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Abstract. Discriminative learning of the parameters in the naive Bayes model is known to be equivalent to
a logistic regression problem. Here we show that the same fact holds for much more general Bayesian network
models, as long as the corresponding network structure satisfies a certain graph-theoretic property. The property
holds for naive Bayes but also for more complex structures such as tree-augmented naive Bayes (TAN) as well
as for mixed diagnostic-discriminative structures. Our results imply that for networks satisfying our property,
the conditional likelihood cannot have local maxima so that the global maximum can be found by simple local
optimization methods. We also show that if this property does not hold, then in general the conditional likelihood
can have local, non-global maxima. We illustrate our theoretical results by empirical experiments with local
optimization in a conditional naive Bayes model. Furthermore, we provide a heuristic strategy for pruning the
number of parameters and relevant features in such models. For many data sets, we obtain good results with
heavily pruned submodels containing many fewer parameters than the original naive Bayes model.
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1. Introduction

Bayesian network models are widely used for discriminative prediction tasks such as
classification. The parameters of such models are often determined using ‘unsupervised’
methods such as maximization of the joint likelihood (Friedman, Geiger, & Goldszmidt,
1997). In recent years, it has been recognized, both theoretically and experimentally, that in
many situations it is better to use a matching ‘discriminative’ or ‘supervised’ learning algo-
rithm such as conditional likelihood maximization (Friedman, Geiger, & Goldszmidt, 1997;
Greiner, Grove, & Schuurmans, 1997; Ng & Jordan, 2001; Kontkanen, Myllymäki, & Tirri,
2001). In this paper, we show that if the network structure satisfies a certain simple graph-
theoretic condition, then the corresponding conditional likelihood maximization problem
is equivalent to logistic regression based on certain statistics of the data—different network
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structures leading to different statistics. We thereby establish a connection between the rel-
atively new methods of Bayesian network classifier learning and the established statistical
method of logistic regression, which has a long history and which has been thoroughly
studied in the past (McLachlan, 1992). One of the main implications of this connection is
the following: if the condition mentioned above holds for the network structure, the corre-
sponding conditional likelihood of the Bayesian network model cannot have local optima
so that the global optimum can be found by local optimization methods. Other implications,
as well as our additional results are summarized below.

Section 2 reviews Bayesian network models, Bayesian network classifiers and discrim-
inative learning of Bayesian network models, based on the conditional rather than joint
likelihood. Consider a network structure (directed acyclic graph, DAG) B on a tuple of
discrete-valued random variables (X0, . . . , XM). In Section 2.4 we define our main concept,
the conditional Bayesian network model MB. This is the set of conditional distributions of
class variable X0 given the feature variables X1, . . . , XM , induced by the Bayesian network
model based on structure B that can be achieved with non-zero parameters. We define for
each network structure B a corresponding canonical form B∗ that facilitates comparison
with logistic regression. Graph B∗ is simply the Markov blanket of the class variable X0

in B, with arcs added to make all parents of X0 fully connected. We show that the models
MB and MB∗

are identical: even though the set of joint distributions on (X0, . . . , XM)
corresponding to B and B∗ may not coincide, the set of conditional distributions of X0

given (X1, . . . , XM) is the same for both graphs.
Section 3 reviews the multiple logistic regression model. We provide a reparameteri-

zation of conditional Bayesian network models MB such that the parameters in the new
parameterization correspond to logarithms of parameters in the standard Bayesian network
parameterization. In this way, each conditional Bayesian network model is mapped to a
logistic regression model. However, in some cases the parameters of this logistic regres-
sion model are not allowed to vary freely. In other words, the Bayesian network model
corresponds to a subset of a logistic regression model rather than a ‘full’ logistic regression
model. This is established in our Theorem 2.

In Section 4 we present our main result (Theorem 3) which provides a general condition
on the network structure B under which the Bayesian network model is mapped to a full
logistic regression model with freely varying parameters. This condition is very simple: it
requires the corresponding canonical structure B∗ to be a perfect DAG, meaning that all
nodes are moral nodes. It is satisfied by, for example, the naive Bayes model, the tree-
augmented naive Bayes model (TAN), but also for more complicated models in which the
class node has parents.

The conditional log-likelihood for logistic regression models is a concave function of the
parameters. Therefore, in the new parameterization the conditional log-likelihood becomes
a concave function of the parameters that under the perfectness condition are allowed to
vary freely over the convex set R

k . This implies that we can find the global maximum
in the conditional likelihood surface by simple local optimization techniques such as hill-
climbing. This result still leaves open the possibility that there are no network structures for
which the conditional likelihood surface has local, non-global maxima. This would make
perfectness a superfluous condition. Our second result (Theorem 4) shows that this is not
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the case: there are very simple network structures B whose canonical version B∗ is not
perfect, and for which the conditional likelihood can exhibit local, non-global maxima.

Section 5 discusses the various issues arising when implementing local optimization
methods for finding the maximum conditional likelihood of Bayesian network models
whose structure B satisfies the perfectness property. These involve choosing the appropriate
parameterization, dealing with model selection (parameter/feature pruning), missing data
and flat regions of the conditional likelihood surface, which we handle by introducing
Bayesian parameter priors. It turns out that in the standard parameterization of a Bayesian
network, the conditional likelihood may be non-concave, even if the Bayesian network
corresponds to a logistic regression model. Therefore, optimization should be performed
in the logistic parameterization in which the likelihood is concave. Finally, we introduce
the algorithms of our experiments here, including a heuristic algorithm for pruning the
conditional naive Bayes model.

Section 6 reports the results of these experiments. One of our main findings is that our
pruning strategy leads to considerably simpler models that are competitive against both
naive Bayes and conditional naive Bayes with the full set of features in terms of predictive
performance.

Viewing Bayesian network models as subsets of logistic regression models has been
suggested earlier in papers such as Heckerman and Meek (1997a), Ng and Jordan (2001),
and Greiner and Zhou (2002). Also, the concavity of the log-likelihood surface for logistic
regression is a well-known result. Our main contribution is to supply the condition under
which Bayesian network models correspond to logistic regression with completely freely
varying parameters. Only then can we guarantee that there are no local maxima in the
likelihood surface. As a direct consequence of our result, we show that the conditional
likelihood of, for instance, the tree-augmented naive Bayes (TAN) model has no local
non-global maxima.

2. Bayesian network classifiers

We start with some notation and basic properties of Bayesian networks. For more informa-
tion see, e.g., Pearl (1988) and Lauritzen (1996).

2.1. Preliminaries and notation

Consider a discrete random vector X = (X0, X1, . . . , XM), where each variable Xi takes
values in {1, . . . , ni}. Let B be a directed acyclic graph (DAG) over X, that factorizes P(X)
into

P(X) =
M∏

i=0

P(Xi | Pai ), (1)

where Pai ⊆ {X0, . . . , XM} is the parent set of variable Xi in B. Such a model is usually
parameterized by vectors θB with components of the form θB

xi |pai
defined by

θB
xi |pai

:= P(Xi = xi | Pai = pai ), (2)
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where pai is any configuration (set of values) for the parents Pai of Xi. Whenever we want
to emphasize that each pai is determined by the complete data vector x = (x0, . . . , xM),
we write pai (x) to denote the configuration of Pai in B given by the vector x. For a given
data vector x = (x0, x1 . . . , xM), we sometimes need to consider a modified vector where
x0 is replaced by x ′

0 and the other entries remain the same. We then write pai (x
′
0, x) for the

configuration of Pai given by (x ′
0, x1, . . . , xM ).

We are interested in predicting some class variable Xl for some l∈{0, . . . , M} conditioned
on all Xi, i �= l. Without loss of generality we may assume that l = 0 (i.e., X0 is the class
variable) and that the children of X0 in B are {X1, . . . , Xm} for some m ≤ M. For instance,
in the so-called naive Bayes model we have m = M and the children of the class variable
X0 are independent given the value of X0. The Bayesian network model corresponding to
B is the set of all distributions satisfying the conditional independencies encoded in B.

