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Abstract. This paper presents a study of using neural probabilistic models in a syntactic based language model.
The neural probabilistic model makes use of a distributed representation of the items in the conditioning history,
and is powerful in capturing long dependencies. Employing neural network based models in the syntactic based
language model enables it to use efficiently the large amount of information available in a syntactic parse in
estimating the next word in a string. Several scenarios of integrating neural networks in the syntactic based
language model are presented, accompanied by the derivation of the training procedures involved. Experiments
on the UPenn Treebank and the Wall Street Journal corpus show significant improvements in perplexity and
word error rate over the baseline SLM. Furthermore, comparisons with the standard and neural net based N-gram
models with arbitrarily long contexts show that the syntactic information is in fact very helpful in estimating the
word string probability. Overall, our neural syntactic based model achieves the best published results in perplexity
and WER for the given data sets.
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1. Introduction

Statistical language models are widely used in fields dealing with speech or natural lan-
guage, speech recognition, machine translation, and information retrieval to name a few.
For example, in the accepted statistical formulation of the speech recognition problem
(Jelinek, 1998), the recognizer seeks to find the word string:

Ŵ = arg max
W

P(A|W ) P(W ) (1)

where A denotes the observed speech signal, P(A|W) is the probability of producing A when
W is spoken, and P(W) is the prior probability W was spoken.

The role of a statistical language model is to assign a probability P(W) to any given word
string W = w1w2 . . . wn . This is usually done in a left-to-right manner by factoring the
probability:

P(W ) = P(w1w2 . . . wn) = P(w1)
n∏

i=2

P
(
wi |W i−1

1

)
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where the sequence of words w1w2 . . . w j is denoted by W j
1 . Ideally the language model

would use the entire history W i−1
1 to make its prediction for word wi. However, data

sparseness is a crippling problem with language models; hence all practical models employ
some sort of equivalence classification of histories W i−1

1 :

P(W ) ≈ P(w1)
n∏

i=2

P
(
wi |�

(
W i−1

1

))
(2)

where �(W i−1
1 ) denotes the class of the word string (w1 . . . wi−1). Research in language

modeling is concerned with finding efficient and yet powerful classification schemes.
The most widely used language models are the so called N-gram models, where a word

string W i−1
1 is classified into word string W i−1

i−N+1. N-grams models perform surprisingly
well given their simple structure, but lack the ability to use longer histories for word
prediction (locality problem), and they still suffer from severe data sparseness problems.

The Structured Language Model (SLM) aims at overcoming the locality problem by
constructing syntactic parses of a word string and using the information from these partial
parses to predict the next word (Chelba & Jelinek, 2000). In this way the SLM also
addresses one other shortcoming of the N-gram model (the use of surface lexical words
only) by using information from the deeper syntactic structures of the word strings. The
Structured Language Model has shown improvement over N-gram models in perplexity as
well as in reducing speech recognizer’s word error rate (Chelba & Jelinek, 2000).

Another approach in tackling data sparseness is the use of a distributed representation for
words. It has been shown that this approach, while using a neural network as the probability
function estimator, leads to significantly improved results (Bengio et al., 2003). The main
advantage of the neural network based model is that unlike the N-gram model, it shows
great capability of using long and enriched probabilistic dependencies.

In this paper we investigate neural network models for the Structured Language Model.
In a given syntactic parse of a sentence, there is a large amount of information that one
would like to use in estimating the probability for the given word string. A neural network
model serves as a good probabilistic model for the SLM because of its capability of using
long and enriched dependencies. We will present several scenarios of integrating the neural
network models in the SLM framework, and derive their corresponding training algorithms.
Experiments show that our models achieve a significant reduction in both perplexity and
word error rate (WER) over the baseline models.

The paper is organized as follows; Section 2 gives an introduction to the neural proba-
bilistic model. In Section 3 we discuss the Structured Language Model and in Section 4 we
present the different scenarios of integrating the neural net model into the SLM. Finally,
experimental results are presented in Section 5.

1.1. Relation to previous work

Most of the research in language modeling is focused on studying ways of using information
from a longer context span than what is usually captured by N-gram language models. The
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idea of using syntactical structure of a sentence in estimating its probability has been
investigated in detail (Chelba & Jelinek, 2000; Charniak, 2001; Roark, 2001; Van Uystel,
Van Compernolle, & Wambacq, 2001). These models overcome the limitations of the N-
gram models by using longer contexts as well as the syntactical structure of the word string.
Furthermore, efforts have been made to use better smoothing techniques as well as better
probabilistic dependencies for the Structured Language Model (Kim, Khudanpur, & Wu
2001; Chelba & Xu, 2001; Xu, Chelba, & Jelinek, 2002).

The idea of learning a distributed representation for symbolic data and concepts has been
present in the neural network community for a long time (Hinton, 1986). In fact, distributed
representations and neural networks were used in Elman (1991) for finding grammatical
structure; however, the results were limited to artificial and over-simplified problems.

The idea of using neural networks for natural language processing has been also studied
earlier (e.g. Miikkulainen & Dyer, 1991). Some have argued that the neural networks
are not computationally adequate to learn the complexities of natural language (Fodor &
Pylyshyn, 1988). In Xu and Rudnicky (2000), neural networks were used for the specific task
of language modeling, however the networks didn’t contain any hidden units and the input
was limited to one word only; therefore the capability of the model in using more complex
structures and longer contexts was not examined. Recent work has successfully used the
neural network models in large-scale language modeling problems (Bengio, Ducharme, &
Vincent, 2001; Bengio et al., 2003).

Neural networks have also been used in learning the grammatical structure in natural
language. In Lawrence, Giles, and Fong (1996), neural net models were trained and used
to determine the grammatical correctness of a given sentence. Similarly, a connectionist
parser was designed and investigated by Ho and Chan (1999). An improved recurrent
neural network has been used by Henderson (2000, 2003) to model a left-corner parser and
has achieved state-of-the-art results. Similar to our model, the improved recurrent network
employs a prediction step and uses an energy function (softmax) for probability estimation.
Moreover, the recurrent network makes it possible to use an unbounded parse history by
learning a finite representation of the past input.

It should be mentioned here that distributed and vector-space representations have also
been used outside the connectionist formalism domain. For example in information retrieval
area, feature vectors are learned for words and documents and the distance between these
vectors is used as the basis for query search (Deerwester et al. , 1990). The same idea has
been successfully applied to the statistical language modeling task, showing improvement
over N-gram models (Bellegarda, 1997).

The function of the neural network we use in this paper is analogous in form to a
Maximum-Entropy model (Berger, Pietra, & Pietra, 1996) (see Eq. (6)). However, in the
Maximum-Entropy approach the features are chosen by the designer and are kept unchanged
during training. A statistical parser based on maximum-entropy models has been developed
by Ratnaparkhi (1997) and has shown state-of-the-art performance in parsing accuracy.

This paper brings together and extends the results from previous work regarding the use of
neural network models for the Structured Language Model (Emami, Xu, & Jelinek, 2003;
Xu, Emami, & Jelinek, 2003; Emami, 2003; Emami & Jelinek, 2004). The relationship
between different previously used approaches are explained in detail and the advantages
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and disadvantages, as well as the relative performance of each training method is discussed
thoroughly.

2. Neural probabilistic model

The fundamental problem of language modeling, as well as of any other task involving
discrete random variables with large sets of allowed values, is the curse of dimensionality.
For example, in the case of a language model with a vocabulary of size |V |, the number of
parameters of an N-gram model is |V |N−1(|V |− 1); which amounts to an order of 1023 free
parameters for typical values of |V | = 50, 000 and N = 5. Since there is never enough
data to train models of this size, it is necessary to use some equivalence classification of
the word strings preceding the word to be predicted (Eq. (2)).

In dealing with the curse of dimensionality for discrete random variables we must
recognize that the probability function has to account for every possible combination of
the random variables involved. There is no inherent property to help with the probability
estimation of unseen events based on the occurrence of observed “similar” samples. Hence,
for a discrete probability model a large number of free parameters need to be estimated. In
contrast, estimation is easier in the case of a continuous probability density function, due
to the smoothness in the conditioning variables. Because of this, the continuous probability
models have in general much fewer parameters than their discrete counterparts.

The main idea behind distributed representation is to map random variables from the
original high-dimensional discrete space into a low-dimensional continuous one. As a
result, the estimation problem would not be anymore as severely crippled by the curse of
dimensionality associated with high-dimensional discrete random variables. Consequently,
if the assumption can be made that the function (probability) to be estimated has local
smoothness properties, any standard learning technique (such as a multi-layered neural
network) can be used to estimate the function.

