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Abstract. The natural language processing community has recently experienced a growth of interest in domain
independent shallow semantic parsing—the process of assigning a WHO did WHAT to WHOM, WHEN, WHERE,
WHY, HOW etc. structure to plain text. This process entails identifying groups of words in a sentence that represent
these semantic arguments and assigning specific labels to them. It could play a key role in NLP tasks like
Information Extraction, Question Answering and Summarization. We propose a machine learning algorithm for
semantic role parsing, extending the work of Gildea and Jurafsky (2002), Surdeanu et al. (2003) and others. Our
algorithm is based on Support Vector Machines which we show give large improvement in performance over
earlier classifiers. We show performance improvements through a number of new features designed to improve
generalization to unseen data, such as automatic clustering of verbs. We also report on various analytic studies
examining which features are most important, comparing our classifier to other machine learning algorithms in
the literature, and testing its generalization to new test set from different genre. On the task of assigning semantic
labels to the PropBank (Kingsbury, Palmer, & Marcus, 2002) corpus, our final system has a precision of 84% and a
recall of 75%, which are the best results currently reported for this task. Finally, we explore a completely different
architecture which does not requires a deep syntactic parse. We reformulate the task as a combined chunking and
classification problem, thus allowing our algorithm to be applied to new languages or genres of text for which
statistical syntactic parsers may not be available.

Keywords: shallow semantic parsing, support vector machines

1. Introduction

Automatic, accurate and wide-coverage techniques that can annotate naturally occurring
text with semantic argument structure can facilitate the discovery of patterns of information
in large text collections (Wallis & Nelson, 2001; Hearst, 1999). Shallow semantic parsing
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produces such an annotation, assigning a simple WHO did WHAT to WHOM, WHEN, WHERE,
WHY, HOW, etc. structure to sentences in text. More specifically, when presented with
a sentence, a parser should, for each predicate in the sentence, identify and label the
predicate’s semantic arguments. This process entails identifying groups of words in a
sentence that represent these semantic arguments and assigning specific labels to them.
This notion of shallow semantic parsing, or case role analysis, has a long history in the
computational linguistics literature. For a short review of this history, the reader is referred
to Jurafsky and Martin (2000).

In recent work, a number of researchers have cast this problem as a tagging problem
and have applied various supervised machine learning techniques to it (Gildea, & Jurafsky
2000; Blaheta & Charniak 2000; Gildea & Jurafsky, 2002; Gildea & Palmer 2002; Gildea
& Hockenmaier 2003; Surdeanu et al. 2003; Chen & Rambow 2003; Fleischman & Hovy
2003; Hacioglu & Ward 2003; Thompson Levy, & Manning, 2003; Pradhan et al., 2003,
2004). In this paper, we report on a series of experiments exploring this approach.

For our initial experiments, we adopted the approach described by Gildea and Ju-
rafsky (2002) and evaluated a series of modifications to improve performance. We first
replaced their statistical classification algorithm with one that uses Support Vector Ma-
chines and compared performance using the original set of features. We then evaluated the
utility of a series of additional features. All of the experiments we report were conducted
on PropBank, an approximately 300k-word corpus annotated with semantic arguments
of verbs. We evaluated the system on three main tasks: (1) identifying phrases that rep-
resent semantic arguments, (2) independently classifying phrases known to be semantic
arguments into the specific categories and (3) the combined task of identifying the argu-
ments and then assigning respective labels to them. We evaluated results using both hand-
corrected syntactic parses, and actual parses produced by a syntactic parser (Charniak,
2001).

The Gildea and Jurafsky algorithm assumes the existence of a full syntactic parse. Many
of the features for classification are derived from the parse, and the algorithm proceeds by
classifying the nodes of the parse tree. The requirement of processing by a syntactic parser
limits the applicability of the system to languages and genres of text for which syntactic
parsers are available. We reformulated the semantic role annotation task as a combined
chunking and classification problem. Retaining the same classifier, we replaced features
derived from the hierarchical structure of the syntactic parse with ones derived from a flat
chunked representation.

Finally, we conducted an experiment to test the sensitivity of both sets of features to
changes in genre of the text. Both the syntactic parser and semantic classifier were trained
on a corpus from the Wall Street Journal. We manually tagged about 400 sentences from
the AQUAINT corpus (LDC, 2002), which is a collection of text from the New York Times
Inc., Associated Press Inc., and Xinhua News Service. We evaluated the systems trained on
the WSJ corpus on the test data from AQUAINT.

Section 2 introduces the semantic annotation schema and corpora used for the task. In
Section 3 we discuss the semantic parsing system that makes use of features extracted
from a full syntactic parse, and which assumes that the semantic argument boundaries align
with those of the syntactic parser. In Section 4 we discuss in detail the system that does
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Table 1. Argument labels associated with the predicate operate (sense: work) in the PropBank corpus.

Tag Description

ARG0 Agent, operator

ARG1 Thing operated

ARG2 Explicit patient (thing operated on)

ARG3 Explicit argument

ARG4 Explicit instrument

not depend on a full syntactic parse, by formulating the semantic parsing problem as a
chunking and classification task.

2. Semantic annotation and corpora

Two corpora are available for developing and testing semantic argument annotation—
FrameNet1 (Baker, Fillmore, & Lowe, 1998) and PropBank2 (Kingsbury, Palmer, & Mar-
cus, 2002). FrameNet uses predicate specific labels such as JUDGE and JUDGEE. PropBank
uses predicate independent labels—ARG0, ARG1, etc. In this paper, we will be reporting
on results using PropBank, a 300k-word corpus in which predicate argument relations are
marked for almost all occurrences of non-copula verbs in the Wall Street Journal (WSJ) part
of the Penn TreeBank (Marcus et al., 1994). The arguments of a verb are labeled sequentially
from ARG0 to ARG5, where ARG0 is the PROTO-AGENT (usually the subject of a transitive
verb) ARG1 is the PROTO-PATIENT (usually its direct object), etc. PropBank does attempt to
treat semantically related verbs consistently. In addition to these “core arguments,” addi-
tional “adjunctive arguments,” referred to as ARGMs are also marked. Some examples are
ARGM-LOC, for locatives, and ARGM-TMP, for temporals. We will refer to these as ARGMs.
Table 1 shows the argument labels associated with the predicate operate in PropBank.

Following is an example structure extracted from the PropBank corpus. The syntax tree
representation along with the argument labels is shown in Figure 1.

[ARG0 It] [predicate operates] [ARG1 stores] [ARGM−LOC mostly in Iowa and Nebraska].