Conditional distributions for the class variable given the other variables can be written
as

P(x0 | x1, . . . , xM , θB) = P(x0, x1, . . . , xM | θB)∑n0

x ′
0=1 P(x ′

0, x1, . . . , xM | θB)

= θB
x0|pa0(x)

∏M
i=1 θB

xi |pai (x)∑n0

x ′
0=1 θB

x ′
0|pa0(x)

∏M
i=1 θB

xi |pai (x
′
0,x)

. (3)

2.2. Bayesian network classifiers

A Bayesian network model can be used both for probabilistic prediction and for classifica-
tion. By probabilistic prediction we mean a game where given a query vector (x1, . . . , xM),
we must output a conditional distribution P̂(X0|x1, . . . , xM) for the class variable X0. Under
the logarithmic loss function (log-loss) we incur−ln P̂(x0 | x1, . . . , xM) units of loss where
x0 is the actual outcome. If we successively predict class variable outcomes x1

0 , x2
0 , . . . , x N

0
given query vectors (x1, . . . , xM)1, . . . , (x1, . . . , xM)N using the same P̂ , then the logarithmic
loss function is just minus the conditional log-likelihood of x1

0 , x2
0 , . . . , x N

0 given the query
vectors, a standard statistical measure. By classification we mean the scenario where given
a query vector we must output a single value, x̂0 of X0 that we consider the most likely
outcome. Under 0/1 loss the loss is zero if our guess was correct and one otherwise.

Given a Bayesian network model, the corresponding Bayesian network classifier
(Friedman, Geiger, & Goldszmidt, 1997) uses (3) for both prediction and classification.
Given a parameter vector θB, under the log-loss we output the conditional distribution given
by (3) and under the 0/1 loss we choose as our guess the class value x0 maximizing (3). If
the distribution indexed by the parameter vector is actually the distribution generating the
data vectors, then in both cases this is the Bayes optimal choice.

In order to predict and/or classify new instances based on some training data, we need to
fix a method to infer good parameter values based on the training data. A commonly used
method is to maximize the likelihood, or equivalently the log-likelihood, of the training
data. Given a complete data-matrix D = (x1, . . . , xN ), the (full) log-likelihood, LL(D; θB),
with parameters θB is given by
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L L(D; θB) :=
N∑

j=1

ln P
(
x j

0 , . . . , x j
M | θB

) =
N∑

j=1

M∑
i=0

ln P
(
x j

i | pai (x
j ), θB

)
. (4)

Taking the derivative wrt. θB shows that for complete data the maximum is achieved by
setting for each xi and pai

θ̂B
xi |pai

(D) = n[xi ,pai ]

n[pai ]
, (5)

where n[xi ,pai ] and n[pai ] are respectively the numbers of data vectors with Xi = xi , Pai =
pai and Pai = pai . In case the data contain missing values, there is no closed form solution
but iterative algorithms such as the Expectation-Maximization algorithm (Dempster, Laird,
& Rubin, 1977; McLachlan & Krishnan, 1997), or local search methods such as gradient
ascent (Russell et al., 1995; Thiesson, 1995) can be applied.

In the M-closed case (Bernardo & Smith, 1994), i.e. the case in which the data generating
distribution can be represented with the Bayesian network B, maximizing the full likelihood
is a consistent method of estimating the joint distribution of X. The joint distribution
of X given the maximum likelihood (ML) parameters converges (with growing sample
size) to the generating distribution. Thus, also the conditional distributions of the class
variable given the other variables and the maximum likelihood parameters converge to the
true conditional distribution. As a consequence, the maximum likelihood plug-in classifier
obtained by plugging (5) into (3) converges to the Bayes optimal classifier. This holds for
both the 0/1 loss and the logarithmic loss.

2.3. Discriminative parameter learning

In the context of predicting the class variable given the other variables, the full log-
likelihood is not the most natural objective function since it does not take into account the
discriminative or supervised nature of the prediction task. A more focused version is the
conditional log-likelihood, defined as

C L L(D; θB) :=
N∑

j=1

ln P
(
x j

0 | x j
1 . . . , x j

M , θB
)
, (6)

where P(x j
0 | x j

1 . . . , x j
M , θB) is given by (3). It is important to note that (3), appearing in

(6), is not one of the terms in (4) unless Pa0 = {X1, . . . , XM}, i.e., unless the class variable
has only incoming arcs. If this were the case, the θx0|pa0

maximizing the full likelihood
would also maximize the conditional likelihood. Due to the normalization over possible
values of X0 in (3), the parameters maximizing conditional likelihood (6) are not given by
(5). In fact no closed-form solution is known (Friedman, Geiger, & Goldszmidt, 1997).

Maximizing the conditional likelihood is a consistent method for estimating the con-
ditional distributions of the class variable in the M-closed case, just like maximizing the
full likelihood. However, there is a crucial difference between the two methods in the case
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where the generating distribution is not in the model class, i.e., some of the independence
assumptions inherent to the Bayesian network structure B are violated. In this M-open case
it is clear that no plug-in predictor can be guaranteed to converge to the Bayes optimal
classifier. However, in probabilistic prediction under log-loss, maximizing the conditional
likelihood converges to the best possible distribution in the model class, in that it minimizes
the expected conditional log loss. To see this, let Q, P be two distributions on (X0, . . . , XM)
and define the conditional Kullback-Leibler divergence as

Dcond(Q‖P) := EX0,...,X M ln
Q(X0 | X1, . . . , X M )

P(X0 | X1, . . . , X M )
, (7)

where the expectation is taken with respect to Q. The Kullback-Leibler divergence gives the
expected additional log-loss over the best possible distribution given by Q (see Appendix A
in Friedman, Geiger, and Goldszmidt (1997)). The following proposition shows that P(· |
θB

N ) converges in probability to the distribution in B minimizing expected conditional
log-loss:

Proposition 1. Let the data be i.i.d. according to any distribution Q with full support,
i.e. Q(x0, x1, . . . , xM) > 0 for all vectors x with components xi ∈ {1, . . . , ni}. Then with
probability one, for all large N there exists at least one θB

N maximizing the conditional
log-likelihood (6). For any sequence of such maximizing θB

N the distribution P(· | θB
N )

converges in probability to the distribution closest to Q in conditional Kullback-Leibler
divergence.

This follows from Theorem 1 in Greiner and Zhou (2002) which gives in addition a rate
of convergence in term of sample size. When maximizing the full likelihood in the M-open
case, we may not converge to the best possible distribution. In the Appendix, we give a very
simple concrete case (Example 4) such that with probability 1, the ordinary ML estimator
converges to a parameter vector θ̃ and the conditional ML estimator converges to another
vector θ̃cond with

Dcond(Q ‖ P(· | θ̃ )) = ln 2; Dcond(Q ‖ P(· | θ̃cond)) = 1

2
ln 2.

In classification the situation is not as clear cut as in log loss prediction. Nevertheless,
there is both empirical and theoretical evidence that maximizing the conditional likelihood
leads to better classification as well (see Friedman, Geiger, & Goldszmidt, 1997; Ng &
Jordan, 2001; Greiner & Zhou, 2002) and references therein. Theoretically, one can argue
as follows. Suppose data are i.i.d. according to some distribution Q not necessarily in M.
Given a distribution P(· | θB), we say θB is conditionally correct if Q(X0 | X1, . . . , XM)
= P(X0 | X1, . . . , XM , θB) for all (X0, . . . , XM) that occur with positive Q-probability.
Now suppose that M contains a θ̃cond that is conditionally correct. Then θ̃cond must also
be the distribution that is optimal for classification; that is, the Bayes classifier based on
θ̃cond achieves the minimum expected classification error where the expectation is over the
distribution Q. As a consequence of Proposition 1, in the large N limit, the conditional
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ML estimator θB
N converges to θ̃cond and hence, asymptotically, the Bayes classifier based

on the conditional ML estimator is optimal. Note that this still holds if P(· | θ̃cond) is
‘unconditionally incorrect’ in the sense that the marginal distributions Q(X1, . . . , XM) and
P(X1, . . . , XM | θ̃cond) are very different from each other.

In contrast, when maximizing the unconditional likelihood, the distribution θ̃ that the
ML estimator converges to can only be guaranteed to lead to the optimal classification rule
if M contains a distribution that is fully correct, a much stronger condition. Thus, for large
training samples, the conditional ML estimator can be shown to be optimal for classification
under much weaker conditions than the unconditional ML estimator. This suggests (but
of course does not prove) that, for large training samples, conditional ML estimators will
often achievebetter classification performance than unconditional ML estimators.

