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Abstract. This paper provides an analysis of the behavior of separate-and-conquer or covering rule learning
algorithms by visualizing their evaluation metrics and their dynamics in coverage space, a variant of ROC space.
Our results show that most commonly used metrics, including accuracy, weighted relative accuracy, entropy,
and Gini index, are equivalent to one of two fundamental prototypes: precision, which tries to optimize the area
under the ROC curve for unknown costs, and a cost-weighted difference between covered positive and negative
examples, which tries to find the optimal point under known or assumed costs. We also show that a straightforward
generalization of the m-estimate trades off these two prototypes. Furthermore, our results show that stopping and
filtering criteria like CN2’s significance test focus on identifying significant deviations from random classification,
which does not necessarily avoid overfitting. We also identify a problem with Foil’s MDL-based encoding length
restriction, which proves to be largely equivalent to a variable threshold on the recall of the rule. In general, we
interpret these results as evidence that, contrary to common conception, pre-pruning heuristics are not very well
understood and deserve more investigation.
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1. Introduction

Most rule learning algorithms for classification problems follow the so-called separate-
and-conquer or covering strategy, i.e., they learn one rule at a time, each of them explaining
(covering) a part of the training examples. The examples covered by the last learned rule
are removed from the training set (separated) before subsequent rules are learned (before
the remaining training examples are conquered). Typically, these algorithms operate in
a concept learning framework, i.e., they expect positive and negative examples for an
unknown concept. From these training data, they learn a set of rules that describe the
underlying concept, i.e., that explain all (or most) of the positive examples and (almost)
none of the negative examples.1

Various approaches that adhere to this framework differ in the way single rules are
learned. Common to all algorithms is that they have to use a metric or heuristic function
for evaluating the quality of a candidate rule. A survey of the rule learning literature yields
a vast number of rule learning metrics that have been proposed for this purpose. Many of
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them have justifications based in statistics, information theory, or related fields, but their
relation to each other is not very well understood.

In this paper, we attempt to shed some light upon this issue by investigating commonly
used evaluation metrics. Our basic tool for analysis will be visualization in coverage spaces.
Coverage space is quite similar to ROC space, the two-dimensional plane in which the
operating characteristics of classifiers are visualized. Our analysis will show that most
commonly used heuristics, including accuracy, weighted relative accuracy, entropy, and
Gini index, are equivalent to one of two fundamental prototypes: precision, which tries to
optimize the area under the ROC curve for unknown costs, and a cost-weighted difference
between covered positive and negative examples, which tries to find the optimal point
under known or assumed costs. We also show that a straightforward generalization of the
m-estimate trades off these two prototypes.

In addition to heuristics to direct the search, many rule learning algorithms apply other
criteria for filtering out uninteresting rules or for stopping the refinement process at an
appropriate point. Stopping and filtering criteria have received considerably less attention
in the literature, mostly because their task is more frequently addressed by pruning. The few
existing proposals, most notably simple thresholding of the evaluation metric, significance
testing, and MDL-based criteria, turn out to be quite diverse approaches to this problem.
Although our analysis will show some interesting correspondences between some of these
techniques, it is also clear that stopping criteria are far from being well-understood.

The outline of the paper is as follows: We begin with setting up the formal framework of
our analysis, most notably the introduction of coverage spaces and isometrics (Section 2),
and a brief review of covering algorithms in this context (Section 3). In Sections 4 and 5, we
analyze some of the most commonly used evaluation metrics, and show that those with a
linear isometric landscape all fit into a common framework. Subsequently, we discuss a few
issues related to learning rule sets with the covering algorithm (Section 6). In Section 7, we
will look at the most commonly used stopping and filtering criteria. Finally, we discuss a few
open questions (Section 8) and related work (Section 9) before we conclude (Section 10).
Parts of this paper have previously appeared in Fürnkranz and Flach (2003) and Fürnkranz
and Flach (2004).

2. Formal framework

In the following, we define the formal framework in which we perform our analysis. In par-
ticular, we will define coverage spaces and discuss their relation to ROC spaces (Section 2.2)
and provide formal definitions of the equivalence of evaluation metrics and point out the
importance of isometrics in coverage space for identifying such equivalences (Section 2.3).

2.1. Notational conventions

We use capital letters to denote the total number of positive (P) and negative (N ) examples
in the training set. p(r ) denotes the number of true positives and n(r ) the number of false
positives covered by a rule r . Heuristics are two-dimensional functions of the form h(n, p).
We use subscripts to the letter h to differentiate between different heuristics. For brevity
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Table 1. Notational conventions for a confusion matrix of positive and negative examples covered or not covered
by a rule.

Covered by rule Not covered by rule

Positive example p P − p P

Negative example n N − n N

p + n P + N − p − n P + N

and readability, we will abridge h(n(r ), p(r )) with h(r ), and omit the argument (r ) from
functions p, n, and h when it is clear from the context. Table 1 shows a summary of our
notational conventions in the form of a four-field confusion matrix.

In the remainder of the paper, we will use the terms heuristic function and evaluation
metric interchangeably (often abbreviated to heuristic and metric).

2.2. ROC space and coverage space

In the following, we assume some basic knowledge of ROC analysis as it is typically used
for selecting the best classifier for unknown classification costs (Provost & Fawcett, 2001).
In brief, ROC analysis compares different classifiers according to their true positive rate
(TPR) and false positive rate (FPR), i.e., the percentage p/P of correctly classified pos-
itive examples and the percentage n/N of incorrectly classified negative examples. This
allows to plot classifiers in a two-dimensional space, one dimension for each of these two
measurements. The ideal classifier is at the upper left corner, at point (1, 0), while the
origin (0, 0) and the point (1, 1) correspond to the classifiers that classify all examples
as negative and positive respectively. If all classifiers are plotted in this ROC space, the
best classifier is the one that is closest to (1, 0), where the used distance measure depends
on the relative misclassification costs of the two classes. One can also show that all clas-
sifiers that are optimal under some (linear) cost model lie on the convex hull of these
points in ROC space. Thus, all classifiers that do not lie on this convex hull can be ruled
out.2

In the particular context of rule learning, we believe it is more convenient to think in
terms of absolute numbers of covered examples. Thus, instead of plotting TPR over FPR,
we plot the absolute number of covered positive examples over the absolute number of
covered negative examples. We call this space coverage space.3

Definition 2.1 (Coverage space). Coverage space is a two-dimensional space of points
(n, p), where 0 ≤ n ≤ N denotes the number of negative examples covered by a rule (false
positives) and 0 ≤ p ≤ P denotes the number of positive examples covered by a rule (true
positives).

