
the nominal attribute ‘inv-nodes’ that can take on values ‘0–2’, ‘3–5’, and so on. The
nominal attribute ‘deg-malig’ takes on values ‘1’, ‘2’ and ‘3’. The model is relatively
easy to interpret: it basically says that no recurrence events are expected if the number of
involved nodes is small and the degree of malignancy is not too high.

In contrast to that, the model built by MultiLogistic has sizeable coefficients for 38 of the
48 attributes, which makes it a lot harder to interpret, and is at the same time less accurate
(see Table 2).

5.4. Empirical evaluation of LMT

This section discusses the performance of LMT compared to other learning schemes,
including logistic regression, C4.5, CART, LTree, Lotus, M5’ for classification, and boosted
C4.5 trees.

5.4.1. Comparing LMT to logistic regression and tree induction. Table 3 gives the aver-
age classification accuracy and standard deviation for LMT, SimpleLogistic, MultiLogistic,
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Table 3. Mean classification accuracy and standard deviation for LMT vs. SimpleLogistic, MultiLogistic, C4.5
and CART.

Dataset LMT SimpleLogistic MultiLogistic C4.5 CART

Labor 91.37 ± 11.01 91.97 ± 10.54 94.07 ± 10.01 78.60 ± 16.58 • 81.73 ± 17.54

Zoo 94.89 ± 6.44 94.69 ± 6.59 94.85 ± 6.34 92.61 ± 7.33 91.81 ± 7.44

Lymphography 84.10 ± 10.00 84.37 ± 9.97 77.58 ± 10.59 75.84 ± 11.05 76.86 ± 9.87

Iris 95.80 ± 4.89 95.93 ± 4.82 97.07 ± 4.77 94.73 ± 5.30 96.00 ± 4.74

Hepatitis 84.21 ± 8.21 84.20 ± 8.20 83.89 ± 8.12 79.22 ± 9.57 80.21 ± 7.57

Glass (G2) 77.28 ± 9.90 76.32 ± 8.89 69.56 ± 10.77 • 78.15 ± 8.50 80.21 ± 9.51

Autos 76.13 ± 8.84 75.30 ± 9.97 69.99 ± 9.86 81.77 ± 8.78 77.66 ± 10.20

Sonar 76.32 ± 9.58 75.93 ± 8.51 72.47 ± 8.90 73.61 ± 9.34 74.77 ± 9.76

Glass 69.15 ± 8.99 65.29 ± 8.03 63.12 ± 9.16 67.63 ± 9.31 68.09 ± 10.49

Audiology 84.19 ± 7.17 84.10 ± 7.35 79.71 ± 8.36 77.26 ± 7.47 • 77.01 ± 7.75 •
Heart-statlog 83.22 ± 6.50 83.30 ± 6.48 83.67 ± 6.43 78.15 ± 7.42 • 78.00 ± 8.25 •
Breast-cancer 74.91 ± 6.29 74.94 ± 6.25 67.77 ± 6.92 • 74.28 ± 6.05 69.40 ± 5.25 •
Heart-h 84.00 ± 6.33 84.61 ± 6.03 84.23 ± 5.93 80.22 ± 7.95 76.70 ± 6.80 •
Heart-c 83.51 ± 6.67 83.30 ± 6.35 83.70 ± 6.64 76.94 ± 6.59 • 78.88 ± 6.87 •
Primary-tumor 47.63 ± 5.84 47.87 ± 6.04 41.56 ± 7.63 • 41.39 ± 6.94 • 41.42 ± 7.38 •
Ionosphere 92.99 ± 4.13 87.78 ± 4.99 • 87.72 ± 5.57 • 89.74 ± 4.38 • 89.80 ± 4.78

Horse-colic 83.66 ± 6.13 81.93 ± 5.80 80.87 ± 6.06 85.16 ± 5.91 84.63 ± 5.56

Vote 95.90 ± 2.67 95.93 ± 2.58 95.65 ± 3.12 96.57 ± 2.56 95.15 ± 3.08

Balance-scale 89.71 ± 2.68 88.74 ± 2.91 89.44 ± 3.29 77.82 ± 3.42 • 78.09 ± 3.97 •
Soybean 93.43 ± 2.59 93.43 ± 2.54 92.91 ± 2.67 91.78 ± 3.19 90.80 ± 3.15 •
Australian 85.04 ± 3.84 85.04 ± 3.97 85.33 ± 3.85 85.57 ± 3.96 84.55 ± 4.20

Breast-w 96.18 ± 2.20 96.21 ± 2.19 96.50 ± 2.18 95.01 ± 2.73 94.42 ± 2.70 •
Pima-indians 77.08 ± 4.65 77.10 ± 4.65 77.47 ± 4.39 74.49 ± 5.27 74.50 ± 4.70

Vehicle 83.04 ± 3.70 80.45 ± 3.37 79.81 ± 4.04 • 72.28 ± 4.32 • 72.37 ± 4.12 •
Anneal 99.52 ± 0.73 99.48 ± 0.70 99.24 ± 0.79 98.57 ± 1.04 • 98.24 ± 1.18 •
Vowel 93.94 ± 2.55 84.31 ± 3.78 • 82.71 ± 3.96 • 80.20 ± 4.36 • 81.54 ± 4.10 •
German 75.37 ± 3.53 75.34 ± 3.50 75.24 ± 3.54 71.25 ± 3.17 • 73.34 ± 3.66

Segment 96.28 ± 1.36 95.40 ± 1.50 • 95.60 ± 1.59 96.77 ± 1.29 96.54 ± 1.23

Splice 95.86 ± 1.17 95.86 ± 1.17 90.57 ± 1.85 • 94.17 ± 1.28 • 94.72 ± 1.34 •
kr-vs-kp 99.64 ± 0.35 97.46 ± 0.79 • 97.56 ± 0.76 • 99.44 ± 0.37 99.41 ± 0.39

Hypothyroid 99.54 ± 0.39 96.78 ± 0.73 • 96.69 ± 0.72 • 99.54 ± 0.36 99.66 ± 0.30

Sick 98.95 ± 0.60 96.74 ± 0.71 • 96.79 ± 0.69 • 98.72 ± 0.55 98.89 ± 0.57

Waveform 86.96 ± 1.58 86.96 ± 1.58 86.73 ± 1.49 75.25 ± 1.90 • 76.97 ± 1.56 •
Optdigits 97.28 ± 0.64 97.12 ± 0.68 93.89 ± 0.98 • 90.52 ± 1.20 • 90.78 ± 1.27 •
Pendigits 98.56 ± 0.32 95.51 ± 0.64 • 95.50 ± 0.65 • 96.54 ± 0.60 • 96.37 ± 0.62 •
Letter 92.13 ± 0.74 77.42 ± 0.80 • 77.40 ± 0.83 • 88.03 ± 0.71 • 87.62 ± 0.81 •
•, ◦ Statistically significant win or loss for LMT.
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Table 4. Pairwise comparison of classification accuracy for LMT, SimpleLogistic, MultiLogistic, C4.5 and
CART: number indicates how often method in column (significantly) outperforms method in row.