The model achieves generalization because “similar” word strings are assumed to have
similar (close) representations, and because of the smoothness property, small changes in
the representations will induce only a small change in the estimated probability. Thus the
presence of any particular event in the training data will increase the probability of not only
that event, but also of a combinatorial number of “similar” (neighboring) events.

Clearly the choice of the mapping discussed above is very important since the perfor-
mance of the function estimation is limited by the mapping used at its input. Furthermore the
distributed representations should fulfill the smoothness assumption which is the underlying
concept of the approach.

The concept of distributed representation of words, using a neural network as the function
estimator, has been successfully used to implement a large scale language model (Bengio,
Ducharme, & Vincent, 2001). Their approach uses simultaneous learning of the distributed
representations (feature vectors) and the neural network parameters. The word represen-
tations are learned just on the basis of how they can help with the estimation task. In this
paper we use the approach and the architecture proposed in Bengio, Ducharme, and Vincent
(2001), with modifications to suit our particular application.
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Figure 1. The neural network architecture.

In short, our model can be described as follows: a feature vector is associated with each
token in the input vocabulary—i.e., the set of tokens that can be used for prediction. The
probability of the next word is then computed by a neural network that takes as its input the
concatenation of all input feature vectors. This probability is produced for every possible
next word belonging to the output vocabulary. In general, the two vocabularies can be
separate and different from each other. The feature vectors and the parameters of the neural
network are learned simultaneously during training.

2.1. Model detail

The conditional probability function P(y|x1, x2, . . . , xm) where xi and y are from the input
and output vocabularies Vi and Vo respectively, is estimated in two parts:

1. A mapping that associates with each word in the input vocabulary Vi a real valued vector
of fixed dimension.

2. A conditional probability function which takes as its input the concatenation of the
feature vectors of the input items x1, x2, . . . , xm . The function estimates a probability
distribution (a vector) over Vo, the ith element being the conditional probability of the
ith member of Vo. This probability function is realized by a standard multi-layer neural
network.

The training data consist of a sequence of events x1, x2, . . . , xm → y that are presented
to the network one at a time. In all the experiments in this paper we use a standard fully
connected multi-layered neural network with one hidden layer.

2.1.1. Probability computation: Forward pass. The model architecture is given in Figure
1. The weights preceding the hidden and output layer are denoted by L and S respectively.
Following the output layer is a softmax function ensuring that the final outputs are properly
normalized probabilities.

Presented with an event x1, x2, . . . , xm → y the neural network computes the conditional
probability P(y|x1, x2, . . . , xm). As the first step, each of the input variables xk is mapped to
its feature vector �f (xk) using a simple table lookup. The input to the network then consists
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of the ordered concatenation of the feature vectors:

F : Vi → R
d , xk →F �f (xk) k = 1, 2, . . . , m (3.1)

�f = ( �f (x1), �f (x2), . . . , �f (xm)) (3.1)

where d is the dimensionality of the feature vectors and F is the actual mapping.
The hidden layer takes this input and after a linear transformation, passes it through a

standard non-linear sigmoid (tanh) function:

gk = tanh

(
m·d∑
j=1

f j Lk j + B1
k

)
k = 1, 2, . . . , h (4)

where gk is the kth output of the hidden layer, fj is the jth input to the network, Lkj and B1
k

are weights and biases of the hidden layer respectively, and h is the number of hidden units.
The output of the hidden layer constitutes the input to the output layer, which transforms

it linearly before passing it through the softmax layer:

zk =
∑

j

g j Sk j + B2
k k = 1, 2, . . . , |Vo| (5)

pk = ezk∑
j ez j

k = 1, 2, . . . , |Vo| (5)

where the weights and biases of the output layer are denoted by Skj and B2
k respectively. The

softmax function (Eq. (6)) ensures that the outputs are properly normalized; and in general
is well suited for a network trained to learn a probability distribution (Bridle, 1989). In a
sense, the softmax is a generalization of the logistic function to multiple outputs. It also
has very convenient mathematical properties; its gradient is easy to compute and hence is
readily integrated into the back-propagation algorithm.

The kth output of the neural network, corresponding to the kth element yk of the output
vocabulary, is the model’s estimate of the sought conditional probability, that is pk =
P(y = yk | x1, . . . , xm).

The parameters of the model are the feature vectors (table F), weight matrices L and S,
and biases B1 and B2.

2.1.2. Training: Backward pass. Training is achieved by searching for parameters �, the
weights and biases of the neural network and the values of feature vectors, that maximize
the penalized log-likelihood of the training corpus:

L = 1

n

∑
t

log P
(
yt |xt

1, ..., xt
m ; �

) − R(�) (7)
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where P(yt |xt
1, . . . , xt

m) is the probability of the t th word, n is the training data size, and
R(�) is a regularization term, which in our case is the L2 norm squared of hidden and
output layer weights (excluding biases) times a factor:

R(�) = ω ·
( ∑

i, j

L2
i j +

∑
i, j

S2
i j

)
(8)

with ω being the weight decay factor. Regularization is used to penalize solutions with very
large parameters (weights).

Stochastic gradient descent is used to train the model; the training is carried out sequen-
tially with the parameters being updated after presentation of each event to the network.
Sequential (as opposed to batch) training is specially helpful in the case of language models
where the data is redundant, i.e. the data set contains multiple copies of the same event. The
sequential training is better able to take advantage of this redundancy because each of the
identical events is presented, and the model’s parameters are updated, one at a time. The
algorithm is made stochastic by randomizing (in batches) the order of the events at the start
of each iteration. This makes the search in weight space stochastic, making the algorithm
less likely to be trapped in a local minimum.

For each event (x1, . . . , xm → y), each parameter θ is increased by a factor of the
gradient of the objective function L to that parameter:

θ ← θ + η
∂(log P(y|x1, ..., xm) − ω · θ2)

∂θ
(9)

where η is the learning rate. The weight decay is used only if θ is a hidden or output layer
weight.

Using standard back-propagation (LeCun, 1985; Rumelhart, Hinton, & Williams, 1986;
Werbos, 1974) it is straightforward to compute the gradient for every parameter of the
model. Starting at the output of the network �y (where gradient computation is trivial), the
gradients in each layer can easily be computed using the gradients in the succeeding layer.
Consequently all the parameter updates in the network are found by recursively computing
the gradients backwards, starting from the output and going through all the layers, finishing
at the feature vectors. Note that for any given event (x1, . . . , xm → y), only the feature
vectors of the involved variables (x1, . . . , xm) are updated.

2.2. Model complexity

The parameters of the neural network model consist of the feature vectors plus the hidden
and output layer weights and biases. During training the time taken by each event is the
time spent doing a full forward pass followed by a full backward phase (back-propagation).
During evaluation though, the time needed for each event is the same as a forward phase
pass only.

2.2.1. Number of parameters. The parameters can be broken into three parts:
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• feature vectors |Vi | vectors, each of dimension d, for a total of (d · |Vi |) parameters.
• hidden layer (m · d × h) matrix and h biases for a total of ((m · d + 1) · h)

parameters.
• output layer (h × |Vo|) matrix and |Vo| biases for a total number of parameters of

((h + 1) · |Vo|).

So the total number of parameters of the network is:

(d · |Vi | + (m · d + 1) · h + (h + 1) · |Vo|) (10)

We should note here that in a general setting, it is possible for each input variable to
have its own separate vocabulary and moreover, its own separate feature vectors (mapping)
for the common items in the vocabularies. However, unless there is a large amount of
training data available, it is better to tie the feature vectors by using a single mapping for
all the input variables. Not doing so would result in a considerable increase in the number
of free parameters of the model. Note that even when features are tied, the neural net is
still able to distinguish among different input variables by tuning the hidden layer weights
accordingly.