The adjunctive arguments are shown in Table 2. The PropBank annotation scheme
assumes that a semantic argument of a predicate aligns with one or more nodes in the
hand-corrected (hence TreeBank hand-corrected) parses. Although, most frequently the
arguments are identified by one node in the tree, there can be cases where the arguments
are discontinuous and more than one nodes are required to identify parts of the arguments
as in Figure 2.

Sometimes the tree can have trace nodes which refer to another node in the tree, but
do not have any words associated with them. These can also be marked as arguments.
As traces are not reproduced by a syntactic parser, we decided not to consider them in
our experiments—whether or not they represent arguments of a predicate. PropBank also
contains arguments that are coreferential.
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Table 2. List of adjunctive arguments in PropBank—ARGMS.

Tag Description Examples

ARGM-LOC Locative the museum, in Westborough, Mass.

ARGM-TMP Temporal now, by next summer

ARGM-MNR Manner heavily, clearly, at a rapid rate

ARGM-DIR Direction to market, to Bangkok

ARGM-CAU Cause In response to the ruling

ARGM-DIS Discourse for example, in part, Similarly

ARGM-EXT Extent at $38.375, 50 points

ARGM-PRP Purpose to pay for the plant

ARGM-NEG Negation not, n’t

ARGM-MOD Modal can, might, should, will

ARGM-REC Reciprocals each other

ARGM-PRD Secondary Predication to become a teacher

ARGM Bare ArgM with a police escort

ARGM-ADV Adverbials (none of the above)

Figure 1. Syntax tree for a sentence illustrating the PropBank tags.

Most of the experiments in this paper are performed on the July 2002 release of PropBank.
For these set of experiments, we treated discontinuous arguments as two instances of the
same argument. We also do not differentiate between coreferential and non-coreferential
arguments. Recently, a newer, larger, completely adjudicated Feb 2004 version of PropBank
was released. We also report our best system performance on this dataset. In this dataset, we
treat discontinuous and coreferential arguments in accordance to the CoNLL 2004 shared
task on semantic role labeling. The first part of a discontinuous argument is labeled as it
is, while the second part of the argument is labeled with a prefix “C-”appended to it. All
coreferential arguments are labeled with a prefix “R-” appended to them.

We follow the standard convention of using Section 02 to Section 21 as the training set,
Section-00 as the dev-test set and Section-23 as the test set. For the July 2002 release of
PropBank, the training set comprises about 51,000 sentences, instantiating about 132,000
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Figure 2. Syntax tree for a sentence illustrating a continuation argument.

arguments, and the test set comprises 2,700 sentences instantiating about 7,000 arguments.
The Feb 2004 release training set comprises about 85,000 sentences instantiating about
250,000 arguments and the test set comprises 5,000 sentences instantiating about 12,000
arguments.

3. Constituent-by-Constituent semantic parsing

3.1. Problem description

The problem of shallow semantic parsing can be viewed as a two step process. First, is the
process of identifying the predicate whose arguments we plan to identify. In our case, this
is any non-copula verb in the sentence. The second step is to identify and classify words
or phrases that represent the semantic arguments of that predicate. This process can be
evaluated on three distinct tasks:

• Argument Identification—This is the process of identifying parse constituents in the
sentence that represent valid semantic arguments of a given predicate.

• Argument Classification—Given constituents known to represent valid arguments of a
predicate, assign the appropriate argument labels to them.

• Argument Identification and Classification—A combination of the above two tasks,
where the system first identifies probable constituents that represent arguments of a
predicate, and then assigns them the most likely argument labels.

Figure 3. A sample sentence from the PropBank corpus.
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Each node in the parse tree can be classified as either one that represents a semantic
argument (i.e., a NON-NULL node) or one that does not represent any semantic argument
(i.e., a NULL node). The NON-NULL nodes can then be further classified into the set of
argument labels. For example, in the tree of Figure 3, the PP that encompasses “by the
mood of the people” is a NON-NULL node because it corresponds to a semantic argument—
ARG 0. The node NP that encompasses “the people” is a NULL node, since it does not
correspond to a semantic argument.

3.2. Baseline features

Our baseline system uses the same set of features introduced by Gildea and Jurafsky (2002):
predicate, path, phrase type, position, voice, head word, and verb sub-categorization. All
these features (except one—the predicate) are extracted from the syntactic parse tree of
the sentence. Some of the features, viz., predicate, voice and verb sub-categorization are
shared by all the nodes in the tree. All the others change with the constituent under consid-
eration. For evaluation purposes only predicates for which the arguments were annotated
in PropBank were considered. In the actual system, all non-copula verbs are considered as
predicates.

• Predicate: The predicate lemma is used as a feature.
• Path: The syntactic path through the parse tree from the parse constituent to the predicate

being classified.
For example, in Figure 4, the path from ARG0—“The lawyers” to the predicate “went”, is
represented with the string NP↑S↓VP↓VBD. ↑ and ↓ represent upward and downward
movement in the tree respectively.

• Phrase Type: This is the syntactic category (NP, PP, S, etc.) of the phrase corresponding
to the semantic argument.

• Position: This is a binary feature identifying whether the phrase is before or after the
predicate.

• Voice: Whether the predicate is realized as an active or passive construction. We run
a set of hand-written tgrep expressions on the syntax tree to identify passive voiced
predicates. In approximately 11% of the sentences in PropBank, the predicate had a
passive instantiation.

Figure 4. Illustration of path NP↑S↓VP↓VBD.
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• Head Word: The syntactic head of the phrase. This is calculated using a head word table
described by Magerman (1994) and modified by Collins (1999) [Appendix. A]. This
feature is not case sensitive.

• Sub-categorization: This is the phrase structure rule expanding the predicate’s parent
node in the parse tree. For example, in Figure 4, the sub-categorization for the predicate
“went” is VP → VBD-PP-NP.

3.3. Classifier

Support Vector Machines (SVMs) (Vapnik, 1998; Burges, 1998) have been shown to
perform well on text classification tasks, where data is represented in a high dimensional
space using sparse feature vectors (Joachims, 1998; Kudo & Matsumoto, 2000; Lodhi et
al., 2002). We formulate the parsing problem as a multi-class classification problem and use
a Support Vector Machine (SVM) classifier (Hacioglu et al., 2003; Pradhan et al., 2003).
However, SVMs are binary classifiers. There are two common approaches for extending
SVMs to multi-class classification problems (Allwein, Schapire, & Singer, 2000). The first
is known as the PAIRWISE approach, where a separate binary classifier is trained for each of
the class pairs and their outputs are combined to predict the classes. This approach requires
the training of N (N−1)

2 binary classifiers. The second, known as the ONE vs ALL (OVA)
approach, involves training n classifiers for a n-class problem. The classifiers are trained
to discriminate between examples of each class, and those belonging to all other classes
combined. During testing, the classifier scores on an example are combined to predict its
class label.