LMT SimpleLogistic MultiLogistic C4.5 CART

LMT – 12 (0) 8 (0) 7 (0) 6 (0)

SimpleLogistic 23 (8) – 12 (0) 13 (7) 12 (6)

MultiLogistic 28 (13) 24 (4) – 16 (10) 14 (7)

C4.5 29 (16) 23 (13) 20 (8) – 20 (1)

CART 30 (17) 24 (14) 22 (11) 16 (1) –

C4.5 and CART. Table 4 shows how the different methods compare with each other. Each
entry indicates the number of datasets for which the method associated with its column is
(significantly) more accurate than the method associated with its row.

We observe that LMT indeed always reaches roughly the same classification accuracy as
logistic regression and the other tree learners: there is no dataset where LMT is significantly
outperformed by either SimpleLogistic, MultiLogistic, C4.5, or CART. It significantly
outperforms SimpleLogistic on 8 datasets, MultiLogistic on 13 datasets, C4.5 on 16 datasets
and CART on 17 datasets. We can also confirm the observation (see for example (Lim,
Loh, & Shih, 2000)) that logistic regression performs surprisingly well compared to tree
induction on most UCI datasets. This includes all small to medium-sized datasets except
ionosphere. Only on some larger datasets (kr-vs-kp, sick, hypothyroid, pendigits and letter)
is its performance not competitive with that of tree induction (and other methods, see
below).

Ignoring the significance of individual differences, a two-tailed sign test confirms that
LMT outperforms the other methods. LMT has a win/loss-ratio of 23/12 against SimpleL-
ogistic, 28/8 against MultiLogistic, 29/7 against C4.5 and 30/6 against CART. The ratio
against SimpleLogistic is significant at the 10 percent level, while the others are significant
at the one percent level (p-values of 0.0895, 0.0012, 0.0003 and <0.0001 respectively).

Table 5 gives the average tree size and standard deviation for LMT, C4.5 and CART.
Table 6 summarizes the results. As expected, the trees constructed by LMT are much
smaller than the standard classification trees built by C4.5. LMT produces significantly
smaller trees on all datasets. Of course, logistic model trees contain part of their ‘structure’
in the leaves in form of the logistic regression functions. Nevertheless, there are some
datasets where the difference in tree size is so large that one advantage of C4.5, namely that
the final models are potentially easier to understand, disappears. For the waveform dataset,
for example, LMT builds a logistic regression model (no tree structure), while C4.5 builds
a tree with almost 300 terminal nodes. About half of the 40 attributes in waveform are used
in the logistic regression (see Table 10). It is probably easier to understand the influence of
the attributes on the class variable from a logistic model with 20 parameters than from a tree
with 300 terminal nodes. Looking at the results for CART, we can see that the smaller trees
produced by LMT are not just an artifact of the cost-complexity pruning. LMT produces
significantly smaller trees than CART on all but four of the datasets. Although CART
generally produces smaller trees than C4.5 (due to its pruning mechanism), the difference
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Table 5. Mean tree size (number of leaves) and standard deviation for LMT vs. C4.5 and CART.

Dataset LMT C4.5 CART

Labor 1.05 ± 0.26 4.16 ± 1.44 • 3.96 ± 0.98 •
Zoo 1.05 ± 0.26 8.35 ± 0.82 • 7.09 ± 0.40 •
Lymphography 1.18 ± 0.80 17.30 ± 2.88 • 9.84 ± 4.56 •
Iris 1.11 ± 0.53 4.64 ± 0.59 • 4.72 ± 0.81 •
Hepatitis 1.05 ± 0.30 9.33 ± 2.37 • 5.30 ± 3.02 •
Glass (G2) 5.05 ± 3.24 12.53 ± 2.64 • 6.70 ± 2.86

Autos 2.89 ± 5.20 44.77 ± 6.09 • 19.31 ± 1.91 •
Sonar 2.12 ± 1.51 14.45 ± 1.75 • 9.49 ± 3.09 •
Glass 7.46 ± 3.55 23.58 ± 2.29 • 19.29 ± 5.96 •
Audiology 1.01 ± 0.10 29.90 ± 1.95 • 17.51 ± 3.67 •
Heart-statlog 1.04 ± 0.32 17.82 ± 2.86 • 8.97 ± 4.43 •
Breast-cancer 1.12 ± 1.20 9.75 ± 8.16 • 6.29 ± 4.83 •
Heart-h 1.00 ± 0.00 6.32 ± 3.73 • 8.22 ± 6.93 •
Heart-c 1.03 ± 0.17 25.70 ± 5.53 • 8.50 ± 4.03 •
Primary-tumor 1.03 ± 0.17 43.81 ± 5.16 • 19.51 ± 13.55 •
Ionosphere 4.40 ± 1.86 13.87 ± 1.95 • 6.34 ± 3.80

Horse-colic 2.78 ± 2.58 5.91 ± 1.99 • 4.06 ± 1.77

Vote 1.08 ± 0.44 5.83 ± 0.38 • 6.45 ± 2.51 •
Balance-scale 4.73 ± 2.61 41.60 ± 4.97 • 44.28 ± 12.51 •
Soybean 2.44 ± 5.44 61.12 ± 6.01 • 40.76 ± 6.13 •
Australian 1.15 ± 0.59 22.49 ± 7.54 • 6.48 ± 5.33 •
Breast-w 1.24 ± 0.99 12.23 ± 2.77 • 11.17 ± 4.46 •
Pima-indians 1.03 ± 0.30 22.20 ± 6.55 • 14.92 ± 12.96 •
Vehicle 2.64 ± 1.97 69.50 ± 10.28 • 61.43 ± 20.93 •
Anneal 1.11 ± 0.31 37.98 ± 5.39 • 12.59 ± 1.99 •
Vowel 4.81 ± 1.23 123.28 ± 17.19 • 87.17 ± 4.27 •
German 1.00 ± 0.00 90.18 ± 15.67 • 16.58 ± 12.90 •
Segment 4.85 ± 2.05 41.20 ± 3.04 • 41.08 ± 4.30 •
Splice 1.00 ± 0.00 174.39 ± 12.21 • 25.82 ± 9.03 •
kr-vs-kp 7.92 ± 0.56 29.29 ± 1.83 • 30.70 ± 3.41 •
Hypothyroid 5.61 ± 0.93 14.44 ± 1.06 • 6.16 ± 0.42