2.2.2. Time complexity. Evaluation Presenting the network with an event the forward pass
is broken into three parts:

• input layer. A simple table look-up of m features, each a d-dimensional vector; (m · d)
operations

• hidden layer. Matrix-vector multiplication plus addition of the biases and passing through
the non-linear function (Eq. (4)) for a total of (h · m · d + 2h) operations

• output layer. Matrix-vector multiplication plus addition of the biases (Eq. (5)) and pass-
ing through the softmax layer – 2|Vo|ops (Eq. (6))—for a total of (|Vo| · h + 3|Vo|)
operations

So the total number of operations for evaluation of each event is:

(
d · m · (h + 1) + 2h + (h + 3)|Vo|

)
(11)

Training. During training, both a full forward and a backward pass is needed for each
event. The forward phase complexity was derived above. The back-propagation is again
segmented into three parts:

• output layer. Matrix-vector multiplication – (h · |Vo|) ops, plus weight and bias update –
(h · |Vo| + |Vo|) ops

• hidden layer. Pointwise vector-vector multiplication – (3h) ops, plus weight and bias
update – (m · d · h) ops

• feature vectors. Matrix-vector multiplication – (h ·m ·d) ops, plus feature update – (m ·d)
ops
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which gives us the total number of training operations per event (including the forward
pass):

(5h + dm(3h + 2) + (3h + 4)|Vo|) (12)

It should be noted that the model size increases only linearly with vocabulary size and
context length. Compare that with polynomial and exponential increase in standard N-gram
model size with vocabulary size and context length respectively, and a great advantage of the
neural network model becomes clear: it can handle longer contexts and richer vocabularies
without the need to estimate an increasingly large number of extra free parameters.

It should be also noted that the input vocabulary has no ‘direct’ effect on the model’s
time complexity. So the context (predicting) vocabulary can be freely extended without
affecting either the training or evaluation time. However, the training data time might
increase indirectly because a bigger training data, as well as a larger number of hidden units
may be required for the model to learn the enriched dependencies.

For typical values of the variables involved, the model size is dominated by the values of
Vi and Vo while the time complexity (for both training and evaluation) is dominated by only
the terms involving Vo. For this reason the effect of context length in typical applications
is negligible on both the model size and complexity.

2.3. Implementation

The neural network model is computationally rather expensive, especially compared to
standard N-gram models, mainly because of high dimensionality of the output layer which
in turn is due to the required normalization (partition function). For this reason it was
necessary to have the model trained and/or evaluated in parallel on multiple CPUs. There
are alternate ways to make the model parallel; we chose to do so by splitting the data among
the CPUs evenly. All the CPUs have access to and update the same parameters, and this
requires us either to have each CPU broadcast its parameter updates to all other CPUs, or
alternatively, to use a shared memory structure. The former is impractical due to the high
volume of inter-CPU communication involved.

The algorithm was implemented on an IBM RS/6000 SP system using Message Passing
Interface (MPI) library for parallel implementation—see (Gropp, Lusk, & Skjellum, 1999)
for an introduction to MPI. Each node consisted of 16 CPUs and we restricted each
job to run only on one node, thus avoiding the slower inter-node communications. Our
implementation didn’t employ any synchronization across CPUs (except at the beginning
of each iteration); each CPU can read and write freely to the parameters independent of
other CPUs. This entails the risk of accessing a parameter during a forward pass by a CPU
before another CPU is done updating it in its backward phase. Alternatively, a parameter
can get over-written before it is ever used. However, we expected these effects to be minimal
because the parameter update for a single event is very small and consequently it should
not be a matter of concern as long as not too many parameter updates are overwritten.
Furthermore, the random updates of this particular parallel implementation add another
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level of randomness to the stochastic gradient descent algorithm. Even though we never
tried to analyze or record the risks involved with our implementation, the results showed
that there is not much to worry about. The same shared memory implementation was used
independently by Bengio et al. (2003). They also used another parallel implementation
which worked by splitting the algorithm across the parameters. This implementation has
the advantage of not requiring shared memory and hence can be used on any CPU cluster.

Finally, most of the required computations involve matrix and vector operation. We took
advantage of the IBM’s Engineering and Scientific Subroutine Library (ESSL), which is
highly optimized for the particular machine architecture we used. We used the subroutines
only for the matrix-vector multiplications in the backward phase—where a matrix has to
be transposed before the operation is carried out—and it gave us a total of 4 fold speedup
in training time. Using the ESSL subroutines for the other matrix operations didn’t lead to
any noticeable gain. One could also use the optimized BLAS library (Lawson et al., 1979),
especially for machine architectures where proprietary subroutines are not available.

2.4. Vocabulary limitation

The training of the neural network model is a time consuming process. Therefore it would be
very useful if the training and evaluation time of the network could be reduced. As pointed
out in Section 2.2.2, for typical values of vocabulary size and number of features and hidden
units, the bottleneck of the algorithm is at the output unit where most of the calculations
are carried out. So one straightforward solution to make the network work faster is to
reduce the output vocabulary size. For example in word error rate (WER) experiments the
output vocabulary can be limited to a certain number of most frequent words, which would
be a fraction of the actual vocabulary (Schwenk & Gauvain, 2002). Both the training and
evaluation time are reduced proportionally with the reduction in output vocabulary size. For
the words outside the output vocabulary the probabilities from a standard N-gram model
can be used. Note that in this case the probabilities need not to be properly normalized as
that’s not a requirement in WER experiments. We used this approach in most of our WER
experiments; the effect on the performance is minimal because the token Out Of Vocabulary
(OOV) rate with respect to the output vocabulary is small.

2.5. Preliminary results

Preliminary experiments were carried out using a neural network as a word-based N-gram
model (i.e. (N-1) previous words used to predict the next word). In this way we could get
an insight for the neural network model and the soundness of our implementation.

The perplexity results where carried out on the UPenn corpus (details in Section 5).
The corpus is in fact a treebank, though we use only the words in this experiment. This
choice of corpus was made so that we can later compare the word-based results to those
of the SLM based ones. Our particular partitioning of the corpus contains 929564, 73760,
and 82430 words in the training, held-out, and test set respectively. Table 1 shows the
independent test set perplexities of a word-based neural network language model with
different context lengths. All the networks have 100 hidden units and use feature vectors
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Table 1. UPenn perplexity: Word-based NN.

Model no-intpl +3 gm +5 gm

NN-3 gm 170 132 126

NN-5 gm 157 125 121

NN-7 gm 154 123 119

NN-9 gm 153 122 118

Table 2. UPenn perplexity: N-gram models.

3 gm 5 gm 7 gm 9 gm

PPL 148 141 141 141

of 30 dimensions. The (adaptive) learning rate starts at 0.001 and decreases as the model
approaches convergence. This same configuration is going to be used all throughout most
of this paper. For comparison, the perplexity results of standard back-off models are shown
in Table 2. We used interpolated Kneser-Ney smoothing (Kneser & Ney, 1995; Ney, Essen,
& Kneser, 1994) which is considered to produce the best results among currently used
smoothing techniques; see Chen & Goodman (1999) and Goodman (2001) for a review.

As can be observed in Table 2 the test set perplexity for standard word-based models
saturates at a context length of 4 (5-gram). This has to do with the fact that the chance of
encountering the same exact N-gram in both training and test set decreases dramatically as
N becomes larger; and the standard back-off or interpolated smoothings lack the capability
to use the statistics of a particular N-gram to estimate the probability of a semantically or
syntactically similar word string.

The no-intpl column in Table 1 shows the performance of the neural network models by
themselves. All the other columns denote linear interpolation of the neural network model
with the corresponding standard N-gram models with the single interpolation weight found
on a separate held-out set (Jelinek & Mercer, 1980). The widely used bucketing scheme
(context based interpolation weights) would probably lead to a slight improvement in the
results but it was not used on the assumption that it will not have any substantial effect on
the performance of the models relative to each other. Interpolation with N-gram models
with N larger than 5 did not make any change in the perplexity, as we might have suspected
from the above observation.

It can be seen that the neural network model, when combined with N-gram models,
improves the perplexity significantly. The best neural net model achieves a 16.3% relative
improvement over the best back-off model. Another observation is that the neural net
perplexity saturates slower than the N-gram model as the context length is increased, which
indicates that the neural network model can make better use of longer contexts.

Table 3 shows Word Error Rate (WER) results when the neural net model was used to
re-score the K-best list output by a speech recognizer. We evaluated our models in the WSJ
DARPA’93 HUB1 test setup; more details of which are given in Section 5. The original
K-best list had a WER of 13.7%. The columns +lattice and +l + 5 gm denote interpolation
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Table 3. WSJ WER: word-based NN.

Model no-intp +lattice +5 gm + l + 5 gm

NN-5 gm (full) 14.4 13.4 13.3 12.8

NN-5 gm (4 k) 14.0 13.2 13.3 12.7

NN-8 gm (4 k) 13.7 13.1 13.1 12.6

Table 4. WSJ WER: N-gram models.