Figure 1 shows two examples, one for the case where the number of positive examples P
exceeds the number of negative examples N , and one for the opposite case. In all subsequent
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Figure 1. Coverage spaces are ROC spaces based on absolute numbers of covered examples.

figures, we will assume P ≤ N (the left graph of figure 1), but this does not affect our
results.

A coverage graph can be turned into a ROC graph by simply normalizing the P and
N -axes to the scale [0, 1] × [0, 1]. Consequently, the isometrics of a function in a coverage
graph can be mapped one-to-one to its isometrics in ROC space. Nevertheless, coverage
graphs have several interesting properties that may be of interest depending on the purpose
of the visualization. Most notably, the absolute numbers of covered positive and negative
examples allow to map the covering strategy into a sequence of nested coverage graphs.
This is further discussed in Section 6.1. Table 2 compares some of the properties of coverage
spaces to those of ROC spaces.

2.3. Isometrics and equivalence

Let us first define some basic properties of rule evaluation metrics.

Table 2. Coverage spaces vs. ROC spaces.

Property ROC space Coverage space

x-axis FPR = n
N n

y-axis TPR = p
P p

Empty theory R0 (0, 0) (0, 0)

Correct theory R (0, 1) (0, P)

Universal theory R̃ (1, 1) (N , P)

Resolution ( 1
N , 1

P ) (1, 1)

Slope of diagonal 1 P
N

Slope of p = n line N
P 1
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Definition 2.2 (Compatible). Two heuristic functions h1 and h2 are compatible iff for all
rules r, s:

h1(r ) > h1(s) ⇔ h2(r ) > h2(s).

Definition 2.3 (Antagonistic). Two heuristic functions h1 and h2 are antagonistic iff for
all rules r, s:

h1(r ) > h1(s) ⇔ h2(r ) < h2(s).

Obviously, compatibility and antagonicity are dual concepts:

Lemma 2.4. h1 and h2 are antagonistic iff h1 and −h2 are compatible.

Proof: This follows immediately from h2(r ) > h2(s) ⇔ −h2(r ) < −h2(s).

Note that compatible or antagonistic heuristics have identical regions of equality:

Definition 2.5 (Equality-preserving). Two heuristic functions h1 and h2 are equality-
preserving iff for all rules r, s:

h1(r ) = h1(s) ⇔ h2(r ) = h2(s).

Theorem 2.6. Compatible or antagonistic heuristics are equality-preserving.

Proof: Assume they would not be equality-preserving. This means there exist rules r and
s with h1(r ) = h1(s) but h2(r ) �= h2(s). Without loss of generality assume h2(r ) > h2(s).
This implies that h1(r ) > h1(s) (for compatibility) or h1(r ) < h1(s) (for antagonicity).
Both cases contradict the assumption.

Note that equality-preserving heuristics are not necessarily compatible or antagonistic,
only if we make some straightforward continuity assumptions. Although all subsequently
discussed functions are continuous, we note that this does no have to be the case. For all
practical purposes, h(n, p) may be regarded as a look-up table that defines a value h for
each integer-valued pair (n, p).

Based on the above, we can define the equivalence of heuristics. The basic idea is that
heuristic functions are equivalent if they order a set of candidate rules in an identical way.
The notion of equivalence should also capture the fact that some learning systems search
for minima of their heuristic function, while others search for maxima (e.g., maximizing
information gain is equivalent to minimizing entropy).

Definition 2.7 (Equivalence). Two heuristic functions h1 and h2 are equivalent (h1 ∼ h2)
if they are either compatible or antagonistic.
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This definition also underlines the importance of isometrics for the analysis of heuristics:

Definition 2.8 (Isometric). An isometric of a heuristic h is a line (or curve) in coverage
space that connects, for some value c, all points (n, p) for which h(n, p) = c.

Equality-preserving heuristics can be recognized by examining their isometrics and es-
tablishing that for each isometric line for h1 there is a corresponding isometric for h2.
Compatible (and antagonistic) heuristics can be recognized by investigating correspond-
ing isometrics and establishing that their associated heuristic values are in the same (the
opposite) order.

3. Covering rule learning algorithms

The most popular strategy for learning classification rules is the covering or separate-and-
conquer strategy. It has its roots in the early days of machine learning in the AQ family
of rule learning algorithms (Michalski, 1969; Kaufman & Michalski, 2000). It is fairly
popular in propositional rule learning (cf. CN2 (Clark & Niblett, 1989; Clark & Boswell,
1991), Ripper (Cohen, 1995), or CBA (Liu, Hsu, & Ma, 1998)) as well as in inductive
logic programming (ILP) (cf. Foil (Quinlan, 1990) and its successors (Džeroski & Bratko,
1992; Fürnkranz, 1994; De Raedt & Van Laer, 1995; Quinlan & Cameron-Jones, 1995) or
Progol (Muggleton, 1995)).

In the following, we will briefly recapitulate the key issues of this learning strategy, with a
particular focus on its behavior in coverage space. For a detailed survey of this large family
of algorithms we refer to Fürnkranz (1999).

3.1. Separate-and-conquer learning

The defining characteristic of this family of algorithms is that they successively learn rules
that explain part of the available training examples. Examples that are covered by previously
learned rules are separated from the training set, and the remaining examples are conquered
by recursively calling the learner to find the next rule.4 This is repeated until all examples
are explained by a rule, or until some other, external stopping criterion specifies that the
current rule set is satisfactory.

Most algorithms of this family operate in a concept learning framework, i.e., they learn
the definition of an unknown concept from positive examples (examples for the concept)
and negative examples (counter-examples). Each of the learned rules covers some (as many
as possible) of the available positive examples, and possibly some (as few as possible) of
the negative examples as well. Thus, the learned rule set describes the hidden concept. For
classifying new examples, each rule is tried. If any of the learned rules fires for a given
example, the example is classified as positive. If none of them fires, the example is classified
as negative. This corresponds to the closed-world assumption in the semantics of rule sets
(theories) and rules (clauses) in the PROLOG programming language.
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3.2. Covering in coverage space

Adding a rule to a rule set means that more examples are classified as positive, i.e., it
increases the coverage of the rule set. All positive examples that are uniquely covered by
the newly added rule contribute to an increase of the true positive rate on the training data.
Conversely, covering additional negative examples may be viewed as increasing the false
positive rate on the training data. Therefore, adding rule ri+1 to rule set Ri effectively moves
from a point Ri = (ni , pi ) (corresponding to the number of negative and positive examples
that are covered by previous rules), to a new point Ri+1 = (ni+1, pi+1) (corresponding to
the examples covered by the new rule set). Moreover, Ri+1 will typically be closer to (N , P)
and farther away from (0, 0) than Ri .