Sick 13.56 ± 3.12 27.44 ± 3.88 • 20.63 ± 3.45 •
Waveform 1.00 ± 0.00 296.49 ± 12.16 • 87.88 ± 29.68 •
Optdigits 3.45 ± 1.66 205.69 ± 7.26 • 165.92 ± 17.10 •
Pendigits 11.30 ± 2.78 188.20 ± 5.45 • 182.65 ± 13.12 •
Letter 41.73 ± 8.68 1160.92 ± 16.79 • 1125.86 ± 19.20 •
•, ◦ statistically significantly smaller or larger trees for LMT.
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Table 6. Pairwise comparison of tree size (number of leaves) for LMT, C4.5 and CART: number indicates how
often method in column has (significantly) larger tree size than method in row.

LMT C4.5 CART

LMT – 36 (36) 36 (32)

C4.5 0 (0) – 5 (0)

CART 0 (0) 31 (23) –

in size is still dramatic on many of the datasets. For instance, on the the letter dataset LMT
builds a tree with 41 leaves, while CART (and C4.5) produces a tree with over a thousand
leaves.

There are several datasets for which the trees constructed by LMT are pruned back to
the root. Let us a call a tree “pruned back to the root” if the average tree size is less than
1.5, meaning that more than half of the data points correspond to ‘trees’ that were just a
logistic regression function. It can be seen from Table 5 that this happens on exactly half
of the 36 datasets. If the pruning process worked correctly, we would expect that for the 18
datasets where the tree is pruned back to the root the classification accuracy is better than
that of the C4.5 algorithm—indicating that a linear logistic regression model is preferable
to a tree structure—and for the other 18 datasets the result for LMT is better than that of
SimpleLogistic. The first claim is true for all but two datasets (vote and australian, where
there is a small win for C4.5). The second claim is true for 17 out of the 18 datasets where a
tree structure is built; on the single exception (‘soybean’) the result for LMT is equal to that
of SimpleLogistic. Allowing for small random effects, we can conclude that the adapted
pruning method—the CART algorithm from (Breiman et al., 1984)—reliably makes the
right choice between building a linear logistic model and a more elaborate tree structure.

To illustrate how the LMT algorithm scales model complexity depending on the infor-
mation available for training, we ran it on increasingly larger training datasets sampled
from an artificial domain and compared its result to the results for SimpleLogistic (‘logistic
model tree of size one’) and C4.5 (standard classification tree). Consider the polynomial

f : R4 → R, f (x) = 2 · x2
1 + x2 + x3 + x4

and the binary function

g : R4 → {1,−1}, g(x) = sign( f (x)).

The function g(x) gives rise to a two-class classification problem over the four numeric
attributes x1, . . . , x4. The attributes x2, x3, x4 have a linear influence on the target variable
while the influence of x1 is nonlinear. We sampled training datasets of size 25, 50, 100,
200, 400, 800, 1600, 3200, 6400 and 12800 instances from this domain, then used LMT,
SimpleLogistic and C4.5 to build a model on the training set and evaluated its performance
on a separate test set. More specifically, we generated 100 datasets of each size, sampling
g(x) uniformly in [−1, 1]4. This gives a-priori probabilities for the two classes of about
0.7 for class 1 and 0.3 for class -1. Samples are stratified, meaning that the distribution of
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Figure 11. Accuracy (top) and tree size (bottom) as a function of the number of training instances. Note the log
scale on the x axis.

the classes in the sample is the same as their a-priori probability (as far as possible), which
helps getting stable estimates for small training set sizes. The accuracy achieved by each
method was measured using a fixed test set of 10000 instances. From the 100 data points
measured for each algorithm and training set size, we calculated the average accuracy on
the test set for every method and the average tree size for LMT and C4.5.

Figure 11 shows the accuracy on the test set and the tree size (where applicable) for
LMT, C4.5 and SimpleLogistic as a function of the training set size (note the log scale). It
can be seen that the accuracy on the test set increases monotonically with the number of
training examples for every method. The learning curves of SimpleLogistic and C4.5 cross
at around 200 training examples. For small training sets, a bias towards simple models pays
off because it allows more stable estimates and does not overfit, while the less biased model
space of tree induction allows nonlinear patterns to be captured if enough data is available.
More specifically, the learning curve for logistic regression levels off at a training set size
of about 100 instances because the method cannot fit the nonlinear part of the underlying
distribution, while tree induction continues to improve its estimate with more data.

Looking at LMT, we see that the accuracy is almost identical to that of SimpleLogistic
for 25, 50 and 100 instances, but continues to increase for larger datasets. The models
built by LMT are more accurate than those of C4.5 even for large training sets. LMT
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Figure 12. Gain/loss in accuracy of LMT and C4.5 over SimpleLogistic. Datasets are ordered (left to right) by
increasing size of LMT tree.

reaches the same accuracy as C4.5 at about half the number of training instances. The
graph visualizing the tree sizes shows that the LMT algorithm starts to build a sizeable
tree structure around the point the learning curves of SimpleLogistic and C4.5 cross, which
indicates that the pruning method correctly detects at what point a tree structure is superior
to a linear logistic model. Finally, we note that both tree induction methods build larger and
larger trees asymptotically to fit the nonlinear distribution (note the data is noise-free), but
the trees built by LMT are significantly smaller than the standard classification trees.

Figure 12 shows a similar study using the UCI datasets. We sorted the datasets according
to the size of the trees produced by LMT and then plotted the difference in accuracy of
LMT over SimpleLogistic and C4.5 over SimpleLogistic. Although the curves are not as
smooth as for the artificial problem, it is clear that LMT is adjusting its tree structure to
match the complexity of the different domains. On the left-hand side of the graph, where
LMT’s models are the smallest, accuracy is equal to SimpleLogistic and generally better
than C4.5. The domains on the right-hand side of the graph require more complex models
to capture their structure. In all these cases LMT outperforms SimpleLogistic, and in most
cases C4.5 as well.