Model no-intp + lattice

3-gram 13.9 13.4

5-gram 14.0 13.3

with the original lattice, and both the lattice and the back-off 5-gram model respectively.
The lattice scores are those of a 3-gram model trained on a larger data set (Section 5).
The interpolation weights were found by performing a grid search on the test set itself (the
results are almost the same if the fair method of finding the weights on the heldout set
is used). Two types of output vocabularies were used; full, and limited to the 4,000 most
frequent words, denoted in the table by ‘full’ and ‘4 k’, and trained for a maximum of
20 and 30 iterations respectively. For comparison reasons, the results for standard N-gram
models are given in Table 4. Again, as in the case of perplexity, the neural net model shows
its capability, reducing the baseline WER significantly. In this case the best results are
obtained when the neural net model is integrated with the N-gram models.

One observation is that, the number of iterations aside, the limited output vocabulary did
not hurt the performance. Consequently, we will employ the limited vocabulary architecture
for all the future WER experiments in this paper.

It should be noted that the neural network model does not perform best as a standalone
model; rather the best results are achieved when it is used in conjunction with the standard
N-gram model. A speculative explanation for this behavior is that what the neural network
learns from the text is somewhat different from what a regular N-gram model does. The
neural net shows considerable capacity in using long contexts, but it might not be able to
capture some plain localities. On the other hand, N-gram models are very capable of using
these localities by way of simple counting and memorizing. This can explain why the best
perplexity is attained when the two models are combined.

It also seems that the feature vectors obtained after training are only suited for use with the
corresponding neural net. We tried clustering the feature vectors using K-means algorithm,
but the resulting word classes didn’t have any consistent semantic or syntactic similarity.
Alternatively (Bengio, Ducharme, & Vincent, 2001) tried initializing the feature vectors
using LSA (Deerwester et al., 1990; Bellegarda, 1997) but noticed no improvements in
either in perplexity or convergence speed.
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Figure 2. A word-parse k-prefix.

3. Structured language model

An extensive presentation of the SLM can be found in Chelba and Jelinek (2000). Like most
other language models it predicts the next word in a string of words based on an equivalence
classification of the word prefix (Eq. (2)). In the case of SLM, this classification is in fact
a mixture of multiple classifications �l(Wk−1), l = 1 . . . N weighted by their probabilities
P(�l(Wk−1)|Wk−1).

The SLM was designed to be used as the language model in the decoder component of a
speech recognition system. This constraints the model to proceed from left to right through
the word sequence. A two-pass decoding strategy, such as N-best re-scoring would not
bind the SLM to work in this left to right fashion, enabling it to use the whole sentence for
predicting its probability. Even though the SLM hasn’t been used in a first pass decoding
capacity yet—due to the complexity of integrating it in a decoder – the left to right model
philosophy of its original design is maintained.

The SLM will attempt to build the syntactic structure incrementally while traversing the
sentence left-to-right. It will assign a probability P(W,T) to every word sequence W and
parse T, that is every possible POS tag assignment, binary branching parse, non-terminal
label, and headword annotation for every constituent of T.

Let W be a sentence of n words to which we have prepended the sentence beginning
marker 〈s〉 and appended the sentence end marker 〈/s〉 so that w0 =〈s〉 and wn+1 =〈/s〉.
Let Wk = w0 . . . wk be the word k-prefix of the sentence—the words from the beginning
of the sentence up to the current position k— and let Wk Tk be the word-parse k-prefix.
To stress this point, a word-parse k-prefix contains only those binary subtrees whose span
is completely included in the word k-prefix, excluding w0 =〈s〉. Single words along with
their POS tag can be regarded as root-only trees. Figure 2 shows a word-parse k-prefix:
h_0, .., h_{-m} are the exposed heads, each head being a pair (headword, non-terminal
label), or (word, POS tag) in the case of a root-only tree. Determining the exposed heads
from the word-parse k-prefix at a given position k in the input sentence is a deterministic
procedure.

A complete parse—Figure 3—is defined as a binary parse of the (〈s〉, SB)
(w1, t1) . . . (wn, tn)(〈/s〉,SE) – SB/SE is a distinguished POS tag for 〈s〉〈/s〉, respectively—
with the restrictions that:

1. (〈/s〉, TOP) is the only allowed head.
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Figure 3. Complete parse.

Figure 4. Finite State Representation of the SLM.

2. (w1, t1) . . . (wn, tn)(〈/s〉,SE) forms a constituent headed by (〈/s〉, TOP’); the model
allows parses where (〈/s〉, TOP’) is the head of any constituent that dominates 〈/s〉 but
not 〈s〉.

The SLM operates by means of three probabilistic components:

• PREDICTOR predicts the next word wk+1 given the word-parse k-prefix Wk Tk and then
passes control to the TAGGER.

• TAGGER predicts the POS tag tk+1 of the next word given the word-parse k-prefix and
the newly predicted word wk+1, and then passes control to the CONSTRUCTOR.

• CONSTRUCTOR grows the already existing binary branching structure by repeatedly
generating transitions from the following set: (unary, NTlabel), (adjoin-left, NTlabel)
or (adjoin-right, NTlabel), until it passes control to the PREDICTOR by taking a null
transition. NTlabel is the non-terminal label assigned to the newly built constituent and
{left, right} specifies which child node the new headword is percolated from.

The finite state machine in Figure 4 presents a simplified operation of the model—it does
not illustrate how the model deals with unary transitions.

It is easy to see that any given word sequence with a complete parse (see Figure 3)
and headword annotation is generated by a unique sequence of model actions. This will
prove very useful in initializing our model parameters from a treebank—see section 3.6.2.
Conversely, a generative model running according to the description above can only generate
a complete parse.
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3.1. Probabilistic model

The joint probability P(W,T) of a word sequence W and a complete parse T can be broken
into:

P(W, T )

=
n+1∏
k=1

[P(wk |Wk−1Tk−1) · P(tk |Wk−1Tk−1, wk) · P(T ′
k−1|Wk−1Tk−1, wk, tk)]

P(T ′
k−1|Wk−1Tk−1, wk, tk) =

Nk∏
i=1

P
(

pk
i |Wk−1Tk−1, wk, tk, pk

1 . . . pk
i−1

)]
(13)

where.

• Wk−1Tk−1 is the word-parse (k − 1)-prefix
• wk is the word predicted by PREDICTOR
• tk is the tag assigned to wk by the TAGGER
• T ′

k−1 is the incremental parse structure attached to Tk−1 in order to generate Tk = Tk−1 ‖
T ′

k−1; it is the parse structure built on top of Tk−1 and the newly predicted word wk; the ‖
notation stands for concatenation

• Nk −1 is the number of operations the CONSTRUCTOR executes at sentence position k
before passing control to the PREDICTOR (the Nk − th operation at position k is the
null transition); Nk is a function of T

• pk
i denotes the ith CONSTRUCTOR operation carried out at position k in the word

string; the operations performed by the CONSTRUCTOR ensure that all possible binary
branching parses, with all possible headword and non-terminal label assignments for the
w1 . . . wk word sequence, can be generated. The pk

1 . . . pk
Nk

sequence of CONSTRUC-
TOR operations at position k grows the word-parse (k − 1)-prefix into a word-parse
k-prefix.

In short, the SLM is based on three types of conditional probabilities, P(wk |Wk−1Tk−1),
P(tk |wk, Wk−1Tk−1) and P(pk

i |Wk Tk), each of which needs to be parameterized and esti-
mated from the training data.

3.2. Model parameterization

To be able to estimate the model components we need to make appropriate equivalence
classification of the conditioning part for each component. The equivalence classification
should identify the strong predictors in the context and allow reliable estimation from the
treebank. The choice in the SLM relies heavily on exposed heads; the experiments in Chelba
(1997) show that exposed heads provide good information for the PREDICTOR component
of the language model; (Collins, 1996) shows that they are useful for high accuracy parsing,
making them also the favorite choice for the CONSTRUCTOR model as well. Experiments
have shown that exposed heads are also useful in the TAGGER component model. Since
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the word to be tagged is itself a very strong predictor of the POS tag, the equivalence
classification of the TAGGER model is limited to include only the non-terminal (NT)
labels of the two most recent exposed heads.