Consequently, learning a rule set one rule at a time may be viewed as a path through
coverage space, where each point on the path corresponds to the addition of a rule to the
theory. Such a coverage path starts at (0, 0), which corresponds to the empty theory that
does not cover any examples. Adding a rule moves to a new point in coverage space, which
corresponds to a theory consisting of all rules that have been learned so far. After the final
rule has been learned, one can imagine adding yet another rule with a body that is always
true. Adding such a rule has the effect that the theory now classifies all examples as positive,
i.e., it will take us to the point R̃ = (N , P). Figure 2 shows the coverage path for a theory
with three rules. Each point Ri represents the rule set consisting of the first i rules.

The final rule set learned by a classifier will typically correspond to the last point on the
curve before it reaches (N , P). Note, however, that this need not be the case. This will be
briefly discussed in Section 6.3.

3.3. Greedy specialization

While the covering loop is essentially the same for all members of the separate-and-conquer
family of rule learning algorithms, the individual members differ in the way they learn
single rules. Algorithms may use stochastic (Mladenić, 1993) or genetic search (Giordana
& Sale, 1992), exhaustive search (Webb, 1995; Muggleton, 1995), or employ association

Figure 2. Schematic depiction of the paths through coverage space that are described by (left) the covering
strategy of learning a theory by adding one rule at a time and (right) greedy specialization of a single rule.
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rule algorithms for finding a candidate set of rules (Liu, Hsu, & Ma, 1998; Jovanoski &
Lavrač, 2001). Again, we refer to Fürnkranz (1999) for a survey.

The vast majority of algorithms uses a heuristic top-down hill-climbing or beam search
strategy, i.e., they search the space of possible rules by successively specializing the current
best rule. Rules are specialized by greedily adding the condition which promises the highest
gain according to some evaluation metric. Like with adding rules to a rule set, this successive
refinement describes a path through coverage space (see figure 2, right). However, in this
case, the path starts at the upper right corner (covering all positive and negative examples),
and successively proceeds towards the origin (which would be a rule that is too specific to
cover any example).

3.4. Overfitting avoidance

In the simplest case, both for refining a rule set and refining a rule, all points on its coverage
path are evaluated with an evaluation metric, and the rule set or rule that corresponds to
the point with the highest evaluation is selected. However, such an approach may often be
too simplistic, in particular because of the danger of overfitting. A rule learner typically
evaluates a large number of candidate rules, which makes it quite likely that one of them
fits the characteristics of the training set by chance. For example, simply using the fraction
of positive examples covered by the rule suffers from overfitting because one can always
successively refine a rule until it covers only a single positive example and no negative
examples. In the worst case, this will happen when all attribute values that describe the
example are added to the rule, but quite frequently the resulting rule is much simpler and
will still cover a significant portion of the instance space. Such a rule has an optimal value
1, but it is unlikely that it generalizes well to unseen data.

A simple way of countering overfitting is to explicitly specify the region of the coverage
space for which it is believed that the provided heuristic evaluations are too weak or too
unreliable to be of interest. There are two principal approaches for dealing with this kind
of problem: pre-pruning algorithms employ additional evaluation metrics for filtering out
unpromising rules or for stopping the refinement process, whereas post-pruning approaches
deliberately learn an overfitting rule or theory and correct it in a post-processing phase.
For a discussion of the two alternatives and some proposals for combining them we refer
to Fürnkranz (1997). In this paper, we will confine ourselves to pre-pruning heuristics
(Section 7).

4. Heuristics with linear isometrics

The ultimate goal of learning is to reach point (0, P) in coverage space, i.e., to learn a correct
theory that covers all positive examples, but none of the negative examples. This will rarely
ever be achieved in a single step, but a set of rules will be needed to meet this objective.
The purpose of a rule evaluation metric is to estimate how close a rule takes you to this
ideal point. In the following, we analyze the most commonly used metrics for evaluating
the quality of a rule in covering algorithms.
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4.1. Basic heuristics

A straightforward strategy for finding a rule that covers some positive and as few negative
examples as possible is to minimize the number of covered negative examples for each
individual rule (or maximize their negation).

hn = −n

This, however, does not capture the intuition that we want to cover as many positive examples
as possible. For this, hp, the number of covered positive examples, could be used.

hp = p

Figure 3 shows the isometrics for hn and hp, vertical and horizontal lines. All rules that
cover the same number of negative (positive) examples are evaluated equally, irrespective
of the number of positive (negative) examples they cover.

However, it is trivial to find theories that maximize either of them: hn is maximal for
the empty theory R0, which does not cover any negative examples, but also no positive
examples, and hp is maximal for the universal theory R̃, which covers all positive and no
negative examples. Ideally, one would like to achieve both goals simultaneously.

4.2. Accuracy, weighted relative accuracy, general costs

A straightforward way for trading off covering many positives and excluding many negatives
is to simply add up hn and hp:

hacc = p − n

The isometrics for this function are shown in the left graph of figure 4. Note that the
isometrics all have a 45◦ angle. Thus this heuristic basically optimizes accuracy:

Figure 3. Isometrics for minimizing false positives and for maximizing true positives.
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Figure 4. Isometrics for accuracy and weighted relative accuracy.

Theorem 4.1. hacc is equivalent to accuracy.

Proof: The accuracy of a theory (which may be a single rule) is the proportion of correctly
explained examples, i.e., positive examples that are covered (p) and negative examples that
are not covered (N − n), in all examples (P + N ). Thus the isometrics are of the form
p+(N−n)

P+N = c. As P and N are constant, these can be transformed into the isometrics of
hacc: p − n = cacc = c(P + N ) − N .

Accuracy has been used as a pruning heuristic in I-REP (Fürnkranz & Widmer, 1994), a
modification of hacc, which also subtracts the length of a rule, has been used in PROGOL
(Muggleton, 1995).