2.4. Conditional Bayesian network models

We define the conditional model MB as the set of conditional distributions that can be
represented using network B equipped with any strictly positive1parameter set θB > 0;
that is, the set of all functions from (X1, . . . , XM) to distributions on X0 of the form (3).
The model MB does not contain any notion of the joint distribution: Terms such as P(Xi |
Pai ), where Xi is not the class variable are undefined and neither are we interested in them.
Heckerman and Meek (1997a, 1997b) call such models Bayesian regression/classification
(BRC) models.

Conditional models MB have some useful properties, which are not shared by their
unconditional counterparts. For example, for many different network structures B, the
corresponding conditional models MB are equivalent. This is because in (3), all θB

xi |pai
with

i > m (standing for nodes that are neither the class variable nor any of its children) cancel
out, since for these terms we have pai (x) ≡ pai (x

′
0, x) for all x0

′. Thus the only relevant
parameters for the conditional likelihood are of the form θB

xi |pai
with i ∈ {0, . . . , m}, xi ∈

{1, . . . , ni} and pai any configuration of Xi ’s parents Pai . In terms of graphical structure
this is expressed in Lemmas 1 and 2 below.

Lemma 1 (Pearl, 1987). Given a Bayesian network B, the conditional distribution of a
variable Xi depends on the other variables only through the nodes in the Markov blanket2

of Xi.

Lemma 2 (Buntine, 1994). Let B be a Bayesian network and MB the corresponding
conditional model. If a node Xi and all its parents have their values given (which implies
that neither Xi nor any of its parents is the class variable X0), then the Bayesian network B′

created by deleting all the arcs into Xi represents the same conditional probability model
as B: MB = MB′

.

Note that although for a node Xi with i > m, the parameter θB
xi |pai

cancels out in (3), the
value of Xi may still influence the conditional probability of X0 if Xi is a parent of X0 or
of some child of X0. In that case, Xi ∈ Paj where j is such that parameters θB

x j |pa j
do not

cancel out in (3). Thus, we can restrict attention to the Markov blanket, but not just the class
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Figure 1. Networks (a) and (b) are equivalent in terms of conditional distributions for variable Disease given
the shaded variables. Reproduced from Buntine (1994).

node and its children. Lemma 2, slightly rephrased from (Buntine, 1994) and illustrated
by Figure 1, implies that we can assume that all parents of the class variable are fully
connected—which greatly simplifies our comparison to logistic regression models.

Definition 1. For an arbitrary Bayesian network structure B, we define the corresponding
canonical structure (for classification) as the structure B∗ which is constructed from B by
first restricting B to X0’s Markov blanket and then adding as many arcs as needed to make
the parents of X0 fully connected.3

We have for all network structures B that MB and MB∗
are equivalent. This follows

from Lemmas 1 and 2. Thus, instead of the graph in Figure 1(b) we will use the graph in
Figure 1(a).

3. Bayesian network classifiers and logistic regression

We can think of the conditional model obtained from a Bayesian network also as a predictor
that combines the information of the observed variables to update the distribution of the
target (class) variable. Thus, we view the Bayesian network as a discriminative rather than
a generative model (Dawid, 1976; Heckerman & Meek, 1997a; Ng & Jordan, 2001; Jebara,
2003). In order to make this view concrete, we now introduce logistic regression models
that have been extensively studied in statistics (see, e.g., McLachlan, 1992). We will then
(Section 3.2) see that any conditional Bayesian network model may be viewed as a subset
of a logistic regression model.

3.1. Logistic regression models

Let X0 be a random variable with possible values {1, . . . , n0}, and let Y = (Y1, . . . , Yk) be a
real-valued random vector. The multiple logistic regression model with dependent variable
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Figure 2. A logistic regression model.

X0 and covariates Y1, . . . , Yk is defined as the set of conditional distributions

P(x0 | y, β) := exp
∑k

i=1 βxi ,i yi∑n0

x ′
0=1 exp

∑k
i=1 βx ′

0,i yi

, (8)

where the parameter vector β with components of the form βx0,i with x0 ∈ {1, . . . ,
n0}, i ∈ {1, . . . , k} is allowed to take on all values in R

n0·k . Figure 2 is a graphical
representation of the model: the intermediate nodes ηi correspond to the linear com-
binations

∑k
i=1 βxi ,i yi of the covariates which are converted to predicted class proba-

bilities pi by the normalized exponential or softmax (Bishop, 1995) function as in (8).
For all values of the class variable r ∈ {1, . . . , n0} and all covariates s ∈ {1, . . . , k},

the components of the gradient vector, i.e., the partial derivatives of the log-likelihood are
given by

∂ ln P(x0 | y, β)

∂βr,s
= ys

(
I [r=x0] − P(r | y, β)

)
, (9)

where I[·] is the indicator function taking value 1 if the argument is true, 0 otherwise. The
Hessian matrix, H, of second derivatives has entries given by

∂2 ln P(x0 | y, β)

∂βr,s∂βt,u
= −ys yu P(r | y, β)

(
I[r=t] − P(t | y, β)

)
, (10)

where r, t ∈ {1, . . . , n0} and s, u ∈ {1, . . . , k}. The following theorem is well-known in
statistics (see e.g., McLachlan, 1992).

Theorem 1. The Hessian matrix is negative semidefinite.

The theorem is a direct consequence of the fact that logistic regression models are ex-
ponential families (see e.g., McLachlan, 1992, p. 260; Barndorff-Nielsen, 1978). The
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model is extended to several outcomes under the i.i.d. assumption by defining the log-
likelihood

CLLL (D; β) :=
N∑

j=1

ln P
(
x j

0

∣∣y j , β
)
. (11)

Given a data set, the entries in the gradient vector and the Hessian matrix are sums of
terms given by (9) and (10) respectively. By Theorem 1, the Hessian for each data vector
is negative semidefinite, the logarithm of (8) is concave. Therefore, log-likelihood (11) as
a sum of concave functions is also concave, so that we have:

Corollary 1. The log-likelihood (11) is a concave function of the parameters.

Corollary 2. Concavity, together with the fact that the parameter vector β varies freely
in a convex set (Rn0·k) guarantees that there are no local, non-global, maxima in the
log-likelihood surface of a logistic regression model.

The conditions under which a global maximum exists and the maximum likelihood esti-
mators do not diverge are discussed in e.g., (McLachlan, 1992) and references therein.
A possible solution in cases where no maximum exists is to assign a prior on the
model parameters and maximize the ‘conditional posterior’ instead of the likelihood, see
Section 5.5. The prior can also resolve problems in optimization caused by the well-known
fact that the parameterization of the logistic model is not one-to-one and the log-likelihood
surface is not strictly concave.

3.2. A logistic representation of Bayesian networks

In order to create a logistic model corresponding to a Bayesian network structure, we
introduce a new set of covariates derived from the original variables. First, for all parent
configurations pa0 of X0, set

Ypa0
:= I[Pa0=pa0]. (12)

Denote the parameters associated with such covariates by βB
x0,pai

. Next, define Pa+
i := Pai

\ {X0 }, i.e., the parent set of Xi with the exclusion of the class variable X0. Now, for i ∈
{1, . . . , m}, xi ∈ {1, . . . , ni } and pa+

i ∈ dom(Pa+
i ), set

Yxi ,pa+
i

:= I [Xi =xi ,Pa+
i =pa+

i ]. (13)

Denote the parameters associated for such covariates by βB
x0,xi ,pa+

i
.

Example 1. Consider the Bayesian network in Figure 1(a). The covariates of type (12)
correspond to all combinations of the values of Age, Occupation and Climate. Covariates of
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type (13) correspond to all combinations of the values of Age and Symptoms. The logistic
model obtained from the network in Figure 1(b) is identical.

For convenience, but without loss of generality we can use indexing of the form Ypa0
and

Yxi ,pa+
i

instead of Yi. With these notations (8) can be written as a function of variables X1,
. . . , XM:

P(x0 | x1, . . . , xM , βB)

:=
exp

( ∑
pa0

βB
x0,pa0

ypa0
+ ∑m

i=1

∑ni
xi =1

∑
pa+

i
βB

x0,xi ,pa+
i

yxi ,pa+
i

)
∑n0

x ′
0=1 exp

( ∑
pa0

βB
x ′

0,pa0
ypa0

+ ∑m
i=1

∑ni
xi =1

∑
pa+

i
βB

x ′
0,xi ,pa+

i
yxi ,pa+

i

) .