P(wk |Wk−1Tk−1) ≈ P(wk |[Wk−1Tk−1]) = P(wk |h0, h−1) (14)

P(tk |wk, Wk−1Tk−1) ≈ P(tk |wk, [Wk−1Tk−1]) = P(tk |wk, h0.tag, h−1.tag) (15)

P
(

pk
i |Wk Tk

) ≈ P
(

pk
i |[Wk Tk]

) = P
(

pk
i |h0, h−1

)
(16)

where [Wk Tk] denotes an equivalence classification of the word-parse prefix Wk Tk suitable
for estimating each of the above conditional probabilities.

It is worth noting that the standard 3-gram model belongs to the parameter space of
the SLM as defined above: if the binary branching structure developed by the parser was
always right-branching—the null transition having probability 1 in the CONSTRUCTOR
mode—and we mapped the POS tag vocabulary to a single type, then the model would
become equivalent to a trigram language model.

3.3. Pruning strategy

Since the model uses smoothed models, all possible parse trees, each with all possible
headword annotations have non-zero probabilities. Consequently the number of possible
parses for a given word string of length k grows faster than exponentially with k. Therefore
it is necessary to use some pruning scheme to keep only the most likely parses. The pruning
strategy used by the model is a synchronous multi-stack search algorithm.

Each stack stores partial parses that have been constructed by the same number of
PREDICTOR and same number of CONSTRUCTOR operations. The partial parses in the
stacks are ranked according to their probabilities P(Wk, Tk). The hypotheses (partial parses)
in each stack are expanded by first expanding them with all non-null CONSTRUCTOR
operations (sending the new hypotheses to their appropriate stacks). Subsequently, each
hypothesis is extended by a null CONSTRUCTOR operation and sent to the stack with
one more PREDICTOR operation and same number of CONSTRUCTOR operations. The
pruning is controlled by two parameters:

• maximum stack depth—the maximum number of hypotheses each stack can contain at
any given time.

• log-probability threshold—the difference between the log-probability score of the most
likely and least likely hypotheses can not be larger than a specified threshold.

For the experiments in this paper we use a maximum stack depth of 10 and a log-
probability threshold of 6.91 (= log(1000)).

3.4. Language model

The left-to-right operation constraint on the SLM requires that the probability of the
word at position k + 1 be estimated using only the information available from Wk Tk—the
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preceding words and the partial parses that span them. This gives us the following word
level probability formulation:

P(wk+1|Wk) =
∑
Tk∈Sk

ρ(Wk, Tk)P(wk+1|Wk Tk) (17.1)

ρ(Wk, Tk) = P(Wk Tk)

/ ∑
Tk∈Sk

P(Wk Tk), (17.2)

where Sk is the set of partial parses contained in the stacks at stage k (all the stacks with
exactly k PREDICTOR operations). Note that since partial parse scores ρ(Wk, Tk) sum to 1,
the word level probabilities P(wk+1|Wk) are properly normalized assuming that the model
P(wk+1|Wk Tk) is normalized as well. This makes it possible to report proper word level
perplexities for the language model.

On the other hand, if the left-to-right operation constraint is lifted, the sentence level
probability can be computed using:

P̃(W ) =
N∑

k=1

P
(
W, T (k)

) ≤ P(W ) (18)

where T (k) is one of the N-best parses for the entire sentence W, found using the pruning
strategy described earlier. This probability assignment is clearly deficient (unless no pruning
is used), but it can be used to re-score the N-best list output of a speech recognizer. Moreover,
as will be explained later, it is useful to justify the model parameter re-estimation technique
employed by the SLM.

3.5. The SCORER

As described above, the SLM is comprised of three components, the PREDICTOR, the
CONSTRUCTOR, and the TAGGER. However, the probability model P(wk |Wk−1Tk−1)
associated with the PREDICTOR is used in two capacities in the operation of the SLM.
One is in constructing and assigning probabilities to the partial parses (Eq. (13)), and the
other is in word level probability assignment (Eq. (17.1)). These two models can in general
be parameterized and estimated separately of each other; each using a different context
equivalence classification scheme. We shall distinguish between the two, calling the first
model the PREDICTOR and the second one the SCORER.

This is desirable because many of the partial parses that were initially used to predict
the probability of the next word are not going to survive the pruning and therefore won’t
participate in the “N-best training” stage of the model (described in the next section).
Estimating a separate SCORER enables us to make up partly for this weakness and train a
model to achieve a higher likelihood on the training data.

In many of the experiments in this paper only the SCORER component will be modeled
by a more complex architecture and the PREDICTOR will remain unchanged from the
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baseline SLM. The main reason is a merely practical one; the SCORER model can be
easily upgraded, not requiring any changes in the parses used for training.

3.6. Model estimation

The previous sections described the structure of the SLM and the definition of its com-
ponents. The models need to be estimated from training data which may be in the form
of a treebank with complete parses provided for each sentence. Each parse is binarized
and headword percolated; both binarization and headword percolation are rule-based and
deterministic procedures (see Chelba & Jelinek, 2000).

The SLM model estimation takes place in three stages:

1. Initialization of the model components’ parameters from the training treebank.
2. Increasing the training data likelihood as given by the deficient probability estimation in

Eq. (18). This involves the employment of the “N-best training” algorithm (see Section
3.6.2).

3. Estimation of the SCORER component so that the likelihood of the training data as given
by Eq. (17.1) is increased. The SCORER is initialized by copying the PREDICTOR
estimated in the previous stage.

3.6.1. First stage: Parameter initialization. In the first stage, the complete parses in train-
ing set are directly used, after they have undergone binarization and headword percolation.

Each parse (W,T) can be identified by a derivation d(W,T) which is the sequence of steps
that the SLM would take to construct that given parse. Each step is either a PREDIC-
TOR, TAGGER, or CONSTRUCTOR operation and is in general in the form of an event
(x1, . . . , xm → y) where (x1, . . . , xm) is the context information used in taking the step,
and y is the actual operation performed by the component. The set of these operations
obtained from the parsed data makes up our training set from which it is straightforward to
train each of the individual components. The training algorithm would of course depend on
the model used for each component. For example, in the case of interpolated or back-off
models, the training would consist of a simple counting of the events. Alternatively, in
the case of a neural network, the training would be performed by the back-propagation
algorithm, presenting (x1, . . . , xm) to its input and maximizing the log-probability of y at
its output.

3.6.2. Second stage: N-best EM re-estimation. In this stage each of the three component
models are re-estimated with the objective of increasing the likelihood of the training data
computed by the probability given in Eq. (18). The approach is in the form of maximum
likelihood estimation from incomplete data, with W being the observed and T—the parse
structure along with POS and non-terminal tags and headword annotation for a given W—
the hidden data. Therefore this stage of the training procedure makes use of the Expectation
Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977).

The EM algorithm requires that all the hidden events—parses T in this case—be consid-
ered when computing expected likelihood (EM auxiliary function in the E-step). However,
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as mentioned in Section 3.3, this is not feasible due to the large number of parses involved.
Therefore a variant of the EM algorithm is used which only considers the “N-best” parses
found by the search and pruning strategy described in Section 3.3. Intuitively the “N-best”
EM algorithm tries to maximize an approximation of the true likelihood and can be thought
of as a compromise between full forward-backward (N = all possible parses) and Viterbi
(N = 1) training of the hidden Markov models.

Even though it maximizes an approximate objective function, it still can be proved that
the “N-best” EM algorithm does converge to a local maximum (see Chelba & Jelinek,
2000) for discussion and comments). Also, for a presentations of different variants of the
EM algorithm the reader is referred to Byrne, Gunawardana and Khudanpur (1998).

3.6.3. Third stage: SCORER estimation. The previous stage of the training tries to
increase an approximation of the likelihood of the training data; therefore the trained
PREDICTOR model is not optimal. We can partly make up for this by estimating a separate
SCORER maximizing the true word level probabilities as given by Eq. (17.1). In this
stage of the training, a separate SCORER model is trained using partial parses and their
corresponding weights ρ(Wk, Tk). The partial parses and their scores are obtained by using
the SLM trained in the previous stages. It should be noted that Eq. (17.1) is analogous to
the likelihood of a hidden Markov model with fixed transition probabilities (but dependent
on position k) specified by the values ρ(Wk, Tk).