Optimizing accuracy gives equal weight to covering a single positive example and exclud-
ing a single negative example. There are cases where this choice is arbitrary, for example
when misclassification costs are not known in advance or when the samples of the two
classes are not representative. In such cases, it may be advisable to normalize with the
sample sizes:

hwra = p

P
− n

N
= TPR − FPR

The isometrics of this heuristic are shown in the right half of figure 4. The main difference
with accuracy is that the isometrics are parallel to the diagonal, which reflects that we
now give equal weight to increasing the true positive rate (TPR) or to decreasing the false
positive rate (FPR). Note that the diagonal encompasses all classifiers that make random
predictions.

hwra may be viewed as a simplification of weighted relative accuracy. Variations of this
heuristic have been well-known in subgroup discovery (Klösgen, 1996), and it has recently
been proposed as a rule learning heuristic (Lavrač, Flach, & Zupan, 1999; Todorovski,
Flach, & Lavrač, 2000):

Theorem 4.2. hwra is equivalent to weighted relative accuracy.
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Proof: Weighted relative accuracy is defined as hwra′ = p+n
P+N ( p

p+n − P
P+N ). Using equi-

valence-preserving transformations (multiplications with constant values like P + N ), we
obtain hwra′ = 1

P+N (p − p P
P+N −n P

P+N ) ∼ p N
P+N −n P

P+N ∼ pN −n P ∼ p
P − n

N = hwra.

The two coverage graphs of figure 4 are special cases of a function that allows to incor-
porate arbitrary cost ratios between false negatives and false positives. The general form of
this linear cost metric is

hcosts = ap − bn ∼ (1 − c)p − cn ∼ p − dn

The parameters a, b, c and d are different ways of specifying the cost trade-off. a denotes
the benefit (negative costs) of a true positive, whereas b specifies the costs of a false negative.
However, as we are only interested in comparing hcosts for different rules, the absolute size
of a and b is irrelevant; only their ratio is important for determining the order of the rules.
Thus, the benefit of a true positive can be normalized to 1, which results in costs d = b

a for
a false positive. d = 0 means no costs for false positives (resulting in hp), whereas d = ∞
denotes infinite costs for false positives (i.e., hn). It is often more convenient to normalize
this cost parameter to the range [0, 1], which results in c = b = d

d+1 , and 1 − c = a = 1
d+1 .

In the coverage graph, the cost trade-off is characterized by the slope d = b
a = c

1−c of
the parallel isometrics. As a consequence, arbitrary cost ratios can be modeled by hcosts. For
example, accuracy is characterized by equal costs for false positives and false negatives.
Therefore, its isometrics can be obtained with a = b = d = 1 or c = 1/2. The isometrics
of weighted relative accuracy can be obtained by setting a = 1/P and b = 1/N or
c = P/(P + N ) or d = P/N .

4.3. Recall and precision, support and confidence

The most commonly used heuristic for evaluating single rules is to look at the proportion
of positive examples in all examples covered by the rule. This metric is known under many
different names, e.g., confidence in association rule mining, or precision in information
retrieval. We will use the latter term:

hpr = p

p + n

Figure 5 shows the isometrics for this heuristic. Like hp, precision considers all rules that
cover only positive examples to be equally good (the P-axis), and like hn, it considers all
rules that only cover negative examples as equally bad (the N -axis). All other isometrics
are obtained by rotation around the origin (0, 0), for which the heuristic value is undefined.

Uses of the pure precision heuristic in rule learning include Pagallo and Haussler (1990)
and Weiss and Indurkhya (1991). However, several other, seemingly more complex heuris-
tics can be shown to be equivalent to precision. For example, the heuristic that is used for
pruning in Ripper (Cohen, 1995):
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Figure 5. Isometrics for precision.

Theorem 4.3. Ripper’s pruning heuristic hrip = p−n
p+n is equivalent to precision.

Proof: hrip = p
p+n − n

p+n = p
p+n − (1 − p

p+n ) = 2 ∗ hpr − 1

In subsequent sections, we will see that more complex heuristics, such as entropy and Gini
index, are also essentially equivalent to precision. On the other hand, seemingly minor
modifications like the Laplace or m-estimates are not.

Precision and confidence are more frequently used together with their respective coun-
terparts recall and support.

hrec = p

P
= TPR

As P is constant, hrec is obviously equivalent to hp discussed above. Support is usually
defined as the fraction of examples that satisfy both the head and the body of the rule, i.e.,
hsupp = p

P+N ∼ hrec.

4.4. Information content, entropy and gini index

Some algorithms (e.g., PRISM (Cendrowska, 1987)) measure the information content

hinfo = − log2
p

p + n

Theorem 4.4. hinfo and hpr are antagonistic and thus equivalent.

Proof: hinfo = − log2 hpr, thus hinfo(r ) > hinfo(s) ⇔ hpr(r ) < hpr(s).

The use of entropy (in the form of information gain) is very common in decision tree
learning (Quinlan, 1986), but has also been suggested for rule learning in the original version
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Figure 6. Isometrics for entropy (left) and Gini index (right).

of CN2 (Clark & Niblett, 1989).

hent = −
(

p

p + n
log2

p

p + n
+ n

p + n
log2

n

p + n

)

Entropy is not equivalent to information content and precision, even though it seems
to have the same isometrics as these heuristics (see figure 6). The difference is that the
isometrics of entropy go through the undefined point (0, 0) and continue on the other side
of the 45◦ diagonal. The motivation for this is that the original version of CN2 did not assume
a positive class, but labeled its rules with the majority class among the examples covered.
Thus rules r = (n, p) and r̄ = (p, n) can be considered to be of equal quality because
one of them will be used for predicting the positive class and the other for predicting the
negative class.

Based on this, we can, however prove the following

Theorem 4.5. hent and hpr are antagonistic for p ≥ n and compatible for p ≤ n.

Proof: hent = −hpr log2 hpr − (1 − hpr) log2 (1 − hpr) with hpr ∈ [0, 1]. This function
has its maximum at hpr = 1/2 ⇔ p = n. From the fact that it is strictly monotonically
increasing for p ≤ n, it follows that hpr(x) < hpr(y) ⇒ hent(x) < hent(y) in this region.
Analogously, hpr(x) < hpr(y) ⇒ hent(x) > hent(y) for p ≥ n, where hent is monotonically
decreasing in hpr.

We will say that entropy is a class-neutral version of precision. In general, a class-neutral
heuristic has isometrics that are line-mirrored across a symmetry line, typically the 45◦ line
or the diagonal. A heuristic that is not class-neutral can be made so by re-scaling to [−1, 1]
and taking the absolute value. For instance, | p−n

p+n | is a class-neutral version of precision,
and therefore (by construction) equivalent to entropy.
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In decision tree learning, the Gini index is also a very popular heuristic (Breiman et al.,
1984). To our knowledge, it has not been used in rule learning, but we list it for completeness:

hgini = 1 −
(

p

p + n

)2

−
(

n

p + n

)2

∼ pn

(p + n)2

As can be seen from figure 6, the Gini index has the same isometric landscape as entropy,
it only differs in the distribution of the values (hence the lines of the contour plot are a little
denser near the axes and less dense near the diagonal). This, however, does not change the
ordering of the rules.