While some experiments have been reported that the pairwise approach outperforms the
OVA approach (Kressel, 1999), our initial experiments show better performance for OVA.
Therefore, in this paper, all results are using the OVA classification approach.

3.4. System implementation

The system can be viewed as comprising two stages—the training stage and the testing
stage. We will first discuss how the SVM is trained for this task. Since the training time
taken by SVMs scales exponentially with the number of examples, and about 90% of the
nodes in a syntactic tree have NULL argument labels, we found it efficient to divide the
training process into two stages:

1. Filter out the nodes that have a very high probability of being NULL. A binary NULL

vs NON-NULL classifier is trained on the entire dataset. A sigmoid function is fitted to
the raw scores to convert the scores to probabilities as described by Platt (2000). All
the training examples are run through this classifier and the respective scores for NULL

and NON-NULL assignments are converted to probabilities using the sigmoid function.
Nodes that are most likely NULL (probability > 0.90) are pruned from the training set.
This reduces the number of NULL nodes by about 90%. This is accompanied by a very
negligible (about 1%) pruning of nodes that are NON-NULL.
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Table 3. Baseline performance on all the three tasks using hand-corrected parses.

PROPBANK ARGUMENTS P R F1 A

Identification 91.2 89.6 90.4

Classification – – – 87.1

Identification + Classification 83.3 78.5 80.8

2. The remaining training data is used to train a OVA classifier that contains all the classes
along with the NULL class.

With this strategy only one classifier (NULL vs NON-NULL) has to be trained on all
of the data. The remaining OVA classifiers are trained on the nodes passed by the filter
(approximately 20% of the total), resulting in a considerable savings in training time.

In the testing stage, we do not perform any filtering of NULL nodes in a first pass. Instead,
all the nodes are classified directly as NULL or one of the arguments using the classifier
trained in step 2 above. We observe a slight decrease in recall if we filter the test examples
using a NULL vs NON-NULL classifier in a first pass, as we do in the training process.

For our experiments, we used TinySVM3 along with YamCha4 (Kudo & Matsumoto,
2000,2001) as the SVM training and test software. The system uses a polynomial kernel with
degree 2; the cost per unit violation of the margin, C=1; and, tolerance of the termination
criterion, e = 0.001.

3.5. Baseline system performance

Table 3 shows the baseline performance numbers on all the three tasks mentioned earlier
in Section 3.1 using the PropBank corpus with hand-corrected parses.5 The features listed
in Section 3.2 were used.

For the argument identification and the combined identification and classification tasks,
we report the precision (P), recall (R) and the F1

6 scores, and for the argument classification
task we report the classification accuracy (A). This test set and all test sets, unless noted
otherwise are Section-23 of PropBank.

3.6. System improvements

3.6.1. Disallowing overlaps. The system as described above might label two constituents
even if they overlap in words. This is a problem since we would like to have each word
to belong to at most one semantic argument as constrained by the PropBank labeling
process. We propose to choose among the overlapping constituents by retaining the one
for which the SVM has the highest confidence, and labeling the others NULL. Since we are
dealing with strictly hierarchical trees, nodes overlapping in words always have a ancestor-
descendant relationship, and therefore the overlaps are restricted to subsumptions only. The
probabilities obtained by applying the sigmoid function to the raw SVM scores are used
as the measure of confidence. Table 4 shows the performance improvement on the task of
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Table 4. Improvements on the task of argument identification and classification using hand-corrected parses.

SYSTEM P R F1

Baseline 83.3 78.5 80.8

No. overlaps 85.4 78.1 ∗81.6

identifying and labeling semantic arguments using the hand-corrected parses. In this system,
the overlap-removal decisions are taken independently of each other. For this experiment
and all other experiments where we report on performance improvement, we conduct a χ2

test of significance to determine whether the difference in number of responses over all
the confusion categories (correct, wrong, false positive and false negative) are statistically
significant at p = 0.05. All the statistically significant improvements are marked with an ∗.

3.6.2. New features. We tested several new features, two of which were obtained from
the literature—named entities in constituents and head word part of speech. The others are
novel features.

Named entities in constituents. Surdeanu et al. (2003) reported a performance improve-
ment on classifying the semantic role of the constituent by relying on the presence of a
named entity in the constituent. We expect that some of these entities such as location and
time are particularly important for the adjunctive arguments ARGM-LOC and ARGM-TMP.
We evaluated a similar use of named entities in our system. We tagged 7 named entities
(PERSON, ORGANIZATION, LOCATION, PERCENT, MONEY, TIME, DATE) using IdentiFinder
(Bikel, Schwartz, & Weischedel, 1999) and added them as 7 binary features.

Head word part of speech. Surdeanu et al. (2003) showed that adding the part of speech
of the head word of a constituent as a feature in the task of argument identification gave a
significant performance boost to their decision tree based system. We added this feature to
our system.

Verb clustering. The predicate is one of the most salient features in predicting the argument
class. Since our training data is relatively limited, any real world test set will contain
predicates that have not been seen in training. In these cases, we can benefit from some
information about the predicate by using predicate cluster as a feature. The distance function
used for clustering is based on the intuition that verbs with similar semantics will tend to
have similar direct objects. For example, verbs such as “eat”, “devour”, “savor”, will tend
to all occur with direct objects describing food. The clustering algorithm uses a database
of verb-direct-object relations extracted by Lin (1998). The verbs were clustered into 64
classes using the probabilistic co-occurrence model of Hofmann and Puzicha (1998). We
then use the verb class of the current predicate as a feature.

Generalizing the path feature. As we will see in Section 3.11, for the argument identifi-
cation task, path is one of the most salient features. However, it is also the most data sparse
feature. To overcome this problem, we tried generalizing the path in three different ways:
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Table 5. Argument labels associated with the two senses of predicate talk in PropBank corpus.

Sense 1: speak Sense 2: persuade/dissuade

Talk Tag Description Tag Description

ARG0 Talker ARG0 Talker

ARG1 Subject ARG1 Talked to

ARG2 Hearer ARG2 Secondary action

1. Compressing sequences of identical labels into one following the intuition that successive
embedding of the same phrase in the tree might not add additional information.

2. Removing the direction in the path, thus making insignificant the point at which it
changes direction in the tree, and

3. Using only that part of the path from the constituent to the lowest common ancestor of
the predicate and the constituent—“Partial Path”. For example, the partial path for the
path illustrated in Figure 4 is NP↑S.

Verb sense information. The arguments that a predicate can take depend on the word
sense of the predicate. Each predicate tagged in the PropBank corpus is assigned a separate
set of arguments depending on the sense in which it is used. Table 5 illustrates the argument
sets for the predicate talk. Depending on the sense of the predicate talk, either ARG1 or
ARG2 can identify the hearer. Absence of this information can be potentially confusing to
the learning mechanism.