These examples illustrates how the LMT algorithm smoothly scales model complexity
from a simple linear model as produced by logistic regression to a more complex combi-
nation of tree structure and logistic regression models.

5.4.2. Comparing LMT to other enhanced tree learners. This section compares LMT to
several other enhanced decision tree learning algorithms. In particular, we present results
for NBTree, LTree (using linear discriminants for splitting and at the leaves) and two
logistic tree algorithms: LTree (using logistic regression for splitting and at the leaves) and
Lotus. When building logistic model trees, Lotus can build the logistic regression functions
using either all the numeric attributes present in the data, or by just selecting one of the
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Table 7. Mean classification accuracy and standard deviation for LMT vs. NBTree, LTree with linear discrimi-
nants and LTree with logistic regression.

Dataset LMT NBTree LTreeLin LTreeLog

Labor 91.37 ± 11.01 91.70 ± 12.32 84.57 ± 14.78 86.47 ± 17.76

Zoo 94.89 ± 6.44 94.95 ± 6.24 93.79 ± 6.67 94.87 ± 6.79

Lymphography 84.10 ± 10.00 80.89 ± 8.77 80.30 ± 8.98 76.90 ± 10.07 •
Iris 95.80 ± 4.89 93.53 ± 5.64 98.00 ± 3.35 97.13 ± 4.57

Hepatitis 84.21 ± 8.21 81.36 ± 10.80 84.24 ± 8.85 83.43 ± 9.72

Glass (G2) 77.28 ± 9.90 80.75 ± 9.40 72.39 ± 10.30 72.85 ± 10.42

Autos 76.13 ± 8.84 77.18 ± 9.71 57.74 ± 10.40 • 60.34 ± 10.69 •
Sonar 76.32 ± 9.58 77.16 ± 10.46 73.50 ± 9.07 74.25 ± 9.04

Glass 69.15 ± 8.99 70.16 ± 9.67 65.27 ± 10.42 64.77 ± 9.90

Audiology 84.19 ± 7.17 76.82 ± 7.38 • 75.01 ± 7.89 • 75.01 ± 7.89 •
Heart-statlog 83.22 ± 6.50 80.59 ± 7.12 83.52 ± 6.28 83.00 ± 6.83

Breast-cancer 74.91 ± 6.29 70.99 ± 7.94 70.58 ± 6.90 70.45 ± 6.78 •
Heart-h 84.00 ± 6.33 81.33 ± 6.66 80.10 ± 7.51 82.46 ± 6.54

Heart-c 83.51 ± 6.67 80.60 ± 6.29 80.70 ± 7.80 80.66 ± 7.59

Primary-tumor 47.63 ± 5.84 47.50 ± 6.49 45.29 ± 6.33 45.29 ± 6.33

Ionosphere 92.99 ± 4.13 89.49 ± 5.12 88.95 ± 5.10 • 88.18 ± 5.06 •
Horse-colic 83.66 ± 6.13 81.88 ± 6.31 82.11 ± 6.23 81.68 ± 6.50

Vote 95.90 ± 2.67 95.03 ± 3.29 95.72 ± 2.97 95.51 ± 3.20

Balance-scale 89.71 ± 2.68 75.83 ± 5.32 • 92.86 ± 3.22 ◦ 92.78 ± 3.49 ◦
Soybean 93.43 ± 2.59 92.87 ± 3.07 90.73 ± 3.04 • 91.16 ± 3.09 •
Australian 85.04 ± 3.84 85.07 ± 4.03 84.99 ± 3.91 84.64 ± 4.09

Breast-w 96.18 ± 2.20 96.60 ± 2.04 96.88 ± 1.99 96.75 ± 2.04

Pima-indians 77.08 ± 4.65 75.18 ± 5.05 76.73 ± 4.83 76.64 ± 4.69

Vehicle 83.04 ± 3.70 71.03 ± 4.55 • 79.52 ± 3.81 • 79.32 ± 3.72 •
Anneal 99.52 ± 0.73 98.53 ± 1.23 • 95.88 ± 2.36 • 96.56 ± 1.70 •
Vowel 93.94 ± 2.55 92.33 ± 3.05 79.70 ± 4.09 • 78.72 ± 4.53 •
German 75.37 ± 3.53 74.07 ± 4.10 74.90 ± 3.47 74.94 ± 3.41

Segment 96.28 ± 1.36 95.22 ± 1.44 96.70 ± 1.27 96.71 ± 1.21

Splice 95.86 ± 1.17 95.43 ± 1.14 92.39 ± 1.63 • 92.85 ± 1.53 •
kr-vs-kp 99.64 ± 0.35 97.81 ± 2.05 • 98.15 ± 0.90 • 98.08 ± 0.93 •
Hypothyroid 99.54 ± 0.39 99.58 ± 0.38 98.98 ± 0.52 • 99.25 ± 0.40 •
Sick 98.95 ± 0.60 97.82 ± 0.74 • 98.40 ± 0.62 • 98.37 ± 0.65 •
Waveform 86.96 ± 1.58 80.12 ± 2.17 • 83.96 ± 1.81 • 84.55 ± 1.67 •
Optdigits 97.28 ± 0.64 89.27 ± 1.38 • 96.47 ± 0.75 • 95.94 ± 0.82 •
Pendigits 98.56 ± 0.32 95.26 ± 0.69 • 97.09 ± 0.49 • 97.43 ± 0.44 •
Letter 92.13 ± 0.74 86.69 ± 0.66 • 88.18 ± 0.68 • 88.07 ± 0.74 •
•, ◦ statistically significant win or loss for LMT.
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Table 8. Pairwise comparison of classification accuracy for LMT, NBTree, LTree with linear discriminants and
LTree with logistic regression: number indicates how often method in column (significantly) outperforms method
in row.

LMT NBTree LTreeLin LTreeLog

LMT – 9 (0) 6 (1) 4 (1)

NBTree 27 (10) – 18 (9) 18 (9)

LTreeLin 30 (15) 18 (6) – 14 (0)

LTreeLog 32 (17) 18 (5) 20 (0) –

attributes. These two modes often gave very different results in our experiments. Lotus
can only be applied to two class problems. Furthermore, a logistic model tree can only be
fit if the data contains at least one numeric attribute. On the heart-h dataset Lotus did not
give a reasonable result initially—this was due to an attribute with 99 percent of its values
missing. We removed this attribute from the dataset before running Lotus on it. On the
labour and horse-colic datasets we were unable to get a result from Lotus using multiple
logistic regression at all.