Because most of the indicator variables take value zero, the equation simplifies to

P(x0 | x1, . . . , xM , βB) =
exp

(
βB

x0,pa0(x) + ∑m
i=1 βB

x0,xi ,pa+
i (x)

)
∑n0

x ′
0=1 exp

(
βB

x ′
0,pa0(x) + ∑m

i=1 βB
x ′

0,xi ,pa+
i (x)

) . (14)

Let the conditional model MB
L be the set of conditional distributions for X0 that can

be represented with the logistic regression model corresponding to B. It turns out that
the logistic regression conditional model MB

L is very closely related to the corresponding
conditional BN model MB: Theorem 2 shows that all conditional distributions representable
with the Bayesian network can be mapped to distributions of the logistic model.

Theorem 2. Let MB be the set of conditional distributions that can be represented by
a Bayesian model with network structure B and strictly positive parameters, and let MB

L
be the conditional model defined by the logistic regression model with covariates (12) and
(13). Then MB ⊆ MB

L .

Proof: Let θB be an arbitrary parameter vector. The theorem is equivalent to there being
a parameter vector βB for the logistic regression model such that the two models represent
the same conditional distributions for X0. Set

βB
x0,pa0

= ln θB
x0|pa0

; βB
x0,xi ,pa+

i
= ln θB

xi |pai
for 1 < i ≤ m, (15)

where pai is the combination of pa+
i and x0. Plugging these into (14) gives the same

conditional distributions as (3). �

Given data D, define the conditional log-likelihood of the logistic model as

CLLL (D; βB) :=
N∑

j=1

ln P
(
x j

0

∣∣x j
1 . . . , x j

M , βB
)
, (16)
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where P(x j
0 | x j

1 . . . , x j
M , βB) is given by (14). Note that (16) has the same properties as

(11). In particular, Corollaries 1 and 2 apply to (16) as well: there are no local maxima in
the log-likelihood surface (16) of any logistic regression model MB

L .
The global conditional maximum likelihood parameters obtained from training data

can be used for prediction of future data. In addition, as discussed by Heckerman and
Meek (1997a), they can be used to perform model selection among several competing
model structures using, e.g., the Bayesian Information Criterion (BIC) (Schwarz, 1978) or
approximations of the Minimum Description Length (MDL) criterion (Rissanen, 1996).
Heckerman and Meek (1997a) state that for general conditional Bayesian network models
MB, “although it may be difficult to determine a global maximum, gradient-based methods
[. . .] can be used to locate local maxima”. Corollary 2 shows that if the network structure B is
such that the two models are equivalent, MB = MB

L , we can find even the global maximum
of the conditional likelihood by using the logistic model and using some local optimization
method. Therefore, it becomes a crucial problem to determine the exact condition under
which the equivalence holds.

4. Theoretical results

In the preceding sections we gave a logistic representation of Bayesian networks and showed
that all conditional distributions for the class variable can be represented with the logistic
model. Here we show that in general the converse of this statement is not true, which means
that the two conditional models are not equivalent. However, we give a condition on the
network structure under which the conditional models are equivalent.

4.1. A condition on the network structure

It was shown in the previous section that by using parameters given by (15), it follows that
each distribution in MB is also in MB

L (Theorem 2). This suggests that by doing the reverse
transformation

θB
xi |pai

=
{

exp βB
x0,pa0

, if i = 0,

exp βB
x0,xi ,pa+

i
, if 1 < i ≤ m,

(17)

we could also show that distributions in MB
L are also in MB. However, since the pa-

rameters of the logistic model are free, this will in some cases violate the sum-to-one
constraint, i.e., for some βB ∈ R

n0·k we get after the transformation (17) parameters such
that

∑ni
xi =1 θB

xi |pa+
i

�= 1 for some i ∈ {0, . . . , M} and pai . Such parameters are not valid
Bayesian network parameters. Note that simply renormalizing them (over xi, not x0!) could
change the resulting distributions. But, since the parameterization of the logistic model is
not one-to-one, it may still be the case that the distribution indexed by parameters βB is in
MB. Indeed, it turns out that for some network structures B, the corresponding MB

L is such
that each distribution in MB

L can be expressed by a parameter vector such that the mapping
(17) gives valid Bayesian network parameters. In that case, we do have MB = MB

L . Our
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Figure 3. B1 is a simple Bayesian network (the class variable is denoted by X0 ) that satisfies our condition:
its canonical form B∗

1 has X1 and X2 connected, making the structure perfect; B2 is a network that remains
unchanged under the canonical transformation and remains imperfect.

main result is that this is the case if B is such that its canonical version B∗ (Definition 1)
is perfect (Definition 2).

Definition 2 (Lauritzen, 1996). A directed graph in which all nodes having a common
child are connected is called perfect.

Example 2. Consider the Bayesian networks depicted in Figure 3. Neither B1 nor B2 are
perfect. The canonical version B∗

1 of B1 has an added arc between X1 and X2. This makes
B∗

1 perfect. However, network B2 cannot be made perfect without changing the conditional
model MB. Theorem 4 (below) shows that for B2 the conditional likelihood surface of MB

can have local maxima, implying that in this case MB �= MB
L .

Examples of network structures B that are perfect are the naive Bayes (NB) and the tree-
augmented naive Bayes (TAN) models (Friedman, Geiger, & Goldszmidt, 1997). (Proof
straightforward and omitted.) The latter is a generalization of the former in which the
children of the class variable are allowed to form tree-structures; see Figure 4. Perfectness
of B also implies that the class X0 must be a ‘moral node’, i.e., it cannot have a common
child with a node it is not directly connected to. Even if X0 is moral, sometimes perfectness
may be violated as exemplified by Figure 4.

The condition is also automatically satisfied if X0 only has incoming arcs4(‘diagnostic’
models discussed in (e.g., Kontkanen, Myllymäki, & Tirri, 2001)). For Bayesian network
structures B for which the condition does not hold, we can always add some arrows to

Figure 4. B3 is a tree-augmented naive Bayes (TAN) model with a perfect graph; and B4 a network in canonical
form that is neither TAN nor perfect.
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arrive at a structure B′ for which the condition does hold (for instance, add an arrow from
X1 to X3 in B4 of Figure 4). Therefore, MB is always a subset of a larger model MB′

for
which the condition holds.

4.2. Main result

We now present our main result stating that the conditional models MB and MB
L of a

Bayesian network B and the corresponding logistic regression model respectively, are
equivalent if B∗ is perfect:

Theorem 3. If B is such that its canonical version B∗ is perfect, then MB = MB
L .

The proof is based on the following proposition:

Proposition 2 (Lauritzen, 1996). Let B be a perfect DAG. A distribution P(X) admits
a factorization of the form (1) with respect to B if and only if it factorizes as

P(X) =
∏

c ∈ C

φc(X), (18)

where C is the set of cliques in B and the φc(X) are non-negative functions that depend on
X only through the variables in clique c.

Recall that a clique is a fully connected subset of nodes. The set of cliques C appearing
in (18) contains both maximal and non-maximal cliques (e.g., consisting of single nodes).

Proof of Theorem 3. We need to show that for an arbitrary parameter vector βB for
the logistic model, there are Bayesian network parameters that index the same distribution
as the logistic model. Let θB

xi |pai
be the parameters obtained from (17), and define the

normalizing constant Z = ∑
x

∏m
i=0 θB

xi |pai (x). Define

φi (x) =
{

Z−1θB
x0|pa0

if i = 0

θB
xi |pai

if 1 < i ≤ m.
(19)

Consider the joint distribution PZ(X) defined by

PZ (x | θB) =
m∏

i=0

φi (x) = 1

Z

m∏
i=0

θB
xi |pai (x). (20)

Note that, even though the product θB
xi |Pai (x) may not sum to one over all data vectors

x, by introducing the normalizing constant Z, we ensure that the resulting PZ (x | θB)
defines a probability distribution for (X0, . . . , Xm) . Distribution (20) induces the same
conditionals for X0 as the logistic model with parameter vector βB given by (14). Each
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function φi (x) is non-negative and a function of the set {Xi} ∪ Pai , which is a clique by
assumption. Thus (20) is a factorization of the form (18) and Proposition 2 implies that
PZ(X) admits a factorization of the form (1) (the usual Bayesian network factorization).
Thus there are Bayesian network parameters that satisfy the sum-to-one constraint and
represent distribution PZ(X). In particular, those parameters give the same conditional
distributions for X0 as the logistic model. �

The proof is not constructive in that it does not explicitly give the Bayesian network
parameters that give the same conditional distributions as the logistic model. A constructive
proof is given by Wettig et al. (2003). We omitted it here because the present proof is much
shorter, easier to understand and clarifies the connection to perfectness.