We added the oracle sense information extracted from PropBank, to our features by
treating each sense of a predicate as a distinct predicate.

Head word of prepositional phrases. Many adjunctive arguments, such as temporals and
locatives, occur as prepositional phrases in a sentence, and it is often the case that the head
words of those phrases, which are always prepositions, are not very discriminative, e.g.,
“in the city”, “in a few minutes”, both share the same head word “in” and neither contain
a named entity, but the former is ARGM-LOC, whereas the latter is ARGM-TMP. Therefore,
we tried replacing the head word of a prepositional phrase, with that of the first noun phrase
inside the prepositional phrase. We retained the preposition information by appending it to
the phrase type, eg., “PP-in” instead of “PP”.

First and last word/POS in constituent. Some arguments tend to contain discriminative
first and last words so we tried using them along with their part of speech as four new
features.

Ordinal constituent position. In order to avoid false positives of the type where con-
stituents far away from the predicate are spuriously identified as arguments, we added this
feature which is a concatenation of the constituent type and its ordinal position from the
predicate.

Constituent tree distance. This is a finer way of specifying the already present position
feature.
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Constituent relative features. These are nine features representing the phrase type, head
word and head word part of speech of the parent, and left and right siblings of the constituent
in focus. These were added on the intuition that encoding the tree context this way might
add robustness and improve generalization.

Temporal cue words. There are several temporal cue words that are not captured by the
named entity tagger and were considered for addition as a binary feature indicating their
presence.

Dynamic class context. In the task of argument classification, these are dynamic features
that represent the hypotheses of at most previous two nodes belonging to the same tree as
the node being classified.

3.6.3. Alternative pruning strategies. In the baseline system architecture, we opted for
the two step training strategy mentioned in Section 3.4. To evaluate possible performance
degradation accompanying the savings in training time, we tested two other pruning strate-
gies. The three strategies in order of increased training time are:

• Two-pass hard-prune strategy, which uses a NULL vs NON-NULL classifier trained on
the entire data in a first pass. All nodes labeled NULL are filtered. And then, ONE vs ALL

classifiers are trained on the data containing only NON-NULL examples. There is no NULL

vs ALL classifier in the second stage.
• Two-pass soft-prune strategy (baseline), uses a NULL vs NON-NULL classifier trained on

the entire data, filters out nodes with high confidence (probability > 0.90) of being NULL

in a first pass and then trains ONE vs ALL classifiers on the remaining data including the
NULL class.

• One-pass no-prune strategy that uses all the data to train ONE vs ALL classifiers—one
for each argument including the NULL argument. This has considerably higher training
time as compared to the other two.

Table 6 shows performance on the task of identification and classification of PropBank
arguments. These performance numbers are computed over the reference examples, and not
just the ones that pass the filter. There is no statistically significant difference between the
two-pass soft-prune strategy, and the one-pass no-prune strategy. However, both are better

Table 6. Comparing pruning strategies on the task of argument identification and classification using hand-
corrected parses.

No overlaps

Pruning strategy P R F1

Two-pass hard-prune 84 80 ∗81.9

Two-pass soft-prune 86 81 83.4

One-pass no-prune 87 80 83.3
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than the two-pass hard-prune strategy. Our initial choice of training strategy was dictated by
the following efficiency considerations: (i) SVM training is a convex optimization problem
that scales exponentially with the size of the training set, (ii) On an average about 90% of
the nodes in a tree are NULL arguments, and (iii) We have to optimize only one classifier
on the entire data. We continued to use the two-pass soft-prune strategy.

3.7. Argument sequence information

In order to improve the performance of their statistical argument tagger, Gildea and Jurafsky
used the fact that a predicate is likely to instantiate a certain set of arguments. We use a
similar strategy, with some additional constraints: (i) argument ordering information is
retained, and (ii) the predicate is considered as an argument and is part of the sequence. We
achieve this by training a trigram language model on the argument sequences, so unlike
Gildea and Jurafsky, we can also estimate the probability of argument sets not seen in
the training data. We first convert the raw SVM scores to probabilities using a sigmoid
function. Then, for each sentence being parsed, we generate an argument lattice using the
n-best hypotheses for each node in the syntax tree. We then perform a Viterbi search through
the lattice using the probabilities assigned by the sigmoid as the observation probabilities,
along with the language model probabilities, to find the maximum likelihood path through
the lattice, such that each node is either assigned a value belonging to the PROPBANK

ARGUMENTs, or NULL.
The search is constrained in such a way that no two NON-NULL nodes overlap with

each other. To simplify the search, we allowed only NULL assignments to nodes having
a NULL likelihood above a threshold. While training the language model, we can either
use the actual predicate to estimate the transition probabilities in and out of the predicate,
or we can perform a joint estimation over all the predicates. We implemented both cases
considering two best hypotheses, which always includes a NULL (we add NULL to the
list if it is not among the top two). On performing the search, we found that the overall
performance improvement was not much different than that obtained by resolving over-
laps as mentioned earlier. However, we found that there was an improvement in the CORE

ARGUMENT accuracy on the combined task of identifying and assigning semantic argu-
ments, given hand-corrected parses, whereas the accuracy of the ADJUNCTIVE ARGUMENTS

slightly deteriorated. This seems to be logical considering the fact that the ADJUNCTIVE AR-
GUMENTS are not linguistically constrained in any way as to their position in the sequence
of arguments, or even the quantity. We therefore decided to use this strategy only for the
CORE ARGUMENTS. Although, there was an increase in F1 score when the language model
probabilities were jointly estimated over all the predicates, this improvement is not statis-
tically significant. However, estimating the same using specific predicate lemmas, showed
a significant improvement in accuracy. The performance improvement is shown in Table 7.

3.8. Best system performance

It was found that a subset of the features helped argument identification and another
subset helped argument classification. We will look at the individual feature contribution in
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Table 7. Improvements on the task of argument identification and classification using hand-corrected parses,
after performing a search through the argument lattice.

CORE ARGS/

Hand-corrected parses P R F1

Baseline w/o overlaps 90.5 87.4 88.9

Common predicate 91.2 86.9 89.0

Specific predicate lemma 91.7 87.2 ∗89.4

Table 8. Best system performance on all three tasks using hand-corrected parses.