Table 7 shows the average classification accuracy of LMT compared to NBTree, LTree
using linear discriminants (LTreeLin) and LTree using logistic regression (LTreeLog).
Apart from the dataset balance-scale, LMT performs as well or better than the other meth-
ods. Compared to NBTree, LMT is significantly more accurate on 10 datasets, with most
of those wins applying to the larger datasets. Compared to LTree using linear discrimi-
nants, LMT is significantly more accurate on 15 datasets and significantly less accurate
on one (the aforementioned balance-scale). When logistic regression is used with LTree,
LMT is significantly more accurate on 17 datasets and less accurate on balance-scale. As
was the case with NBTree, LMT’s superiority occurs more often than not on the larger
datasets.

If the significance of the individual differences is not taken into account, Table 8 shows
that the win/loss ratio for LMT compared to NBTree is 27/9. This difference is statistically
significant according to a two-tailed sign test: the corresponding p-value is 0.004. Compared
to LTree using linear discriminants and LTree using logistic regression, the win/loss ratio is
30/6 and 32/4 respectively. According to a two-tailed sign test there is very strong evidence
that LMT is superior to both of these methods (p-values < 0.0001).

Table 9 compares the size of the trees produced by LMT with those produced by NBTree
and LTree (using both linear discriminants and logistic regression). We can see that LMT
never produces significantly larger trees than LTree or NBTree. Compared to NBTree,
LMT produces smaller trees on all but five datasets (G2, glass, breast-w, german and
splice); compared to LTree with linear discriminants, LMT produces smaller trees in all
cases except for horse-colic; and compared with LTree with logistic regression, LMT
produces smaller trees on all but five datasets (sonar, ionosphere, horse-colic, breast-w and
pima-indians).

Looking at the summary of wins and losses in Table 10, and ignoring the significance of
the individual differences, we can see that the ratio of wins (smaller trees) to losses (larger
trees) for LMT to NBTree is 34/2. Against LTree using linear discriminants it is 35/1 and



198 N. LANDWEHR, M. HALL AND E. FRANK

Table 9. Mean tree size (number of leaves) and standard deviation for LMT vs. NBtree, LTree with linear
discriminants and LTree with logistic regression.

Dataset LMT NBTree LTreeLin LTreeLog

Labor 1.05 ± 0.26 2.81 ± 0.60 • 2.51 ± 0.73 • 2.00 ± 0.00 •
Zoo 1.05 ± 0.26 4.82 ± 0.96 • 7.13 ± 0.34 • 7.45 ± 0.50 •
Lymphography 1.18 ± 0.80 6.44 ± 2.11 • 2.26 ± 0.48 • 2.66 ± 1.24 •
Iris 1.11 ± 0.53 2.60 ± 1.42 • 3.00 ± 0.00 • 3.00 ± 0.00 •
Hepatitis 1.05 ± 0.30 6.04 ± 1.81 • 2.17 ± 0.64 • 2.31 ± 0.87 •
Glass (G2) 5.05 ± 3.24 2.94 ± 2.18 10.70 ± 2.72 • 10.04 ± 2.64 •
Autos 2.89 ± 5.20 18.67 ± 5.33 • 12.57 ± 5.53 • 11.81 ± 4.79 •
Sonar 2.12 ± 1.51 7.52 ± 1.23 • 7.02 ± 2.23 • 2.11 ± 0.49

Glass 7.46 ± 3.55 5.12 ± 4.01 21.67 ± 3.01 • 20.83 ± 2.54 •
Audiology 1.01 ± 0.10 13.50 ± 3.43 • 26.05 ± 2.19 • 26.05 ± 2.19 •
Heart-statlog 1.04 ± 0.32 5.16 ± 2.17 • 3.76 ± 3.07 • 2.69 ± 2.14 •
Breast-cancer 1.12 ± 1.20 9.17 ± 9.76 • 3.24 ± 1.27 • 3.26 ± 1.49 •
Heart-h 1.00 ± 0.00 7.13 ± 4.69 • 2.91 ± 2.37 • 3.34 ± 2.95 •
Heart-c 1.03 ± 0.17 9.42 ± 4.16 • 9.51 ± 4.98 • 10.03 ± 5.19 •
Primary-tumor 1.03 ± 0.17 5.15 ± 5.87 • 29.37 ± 6.27 • 29.37 ± 6.27 •
Ionosphere 4.40 ± 1.86 8.50 ± 1.71 • 8.73 ± 2.39 • 5.91 ± 2.96

Horse-colic 2.78 ± 2.58 15.92 ± 7.28 • 2.24 ± 1.04 2.16 ± 0.94

Vote 1.08 ± 0.44 9.88 ± 3.05 • 2.27 ± 0.71 • 2.00 ± 0.00 •
Balance-scale 4.73 ± 2.61 8.90 ± 5.37 • 14.35 ± 3.39 • 14.03 ± 3.42 •
Soybean 2.44 ± 5.44 21.27 ± 11.71 • 32.78 ± 2.21 • 32.48 ± 1.69 •
Australian 1.15 ± 0.59 10.88 ± 9.33 • 4.69 ± 4.36 • 4.20 ± 3.99 •
Breast-w 1.24 ± 0.99 3.14 ± 2.73 2.04 ± 0.28 • 2.12 ± 0.86