Together with Corollary 2 (stating that the conditional log-likelihood is concave),
Theorem 3 shows that perfectness of B∗ suffices to ensure that the conditional likelihood
surface of MB has no local (non-global) maxima. This further implies that, for example,
the conditional likelihood surface of TAN models has no local maxima. Therefore, a global
maximum can be found by local optimization techniques.

But what about the case in which B∗ is not perfect? Our second result, Theorem 4 (proven
in the Appendix) says that in this case, there can be local maxima:

Theorem 4. There exist network structures B whose canonical form B∗ is not perfect,
and for which the conditional likelihood (6) has local, non-global maxima.

The theorem implies that MB
L �= MB for some network structures B. In fact, it implies

the stronger statement that for some structures B, no logistic model indexes the same
conditional distributions as MB. The proof of this stronger statement is by contradiction:
if MB coincided with some logistic regression model, the conditional likelihood surface in
MB would not have local maxima—contradiction.

Thus, perfectness of B∗ is not a superfluous condition. We may now ask whether it is a
necessary condition for having MB′

L = MB for some logistic model MB′
L , with a (possibly

different) network structure B′. We plan to address this intriguing open question in future
work.

5. Technical issues

At this point we have all the tools together in order to build a logistic regression model
equivalent to any given Bayesian classifier with underlying network structure B such that
B’s canonical version B∗ is perfect. Its parameters may be determined using hill-climbing
or some other local optimization method, such that the conditional log-likelihood is maxi-
mized. This results in a prediction method that in most cases outperforms the corresponding
Bayesian classifier with ordinary maximum likelihood parameters. In practice, however,
we find that there is a number of questions yet to be answered. In the following, we address
some crucial technical details and outline the algorithms implemented.
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5.1. Standard or logistic parameterization?

Because the mapping from the Bayesian parameters to the logistic model in the proof of
Theorem 2 is continuous, it follows (with some calculus) that if MB = MB

L , then all
maxima of the (concave) conditional likelihood in the logistic parameterization are global
(and connected) maxima also in the standard Bayesian parameterization. Thus we may also
in the standard parameterization optimize the conditional log-likelihood locally to obtain a
global maximum.

Nevertheless, as demonstrated in Example 3, the log-likelihood surface (6) as a function
of θB has some unpleasant properties: it is not concave in general and, what is worse,
can have ‘wrinkles’: by these we mean convex subsets of the parameter space in which
the likelihood surface does exhibit local, non-global maxima. This suggests that it is
computationally preferable to optimize in the logistic parameterization rather than in the
original Bayesian network parameterization, which is what we will do.

Example 3. Consider a Bayesian network where the class variable X0 has only one child,
X1, and both variables take values in {1, 2}. Let the training data be given by D = ((1, 1),
(1, 2), (2, 1), (2, 2)). Set the parameters θB as follows:

θB
x0

=
{

0.1 if x0 = 1,

0.9 if x0 = 2,
; θB

x1|x0
=




0.5 if x0 = 1, x1 = 1,

0.5 if x0 = 1, x1 = 2,

α if x0 = 2, x1 = 1,

1 − α if x0 = 2, x1 = 2.

Figure 5 shows the conditional log-likelihood CLL(D; θB) given data D as a function of α.
Note that the log-likelihood peaks twice along a straight line, contradicting concavity.

Figure 5. The conditional log-likelihood of the conditional Bayesian network of Example 3 peaks twice along
a line defined by α ε (0, 1) .
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5.2. Continuous predictor variables

Bayesian classifiers have a built-in difficulty in handling continuous data since all condi-
tional probability distributions are represented as tables of the form θB

xi |pai
, see Section 2.2.

Opposed to that, logistic regression models have no natural way of handling discrete data.
But this shortcoming can easily be ironed out by introducing a covariate Yxi ,pai

for each
instantiation pai of the parent set of a variable Xi as we have seen in Section 3.2.

For our experiments we discretized any continuous features based on the training data
only, using the entropy-based method of Fayyad and Irani (1993). This way, the methods
we compare will have the same (discrete) input.

Note that logistic models are much more flexible than this and we have not yet exploited
all their advantages. We could have fed them the original continuous values just as well,
they would have not had any difficulty in combining this information with that of other,
discrete attributes; we could have even handled mixed features (e.g. “died at age” ∈ {alive,
0, 1, . . .} etc.). It is also possible to discretize on the fly, i.e. to generate covariates of the
form Y≤xi := I[Xi ≤xi ] as this seems beneficial for the discriminative model. One might even
use a combination of the original continuous value of a feature and its discretized version
by introducing a piece-wise log-linear function into the model. We leave the pursuit of
these ideas as an objective for future research.

5.3. Model selection

Usually we are not provided with a Bayesian network structure B, but we are only given
a data sample D, and somehow must choose a model (structure) B ourselves. How should
we do this? This is a hard problem already when modelling the joint data distribution
(Buntine, 1994; Heckerman, 1996; Myllymäki et al., 2002). Finding a good conditional
model can be much harder than joint modelling, and many of the tools for modelling the
joint distribution can no longer be used. For example, methods such as cross-validation or
prequential validation become computationally highly demanding, since for each candidate
network one has to re-optimize the model parameters. While optimizing the conditional
log-likelihood of a single model is quite feasible for reasonable size data, optimization
seems too computationally demanding for the task of model selection. Using the joint data
likelihood as a criterion is easier but may yield very poor results, while improvements
have been achieved with heuristic ‘semi-supervised’ methods that mix supervised and
unsupervised learning (Keogh & Pazzani, 1999; Kontkanen et al., 1999; Cowell, 2001;
Shen et al., 2003; Madden, 2003; Raina et al., 2003; Grossman & Domingos, 2004).

For these reasons, we take a different approach. We start out with the naive Bayes
classifier, the simplest model taking into account all data entries given. Our predictions are
of the form (14), extended by independence. Since for naive Bayes models, the set pa+

i
is empty for all nodes Xi, we may denote βx0 := βx0,pa0(x) and βx0,xi := βx0,xi ,pa+

0 (x). This
becomes our first algorithm, conditional naive Bayes (cNB). Our second algorithm, pruned
naive Bayes (pNB) will become a submodel of cNB, with a parameter selection scheme
as described below. Both the cNB and the pNB models are parameterized in the logistic
regression fashion.
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We stress that the scope of our experiments is rather limited. Implementing a fully
supervised, yet computationally feasible model selection method without severe restrictions
on the range of network structures is a challenging open research topic.

5.4. Missing data

Most standard classification methods—including Bayesian network classifiers and logistic
regression—have been designed for the case where all training data vectors are complete,
in the sense that they have no missing values. Yet in real-world data, missing data (feature
values) appear to be the rule than the exception. Therefore we need to explicitly deal with
this problem. The most general way of handling the issue is to treat ‘missing’ as a legitimate
value for all features Xi whose value is missing in one or more data vectors (Myllymäki
et al., 2002). This however, makes our model larger and thus may result in more overfitting,
and therefore worse classification performance for small samples.

Instead, it is often assumed that the patterns of ‘missingness’ in the data do not provide
any information about the class values. Mathematically, this can be expressed as follows:
we assume that the true data generating distribution satisfies, for all class values x0, all
vectors x−i with the ith element missing,

P(x0 | x−i , xi = ‘missing’) =
∑

xi

P(xi | x−i )P(x0 | x), (21)

where the sum is over all ‘ordinary’ values for Xi (excluding the value‘missing’). The same
equation can be trivially extended to multiple missing values in x.

While the assumption (21) is typically wrong, it often leads to acceptable results in
practice. The related notion of ‘missing completely at random’ (MCAR) (see e.g. Little &
Rubin, 1987) is a strictly stronger requirement since it requires that xi being missing gives
no information about the joint distribution of (X0, . . . , XM), whereas we only require this
to hold for the class variable X0.