Theorem 4.6. hgini and hent are equivalent.

Proof: Like entropy, the Gini index can be formulated in terms of hpr (hgini ∼ hpr(1−hpr))
and both functions have essentially the same shape, i.e., both functions grow or fall with
hpr in the same way.

4.5. Laplace, m-estimate, F- and g-measure

The Laplace and m-estimates (Cestnik, 1990) are very common modifications of hpr, which
have, e.g., been used in the second version of CN2 (Clark & Boswell, 1991), m-Foil (Džeroski
& Bratko, 1992), and ICL (De Raedt & Van Laer, 1995).

hlap = p + 1

p + n + 2

hm = p + m P
P+N

p + n + m

The basic idea of these estimates is to assume that each rule covers a certain number of
examples a priori. They compute a precision estimate, but start to count covered positive
or negative examples at a number > 0. With the Laplace estimate, both the positive and
negative coverage of a rule are initialized with 1 (thus assuming an equal prior distribution),
while the m-estimate assumes a prior total coverage of m examples which are distributed
according to the distribution of positive and negative examples in the training set.

In the coverage graphs, this modification results in a shift of the origin of the precision
isometrics to the point (−nm, −pm), where nm = pm = 1 in the case of the Laplace
heuristic, and pm = m ∗ P/(P + N ) and nm = m − pm for the m-estimate (see figure 7). The
resulting isometric landscape is symmetric around the line that goes through (−nm, −pm)
and (0, 0). Thus, the Laplace estimate is symmetric around the 45◦ line, while the m-estimate
is symmetric around the diagonal of the coverage graph.

Another noticeable effect of the transformation is that the farther the origin (−nm, −pm)
moves away from (0, 0), the more the isometrics in the relevant window (0, 0) − (N , P)
approach parallel lines. For example, the isometrics of the m-estimate converge towards the
isometrics of weighted relative accuracy for m → ∞ (see Theorem 4.8 below).
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Figure 7. Isometrics for the m-estimate.

This is maybe best illustrated if we set pm = 0, i.e., if we assume the rotation point to be
on the N -axis. We will call this the g-measure:

hg = p

p + n + g

Figure 8 shows how for g → ∞, the slopes of hg’s isometrics becomes flatter and flatter and
converge towards the axis-parallel lines of hrec. On the other hand, for g = 0, the measure
is obviously equivalent to precision. Thus, the g-measure may be regarded as a simple way
for trading off precision and recall, or support and confidence.

In fact, a number of equivalent measures were considered by other authors. Flach (2003)
showed that for g = P , hg is equivalent to the F-measure, a frequently used trade-off
between recall and precision (van Rijsbergen, 1979). Flach also proposed the G-measure
(hG = p

n+P ) as an equivalent simplification of the F-measure. This, in turn, is a special
case of the heuristic p

n+g that was proposed by Gamberger and Lavrač (2002) for subgroup
discovery. We demonstrate the equivalence of the latter heuristic with our g-measure.

Theorem 4.7. For g ≥ 0, hg ∼ p
n+g

Proof: We show equivalence via compatibility.

hg(r1) > hg(r2) ⇔ p1

p1 + n1 + g
>

p2

p2 + n2 + g
⇔ p1(p2 + n2 + g) > p2(p1 + n1 + g)

⇔ p1 p2 + p1(n2 + g) > p2 p1 + p2(n1 + g)

⇔ p1(n2 + g) > p2(n1 + g)

⇔ p1

n1 + g
>

p2

n2 + g
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Figure 8. Isometrics of hg for increasing values of g.

4.6. The generalized m-estimate

The above discussion leads us to the following straightforward generalization of the m-
estimate, which takes the rotation point of the precision isometrics as a parameter:

hgm = p + mc

p + n + m
= p + a

(p + a) + (n + b)

The second version of the heuristic basically defines the rotation point by specifying its
co-ordinates (−b, −a) in coverage space (a, b ∈ [0, ∞]). The first version uses m as a
measure of how far from the origin the rotation point lies using the sum of the co-ordinates
as a distance measure. Hence, all points with distance m lie on the line that connects (0, −m)
with (−m, 0), and c specifies where on this line the rotation point lies. For example, c = 0
leaves the positive co-ordinate unchanged and moves the origin to (−m, 0), whereas c = 1
denotes (0, −m) as the rotation point. The line that connects the rotation point and (0, 0)
has a slope of c

1−c . Obviously, both versions of hgm can be transformed into each other by
choosing m = a + b and c = a

a+b or a = mc and b = m(1 − c).
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Theorem 4.8. For m = 0, hgm is equivalent to hpr, while for m → ∞, its isometrics
converge to hcosts.

Proof: m = 0: trivial.
m → ∞: By construction, an isometric of hgm through the point (n, p) connects this

point with the rotation point (−(1−c)m, −cm) and has the slope p+cm
n+(1−c)m . For m → ∞, this

slope converges to c
1−c for all points (n, p). Thus all isometrics converge towards parallel

lines with the slope c
1−c .

Theorem 4.8 shows that hgm may be considered as a general model of heuristic functions
with linear isometrics that has two parameters: c ∈ [0, 1] for trading off the misclassification
costs between the two classes, and m ∈ [0, ∞] for trading off between precision hpr and the
linear cost metric hcosts.5 Therefore, all heuristics discussed in this section may be viewed
as equivalent to some instantiation of this general model.

5. Heuristics with non-linear isometrics

All heuristics considered so far have linear isometrics. This is a reasonable assumption as
concepts are typically evaluated with linear cost metrics (e.g., accuracy or cost matrices).
However, these evaluation metrics are concerned with evaluating complete rules. As the
value of an incomplete rule lies not in its ability to discriminate between positive and
negative examples, but in its potential of being refinable into a high-quality rule, it might
well be the case that different types of heuristics are useful for evaluating incomplete
candidate rules. One could, for example, argue that for candidate rules that cover many
positive examples it is less important to exclude negatives than for rules with low coverage,
because high-coverage candidates may still be refined accordingly. Similarly, overfitting
could be countered by penalizing regions with low coverage. Possibly, these and similar
problems could be better addressed with a non-linear isometric landscape, even though the
learned rules will eventually be used under linear cost models.

In this section, we will look at two non-linear information metrics: Foil’s information
gain, and the correlation heuristic used in Fossil.