HAND-CORRECTED PARSES

Classes Task P R F1 A

ALL Id. 95.2 92.5 93.8

ARGS Classification – – – 91.0

Id. + Classification 88.9 84.6 86.7

CORE Id. 96.2 93.0 94.6

ARGS Classification – – – 93.9

Id. + Classification 90.5 87.4 88.9

Section 3.11. The best system is trained by first filtering the most likely nulls using the best
NULL vs NON-NULL classifier trained using all the features whose argument identification
F1 score is marked in bold in Table 11, and then training a ONE vs ALL classifier using the
data remaining after performing the filtering and using the features that contribute positively
to the classification task—ones whose accuracies are marked in bold in Table 11. Table 8
shows the performance of this system.

3.9. Using automatic parses

Thus far, we have reported results using hand-corrected parses. In real-word applications,
the system will have to extract features from an automatically generated parse. To evaluate
this scenario, we used the Charniak parser (Charniak, 2001) to generate parses for PropBank
training and test data. We chose Charniak parser over Collins’ parser for two reasons: (i) At
the time the source code only for Charniak parser was available and it could be modified to
accept data from standard input required for the interactive parsing application that we were
developing, and (ii) Preliminary experiments indicated that the Charniak parser was faster
than the Collins’ parser. The predicate lemma was extracted using the XTAG morphology
database7 (Daniel et al., 1992).

In these generated parses, there are about 6% arguments whose boundaries do not
align exactly with any of the hand-generated phrase boundaries. We tried to recover
training information in such cases by automatically correcting the slight misalignment
caused by a class of parser errors—as done before by Gildea & Jurafsky (2002). In
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Table 9. Performance degradation when using automatic parses instead of hand-corrected ones.

AUTOMATIC PARSES

CLASSES TASK P R F1 A

ALL Id. 89.3 82.9 86.0

ARGS Classification – – – 90.0

Id. + Classification 84.0 75.3 79.4

CORE Id. 92.0 83.3 87.4

ARGS Classification – – – 90.5

Id. + Classification 86.4 78.4 82.2

Table 10. Best system performance on all three tasks on the latest PropBank data, using hand-corrected parses.

ALL ARGS TASK P R F1 A

HAND Id. 96.2 95.8 96.0

Classification – – – 93.0

Id. + Classification 89.9 89.0 89.4

AUTOMATIC Classification – – – 90.1

order to align the automatically generated constituents with the hand generated ones,
words were dropped one by one from the right end of a hand-generated constituent until it
matched one of the automatically generated constituents, with which it was then aligned.
Table 9 shows the performance degradation when automatically generated parses are
used.

3.10. Using latest Propbank Data

Owing to the Feb 2004 release of much more and completely adjudicated PropBank data,
we have a chance to report our performance numbers on this data set. Table 10 shows the
same information as in previous Tables 8 and 9, but generated using the new data. Owing
to time limitations, we could not get the results on the argument identification task and the
combined argument identification and classification task using automatic parses.

3.11. System analysis

Feature performance. Table 11 shows the effect each feature has on the argument classifi-
cation and argument identification tasks, when added individually to the baseline. Addition
of named entities to the NULL vs NON-NULL classifier degraded its performance. We at-
tribute this to a combination of two things: (i) there are a significant number of constituents
that contain named entities, but are not arguments of a particular predicate (the parent of
an argument node will also contain the same named entity) therefore this provides a noisy
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Table 11. Effect of each feature on the argument classification task and argument identification task, when
added to the baseline system.

Argument Argument

Classification Identification

Features A P R F1

Baseline 87.9 93.7 88.9 91.3

+ Named entities 88.1 93.3 88.9 91.0

+ Head POS ∗88.6 94.4 90.1 ∗92.2

+ Verb cluster 88.1 94.1 89.0 91.5

+ Partial path 88.2 93.3 88.9 91.1

+ Verb sense 88.1 93.7 89.5 91.5

+ Noun head PP (only POS) ∗88.6 94.4 90.0 ∗92.2

+ Noun head PP (only head) ∗89.8 94.0 89.4 91.7

+ Noun head PP (both) ∗89.9 94.7 90.5 ∗92.6

+ First word in constituent ∗89.0 94.4 91.1 ∗92.7

+ Last word in constituent ∗89.4 93.8 89.4 91.6

+ First POS in constituent 88.4 94.4 90.6 ∗92.5

+ Last POS in constituent 88.3 93.6 89.1 91.3

+ Ordinal const. pos. concat. 87.7 93.7 89.2 91.4

+ Const. tree distance 88.0 93.7 89.5 91.5

+ Parent constituent 87.9 94.2 90.2 ∗92.2

+ Parent head 85.8 94.2 90.5 ∗92.3

+ Parent head POS ∗88.5 94.3 90.3 ∗92.3

+ Right sibling constituent 87.9 94.0 89.9 91.9

+ Right sibling head 87.9 94.4 89.9 ∗92.1

+ Right sibling head POS 88.1 94.1 89.9 92.0

+ Left sibling constituent ∗88.6 93.6 89.6 91.6

+ Left sibling head 86.9 93.9 86.1 89.9

+ Left sibling head POS ∗88.8 93.5 89.3 91.4

+ Temporal cue words ∗88.6 – – –

+ Dynamic class context 88.4 – – -–

feature for NULL vs. NON-NULL classification. We then tried using this as a feature solely in
the task of classifying constituents known to represent arguments, using features extracted
from hand-corrected parses. On this task, overall classification accuracy increased from
87.1% to 88.1%. As expected, the most significant improvement was for adjunct arguments
like temporals (ARGM-TMP) and locatives (ARGM-LOC) as shown in Table 12. Since the
number of locative and temporal arguments in the test set is quite low (<10%) as compared
to the core arguments, the increase in performance on these does not boost the overall
performance significantly.
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Table 12. Improvement in classification accuracies after adding named entity information.

ARGM-LOC ARGM-TMP

P R F1 P R F1

Baseline 61.8 56.4 59.0 76.4 81.4 78.8

With named entities 70.7 67.0 ∗68.8 81.1 83.7 ∗82.4

Table 13. Performance of various feature combinations on the task of argument classification.

Features Accuracy

All 91.0

All except Path 90.8

All except Phrase Type 90.8

All except HW and HW-POS 90.7

All except All Phrases ∗83.6

All except Predicate ∗82.4

All except HW and FW and LW info. ∗75.1

Only Path and Predicate 74.4

Only Path and Phrase Type 47.2

Only Head Word 37.7

Only Path 28.0

Adding head word POS as a feature significantly improves both the argument classifi-
cation and the argument identification tasks. We tried two other ways of generalizing the
head word: (i) adding the head word cluster as a feature, and (ii) replacing the head word
with a named entity if it belonged to any of the seven named entities mentioned earlier.
Neither method showed significant improvement. Table 11 also shows the contribution
of replacing the head word and the head word POS separately in the feature where the
head of a prepositional phrase is replaced by the head word of the noun phrase inside it.
Apparently, a combination of relative features seem to have a significant improvement on
either or both the classification and identification tasks, and so do the first and last words
in the constituent.