The proper way to implement (21) would to integrate out the missing entries. However,
this makes the parameter learning (search) problem NP-complete. Therefore, we adjusted
our learning method so as to achieve an approximation of (21), by effectively ignoring
(‘skipping’) parameters corresponding to missing information, during both inference and
prediction. More precisely, we introduce constraints of the form

∑
xi

P(xi | x−i )βx0,i = 0, (22)

where we estimate the terms P(xi | x−i ) from the training data. As a result, our models
will respect an approximation to (21), namely its logarithmic version

log P(x0 | x−i , xi = ‘missing’, β) =
∑

xi

P(xi | x−i ) log P(x0 | x, β), (23)
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This way, skipping all parameters corresponding to missing values results in logarithmically
unbiased predictive distributions, which judged on the basis of our experiments reported in
Section 6 seems to be a good enough approximation in practice.

5.5. Priors

In practical applications, a sample D will typically include zero frequencies, i.e. n[x0,xi ] = 0
for some x0, xi. In that case, the conditional log-likelihood CLL(D; β) given by (16) will
have no maximum over β, but some βx0,xi will diverge to −∞. The same problem can arise
in more subtle situations as well, see Example 4 in Wettig et al. (2002).

We can avoid such problems by introducing a Bayesian prior distribution on the con-
ditional model B (Bernardo & Smith, 1994). Kontkanen et al. (2000) have shown that for
ordinary, unsupervised naive Bayes, whenever we are in danger of over-fitting the training
data—usually with small sample sizes—prediction performance can be greatly improved
by imposing a prior on the parameters. Since the conditional model cNB is inclined to
worse over-fitting than unsupervised naive Bayes (Ng & Jordan, 2001), this should hold
also in our case.

We impose a strictly concave prior that goes to zero as the absolute value of any parameter
approaches infinity. We choose the closest we can find to the uniform, least informative
prior in the usual parameterization where parameters take values between zero and one. We
retransform the parameters βx0 and βx0,xi back into the space of probability distributions
(by taking their normalized exponentials) and define their prior probability density, P(β),
to be proportional to the product of all entries in the resulting distributions.

Instead of the conditional log-likelihood CLL we optimize the ‘conditional posterior’
(Grünwald et al., 2002):

CLL+(D; β) := CLL(D; β) + ln P(β). (24)

Using this prior also yields strict concaveness of CLL+ as the sum of a concave and a
strictly concave function, which guarantees a unique maximum.

5.6. Algorithms

We now fill in the missing details of our algorithms, and explain how the actual optimiza-
tion is performed. The conditional naive Bayes algorithm maximizes CLL+(D; β) using
component-wise binary search until convergence. Although we can compute all first and
second derivatives, (9) and (10), we found that this takes so much computation time that
the benefit in convergence speed obtained by using more sophisticated methods such as
Newton-Raphson or conjugate gradient ascent is lost. Minka (2001) suggests and compares
a number of algorithms for this task. In our case the simplest of them, coordinate-wise line
search, seems to suffice.

Our second method, the pruned naive Bayes classifier pNB aims at preventing over-
fitting. We prune the full naive Bayes model cNB by maximizing the same objective but
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with the additional freedom to exclude some parameters from the model. These are being
ignored in the same way any parameter is when the corresponding data entry is missing:

CLL+(D; β) = ∑
j ln

(
exp

(
βx0 +∑

i :β
x0 ,x

j
i

∈β j β
x0 ,x

j
i

)
∑n0

x ′
0=1

exp
(
βx ′

0
+∑

i :β
x ′
0 ,x

j
i

∈β j β
x ′
0 ,x

j
i

)
)

+ ln P(β), (25)

where β j is defined to be the set of parameters that apply to vector x j : β j := {βx0,xi ∈
β: x j

i �= ‘missing′}.
Note that although zero valued parameters have no effect on the conditional likelihood,

the corresponding prior term is not zero, so that any parameter that is chosen to be part of
the model has an associated cost to it. This defines a natural threshold: a parameter βx0,xi

that does not improve the conditional log-likelihood by at least −ln P(βx0,xi ) ≥ −ln P(0)
will be removed from the model, since it will deteriorate the log-posterior.

The pNB algorithm is quite simple. We start out with the full cNB model and eliminate
parameters one at a time until no improvement is achieved. To speed up the process, we
choose the next parameter to be dropped so that CLL+(D; β) is maximized without re-
optimizing the remaining parameters. We re-optimize only after choosing which parameter
to drop. When there is no parameter left whose exclusion from the model yields direct
gain, we choose the parameter causing the least loss. If after re-optimizing the system the
objective still has not improved, we undo the last step and the algorithm terminates.

6. Empirical results

We compare our methods against conventional naive Bayes and against each other. Our
experimental methodology resembles that of Madden (2003) and Friedman, Geiger, and
Goldszmidt (1997). We split each data set into disjunct train and test sets at random such
that the training set contains 80% of the original data set and the test set the remaining 20%
. This we do 20 times independently of the previous splits. We report average log-loss and
0/1 loss +/− 1.645 times standard deviation over splits.

As mentioned in Section 5.1, we discretize continuous features using the entropy-based
method of Fayyad and Irani (1993). This is done using the training data only, so that for
each random split this results in possibly different discretizations. Data vectors with missing
entries were included in the tests. As a test bed we took 18 data sets from the UCI Machine
Learning Repository (Blake & Merz, 1998), ten of which contain missing data. In the tables
below, these are marked by an asterisk ‘ ∗ ’.

Table 1 lists the data sets used, their sizes and the number of parameters used by
the different algorithms. The NB and cNB models, although parameterized differently,
obviously contain the same number of parameters. Variance in this number is due to
individual discretizations on each training set. Note the drastic pruning performed by pNB.

We list the log-scores achieved by the algorithms NB, cNB and pNB in Table 2. For
comparison we also report the results of the default predictor (class node independent of
everything else) which—as also the NB algorithm—has been equipped with a uniform
prior on its parameters. The default gives some clue about how hard it is to learn from
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Table 1. Data sets used, and the numbers of parameters in models learned.

Data set Size #Classes NB/cNB pNB

Balance Scale 625 3 63 32.25±3.81

BC Wisconsin∗ 699 2 180 13.15±4.07

Congr. Voting∗ 435 2 66 7.30±1.32

CRX∗ 690 2 106.30±1.61 10.65±1.95

Ecoli 336 8 124.40±16.24 22.05±5.76

Glass Ident. 214 6 126.90±15.78 16.95±6.57

HD Cleveland∗ 303 5 171.75±5.52 14.60±5.78

HD Hungarian∗ 294 2 62.10±.74 8.25±2.06

HD Switzerland∗ 123 5 158.00±6.75 4.55±1.25

HD VA∗ 200 5 157.75±7.30 6.40±1.80

Hepatitis∗ 155 2 78.80±1.97 4.30±1.70

Iris 150 3 33.45±1.81 5.10±1.59

Mushrooms∗ 8124 2 234 29.00±15.40

Pima Diabetes 768 2 34.80±1.97 7.80±2.48

Postoperative∗ 90 4 96 2

Tic-Tac-Toe 958 2 56 37.65±0.81

Waveform 5000 3 215.70±8.61 96.40±30.49

Wine Rec. 178 3 88.20±6.48 9.45±3.27

the predictors; where it is hard to even beat the default predictor, there may not be much
information in the features about the class. On the other hand, high variance in the default
may indicate great effect of the random splits on how hard the prediction task will be. The
winning scores are typeset in boldface.

In terms of log-loss, both discriminative models cNB and pNB clearly outperform stan-
dard naive Bayes. In some cases standard naive Bayes does slightly better while more
often it is outperformed by the supervised methods with much greater margin. This is the
case especially on large data sets (e.g., Mushrooms, Waveform) and whenever the inde-
pendence assumptions of the naive Bayes model are badly violated (e.g., Balance Scale,
Congressional Voting, Tic-Tac-Toe). This behavior is natural and has been reported already
by Greiner and Zhou (2002) and Wettig et al. (2002). Figures 6(a) and (c) illustrate the
numerical results.

Observe how the pNB algorithm chooses only about one out of six parameter candidates,
while its performance is comparable to that of cNB; see also Figure 6(e). In addition,
pNB seems to be more robust in that it tends to yield better results where cNB can be
assumed to over-fit (i.e. cNB loses against NB or even the default), while losing little in
those cases where cNB has better performance. Note also that, regardless of its suboptimal
search method, pNB is also more stable in terms of variance in its performance on different
data splits. With very few parameters the pruned logistic model achieves good results.
Interestingly, on the Postoperative data-set, from which it seems to be very hard to learn
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Figure 6. Pairwise comparison of algorithms NB and cNB, (a) and (b), NB and pNB, (c) and (d), and cNB and
pNB, (e) and (f), in terms of log-loss, (a), (c), (e), and misclassification percentage, (b), (d), (f), for the 18 UCI
data sets used as our test bed.
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Table 2. Predictive accuracies with respect to logarithmic loss.