5.1. Foil’s information gain

Foil’s version of information gain (Quinlan, 1990), unlike ID3’s and C4.5’s version (Quinlan,
1986), is tailored to rule learning, where one only needs to optimize one successor branch as
opposed to multiple successor nodes in decision tree learning. It differs from the heuristics
mentioned so far in that it does not evaluate an entire rule, but only the effect of specializing
a rule by adding a condition. More precisely, it computes the difference in information
content of the current rule and its predecessor r ′, weighted by the number of covered
positive examples (as a bias for generality). The exact formula is6

hfoil = p

(
log2

p

p + n
− log2 c

)
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Figure 9. Isometrics for information gain as used in Foil. The curves show different values c for the precision of
the parent rule.

where c = hpr(r ′) is the precision of the parent rule. In the following, it will turn out to be
convenient to interpret c as a cost parameter taking values in the interval [0, 1].

Figure 9 shows the isometrics of hfoil for four different settings of c. Although the
isometrics are non-linear, they appear to be linear in the region above the isometric that
goes through (0, 0). Note that this isometric, which we will call the base line, has a slope of

c
1−c : In the first graph (c = P

P+N ) it is the diagonal, in the second graph (c = 1/2) it has a
45◦ slope, and in the lower two graphs (c = 1 and c = 10−6) it coincides with the vertical
and horizontal axes respectively.

Note that the base line represents the classification performance of the parent rule. In
the area below the base line are the cases where the precision of the rule is smaller than
the precision of its predecessor. Such a refinement of a rule is usually not considered to
be relevant. In fact, this is also the region where the information gain is negative, i.e., an
information loss. The points on the base line have information gain 0, and all points above
it have a positive gain.

For this reason, we will focus our analysis on the region above the base line, which is the
area where the refined rule improves upon its parent. In this region, the isometrics appear to
be linear and parallel to the base line, just like the isometrics of hcosts. In fact, in Fürnkranz
and Flach (2003), we conjectured that in this part of the coverage space, hfoil is equivalent
to hcosts. However, closer investigation reveals that this is not the case. The farther the
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isometrics move away from the base line, the steeper they get. Also, they are not exactly
linear but slightly bent towards the P-axis, i.e., purer rules are preferred. Nevertheless, it is
obvious that both heuristics are closely related, and in fact we can show the following:

Theorem 5.1. Let c = hpr(r ′) be the precision of r ′, the predecessor of rule r . In the
relevant region p

p+n > c, hcosts(r ) is equivalent to the first-order Taylor approximation of
hfoil(r ).

Proof:

hfoil = p

(
log2

p

p + n
− log2 c

)
= −p log2

c(p + n)

p
∼ −p ln

c(p + n)

p

The Taylor expansion for ln(1 + x) converges for −1 < x ≤ 1, and the first-degree
approximation is ln(1 + x) ≈ x . Recall that the interesting region of hfoil is where p

p+n ≥ c,
i.e., where the precision of the current rule r exceeds the precision of the parent rule r ′

(otherwise there would be no point in refining r ′ to r ). In this region, 0 < c ≤ c/ p
p+n =

c(p+n)
p ≤ 1. Thus

hfoil ∼ −p ln
c(p + n)

p
= −p ln

(
1 +

(
c(p + n)

p
− 1

))

≈ −p

(
c(p + n)

p
− 1

)
= −p

c(p + n) − p

p
= p − c(p + n)

= (1 − c)p − cn

It should be pointed out that Theorem 5.1 should not be interpreted in the way that hcosts is
a good approximation for hfoil. In fact, while the first-order Taylor approximation of ln 1 + x
is quite good near x = 0, it can become arbitrarily bad for x → −1. In our case, we can
expect a good approximation if c is close to 1 and a bad approximation if c approaches 0
because 0 < c ≤ x + 1 = c(p + n)/p ≤ 1.

On the other hand, it is not strictly necessary to have a good approximation for maintaining
the isometric landscape of a function, as we have seen on several examples for equivalent
heuristics in the previous section. There is a difference between one heuristic approximating
another, and its isometrics approximating the other’s. A full analysis of Foil’s information
gain requires a fuller understanding of what it means to approximate an isometric landscape,
which we leave for future work.

5.2. Correlation and χ2 statistic

The correlation metric has been proposed by Fürnkranz (1994) for the rule learner Fossil, a
variant of Foil. It computes the correlation coefficient between the predictions made by the
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Figure 10. Isometrics for the four-field correlation coefficient.

rule and the true labels from a four-field confusion matrix. The formula is

hcorr = p(N − n) − (P − p)n√
P N (p + n)(P − p + N − n)

= pN − Pn√
P N (p + n)(P − p + N − n)

Recall that p and N − n denote the fields on the diagonal of the confusion matrix (the true
positives and the true negatives), whereas n and P − p denote the false positives and false
negatives respectively. The terms in the denominator are the sums of the rows and columns
of the confusion matrix.

Figure 10 shows the isometric plot of the correlation metric. The isometrics are clearly
non-linear and symmetric around the base line on the diagonal (rules that have correla-
tion 0). This symmetry around the diagonal is also characteristic of the linear weighted
relative accuracy heuristic hwra, so it is interesting to compare the properties of these two
metrics.

Above that base line, the isometrics are bent towards the P and N axes respectively.
Thus, hcorr has a tendency to prefer purer rules (covering fewer negative examples) and
more complete rules (covering more positive examples).

Moreover, the linear isometrics that result from connecting the points where the isometrics
intersect with the n = 0 axis (on the left) and the p = P axis (on the top), are not parallel
to the diagonal (as they are for hwra). In fact, it can be shown that the slope of these lines
is 1− p̄/N

1− p̄/P where (0, p̄) is the intersection of the isometric with the P-axis. Obviously, these
lines are only parallel for a class balanced problem (P = N ). For P < N , the slope of
the isometrics will increase for increasing p̄ and approach infinity for p̄ → P . Thus, the
closer a rule gets to the target point (0, P), the more important it will become to exclude
remaining covered negative examples, and the less important to cover additional positive
examples.

For example, the rule (0, P −1) that covers all but one positive examples and no negatives
and the rule (1, P) that covers all positive examples and one negative example have identical
evaluations. On the other hand, the rule (0, 1) covering one positive and no negatives has
an evaluation proportional to 1/P and is therefore preferred over the rule (N − 1, P) that
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covers all positives but excludes only a single negative example (the rule has an evaluation
proportional to 1/N ). Keep in mind that we assumed P < N here; the opposite preference
would be the case for P > N .