Pima-indians 1.03 ± 0.30 3.04 ± 2.38 • 4.59 ± 4.79 • 3.80 ± 4.45

Vehicle 2.64 ± 1.97 28.40 ± 5.92 • 29.88 ± 8.75 • 25.52 ± 9.37 •
Anneal 1.11 ± 0.31 30.00 ± 8.73 • 8.57 ± 2.63 • 15.38 ± 2.73 •
Vowel 4.81 ± 1.23 42.02 ± 1.78 • 66.00 ± 5.91 • 60.90 ± 5.18 •
German 1.00 ± 0.00 11.21 ± 15.74 8.64 ± 6.82 • 9.34 ± 7.96 •
Segment 4.85 ± 2.05 43.34 ± 6.08 • 28.12 ± 3.10 • 29.74 ± 2.44 •
Splice 1.00 ± 0.00 2.39 ± 7.29 38.49 ± 9.18 • 20.99 ± 8.98 •
kr-vs-kp 7.92 ± 0.56 24.59 ± 11.19 • 24.74 ± 3.95 • 24.17 ± 5.63 •
Hypothyroid 5.61 ± 0.93 26.58 ± 8.23 • 17.49 ± 2.52 • 14.17 ± 1.81 •
Sick 13.56 ± 3.12 52.44 ± 11.25 • 26.30 ± 3.10 • 22.02 ± 3.85 •
Waveform 1.00 ± 0.00 47.74 ± 18.34 • 104.74 ± 22.84 • 77.56 ± 27.53 •
Optdigits 3.45 ± 1.66 174.70 ± 14.37 • 39.22 ± 4.60 • 49.33 ± 6.38 •
Pendigits 11.30 ± 2.78 222.93 ± 20.09 • 119.90 ± 5.67 • 96.36 ± 9.29 •
Letter 41.73 ± 8.68 724.17 ± 23.50 • 836.16 ± 17.44 • 784.25 ± 31.49 •
•, ◦ statistically significant smaller or larger trees for LMT.
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Table 10. Pairwise comparison of tree size (number of leaves) for LMT, NBTree, LTree with linear discriminants
and LTree with logistic regression: number indicates how often method in column has (significantly) larger tree
size than method in row.

LMT NBTree LTreeLin LTreeLog

LMT – 34 (31) 35 (35) 34 (31)

NBTree 2 (0) – 17 (11) 14 (11)

LTreeLin 1 (0) 19 (12) – 11 (0)

LTreeLog 2 (0) 22 (15) 22 (0) –

Table 11. Mean classification accuracy and standard deviation for LMT vs Lotus using simple logistic regression
(LotusS) and Lotus using multiple logistic regression (LotusM).

Data Set LMT LotusS LotusM

Labor 91.37 ± 11.01 74.07 ± 18.18 • –

Hepatitis 84.21 ± 8.21 79.74 ± 9.18 82.08 ± 6.74

Glass (G2) 77.28 ± 9.90 75.77 ± 9.97 69.99 ± 10.49

Sonar 76.32 ± 9.58 72.38 ± 9.13 72.27 ± 7.92

Heart-statlog 83.22 ± 6.50 77.63 ± 7.16 • 83.67 ± 6.43

Heart-h 84.00 ± 6.33 80.25 ± 6.42 78.24 ± 6.75 •
Heart-c 83.51 ± 6.67 76.63 ± 6.72 • 77.49 ± 7.49 •
Ionosphere 92.99 ± 4.13 89.04 ± 4.57 • 87.72 ± 5.57 •
Horse-colic 83.66 ± 6.13 83.86 ± 5.67 –

Australian 85.04 ± 3.84 84.35 ± 4.18 85.14 ± 4.03

Breast-w 96.18 ± 2.20 94.61 ± 2.66 • 96.44 ± 2.13

Pima-indians 77.08 ± 4.65 75.08 ± 5.14 77.47 ± 4.39

German 75.37 ± 3.53 72.69 ± 3.11 72.55 ± 3.36 •
Sick 98.95 ± 0.60 97.84 ± 0.66 • 96.94 ± 1.00 •
•, ◦ statistically significant win or loss for LMT.

against LTree using logistic regression it is 34/2. All of these ratios are strongly significant
according to a two-tailed sign test (p-values < 0.0001).

Table 11 compares LMT with Lotus using simple logistic regression (LotusS) and Lotus
using multiple logistic regression (LotusM) on the two-class datasets. Table 12 summarizes
the results. We can see that LMT is never significantly less accurate than either mode
of Lotus and is significantly more accurate than LotusS on six datasets and significantly
more accurate than LotusM on five datasets. Ignoring the significance of the individual
differences, LMT is more accurate than LotusS on 13 datasets and less accurate on one.
This ratio is significant at the one percent level according to a two-tailed sign test (p-value
of 0.0018). Against LotusM, the ratio of wins to losses is 8/4 in favour of LMT. The p-value
from the sign test in this case is 0.388. Consequently, there is only very weak evidence that
LMT is superiour to LotusM.
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Table 12. Pairwise comparison of classification accuracy for LMT, Lotus using simple logistic regression
(LotusS) and Lotus using multiple logistic regression (LotusM): number indicates how often method in column
(significantly) outperforms method in row.

LMT LotusS LotusM

LMT – 1 (0) 4 (0)

LotusS 13 (6) – 6 (0)

LotusM 8 (5) 6 (0) –

Table 13. Mean tree size (number of leaves) and standard deviation for LMT vs. Lotus using simple logistic
regression (LotusS) and Lotus using multiple logistic regression (LotusM).

Data Set LMT LotusS LotusM

Labor 1.05 ± 0.26 1.41 ± 0.51 –

Hepatitis 1.05 ± 0.30 1.21 ± 0.76 1.00 ± 0.00

Glass (G2) 5.05 ± 3.24 2.87 ± 1.40 1.14 ± 0.35 ◦
Sonar 2.12 ± 1.51 1.65 ± 0.95 1.00 ± 0.00 ◦
Heart-statlog 1.04 ± 0.32 3.57 ± 1.86 • 1.00 ± 0.00

Heart-h 1.00 ± 0.00 3.33 ± 1.80 • 1.99 ± 0.98 •
Heart-c 1.03 ± 0.17 3.66 ± 1.77 • 1.47 ± 0.63

Ionosphere 4.40 ± 1.86 3.59 ± 0.85 1.00 ± 0.00 ◦
Horse-colic 2.78 ± 2.58 3.90 ± 2.30 –

Australian 1.15 ± 0.59 2.58 ± 0.75 • 2.03 ± 0.30 •
Breast-w 1.24 ± 0.99 4.51 ± 1.89 • 1.02 ± 0.14

Pima-indians 1.03 ± 0.30 2.86 ± 0.97 • 1.00 ± 0.00

German 1.00 ± 0.00 2.37 ± 0.65 • 2.11 ± 0.40 •
Sick 13.56 ± 3.12 8.33 ± 2.73 ◦ 2.70 ± 1.19 ◦
•, ◦ statistically significantly smaller or larger trees for LMT.

Table 13 gives the average tree size and standard deviation for LMT, LotusS and LotusM.
Table 14 summarizes the results. LMT builds significantly smaller trees than LotusS on
seven out of the 14 datasets and significantly larger trees on one. On this single dataset (sick)
LMT is more accurate than LotusS, so the extra structure is justified. Against LotusM, LMT
produces significantly smaller trees on three of the datasets and significantly larger trees
on four. In all of the cases where LMT builds larger trees it is more accurate than LotusM
(significantly so on two of the four datasets: ionosphere and sick). Ignoring the significance
of the individual differences, LMT builds smaller trees than LotusS on 10 datasets and
larger trees on four. Against LotusM the ratio of wins to losses is 4/8 in favour of LotusM.
In both these cases there is only weak evidence of the superiority of one method over the
other according to a two-tailed sign test (p-values of 0.18 and 0.388 respectively).