Data set Default NB cNB pNB

Balance Scale .925±.057 .528±.078 .214±.067 .228±.081

BC Wisconsin∗ .646±.047 .261±.195 .140±.078 .113±.050

Congr. Voting∗ .675±.033 .577±.359 .112±.081 .121±.064

CRX∗ .688±.012 .396±.134 .332±.099 .339±.078

Ecoli 1.545±.149 .448±.227 .445±.236 .488±.214

Glass Ident. 1.546±.181 .828±.271 .784±.184 .937±.222

HD Cleveland∗ 1.304±.185 1.023±.322 1.125±.350 1.053±.232

HD Hungarian∗ .647±.041 .403±.226 .366±.128 .407±.211

HD Switzerland∗ 1.392±.157 1.468±.299 1.652±.349 1.367±.149

HD VA∗ 1.542±.074 1.500±.166 1.613±.207 1.544±.135

Hepatitis∗ .532±.160 .434±.296 .409±.267 .413±.177

Iris 1.110±.018 .091±.123 .112±.091 .111±.075

Mushrooms∗ .693±.001 .129±.029 .001±.001 .002±.001

Pima Diabetes .647±.036 .433±.059 .442±.043 .456±.041

Postoperative∗ .714±.213 .808±.310 .927±.337 .707±.219

Tic-Tac-Toe .650±.029 .554±.045 .090±.030 .090±.030

Waveform 1.099±.001 .634±.082 .296±.027 .299±.025

Wine Rec. 1.104±.048 .014±.034 .028±.033 .053±.051

anything about its class, pNB constantly chooses only two parameters which leads to better
performance than using the full model. On the other hand, for data-set Tic-Tac-Toe, pNB
chooses a large fraction of the available parameters behaving no different from cNB on all
splits.

Table 3 is the counterpart of Table 2, reporting the results of the same test runs in terms of
0/1-loss. Figures 6(b), (d) and (f) compare the classification errors of the three algorithms.
Naive Bayes seems to do relatively better under the 0/1-loss, but note that again it wins by
smaller margins than those it loses by on other data sets. The logistic models cNB and pNB
are quite comparable also in terms of classification accuracy.

7. Conclusions

The focus of this paper is in discriminative learning of models from sample data, where
the goal is to determine the model parameters maximizing the conditional (supervised)
likelihood instead of the commonly used joint (unsupervised) likelihood. In the theoretical
part of the paper we showed that for Bayesian network models satisfying a simple graph-
theoretic condition, this problem is equivalent to a logistic regression problem. Bayesian
network structures satisfying this condition include the naive Bayes model and the tree-
augmented naive Bayes model, but the condition allows also other non-trivial network
structures. It remains an interesing open problem whether the condition is also necessary
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Table 3. Percentages of correct predictions.

Data set Default NB cNB pNB

Balance Scale 42.36±4.08 90.24±3.27 93.20±3.56 92.60±3.98

BC Wisconsin∗ 65.61±7.19 97.22±1.87 95.82±2.03 95.04±2.68

Congr. Voting∗ 60.12±6.44 89.89±5.71 95.92±3.33 95.75±3.01

CRX∗ 55.65±5.35 87.36±4.30 85.98±4.93 85.11±4.12

Ecoli 43.16±10.09 85.29±8.60 85.00±8.22 82.87±8.46

Glass Ident. 31.51±8.90 69.54±11.57 69.54±11.64 65.12±13.93

HD Cleveland∗ 54.51±10.85 58.77±9.87 58.61±11.54 58.69±10.74

HD Hungarian∗ 65.59±7.89 85.34±7.02 84.41±6.56 83.22±7.67

HD Switzerland∗ 38.40±12.88 36.00±14.16 34.60±13.55 34.00±14.40

HD VA∗ 23.50±10.54 33.75±13.04 30.00±13.07 25.38±9.83

Hepatitis∗ 78.23±11.27 86.78±8.24 84.68±9.09 81.94±9.95

Iris 27.17±5.42 95.67±5.93 95.67±5.07 95.67±5.07

Mushrooms∗ 51.69±1.78 95.51±0.92 100.00 99.98±0.11

Pima Diabetes 65.26±5.73 79.16±4.69 78.51±3.89 78.15±3.61

Postoperative∗ 72.22±13.91 68.89±11.64 63.89±13.43 72.22±13.91

Tic-Tac-Toe 64.79±4.57 69.72±4.42 98.10±1.48 98.10±1.48

Waveform 33.50±1.79 82.20±1.84 86.69±1.69 86.60±1.68

Wine Rec. 37.36±12.71 99.58±1.68 99.17±2.15 99.03±2.69

so that Bayesian networks violating the condition can not be represented as any logistic
regression model.

In the empirical part of the paper we exploited the theoretical results obtained and
experimented with two discriminative models. The first model was a conditional version
of the naive Bayes model with the parameters optimized with respect to the conditional
likelihood. The second model added a heuristic procedure for selecting the set of parameters
and relevant features used. In both cases the theoretical results offer a parameterization
under which the conditional likelihood has only one global maximum so that finding the
maximizing discriminative parameters was in principle easy, although computationally
more demanding than using parameters maximizing the joint likelihood.

The empirical results were contrasted to those obtained with the standard naive Bayes
classifier. The results demonstrate that the discriminative models typically give better
predictive accuracy with respect to the logarithmic loss. What is more, the parameter
pruning algorithm introduced yields models that are much simpler than the naive Bayes
classifier or its discriminative version, without a significant decrease in the accuracy.

The fact that for many interesting Bayesian network structures, the conditional likelihood
function has only one global maximum, is practically important as it means that the dis-
criminative parameters can be found by local optimization methods. Hence there is no need
to apply computationally elaborate techniques for finding these parameters. Furthermore,
the result suggests that if one wishes to use the naive Bayes classifier as a straw man method
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to which alternative approaches are to be compared, as is often the case, one could equally
well use an even better straw man method offered by the supervised version of the naive
Bayes model.

On the other hand, the results may have implications with respect to the model selection
problem in supervised domains: many model selection criteria typically contain the data
likelihood as one of the factors of the criterion—cf. for example, the Bayesian Information
Criterion (BIC) (Schwarz, 1978) or approximations of the Minimum Description Length
(MDL) criterion (Rissanen, 1996). Therefore, it is natural to assume that the conditional
likelihood plays an important role in the supervised versions of the model selection criteria.
This aspect will be addressed more formally in our future work.

A. Appendix: Proofs

Proof (sketch) of Theorem 4: Use the rightmost network in Figure 3 with structure
X0 → X2 ← X1. Let the data be

D = ((1, 1, 1), (1, 1, 2), (2, 2, 1), (2, 2, 2)). (26)

We are interested in predicting the value of X0 given X1 and X2. The parameter defining
the distribution of X1 has no effecton conditional predictions and we can ignore it. For the
remaining five parameters we use the following notation:

θ2 := P(X0 = 2),
θ2|1,1 := P(X2 = 2 | X0 = 1, X1 = 1),
θ2|1,2 := P(X2 = 2 | X0 = 1, X1 = 2),
θ2|2,1 := P(X2 = 2 | X0 = 2, X1 = 1),
θ2|2,2 := P(X2 = 2 | X0 = 2, X1 = 2).

(27)

Idea of the Proof. In the empirical distribution based on data D, X0 is highly (even perfectly)
dependent on X1, even given the value of X2. Such a perfect dependence cannot be
represented by any of the distributions in MB since the network structure implies that
conditioned on X2, X1 and X0 must be independent. However, the parameters θ2|1,2 and
θ2|2,1 correspond to contexts that do not occur in D and this fact can be exploited: by setting
θ2|2,1 to 0 and θ2|1,2 to 0, we can represent distributions θ with P(X0 = X1 | X2 = 2, θ ) = 1
and P(X0 = X1 | X2 = 1, θ ) = 0.5 ± ε for any ε > 0. These distributions represent some
of the dependence between X0 and X1 after all and, for ε → 0, converge to the maximum
conditional likelihood. However, by setting θ ′

2|2,1 to 1 and θ ′
2|1,2 to 1, we can represent

distributions θ with P(X0 = X1 | X2 = 1, θ ′) = 1 and P(X0 = X1 | X2 = 2, θ ′) = 0.5±ε

which also converge to the maximum conditional likelihood as ε → 0. In Part I of the proof
we formalize this argument and show that with data (26), there are four non-connected
suprema of the conditional likelihood. In Part II, we sketch how the argument can be
extended to allow for non-global maxima (rather than suprema).
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Figure 7. Function g (x, y, z) given by (29) with x = 0.5.