4. Neural net based SLM

As we mentioned in Section 3, all the functionality of the Structured Language Model is
governed by its four components, the PREDICTOR, the TAGGER, the CONSTRUCTOR,
and the SCORER. By the baseline SLM we denote the model where the components
are parameterized according to Eqs. (14)–(16), with the SCORER being the same as the
PREDICTOR, and where each component is modeled by a bucketed linear interpolation
model (Jelinek & Mercer, 1980), characterized by the recursive equations:

Pm(y|x1, . . . , xm) = λ(x1, . . . , xm) · · · Pm−1(u | x1, . . . , xm−1)

+ (1 − λ(x1, . . . , xm)) · · · fr (u | x1, . . . , xm)

P−1(y) = uniform (Y) (19)

where λ’s are interpolation coefficients and fr and P−1 refer to relative frequency and
uniform distributions respectively. This is essentially an N-gram type model – with N =
m + 1 – and thus comes with the shortcomings mentioned in the earlier sections, mainly
the inability to use long or rich dependencies. However, there is a considerable amount of
information in a partial parse that one would like to use, and an N-gram type model does
not simply prove to be adequate enough for such a purpose.

Previous efforts have tried to improve the Structured Language Model in terms of both
language modeling capability and parsing accuracy by using more conditioning information
for the model components. In Chelba and Xu (2001), each headword’s NT tag was
augmented by one or both of its children NT tags; (Xu, Chelba, & Jelinek, 2002) extended
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this work by adding to the conditioning context of the CONSTRUCTOR model the NT tag
of the second previous headword (h−2) as well. These experiments showed that the SLM
performs better in all aspects—PPL, WER, and parsing accuracy—when richer probabilistic
dependencies are used for its components.

So it is clearly desirable to use as much conditioning information as possible for the
SLM component models. However, as mentioned above, the N-gram type models used
in the baseline model are not well equipped for this task. In fact, in all the enriching
experiments mentioned above, severe data sparseness problems were observed. It is then
natural to try a more powerful model for the SLM components. The neural network model
is a perfect candidate because of its excellent capability in handling larger vocabularies
(enriching) and longer contexts (extending dependencies). As explained in Section 2.2, the
neural network model complexity increases negligibly with context length and only linearly
with vocabulary size in practical settings.

Ideally, a neural network model would be used for each component of the SLM, using
as much conditioning information as possible, and trained by going through the stages
outlined in Section 3.6. However, training and experimenting with the neural network
models (specially when integrated in the SLM) is a very time consuming task, and thus
instead of implementing a rigorous integration we started with more limited settings;
sometimes using the neural network model for only one component, other times skipping
one or two stages of the SLM model estimation procedure (Section 3.6). Our belief was
that if the incomplete (and sometimes ad hoc) combination of neural network and the SLM
can be shown to be helpful, then the viability of a complete and rigorous integration will
be evident.

Overall, we have used neural networks as SLM component models in three different
scenarios which we describe below:

1. Mismatched SCORER training. The main goal in this scenario was to integrate the
neural net model in the SLM while keeping the task simple. Therefore we decided to
have only one of the SLM components modeled by the neural network. The SCORER is
a perfect candidate, largely because “upgrading” it will only affect the language model
estimation part of the SLM, keeping the parse construction machinery intact. Also, there
is a lot of potential in “upgrading” the scorer because it has a high perplexity relative to
other components.
Again, for the sake of simplicity, instead of training the model on the partial parses
as required by Eq. (17.1), we used only the annotated (parsed) data set in training the
neural net SCORER. In other words, in this scenario only the first stage of the SLM
training procedure (Section 3.6) is carried out, training (only) the SCORER as if it
were a PREDICTOR. The original PREDICTOR from the baseline model model is kept
unchanged.
Figure 5 shows the schematic of mismatched SCORER training. During evaluation
(solid lines), a neural net SCORER that is trained on PREDICTOR events is used to
evaluate and combine the test set SCORER events (partial parses) constructed by the
baseline SLM. The two streams output by the baseline SLM are the actual partial parses
and their corresponding weights respectively.
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Figure 5. Mismatched Scorer Training.

Clearly, this training procedure is not optimal. The SCORER is trained to maximize
the likelihood function involving probabilities as in Eq. (14), but it is used according to
Eq. (17.1). On the other hand, one can see that the two sets are equivalent if there was
only one partial parse for every word prefix. So the training is sub-optimal in the sense
that it is based on the “wrong” (sub-optimal) data set. However, one can assume more
or less that the two data sets are close enough; that is, the events encountered by the
PREDICTOR are in general similar to the events that the SCORER uses in estimating
word level probabilities.

2. EM training. In contrast to the previous scenario, this setting involves modeling all
the SLM components by a neural network. First, the initial stage of the SLM model
estimation procedure (Section 3.6) is carried out, training the neural network based PRE-
DICTOR, TAGGER, and CONSTRUCTOR. In the second stage, the newly estimated
neural network models will be re-trained according to the “N-best” EM re-estimation
procedure. This would require the SLM model estimated in the first stage to be used to
find the N-best parses for each sentence in the training set. Notice that in this scenario,
unlike the first one, the neural network models are also involved in parse construction
and pruning.
In the E-step of the EM algorithm, the expected likelihood of the training data is calcu-
lated using the parameters from the previous iteration of the algorithm. This likelihood
expectation—EM auxiliary function—is dependent on the current model parameters:

Q(�, �̂) =
∑

T

P(T |W ; �̂) log P(W, T ; �) (20)
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where �̂ and � denote the old and new (to be estimated) parameters. In the M-step of the
algorithm, those parameters � are found that maximize the above expected likelihood:

�new = argmax� Q(�, �̂) = argmax�

∑
T

P(T |W ; �̂) log P(W, T ; �) (21)

where P(T |W ; �̂) is the fixed probability (weight) assigned to the complete parse T.
Using Eq. (13) we can decompose the joint log-probability logP(W, T ; �) into parts,
each involving a single SLM component:

log P(W, T ; �)

=
n+1∑
k=1

logP(wk |Wk−1Tk−1) +
n+1∑
k=1

logP(tk | Wk−1Tk−1, wk)

+
n+1∑
k=1

Nk∑
i=1

log P
(

pk
i | Wk−1Tk−1, wk, tk, pk

1 . . . pk
i−1

)
(22)

As can be seen, the joint log-probability is a summation of SLM component log-
probabilities. The summations are over the operations (events) carried out to construct
the particular complete parse T. Clearly, the gradient of the EM auxiliary function can
in turn be broken up into component-wise constituents, and hence the contribution of
each component to the total gradient can be separately computed. This makes the EM
training of the neural networks very straightforward, each component neural network can
be trained separate and independently of other components, maximizing its likelihood
over its own set of operations (events). The N-best EM training for the neural network
based SLM is summarized in Algorithm 1. As described in Sections 3.3 and 3.6.2, the
re-estimation procedure is limited to the N-best parses for each sentence. Considering
all the possible parses for each sentence is simply intractable (exponential growth with
sentence length). So the summation in Eqs. (20) and (21) would be over the “N-best”
parses rather than all the possible ones. Clearly this is an approximation of the real
auxiliary function, with the error depending on the value of N as well as the skewness of
the distribution of the partial parses. Note that if N = 1, then this algorithm is basically
the same as the first stage of the SLM training procedure except that the parses are
constructed by the model itself rather than taken from an external source. It should be
noted here that the actual weights P(T | W ; �̂) are normalized to ensure they add up to
one.
Finally, the SCORER is copied from the PREDICTOR and used to calculate the language
model probabilities. So the third stage of the SLM training procedure is skipped in this
scenario.
Figure 6 depicts the EM training procedure. The arrows marked by E0 refer to the initial-
ization stage (training neural nets on the gathered counts) while En(n > 1) corresponds
to later stages of the training were the components are re-trained on the N-best parses
with fractional counts.
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Figure 6. EM Training.

3 SCORER estimation. This scenario is exactly the same as the first except that in this
case the SCORER is trained to maximize the correct objective function computed
using probabilities in Eq. (17.1). In short, in this scenario the first stage of the training is
carried out using the baseline model, then the second stage (“N-best”) training is skipped
altogether, and finally the training is completed by estimating a neural network based
SCORER on the partial parses constructed by the baseline model. The gradient descent
algorithm is slightly more involved in this case because of the summation over partial
parses in Eq. (17.1). If we denote the context in the ith event (xi

1, . . . , xi
m → yi ) by hi,
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and assume that there are k(i) contexts (partial parses) at position i, we have:

∂

∂θ
logP(yi ) = ∂

∂θ

(
log

(
k(i)∑
k=1

ρk
i · P

(
yi | hk

i

)))

= 1∑k(i)
k=1 ρk

i · P
(
yi | hk

i

) ∂

∂θ

(
k(i)∑
k=1

ρk
i · P

(
yi | hk

i

))

= 1

P(yi )

k(i)∑
k=1

ρk
i · ∂

∂θ
P

(
yi | hk

i

)
(23)

where ρk
i denotes the score ρ(W k

i T k
i ) of the kth partial parse at ith position.