In summary, the correlation metric has a tendency to prefer purer or more complete rules.
Moreover, for rules that are far from the target (0, P), it gives higher preference to handling
the minority class (i.e., cover positive examples for P < N and exclude negative examples
for N < P), whereas the priorities for these two objectives become more and more equal
the closer a rule is to the target.7

Note that the four-field correlation coefficient is basically a normalized version of the χ2

statistic over the four events in the table (see, e.g., Mittenecker, 1983, or other textbooks on
applied statistics).

Theorem 5.2. hchi2 = (P + N ) h2
corr.

Proof: The χ2 statistic for a four-field confusion matrix (cf. Table 1) is the sum of the
squared differences between the expected and the observed values of the four fields in the
matrix, divided by the expected values.

The expected values for the four fields in the 2 × 2 confusion matrix are:

( P(p+n)
P+N

N (p+n)
P+N

P(P+N−p−n)
P+N

N (P+N−p−n)
P+N

)

Subtracting this from the actual values (Table 1):

(
p − P(p+n)

P+N n − N (p+n)
P+N

P − p − P(P+N−p−n)
P+N N − n − N (P+N−p−n)

P+N

)

=
( p(P+N )−P(p+n)

P+N
n(P+N )−N (p+n)

P+N

(P−p)(P+N )−P(P+N−p−n)
P+N

(N−n)(P+N )−N (P+N−p−n)
P+N

)

= 1

P + N

(
pN − n P n P − pN

n P − pN pN − n P

)
= pN − Pn

P + N

(
1 −1

−1 1

)

Squaring these differences, dividing them by the expected values, and summing up the
four fields yields:

hchi2 = (pN − Pn)2

(P + N )2

(
P + N

P(p + n)
+ P + N

N (p + n)
+ P + N

P(P + N − p − n)

+ P + N

N (P + N − p − n)

)
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= (pN − Pn)2

P + N

N (P + N − p − n) + P(P + N − p − n) + N (p + n) + P(p + n)

P N (p + n)(P + N − p − n)

= (pN − Pn)2

P + N

(P + N )2

P N (p + n)(P + N − p − n)
= (P + N )h2

corr

Thus, hchi2 may be viewed as a class-neutral version of hcorr. Its behavior has been
previously analyzed in ROC space. Bradley (1996) argued that the non-linear isometrics
of the χ2-statistic helps to discriminate classifiers that do “little work” from classifiers that
achieve the same accuracy (or cost line) but are preferable in terms of other metrics like
sensitivity and specificity. The above-mentioned paper also shows how hchi2 can be modified
to incorporate other cost models.

Finally, we draw attention to the fact that the Gini splitting criterion, defined as im-
purity decrease from parent to children where impurity is defined by the Gini index (see
Section 4.4), is equivalent to χ2. Here, we restrict attention to binary splits and two classes:
in this case, (N , P) can be interpreted as the coverage of the unsplit parent, and (n, p) and
(N − n, P − p) denote the coverage of the two children. Gini-split is then defined as

hgini-split = P N

(P + N )2
− p + n

P + N

pn

(p + n)2
− P − p + N − n

P + N

(P − p)(N − n)

(P − p + N − n)2

where the first term is the Gini index of the parent, and the second and third terms are the
Gini index of the children, weighted with their coverage. This expression can be simplified
to

hgini-split = 1

P + N

[
P N

P + N
− pn

p + n
− (P − p)(N − n)

P − p + N − n

]
(1)

Theorem 5.3. hgini-split ∼ hchi2 .

Proof: The expression inside the brackets in Eq. (1) can be rewritten as a fraction with
denominator (P + N )(p + n)(P − p + N − n) and enumerator

P N (p + n)(P − p + N − n) − pn(P + N )(P − p + N − n)

− (P − p)(N − n)(P + N )(p + n) = P2 N p − P N p2 + P N 2 p − P N pn

+ P2 Nn − P N pn + P N 2n − P Nn2 − P2 pn + Pp2n − P N pn + Ppn2

− P N pn + N p2n − N 2 pn + N pn2 − P2 N p − P2 Nn − P N 2 p − P N 2n

+ P2 pn + P2n2 + P N pn + P Nn2 + P N p2 + P N pn + N 2 p2 + N 2 pn

− Pp2n − Ppn2 − N p2n − N pn2
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All terms but the underlined ones vanish, so we have

hgini-split = 1

P + N

(pN − Pn)2

(P + N )(p + n)(P − p + N − n)

= P N

(P + N )2

(pN − Pn)2

P N (p + n)(P − p + N − n)
= P N

(P + N )3
hchi2

We conjecture that this result can be generalized to non-binary splits and more than two
classes, but this is currently left as an open problem.

6. Evaluation of rule sets

So far, we have been considering heuristics for evaluating single rules, which map to points
in coverage space. In this section we consider the evaluation of sets of rules. We show that the
sequence of training sets and intermediate hypotheses can be viewed as a trajectory through
coverage space, resulting in a set of nested coverage spaces (Section 6.1). We then proceed
by investigating the behavior of precision and the linear cost metric in this context, and
show that precision aims at (locally) optimizing the area under the curve (ignoring costs),
while the cost metric tries to directly find a (global) optimum under known or assumed
costs (Section 6.2). Finally, we will briefly discuss the effect of re-ordering the rules in a
rule set (Section 6.3).

6.1. Covering and nested coverage spaces

Of particular interest for the covering approach is the property that coverage graphs reflect a
change in the total number or proportion of positive (P) and negative (N ) training examples
via a corresponding change in the relative sizes of the P and N -axes. ROC analysis, on the
other hand, would rescale the new dimensions to the range [0, 1], which has the effect of
changing the slope of all lines that depend on the relative sizes of p and n. As a consequence,
the coverage graph for a subset of a training set can be drawn directly into the coverage
graph of the entire set. In particular, the sequence of training sets that are produced by
the recursive calls of the covering strategy—after each new rule all covered examples are
removed and the learner calls itself on the remaining examples—can be visualized by a
nested sequence of coverage graphs.

This is illustrated in figure 11, which shows a nested sequence of coverage spaces. Each
space P Ni has its origin in the point Ri = (ni , pi ), which corresponds to the theory learned
so far. Thus, its learning task consists of learning a theory for the remaining P − pi positive
and N − ni negative examples that are not yet covered by theory Ri . Each new rule will
cover a few additional examples and thus reduce the corresponding coverage space.