Part I. The conditional log-likelihood can be written as

CLL(D; θB) = g(1 − θ2, θ2|1,1, θ2|2,1) + g(θ2, θ2|2,2, θ2|1,2), (28)

where

g(x, y, z) := f (x, y, z) + f (x, 1 − y, 1 − z), (29)

and

f (x, y, z) := ln
xy

xy + (1 − x)z
. (30)

Figure 7 illustrates function g(x,y,z) at x = 0.5. In (28) each parameter except θ2 appears
only once. Thus, for a fixed θ2 we can maximize each term separately. We can now apply
Lemma 3 below with α = 1/2, so that gα(x, y, z) = 2g(x, y, z) for the g defined in
(29). It follows from the lemma that the supremum of the log-likelihood with θ2 fixed is
ln(1−θ2)+ ln(θ2), which achieves its maximum value −2 ln 2 at θ2 = 0.5. Furthermore, the
lemma shows that the log-likelihood approaches its supremum when θ2|2,1 ∈ {0, 1}, θ2|1,2 ∈
{0, 1}, θ2|1,1 → θ2|2,1, and θ2|2,2 → θ2|1,2. Moreover, by item (ii) of the lemma, these
suprema are separated by areas where the log-likelihood is smaller, i.e., the suprema are
local and not connected.
Part II. To conclude the proof we still need to address two issues: (a) the four local suprema
give the same conditional log-likelihood −2 ln 2, and (b), they are suprema, not maxima
(not achieved by any θB). We now roughly sketch how to extend the argument to deal with
these issues. Concerning (a), fix some 0 < α < 1 and consider a sample D′ consisting of
N data vectors, with αN/2 repetitions of (1,1,1), αN/2 repetitions of (2,2,1), (1 − α)N/2
repetitions of (1,1,2) and (1 − α)N/2 repetitions of (2,2,2). Using Lemma 3 in the same
way as before, we find that the conditional log-likelihood has four local suprema which are
not connected. Moreover, if α �= 1/2, then at least two of these suprema are not equal.

Concerning (b), let D′′ be the sample D′ but with four extra ‘barrier’ data
vectors (1,2,1),(2,1,1),(1,2,2),(2,1,2) added. Let C ′′ be the corresponding condi-
tional log-likelihood, C ′′(θB) := C L L(D′′; θB). If one of the five parameters
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θ2, θ2|1,1, θ2|2,1, θ2|2,2, θ2|1,2 ∈ {0, 1}, then C ′′(θB) = −∞. On the other hand, C ′′ is
continuous and finite for (θ2, θ2|1,1, θ2|2,1, θ2|2,2, θ2|1,2) ∈ (0, 1)5, so C ′′ must achieve its
maximum or maxima for each N. On the other hand, for large N, the influence of the barrier
data vectors C ′′ at each individual point θB becomes negligible. Using Lemma 3, item (iii),
these two facts can be exploited to show that for large N, C ′′ has (at least) two maxima,
which, if α �= 1/2, are neither equal nor connected. We omit further details. �

Lemma 3. Define gα(x, y, z) := α f (x, y, z) + (1 − α) f (x, 1 − y, 1 − z), where
f (x, y, z) is defined as in (30). Fix some 0 < x < 1 and 0 < α < 1. With y and z
both varying between 0 and 1, we have:
(i) The global supremum of gα(x, y, z) satisfies

sup
0≤y,z≤1

gα(x, y, z) = sup{α ln x, (1 − α) ln x}.

(ii) The local suprema are at z = 0, y ↓ 0 and at z = 1, y ↑ 1:

lim
y↓0

gα(x, y, 0) = (1 − α) ln x ; lim
y↑1

gα(x, y, 1) = α ln x .

(iii) For restricted z we have:

sup0≤y,z≤1,z=y gα(x, y, z) = ln x
sup0≤y,z≤1,z<y gα(x, y, z) = (1 − α) ln x
sup0≤y,z≤1,z>y gα(x, y, z) = α ln x .

Proof Differentiating twice wrt. z gives

∂2

∂2z
gα(x, y, z) = α(1 − x)2

(xy + (1 − x)z)2
+ (1 − α)(1 − x)2

(x(1 − y) + (1 − x)(1 − z))2
,

which is always positive and the function achieves its maximum value either at z = 0 or
z = 1 or both. At these two points differentiating wrt. y yields

∂

∂y
gα(x, y, 0) = (1 − α)(x − 1)

(1 − y)(1 − xy)
;

∂

∂y
gα(x, y, 1) = α(1 − x)

y(xy + 1 − x)
. (31)

Since in the first case the derivative is always negative, and in the second case the derivative
is always positive, gα(x, y, 0) increases monotonically as y → 0, and gα(x, y, 1) increases
monotonically as y → 1. Denoting

L0 = lim
y↓0

gα(x, y, 0) = (1 − α) ln x and L1 = lim
y↑1

gα(x, y, 1) = α ln x,
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this implies that for each (y0,z0) with 0 ≤ y0, z0 ≤ 1, either L0 > gα(y0, z0) or L1 >

gα(y0, z0). Item (i) now follows. By inspecting the first derivative of gα(x, y, z) wrt. z, we
see that there exists some y∗ > 0 (depending on x and α) such that, for all 0 ≤ y <

y∗, gα(x, y, z) increases monotonically as z → 0. Since by (31), gα(x, y, 0) increases
monotonically as y → 0, we have for all (x,y) in a neighborhood of (0,0) that gα(x, y, z) <

L0. It follows that L0 is a local supremum. The proof that gα(x, y, z) < L1 in a neighborhood
of (1,1) is analogous, concluding item (ii).

The first equation of item (iii) follows upon calculating gα(x, y, y) and noting that
the result ln x is independent of y. The second equation follows since, as we already
showed, the second derivative of gα(x, y, z) wrt. z is always positive, so that, for fixed
y, sup0≤z<y gα(x, y, z) = max{gα(x, y, 0), gα(x, y, y)}. The supremum of this expression
over y is achieved for y ↓ 0 and equal to L0. The third equation is proved similarly. �

Example 4. In order to see what conditional predictions result from the maximum like-
lihood parameters for data set (26), consider, as in the proof of Theorem 4, the parameter
configuration θ̃cond = (θ2, θ2|1,1, θ2|1,2, θ2|2,1, θ2|2,2) with θ2 = 0.5, θ2|2,1 = θ2|1,2 = 0, and
θ2|1,1 = θ2|2,2 = ε with ε > 0 small. If X2 = 1, the conditional probability that X0 = X1,
given X1 and X2, is close to 0.5, whereas if X2 = 2 the conditional probability of X0 = X1 is
one. In contrast, with the unconditional maximum likelihood parameters θ̃ , the conditional
probability of X0 = X1 is always 0.5.

Suppose now data are i.i.d. according to some distribution Q which puts uniform proba-
bility 1/4 on each of the data vectors in (26). By the law of large numbers, with Q -probability
1, the unconditional ML parameters for the sample D = (x1, . . . , xN ) will converge to θ̃ ,
where as the conditional ML parameters will achieve one of their maxima at θ̃cond with ε

infinitesimally close to 0 . The arguments of the proof of Theorem 4 show that:

Dcond(Q‖P(· | θ̃ )) = ln 2 ; Dcond(Q‖P(· | θ̃cond)) = 1

2
ln 2,

with Dcond denoting the conditional KL-divergence, defined as in (7). This example shows
that there exist data generating distributions for which conditional ML is far superior to
unconditional ML.
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Notes

1. We avoid zero-parameters by introducing priors on the parameters, see Section 5.5.
2. The Markov blanket of a node Xi consists of the parents of Xi, the children of Xi, and the parents of the children

of Xi.
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3. The addition can always be done without introducing any cycles (Lauritzen, 1996), usually in several different
ways all of which are equivalent for our purposes.

4. As noted in Section 2, in that case the maximum conditional likelihood parameters may even be determined
analytically.
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