5.4.3. Comparing LMT to multiple-tree models. This section compares LMT to methods
that build models consisting of a set of trees: M5’ for classification and boosted C4.5. In
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Table 14. Pairwise comparison of tree size (number of leaves) for LMT, Lotus using simple logistic regression
(LotusS) and Lotus using multiple logistic regression (LotusM): number indicates how often method in column
has (significantly) larger tree size than method in row.

LMT LotusS LotusM

LMT – 10 (7) 4 (3)

LotusS 4 (1) – 0 (0)

LotusM 8 (4) 12 (0) –

order to solve classification problems with M5’—a learner that estimates numeric target
variables—we convert the classification problem into a regression problem as described in
Section 2.2. The final model consists of a set of model trees, one for every class. When
boosting trees using AdaBoost.M1, multiple C4.5 trees are built on reweighted versions
of the training data, as explained in Section 3.6. For boosting, it is not clear a priori how
many boosting iterations should be performed. AdaBoost.M1 was run with a maximum of
10 and 100 boosting iterations (though boosting can be stopped sooner, if the error of one
of the classifiers built on the reweighted training data reaches zero or exceeds 0.5).

Table 15 gives the classification accuracy of LMT, M5’ for classification, and boosted
C4.5 trees using AdaBoost.M1 with 10 and 100 boosting iterations. Table 16 summarizes
the wins and losses. LMT outperforms M5’ for classification: it is significantly more
accurate on 11 datasets and significantly less accurate on only one. If the significance of
the differences is not taken into account, LMT has a win/loss ratio of 31/5 against M5’.
According to a two-tailed sign test there is very strong evidence that LMT is superior to M5’
for classification (p-value < 0.0001). Comparing LMT with boosted C4.5 trees, it can be
seen that performing 100 boosting iterations is superior to performing only 10. We conclude
that performing 10 boosting iterations is not enough and concentrate on AdaBoost(100).

Looking at the number of significant wins and losses, we can see that LMT is comparable
to AdaBoost(100) (with seven wins and nine losses). However, the relative performance
of the two schemes really depends on the datasets. Interestingly, there are several datasets
where boosting achieves a similar gain in accuracy compared to simple tree induction as
LMT, i.e. there was a win for LMT against C4.5 and there is neither a loss nor a win
of LMT against AdaBoost(100). This is the case for seven datasets. On the nine datasets
where boosted trees outperform LMT, they achieve a higher accuracy than any other
scheme, and the gain is quite impressive (up to seven percentage points higher than the
next-best classifier). It is clear that the extra structure induced by boosting is justified on
these datasets.

The seven datasets for which AdaBoost(100) is significantly less accurate than LMT can
be split into two groups. For two datasets (breast-cancer, heart-h), boosting seems to have
failed: there was no win of LMT over C4.5, but there is one over AdaBoost(100). It is
reasonable to expect that using a more advanced boosting scheme (for example, controlling
the number of boosting iterations by cross-validation) would make these losses disappear.
For the other five datasets, boosting seems to have no impact on performance (balance-scale,
primary-tumor) or increases performance compared to C4.5, but not as much as building
logistic model trees (waveform, vehicle, splice).
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Table 15. Mean classification accuracy and standard deviation for LMT vs. M5’ for classification and boosted
C4.5.

Dataset LMT M5’ AdaBoost(10) AdaBoost(100)

Labor 91.37 ± 11.01 85.13 ± 16.33 87.17 ± 14.28 88.73 ± 14.27

Zoo 94.89 ± 6.44 94.48 ± 6.43 96.15 ± 6.11 96.35 ± 6.07

Lymphography 84.10 ± 10.00 80.35 ± 9.32 80.87 ± 8.63 84.72 ± 8.41

Iris 95.80 ± 4.89 94.93 ± 5.62 94.33 ± 5.22 94.53 ± 5.05

Hepatitis 84.21 ± 8.21 82.38 ± 8.79 82.38 ± 8.01 84.93 ± 7.79

Glass (G2) 77.28 ± 9.90 81.08 ± 8.73 85.17 ± 7.75 ◦ 88.72 ± 6.42 ◦
Autos 76.13 ± 8.84 76.03 ± 10.00 85.46 ± 7.23 ◦ 86.77 ± 6.81 ◦
Sonar 76.32 ± 9.58 78.37 ± 8.82 79.22 ± 8.70 85.14 ± 7.84 ◦
Glass 69.15 ± 8.99 71.30 ± 9.08 75.15 ± 7.59 ◦ 78.78 ± 7.80 ◦
Audiology 84.19 ± 7.17 76.83 ± 8.62 • 84.84 ± 7.46 84.70 ± 7.57

Heart-statlog 83.22 ± 6.50 82.15 ± 6.77 78.59 ± 7.15 80.44 ± 7.08

Breast-cancer 74.91 ± 6.29 70.40 ± 6.84 • 66.75 ± 7.61 • 66.36 ± 8.18 •
Heart-h 84.00 ± 6.33 82.44 ± 6.39 78.68 ± 7.43 78.42 ± 7.20 •
Heart-c 83.51 ± 6.67 82.14 ± 6.65 78.76 ± 7.09 • 80.00 ± 6.55

Primary-tumor 47.63 ± 5.84 45.26 ± 6.22 41.65 ± 6.55 • 41.65 ± 6.55 •
Ionosphere 92.99 ± 4.13 89.92 ± 4.18 • 93.05 ± 3.92 94.02 ± 3.83

Horse-colic 83.66 ± 6.13 83.23 ± 5.40 81.63 ± 6.19 81.85 ± 5.70

Vote 95.90 ± 2.67 95.61 ± 2.77 95.51 ± 3.05 95.26 ± 3.13

Balance-scale 89.71 ± 2.68 87.76 ± 2.23 78.35 ± 3.78 • 76.11 ± 4.09 •
Soybean 93.43 ± 2.59 92.90 ± 2.61 92.83 ± 2.85 93.32 ± 2.81