Feature salience. In analyzing the performance of the system, it is useful to estimate
the relative contribution of the various feature sets used. Table 13 shows the argument
classification accuracies for combinations of features on the training and test set for all
PropBank arguments, using hand-corrected parses.

In the upper part of Table 13 we see the degradation in performance by leaving out one
feature at a time. The features are arranged in the order of increasing salience. Removing
all head word related information has the most detrimental effect on the performance. The
lower part of the table shows the performance of some feature combinations by themselves.
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Table 14. Performance of various feature combinations on the task of argument identification.

Features P R F1

All 95.2 92.5 93.8

All except HW 95.1 92.3 93.7

All except Predicate 94.5 91.9 93.2

All except HW and FW
and LW info.

91.8 88.5 ∗90.1

All except Path and
Partial Path

88.4 88.9 ∗88.6

Only Path and HW 88.5 84.3 86.3

Only Path and Predicate 89.3 81.2 85.1

Table 14 shows the feature salience on the task of argument identification. As opposed
to the argument classification task, where removing the path has the least effect on perfor-
mance, on the task of argument identification, removing the path causes the convergence
in SVM training to be very slow and has the most detrimental effect on the performance.

Size of training data. One important concern in any supervised learning method is the
amount of training examples required for the near optimum performance of a classifier.
To address this issue, we trained the classifier on varying amounts of training data. The
resulting plots are shown in Figure 5. We approximate the curves by plotting the accuracies
at seven data sizes. The first curve from the top indicates the change in F1 score on the
task of argument identification alone. The third curve indicates the F1 score on the task of
argument identification and classification. Both the curves run almost parallel to each other
indicating that there is constant loss due to classification errors throughout the data range.
We also plotted the precision and recall values for the combined task of identification and
classification.

Performance tuning. The expectations of a semantic parser by a real-world application
would vary considerably. Some applications might favor precision over recall, and others
vice-versa. Since we have a mechanism of assigning confidence to the hypothesis generated
by the parser, we can tune its performance accordingly. Table 15 shows the achievable
increase in precision with some drop in recall for the task of identifying and classifying
semantic arguments using the hand-corrected parses. The arguments that get assigned
probability below the confidence threshold are assigned a null label.

3.12. Comparison with similar systems.

We evaluated our system in a number of ways. First, we compare it against 4 other shallow
parsers in the literature. In comparing the systems, results are reported for the three types
of tasks mentioned earlier. Not all the systems report performance on all these tasks, so
we could only compare against tasks for which performance numbers are reported by the
different systems. This results in some of the cells in the comparison tables being empty.
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Figure 5. Learning curve for the task of identifying and classifying arguments using hand-corrected parses.

The Gildea and Palmer (G&P) system. Gildea & Palmer (2002) use the same features
used by Gildea and Jurafsky (2002), which are also our initial set of features. Two of the
features–Head Word and Path—are found to be the most discriminative for argument iden-
tification. Maximum likelihood probabilities that the constituent is an argument, based on
these two features–P(is argument|Path, Predicate) and P(is argument|Head, Predicate),
are interpolated to calculate the probability that the constituent under consideration repre-
sents an argument.

In the second step, the constituents that are retained are assigned a normalized probability
that is calculated by interpolating distributions conditioned on various sets of features
using a backoff lattice. The most probable argument is selected. They report results on the
December 2001 release of PropBank.

Table 15. Precision/Recall table for the combined task of argument identification and classification using
hand-corrected parses.

Confidence Threshold P R

0.10 88.9 84.6

0.25 89.0 84.6

0.50 91.7 81.4

0.75 96.7 65.2

0.90 98.7 32.3

0.95 98.5 12.3
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The Surdeanu et al. system. Surdeanu et al. (2003) report results for a system that uses
the same features as Gildea and Jurafsky (2002) (Surdeanu System I). They then report
performance gains by adding additional features (Surdeanu System II) All the feature
are combined with a decision tree classifier—C5 (Quinlan, 1986, 2003). Using the built-
in boosting capabilities of this classifier show a slight improvement on their baseline
performance. They use the July 2002 release of PropBank.

The additional features used by Surdeanu System II are:

• Content Word: This is a lexicalized feature that selects the most informative word from
a phrase using some heuristics.

• Part of Speech of the Content Word
• Named Entity class of the Content Word
• Boolean Named Entity Flags—The value of these features are set to true or false

depending on whether the corresponding named entity is present in the phrase.
• Phrasal verb collocations—This feature comprises frequency statistics related to the

verb and the immediately following preposition.

The Gildea and Hockenmaier (G&H) system. This system is similar to the Gildea and
Palmer (2002) system, but uses features extracted from a CCG grammar, which is a depen-
dency grammar, instead of a phrase structure grammar. The features used are:

• Path: This was replaced with the concatenation of the category that the head word
belongs to, the slot that it fills and an indicator of whether the word is a categorical
functor. When the category information is unavailable, the path through the binary tree
from the constituent to the predicate is used.

• Phrase type: This is the maximal projection of the PropBank argument’s head word in
the CCG parse tree.

• Voice
• Head Word

Gildea and Hockenmaier (2003) report on both the core arguments and the adjunctive
arguments on the November 2002 release of the PropBank, which contains approximately
20% more data, so we cannot directly compare to their system. However, since 80% of the
data is shared by the two system, and we use the same test set, a comparison is valuable.
We will refer to this as “G&H System I”.

The Chen and Rambow (C&R) system. Chen and Rambow (2003) also report results using
decision tree classifier C4.5 (Quinlan, 1986). They report results using two different sets
of features: (i) Surface syntactic features much like the Gildea and Palmer (2002) system,
(ii) Additional features that result from the extraction of a Tree Adjoining Grammar (TAG)
from the Penn TreeBank. They chose a Tree Adjoining Grammar because of its ability to
address long distance dependencies in text. The additional features they introduced are:

• Supertag Path: This is the same as the feature “Path” that we saw earlier, but derived
from a TAG rather than from a CFG.
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Table 16. Argument classification accuracies using same features but different classifiers.

System Accuracy

SVM 87

Decision tree (Surdeanu et al., 2003) 79

Lattice backoff (Gildea & Palmer, 2002) 77

• Supertag: This can be the tree-frame corresponding to the predicate or the argument.
• Surface syntactic role.
• Surface sub-categorization frame.
• Deep syntactic role.
• Deep sub-categorization frame.
• Semantic sub-categorization frame.