The gradient descent procedure is accordingly summarized in Algorithm 2. Note that
the algorithm is analogous to weighted mini-batch training, with a batch being the set
of partial parses at a given position.
The partial parses are simply all the stack entries at each position (equal number of
PREDICTOR operations) of the word string. Note that in this scenario, neither of the
PREDICTOR, TAGGER, CONSTRUCTOR components are involved. Also the same
set of partial parses (built by the baseline model) are used all throughout training, so
there is no need re-run the SLM over the training data at the start of each iteration. All
said, this scenario is the most time consuming one simply because of the sheer large
number of partial parses involved. Even in the “N-best” training case, the number of the
events used in training is much smaller because only a few of the partial parses in each
position will actually make it to be part of a complete parse.
The training is depicted in Figure 7. As can be seen, this training is similar to that of

Figure 5 with the difference that both training and evaluation go through the same path.

In implementing the SCORER training, the inputs to the softmax function (zk’s in
Eq. (6) were normalized by substracting from all of them the maximum input value
zmax = maxk zk . In this way, precision related problems that might have occurred due to
a very large zk were avoided.
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Figure 7. Matched scorer training.

We should note here that if the SCORER training was carried out on the partial parses
constructed by the model trained in the second scenario (rather than the baseline), then
we would have a full integration of the neural network models in the SLM (see next).

4. Full training. It is possible to model all the components of the SLM by neural nets and
have them trained on the appropriate training events. Such a comprehensive training
will start with EM training (scenario 2) and will later train a separate SCORER by
training it on the partial parses generated by the just trained SLM (similar to scenario
3). So basically, a full and comprehensive training of the SLM involving all the four
components consists of a scenario 2 training followed by scenario 3 training of the
SCORER. This can be thought of as replacing the ‘baseline SLM’ block in Figure 7 by
the fully trained SLM in scenario 2.

5. Experiments

The baseline Structured Language Model uses the model parameterizations formulated in
Eqs. (14)–(16). In this section we experiment with using a neural net model in the different
scenarios described in the previous section, while extending the conditioning contexts for
the neural net component.

Our experimental setup is as follows: for perplexity results we used the UPenn Treebank
portion of the WSJ corpus. The UPenn Treebank contains 24 sections of hand-parsed
sentences. We used sections 00-20 as the training data, and Sections 21 and 22 and 23
and 24 as the held-out and test sets, respectively. The three sets contained 930 k, 74 k,
and 82 k words respectively. We used an open vocabulary consisting of 10 k words. Note
that no vocabulary limitation (see Section 2.4) were used in perplexity results since the
probabilities are required to be normalized. The text was normalized in the following ways:
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numbers in Arabic form are replaced by a single token ‘N’, punctuations are removed, all
words are mapped to lowercase, and extra information in the parses (such as traces) are
ignored. There are a total of 40 part-of-speech (POS) and 54 non-terminal (NT) tags.

The WER experiments consisted of the re-scoring of the K-best list output by a speech
recognizer. We evaluated our models on the WSJ DARPA’93 HUB1 test setup. The same
setup was used in Chelba and Jelinek (2000), Roark (2001), Chelba and Xu (2001), and
Emami, Xu, and Jelinek (2003). The test set is a collection of 213 utterances (10 different
speakers) for a total of 3446 words. The 20 k words open vocabulary and baseline 3-gram
model are standard ones provided by NIST and LDC—see Chelba and Jelinek (2000) for
details. The lattice and K-best lists were generated using the standard 3-gram trained on 45
M words of the WSJ corpus (Paul & Baker, 1992). The baseline SLM was trained on 19
M words of WSJ text automatically parsed by the parser in Ratnaparkhi (1997). Note that
there are memory constraints in using more data for the baseline SLM simply because the
size of the N-gram type components grow linearly with the number of training data N-gram
types. In order to be able to compare the results, the neural net models were also limited to
the same 19 M words, even though the neural net model is not constrained by the memory
limitations.

We used the same neural net configuration for all the experiments, with 100 hidden units
and 30 dimensional feature vectors. The learning rate and weight decay factor were set to
10−3 and 10−4 respectively, with the learning rate decreasing adaptively as more events are
presented to the network. Since the inputs to the networks are always a mixture of words
and NT/POS tags, while the output probabilities are over words in the PREDICTOR, POS
tags in the TAGGER, and adjoin actions in the CONSTRUCTOR, separate input and output
vocabularies had to be used. Furthermore, the output vocabulary was limited to the 5 k most
frequent words for all the WER experiments (Section 2.4)—the OOV rate with respect to
this limited vocabulary was found to be 6.2% on the training data. The parameters of neural
nets were randomly initialized with a uniform distribution centered at zero. All the networks
were trained for a maximum of 30 iterations unless otherwise stated. The held-out set was
used for early stopping, however we didn’t observe any overfitting behavior. We observe
that the held-out perplexities do increase a few times during training, but in the end the best
held-out perplexity is attained at the last or very close to last iteration.

In order to study the behavior of the SLM when longer context is used for conditioning
the probabilities, we gradually increased the context of the PREDICTOR/SCORER model.
First, the third exposed previous head was added. Since the syntactic head gets the head
word from one of the children, either left or right, the child that does not contain the head
word (hence called opposite child) is never used later on in predicting. This is particularly
not appropriate in a prepositional phrase because the preposition is always the head word
of the phrase in the UPenn Treebank annotation. Therefore, we also added the opposite
child of the first exposed previous head into the context for predicting.

Tables 5 and 6 show the perplexity and the WER results respectively for the mismatched
neural net SCORER training (Section 4). For the perplexity results the neural net SCORER
was trained on the hand-parsed sentences for 50 iterations. The row SLM denotes the
baseline SLM model, while the rows 2 HW, 3 HW, and (3+1)HW refer to conditioning
contexts consisting of 2 previous heads, 3 previous heads, and 3 previous heads plus the first
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Table 5. Mismatched NN SCORER; UPenn Perplexity.

Model no-intpl +slm +3 gm +5 gm

SLM 161 161 137 132

2 HW 174 137 127 123

3 HW 161 132 123 119

(3 + 1) HW 155 129 121 117

All-3 152 128 120 117

2 H W+ 2 w 154 129 122 118

Table 6. Mismatched NN SCORER; WSJ WER.

Model no-intpl +slm +lattice +5gm +all

Lattice 13.7 12.6 13.7 13.3 12.6

SLM 12.7 12.7 12.6 12.7 12.6

2 HW 13.5 12.7 12.7 12.5 12.3

3 HW 13.7 12.7 12.9 12.7 12.3

(3 + 1) HW 13.2 12.4 12.8 12.5 12.4

previous opposite head respectively. The columns +3 gm and +5 gm denote interpolation
with Kneser-Ney smoothed 3-gram and 5-gram models respectively (trained on the same
19 M words data set as the baseline SLM in WER experiments)—see Tables 2 and 4 for
perplexity and WER. All the three neural net models are also interpolated with each other
and the results are given in the row All-3. The interpolation weights were found on the
held-out data and in most cases were close to 0.5; finding the weights on the test set itself
does not improve the performance noticeably. The row 2 HW +2 w in Table 5 refers to
the case where the input context is increased from the 2 HW case to include the trigram
information as well. In other words, the SCORER uses the 2 previous headwords as well as
the 2 immediate previous words in assigning a probability to the next word. In comparing
this row to that of 2 HW it can be observed that adding the trigram information to the model
indeed boosts the performance considerably. Another observation is that interpolating this
model (which already has the 3-gram information) with a regular trigram (+3 gm column)
still improves the perplexity. Our explanation for this is that the probability distributions
learned by the neural net and the regular trigram are not closely correlated and therefore
they have some mutually exclusive information.

In WER tables, the columns marked by +slm and +lattice denote linear interpolation with
the baseline SLM and the lattice word language model (3-gram trained on the whole WSJ
corpus) scores respectively. The +all notation refers to interpolation with baseline SLM,
lattice, and the 5-gram model, all at the same time. Furthermore, in WER experiments,
the interpolation weights are found on the test set itself using grid search. A strictly
fair experiment should find the weights on some independent and unseen set; however
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Table 7. N-best EM training; UPenn Perplexity.