Australian 85.04 ± 3.84 85.39 ± 3.87 84.01 ± 4.36 86.43 ± 3.98

Breast-w 96.18 ± 2.20 95.85 ± 2.15 96.08 ± 2.16 96.70 ± 2.18

Pima-indians 77.08 ± 4.65 76.56 ± 4.71 71.81 ± 4.85 • 73.89 ± 4.75

Vehicle 83.04 ± 3.70 78.66 ± 4.38 • 75.59 ± 3.99 • 77.87 ± 3.58 •
Anneal 99.52 ± 0.73 98.64 ± 1.13 99.59 ± 0.70 99.63 ± 0.65

Vowel 93.94 ± 2.55 80.93 ± 4.68 • 92.89 ± 2.82 96.81 ± 1.93 ◦
German 75.37 ± 3.53 74.99 ± 3.31 70.91 ± 3.60 • 74.53 ± 3.26

Segment 96.28 ± 1.36 97.31 ± 1.05 ◦ 98.12 ± 0.92 ◦ 98.61 ± 0.69 ◦
Splice 95.86 ± 1.17 95.40 ± 1.17 94.58 ± 1.16 • 94.95 ± 1.25 •
kr-vs-kp 99.64 ± 0.35 99.21 ± 0.50 • 99.59 ± 0.31 99.62 ± 0.30

Hypothyroid 99.54 ± 0.39 99.44 ± 0.38 99.65 ± 0.31 99.69 ± 0.31

Sick 98.95 ± 0.60 98.41 ± 0.62 • 98.99 ± 0.50 99.05 ± 0.50

Waveform 86.96 ± 1.58 82.51 ± 1.60 • 81.32 ± 1.90 • 85.06 ± 1.71 •
Optdigits 97.28 ± 0.64 95.43 ± 0.93 • 97.38 ± 0.62 98.51 ± 0.47 ◦
Pendigits 98.56 ± 0.32 97.87 ± 0.47 • 98.99 ± 0.31 ◦ 99.41 ± 0.26 ◦
Letter 92.13 ± 0.74 91.05 ± 0.62 • 95.53 ± 0.43 ◦ 97.25 ± 0.37 ◦
•, ◦ statistically significant win or loss for LMT.
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Table 16. Pairwise comparison of classification accuracy for LMT, M5’ for classification and boosted C4.5:
number indicates how often method in column (significantly) outperforms method in row.

LMT M5’ AdaBoost(10) AdaBoost(100)

LMT – 5 (1) 14 (6) 19 (9)

M5’ 31 (11) – 19 (11) 23 (15)

AdaBoost(10) 22 (9) 17 (4) – 30 (7)

AdaBoost(100) 17 (7) 13 (1) 5 (1) –

Applying a two-tailed sign test to the win/loss ratios (ignoring the significance of indi-
vidual differences) for LMT against AdaBoost(10) and AdaBoost(100) shows that there
is only weak evidence to suggest the superiority of one method over the other. Against
AdaBoost(10) the win/loss ratio is 22/14 (p-value of 0.243) and against AdaBoost(100) the
win/loss ratio is 17/19 (p-value of 0.868).

6. Conclusions

In this work we have introduced a new method for learning logistic model trees, called LMT,
that builds on earlier work on model trees. This method employs the LogitBoost algorithm
(Friedman, Hastie, & Tibshirani, 2000) for building the logistic regression functions at the
nodes of a tree and uses the well-known CART algorithm for pruning. We have shown how
LogitBoost can be used to select the most relevant attributes in the data when performing
logistic regression by performing a simple regression in each iteration and stopping be-
fore convergence to the maximum likelihood solution. The optimal number of iterations
is determined by cross-validation. Our experiments show that, when used as a standalone
learning algorithm, this method yields final models that contain significantly fewer param-
eters than the ones generated by standard maximum likelihood logistic regression while
never significantly decreasing accuracy and sometimes significantly increasing it. Another
benefit obtained from using LogitBoost for building the logistic regression functions in a
model tree is that a separate smoothing process is not required. This is because they can
be constructed by incrementally refining logistic regression functions fit at higher levels in
the tree.

Our experiments demonstrate that LMT produces models that are often more accurate
than those produced by C4.5, CART and standalone logistic regression on real-world
datasets. LMT also outperforms well-known enhanced decision tree learners such as LTree
and NBTree and the logistic model tree algorithm Lotus. More surprisingly, LMT appears
to be competitive with boosted C4.5 trees.

LMT produces a single tree containing binary splits on numeric attributes, multiway
splits on nominal ones, and logistic regression models at the leaves, and the algorithm
ensures that only relevant attributes are included in the latter. The result is not quite as
easy to interpret as a standard decision tree, but much more intelligible than a committee
of multiple trees or more opaque classifiers like kernel-based estimators. Like other tree
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induction methods, LMT can be used ‘off the shelf’—it does not require any tuning of
parameters by the user.

6.1. Future work

There are several issues that provide directions for future work. Probably the most important
drawback of logistic model tree induction is the high computational complexity compared to
simple tree induction. Although the asymptotic complexity of LMT is acceptable compared
to other methods (see Section 4.3), the algorithm is quite slow in practice. Most of the time
is spent fitting the logistic regression models at the nodes with the LogitBoost algorithm. It
would be worthwhile looking for a faster way of fitting the logistic models that achieves the
same performance (including variable selection). The heuristic discussed in Section 4.3.1
significantly speeds up the algorithm without decreasing prediction accuracy, but it is
admittedly ad-hoc and not very intuitive. Further research might yield a more principled
way of determining the optimum number of LogitBoost iterations to be performed at a node
without an additional cross-validation.

A further issue is the handling of missing values. At present, LMT uses a simple global
imputation scheme for filling in missing values. Although our experiments do not suggest a
particular weakness of the algorithm on datasets with missing values, a more sophisticated
scheme for handling them might improve accuracy for domains where missing values occur
frequently.

Notes

1. We take the number of classes J as a constant here, otherwise there is another factor of J.
2. This has to be determined using cross-validation or an independent test set, of course, because the training

error will continue to decrease.
3. Note that this involves growing multiple ‘auxiliary’ logistic model trees.
4. In the conference version of this paper (Landwehr, Hall, & Frank, 2003) we also compared against the PLUS

algorithm for inducing logistic model trees. We do not report results for PLUS here as the software is no longer
available at time of writing and there is no publication describing it.

5. R can be obtained from http://www.r-project.org.
6. Available from http://www.liacc.up.pt/∼jgama.
7. Lotus can be obtained from http://www.stat.nus.sg/∼kinyee/lotus.html.
8. Weka is available from http://www.cs.waikato.ac.nz/∼ml/weka.
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