We compare results to the system based on surface syntactic features (C&R System I),
and the one that uses deep syntactic features (C&R System II). Unlike all the other systems
we discuss, they also report results on core arguments (ARG0-5). Furthermore, owing to the
absence of some semantic annotations in the Penn TreeBank, they could extract features
for about 87% of the test set. Their numbers are not therefore directly comparable to ours,
but since 87% of the test sets are overlapping, a rough comparison is still valuable.

3.13. Comparing classifiers.

Since two systems, in addition to ours, report results using the same set of features on the
same data, we can directly assess the influence of the classifiers. Gildea & Hockenmaier,
(2003) system estimates the posterior probabilities using several different feature sets and
interpolate the estimates, while Surdeanu et al., (2003) use a decision tree classifier. Table
16 shows a comparison between the three systems for the task of argument classification.
Keeping the same features and changing only the classifier produces a 8% absolute increase
in performance on the same test set.

3.14. Argument identification.

Table 17 compares results on the argument identification task. As in the argument classifi-
cation task, we see that the SVM system performs better than “Surdeanu System I” using
the same set of features. It also outperforms the “Surdeanu System II”, which includes
some more informative features.

3.15. Argument classification.

Table 18 compares the argument classification accuracies of the systems.
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Table 17. Argument identification.

Hand Automatic

Classes System P R F1 P R F1

ALL SVM 95 92 94 89 83 86

ARGS Surdeanu System II – – 89 – – –

Surdeanu System I 85 84 85 – – –

Table 18. Argument classification.

HAND AUTOMATIC

Classes System Accuracy Accuracy

ALL SVM 91 90

ARGS G & P 77 74

Surdeanu System II 84 –

Surdeanu System I 79 –

CORE SVM 93.9 90.5

ARGS C & R System II 93.5 –

C & R System I 92.4 –

Table 19. Argument identification and classification.

Hand Automatic

Classes System P R F1 P R F1

ALL SVM 89 85 87 84 75 79

ARGS G & H System I 76 68 72 71 63 67

G & P 71 64 67 58 50 54

CORE SVM System 90 87 89 86 78 82

ARGS G & H System I 82 79 80 76 73 75

C & R System II – – – 65 75 70

3.16. Argument identification and classification.

Table 19 shows the results for combined argument identification and classification task.

4. Word-by-Word semantic parsing

4.1. Problem description

In the Constituent-by-Constituent (C-by-C) classification approach the candidate chunks
are provided by the full syntactic parse of a sentence. So the segmentation process is
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performed separately from the classification task. In this method the classification is done
on constituents. It is also possible to classify at the word-level. In Ramshaw & Marcus,
(1995), chunking was proposed as a tagging task. Here, each word in a sentence is labeled
with a tag; I means that the word is inside a chunk, O means that the word is outside a
chunk, and B means that the word is the beginning of a chunk. Using a variant of IOB
representation, known as IOB2 (Sang & Veenstra, 1999), the words in the semantic chunks
for the following example can be tagged as shown:

[ARG1I] ’m [predicateinspired] by [ARG0the mood of the people].
[B−ARG1 I] [O ’m] [O inspired] [O by] [B−ARG0 the][I−ARG0 mood] [I−ARG0 of] [I−ARG0

the] [I−ARG0 people]

In this scheme, N arguments would result in 2 ∗ N + 1 classes. Experiments using this
method have been reported in Hacioglu and Ward (2003) and Hacioglu et al. (2003).

4.2. Features

The features are very similar to the features used in the C-by-C system, except the features
are derived for each word, not for each constituent. The features are

• Predicate: The verb in focus.
• Part of Speech: The part-of-speech category of the word.
• Phrase Position: The position of the word in a phrase based on IOB representation (e.g.

B-NP, I-NP, O etc.)
• Word Position: The position of the word with respect to the predicate. It has two values

as “before” and “after”.
• Voice: Indicates whether the sentence is in active or passive form with respect to the

predicate.
• Path: This is same as the path feature used in the C-by-C system, except the path is

relative to the word and not the constituent.

For each word to be tagged, a set of features is created from a fixed size context that
surrounds the word. A 5-word sliding window centered at the current word defines the
set of features. In addition to the above features, we also use semantic IOB tags that have
already been assigned to the words that precede the word in focus and appear in the context.
Figure 6 clarifies the notion of context and illustrates the features used. It should be noted
that some of the features attached to the words are sentence-level features.

4.3. System implementation

As in the C-by-C classification framework we have used SVMs in the ONE vs ALL setup.
All SVM classifiers are realized using the TinySVM with the polynomial kernel of degree 2
and the general purpose SVM based chunker YamCha as distributed, without any changes.
Figures 8 and 9 illustrate two implementations for feature extraction. As in the baseline
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Figure 6. Illustration of the context and the features used to classify a word—Chunker-1

Figure 7. Illustration of the context and the features used to classify a word—Chunker-2.

system, the first system extracts features from a full syntactic parser. Even though clas-
sification is done on a word-by-word basis, features are extracted from a full parse. This
system is referred to as W-by-W Chunker-1. In the second system, the full-syntactic parser
is replaced by a part of speech tagger followed by a syntactic phrase chunker. The POS
tagger and syntactic chunker were both implemented using YamCha. They were trained
on Sections 15 through 18 of the Penn TreeBank. The POS tagger used the words, word
prefixes/suffixes, word types (e.g numeric, capitalized etc.) and previous tag decisions as
features. The syntactic chunker used the words, POS tags and previous chunk decisions
as features. In both systems, the features were created using a sliding window of size 5
centered at the word to be tagged. The second system is referred to as W-by-W Chunker-2.
As mentioned earlier, the motivations for using a chunking parser instead of a full syntactic
parser are: (i) full parsing is computationally expensive than chunking, (ii) chunkers can be
developed more easily for new languages and genre of text. The features created for these
two systems are shown in Figure 7 for the example exhibited in Figure 6. There are slight
differences in POS and phrase position features and major differences in the path features.
The path feature for W-by-W Chunker 2 is uni-directional (from the word in focus to the
predicate) and created using the flat structure:

[NP (PRP I) ] [VP (VBP ’m) (VBN inspired) ] [PP (IN by) ] [NP (DT the) (NN mood) ] [PP (IN

of) ] [NP (DT the) (NNS people) ]

The flat path is defined as a chain of phrase chunk labels terminated with the POS
tags of the word in focus and predicate. Consecutive chunks with identical labels are
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Figure 8. Chunker-1 architecture.

Figure 9. Chunker-2 architecture.

collapsed into one. For example, the path from people to the predicate inspired is
NNS→NP→PP→NP→PP→VP→VBN.

We are experimenting with both implementations to determine trade-offs between cov-
erage, efficiency and accuracy. We present some preliminary results in the next section that
compare the accuracy of Chunker-2 to Chunker-1, and also we compare their performance
to the C-by-C parser described in Section 3.