Model, EM itr. no-intpl +slm +3 gm +5 gm

2 HW E0 162.5 130.9 123.8 119.3

2 HW E1 158.2 129.5 123.0 118.6

(3 + 1) HW E0 151.2 124.4 119.1 115.2

(3 + 1) HW E1 147.9 123.2 118.5 114.7

2 HW (full) E0 137.6 121.8 116.9 113.1

(3 + 1) HW (full) E0 129.0 114.6 111.3 108.4

optimizing the weights on the test set itself should not be a problem as long as the experiment
is for comparison purposes and the approach is applied to all the models.

It can be seen from the tables that a neural net based SCORER—even though trained as a
PREDICTOR—leads to significant improvement in perplexity and WER over the baseline
SLM. It should be also noted that extending the conditioning dependencies consistently
improves the perplexity.

In the second scenario of integrating neural nets into the SLM, all three components—
PREDICTOR, TAGGER, and CONSTRUCTOR—are modeled by a neural network (Sec-
tion 4). In the first step the components are trained on the treebank parses (iteration zero;
E0)—similar to the first scenario with the difference that the TAGGER and the CON-
STRUCTOR are modeled by a neural net as well. Subsequently, the newly trained SLM
is used to obtain “N-best” parses for each sentence in the training data, and then the
components are re-estimated using the “N-best” EM training algorithm. Because of time
constraints we performed the EM re-estimation for only one iteration (E1). We also used
only the 10 best parses for each sentence (N = 10). The results are given in Table 7 (Xu,
Emami, & Jelinek, 2003) . The different conditioning context correspond to the PREDIC-
TOR model only. The probabilistic dependencies of the TAGGER and CONSTRUCTOR
are the same as in the baseline model. Furthermore, the SCORER is copied from the trained
PREDICTOR. By comparing the E0 (iteration 0) rows to the results in Table 5 one can
observe that using a neural net model for the components involved in parse construction
further decreases the perplexity. This can be attributed to the construction of better partial
parses by the neural net based components. It is also clear from the table that the “N-best”
EM re-estimation reduces the perplexity consistently for all situations; however, the reduc-
tion is minimized when the neural net based model is interpolated with baseline or N-gram
model.

The last 2 rows of the table show the results for the full training of the model (scenario
4), where a separate SCORER is trained on the partial parses constructed by the models in
second and fourth rows; 2 HW-E0 and (3 + 1) HW-E0. As can be observed from the table,
by training a separate SCORER the perplexity of the model is significantly reduced.

In the third scenario, we trained a neural net SCORER on the partial parses constructed
on the training data by the baseline SLM. In order to reach convergence faster we did not
randomly initialize the neural net, instead the parameters were copied from the SCORER
trained in the first scenario. Subsequently, the network was trained for 30 and 7 iterations



A NEURAL SYNTACTIC LANGUAGE MODEL 223

Table 8. Macthed NN SCORER; UPenn perplexity.

Model no-intpl +slm +3 gm +5 gm

2 HW 141 125 119 115

3 HW 136 121 116 112

(3 + 1) HW 131 117 113 110

All-3 122 114 110 107

Table 9. NN SCORER; WSJ WER.

Model no-intpl +slm +lattice +5 gm +all

2 HW 12.8 12.3 12.4 12.3 12.0

3 HW 12.9 12.7 12.9 12.6 12.4

(3 + 1) HW 12.5 12.3 12.4 12.1 12.0

for perplexity and WER experiments respectively. It is worth mentioning that reducing the
number of iterations is very important in this case because of the large number of partial
parses involved.

The UPenn test set perplexities are given in Table 8 (Emami, 2003). There were a total of
10 M partial parses — compare to 1 M for the first scenario –; an average of 11.12 partial
parses per word. Similarly the WER results are presented in Table 9 (Emami & Jelinek,
2004). Here the total number of partial parses was 148 M—compare to 19 M parses of the
first scenario.

The best overall results are decidedly achieved—in terms of both perplexity and WER—
when we use a neural net SCORER trained to maximize the word level probabilities. With
the best models we achieved a perplexity of 107 and a word error rate of 12.0%; which
are, as far as we know, better than any published results for the same setup (Emami, 2003;
Emami & Jelinek, 2004).

Comparing the results in Tables 7 and 8 (last 2 rows), we observe that small reductions in
perplexity are achieved if we train a matched SCORER for an “N-best” EM trained model
(i.e. full training). However the improvement is practically small, and we conclude that the
best (or near best) results are attainable by training only a matched SCORER (all other
components kept unchanged), and without employing the “N-best” the EM training.

It is worth mentioning that in most of the experiments, the neural network by itself (no
interpolation) performed worse than the standard N-gram models. The exception is when
we train a matched SCORER (Tables 8 and 9, and last 2 rows of Table 7), where the neural
net based SLM outperforms all the other models by itself.

It is easy to compare the first and third scenarios and explain the significant difference
in their performance. Both procedures estimated a SCORER, however in the first scenario
the SCORER was trained as a PREDICTOR; therefore there is a mismatch between the
objective the model was trained for and its actual use and thus the estimated model is sub-
optimal. In contrast, in the third scenario the correct log-likelihood function was optimized,
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Figure 8. SCORER perplexity with 2 HWs as context.

at the cost of much longer training time, which was due to the large number of partial parses
involved.

Figure 8 shows the learning curves of the neural network SCORER when the context used
is the 2 previous headwords (2 HW). The curves on the left side of each figure correspond
to the mismatched training of the SCORER (scenario 1), while the curves on the right
show the learning process in the third scenario—when NN SCORER is estimated from
the appropriate partial parses. All the training perplexities are a slight over-approximation
of the actual ones because of the sequential behavior of the stochastic gradient descent
algorithm in updating the parameters. On the other hand, the held-out perplexities are
calculated after the iteration is over, and hence are exact. The curves for the two scenarios
are placed one after the other because the parameters in the third scenario are initialized
by copying them from the SCORER trained in the first scenario. The discontinuities in the
figures are due to the fact that different data is used in the two different scenarios (1 and 3).

In the end, it is interesting to compare the SLM and word based (N-gram) models. By
comparing the results in Tables 1 and 3 to those in this section it can be seen that the best
word-based model is far inferior compared to the best SLM model. We might conclude
from here that the syntactical structure of a sentence is in fact helpful in discriminating
among competing hypotheses.

6. Conclusions and future work

By using neural network models in the SLM, we achieved significant improvements in PPL
and WER over both the baseline N-gram model and SLM. Three scenarios for integrating
neural networks in SLM where presented. Overall, the best studied model gave a 24.1%
relative reduction in PPL over the best N-gram model and a 18.9% relative reduction over
the baseline SLM. Our experiments also showed that the neural network models enhance
the discriminative characteristic of the SLM by achieving a 4.8% relative reduction in WER
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over the baseline SLM. The corresponding reductions is 9.8% over the standard N-gram
model.

Overall, our experiments show that by using the syntactic information from the partial
parses generated by the SLM, and by employing a probability estimation function that does
not overfit as fast as the N-gram models (neural nets in our case), it is possible to improve
significantly over the regular word N-gram models (either standard or neural net N-gram).

In our study the full integration training, where the “N-best” EM re-estimation is followed
by SCORER training, gave the best perplexity. Therefore in future work the fully integrated
model should be use for the WER experiments.

One would also like to experiment with different and extended probabilistic dependencies
for the neural net models; given the amount of information available in a syntactic parse
and the neural net capability in using it, this would most likely lead to improvements in
perplexity. Alternatively, we intend to train our models to minimize specifically the WER,
which would entail major modifications to the model’s architecture.

We observed in our experiments that the neural net models give a different “view” of
the data set than that of the N-gram models. Thus a natural extension of our work is to
combine the neural net and N-gram models at the component level, rather than the current
word-level interpolation.

We believe that the results of the “N-best” EM training can still be improved. Note that
the objective function used was an approximation of the real EM auxiliary function, and
that it is possible that the neural network was not optimally trained by learning from the
severely pruned data set. As future work we intend to develop and use a different EM
training procedure where the training of all model components is carried out on the partial
parses stored in the stacks, instead of the last N-best parses. Intuitively, the number of
partial parses used by this left-to-right EM training is larger than the “N-best” one, and the
corresponding objective criteria is a better approximation of the true EM auxiliary function.
We should note that this EM training would substitute for both the second and third stage
of the SLM training procedure outlined in Section 3.6; therefore there would be no longer
a need for a separate SCORER component.
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