4.4. Experimental results

Since training SVM on the entire PropBank corpus takes a long time, these experiments
were carried out by training both C-by-C and W-by-W systems on 10,000 randomly selected
sentences from the training data. As always, Section-23 was used as the test set. We used
the Charniak parser to obtain syntactic parse trees. The results are shown in Table 20.

The entire training set has approximately 1.5 million words. Training SVMs using such
data is still prohibitive. Unfortunately, this kept us from carrying out extensive experiments
with the W-by-W approach using the entire training set, additional features and other system
settings.

When features are derived from a flat chunked parse, instead of a syntactic parse tree, we
observed a significant drop in performance. The major difference between these systems
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Table 20. Comparison of C-by-C and W-by-W classifiers.

System P R F1

C-by-C 80.6 67.1 73.2

Chunker-1, W-by-W 70.7 60.5 65.2

Chunker-2, W-by-W 66.2 54.9 60.0

Table 21. Comparison of W-by-W classifiers without the path feature

System P R F1

Chunker-1, W-by-W 60.4 51.4 55.6

Chunker-2, W-by-W 59.8 50.8 54.9

is the derivation of the path feature. To further illustrate the effect, we ran both systems
without using the path feature. These results are shown in Table 21. As can be seen the
performance of these systems is very similar, indicating the salience of the path feature.
These experiments have also shown that the performance obtained by the W-by-W paradigm
fell short of that obtained by the C-by-C paradigm. We think that an important step towards
bridging this gap would be to adopt a two pass approach in the W-by-W paradigm, analogous
in the C-by-C paradigm. That is, first chunk the sentence into arguments (NON-NULLs) and
non-arguments(NULLs), and then label the NON-NULLs with the respective arguments. We
are currently working along those directions to improve the performance.

5. Generalization to a new domain

Thus far, all experiments have been tested on the same genre of data that they have been
trained on. In order to see how well the features transfer to a new domain, we used both
the W-by-W and the C-by-C classifiers trained on PropBank to test data drawn from the
AQUAINT corpus (LDC, 2002). We annotated 400 sentences from the AQUAINT corpus
with PropBank arguments. This is a collection of text from the New York Times Inc.,
Associated Press Inc., and Xinhua News Service (PropBank by comparison is drawn from
Wall Street Journal). The results of the C-by-C classifier are shown in Table 22.

There is a significant drop in the precision and recall numbers for the AQUAINT test set
(compared to the precision and recall numbers for the PropBank test set which were 84%
and 75% respectively). One possible reason for the drop in performance is relative coverage
of the features on the two test sets. The head word, path and predicate features all have
a large number of possible values and could contribute to lower coverage when moving
from one domain to another. Also, being more specific, they might not transfer well across
domains. All the other features are less likely to have been a source of the problem since
they can take small enough values that the amount of training data is sufficient to estimate
their statistics.

Table 23 shows the coverage for features on the PropBank test set. The tables show
feature coverage for constituents that were Arguments and constituents that were NULL.
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Table 22. Performance on the AQUAINT test set.

CLASSES TASK P R F1 A

ALL Id. 75.8 71.4 73.5 –

ARGS Classification – – – 83.8

Id. + Classification 65.2 61.5 63.3 –

CORE Id. 88.4 74.4 80.8 –

ARGS Classification – – – 84.0

Id. + Classification 75.2 63.3 68.7 –

Table 23. Feature Coverage on PropBank test set using parser trained on PropBank training set.

Features Arguments Non-Arguments

Predicate, Path 87.6 2.9

Predicate, Head Word 48.9 26.5

Cluster, Path 96.3 5.0

Cluster, Head Word 83.8 60.1

Path 99.1 15.1

Head Word 93.0 90.6

Table 24. Coverage of features on AQUAINT test set using parser trained on PropBank training set.

Features Arguments Non-Arguments

Predicate, path 62.1 4.7

Predicate, head word 30.3 17.4

Cluster, path 87.2 10.7

Cluster, head word 65.8 45.4

Path 96.5 29.3

Head word 84.6 83.5

About 99% of the predicates in the AQUAINT test set were seen in the PropBank training
set. Table 24 shows coverage for the same features on the AQUAINT test set. We believe that
the drop in coverage of the more predictive feature combinations explains part of the drop
in performance. We also ran the Word-by-Word chunking algorithms on the AQUAINT
test set. The results are shown in Table 25. This would compare to the Table 20. We
also observed a degradation in the F1 score for this condition, from 65.2% to 52.2% for
Chunker-1 and 60.0% to 45.7% for Chunker-2.
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Table 25. Identification and classification performance of the chunking systems on the AQUAINT test set.

Classes System P R F1

All Chunker-1, W-by-W 54.2 50.4 52.2

Arguments Chunker-2, W-by-W 49.5 42.4 45.7

6. Conclusions

We have described an algorithm which significantly improves the state-of-the-art in shallow
semantic parsing. Like previous work, our parser is based on a supervised machine learning
approach. It achieves the best published performance on the task of identifying and labeling
semantic arguments in PropBank. The performance of the parser was analyzed along several
dimensions: the statistical classifier used, features used, the architecture of the system and
the genre of the text. Use of an SVM classifier, compared to the backoff algorithm used
by Gildea and Jurafsky, resulted in a significant performance improvement (8% absolute)
using the same set of features for classification. New features were added to the system
and feature performance was analyzed. We found that path is the most salient feature for
argument identification, but is difficult to generalize. Only the partial-path generalization
seemed to have any benefit. For the task of classification, head word and predicate were
the most salient features, but may be difficult to estimate because of data sparsity. Adding
features that are generalizations of the more specific features (named entities, head word
part of speech and verb clusters) resulted in some improvement.

We reported on a series of experiments using a different architecture which does not
require a syntactic parser. This architecture performed significantly worse than our parser-
based architecture, but may offer advantages for new languages or genres in which syntactic
parsers are not available.

In analyzing the portability of the system to new genres of data, we found a significant
drop in performance for a text source different than the one the system was trained on.
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Notes

1. http://www.icsi.berkeley.edu/∼framenet/
2. http://www.cis.upenn.edu/∼ace/
3. http://cl.aist-nara.ac.jp/∼taku-ku/software/TinySVM/
4. http://cl.aist-nara.ac.jp/∼taku-ku/software/yamcha/
5. We report on hand-corrected parses because it is easier to compare with results from the literature; we will

also report on performance using an actual errorful parser.
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6. F1 = 2×P×R
P+R

7. ftp://ftp.cis.upenn.edu/pub/xtag/morph-1.5/morph-1.5.tar.gz
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