Note that some separate-and-conquer algorithms only remove the covered positive ex-
amples, but not the covered negative examples. This situation corresponds to reducing only
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Figure 11. Isometrics for accuracy and precision in nested coverage spaces.

the height of the coverage graph, but not its width. Obviously, this breaks the nesting prop-
erty because rules are locally evaluated in a coverage graph with full width (all negative
examples), but for getting their global evaluation in the context of previously learned rules,
all previously covered negative examples have to be removed. While we do not expect a
big practical difference between both approaches, removing all examples seems to be the
conceptually cleaner solution.

6.2. Global and local optima

The nesting property implies that evaluating a single rule in the reduced dataset (N −ni , P−
pi ) amounts to evaluating the point in the subspace P Ni that has the point (ni , pi ) as its
origin. Moreover, the rule that maximizes the chosen evaluation function in P Ni is also a
maximum point in the full coverage space if the the evaluation metric does not depend on
the size or the shape of the coverage graph.

The linear cost metric hcosts is such a heuristic: a local optimum in the subspace P Ni is
also optimal in the global coverage space because all isometrics are parallel lines with the
same angle, and nested coverage spaces (unlike nested ROC spaces) leave angles invariant.
Precision, on the other hand, cannot be nested in this way. The evaluation of a given rule
depends on its location relative to the origin of the current subspace P Ni .

This is illustrated in figure 11. The subspaces P Ni correspond to the situation after
removing all examples covered by the rule set Ri . The left graph of figure 11 shows the
case for accuracy: the accuracy isometrics are all parallel lines with a 45◦ slope. The right
graph shows the situation for precision: each subspace P Ni evaluates the rules relative to
its origin, i.e., hpr always rotates around (ni , pi ) in the full coverage space, which is (0,0)
in the local space. Thus, global optimization for precision (or for hgm in general) could
be realized by making the generalized m-measure hgm adaptive by choosing a = pi and
b = ni in subspace PNi .

However, local optimization is not necessarily bad. At each point (n, p), the slope of the
line connecting (0, 0) with (n, p) is p/n.8 hpr picks the rule that promises the steepest ascent
from the origin. Thus, if we assume that the origin of the current subspace is a point of a
ROC curve (or a coverage path), we may interpret hpr as making a locally optimal choice
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for continuing a ROC curve. The choice is optimal in the sense that picking the rule with
the steepest ascent locally maximizes the area under the ROC curve.

However, if the cost model is known, this choice may not necessarily be globally optimal.
For example, if the point R2 in figure 11 could be reached in one step, hacc would directly
go there because it has the better global value under the chosen cost model (accuracy),
whereas hpr would nevertheless first learn R1 because it promises a greater area under the
ROC curve.

In brief we may say that hpr aims at optimizing under unknown costs by (locally) maxi-
mizing the area under the ROC curve, whereas hcosts tries to directly find a (global) optimum
under known (or assumed) costs.

6.3. Reordering rule sets

In the previous sections we have seen that learning a set of rules is a path through coverage
space starting at the point R0 = (0, 0) (the theory covering no examples) and ending at
R̃ = (N , P) (the theory covering all examples). Each intermediate rule set Ri is a potential
classifier, and one of them has to be selected as the final classifier. However, the curve
described by the learner will frequently not be convex. The left graph of figure 12 shows
a case where the rule set R2 consisting of rules {r1, r2} is not on the convex hull of the
classifiers. Thus, only R1 = {r1} and R2 = {r1, r2, r3} are potential candidates for the final
classifier.

Interestingly, in some cases it may be quite easy to obtain better classifiers by simply
re-ordering the rules. The right graph of figure 12 shows the best result that can be obtained
by swapping the order of rules r2 and r3 resulting in the classifier R′

2 = {r1, r3}. Note,
however, that this graph is drawn under the assumption that rules r2 and r3 cover disjoint
sets of examples, in which case the quadrangle R1 − R2 − R3 − R′

2 is a parallelogram. In
general, however, r3 may cover some of the examples that were previously already covered
by r2, which may change the shape of the quadrangle considerably, depending on whether
the majority of the overlap are positive or negative examples. Thus, it is not guaranteed that

Figure 12. A concavity in the path of a rule learner (left), and the result of a successful fix by swapping the order
of the second and third rule (right).
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swapping of the rules will indeed increase the area under the ROC curve or make the curve
convex.

In this context it is interesting to make a connection to the work by Ferri, Flach, and
Hernández (2002). They proposed a method to relabel decision trees in the following way.
First, all k leaves (or branches) are sorted in decreasing order according to hpr. Then, a valid
labeling is obtained by splitting the ordering in two, and labeling all leaves before the split
point positive and the rest negative. This results in k + 1 labelings, and the corresponding
ROC curve is necessarily convex. An optimal point can be chosen in the usual way, once
the cost model is known. In our context, ordering branches corresponds to ordering rules,
and relabeling corresponds to picking the right subset of the learned rules: labeling a rule
as positive corresponds to including the rule in the theory, while labeling a rule as negative
effectively deletes the rule because it will be subsumed by the final default rule that always
predicts the negative class. However, the chosen subset is only guaranteed to be optimal if
the rules are mutually exclusive. Ferri, Flach, and Hernández (2002) use this technique to
derive a novel splitting criterion for decision tree learning. Presumably, a similar criterion
could be derived for rule learning, which we regard as a promising topic for future work.

Finally, we note that Flach and Wu (2003) have addressed the problem of repairing
concavities in ROC curves in the context of the naive Bayesian classifier. We are currently
investigating whether similar techniques are applicable to rule learners.

7. Stopping and filtering criteria

In addition to their regular evaluation metric, many rule learning algorithms employ separate
criteria to filter out uninteresting candidates and/or to fight overfitting. There are two slightly
different approaches: stopping criteria determine when the refinement process should stop
and the current best candidate should be returned, whereas filtering criteria determine
regions of acceptable performance.

Both concepts are closely related. In particular, filtering criteria are often also used as
stopping criteria: If no further rule can be found within the acceptable region of a filtering
criterion, the learned theory is considered to be complete. Basically the same technique is
also used for refining single rules: if no refinement is in the acceptable region, the rule is
considered to be complete, and the specialization process stops. For this reason, we will
often use the term stopping criterion instead of filtering criterion because this is the more
established terminology.

The most popular approach is to impose a threshold upon one or more evaluation metrics.
Thus this type of filtering criterion consists of a heuristic function and a threshold value
that specifies that only rules that have an evaluation above this value are of interest. The
threshold may be chosen by the user or be automatically adapted to certain characteristics
of the rule (e.g., its encoding length).

In the following, we analyze a few popular filtering and stopping criteria for greedy
specialization: minimum coverage constraints, support and confidence, significance tests,
encoding length restrictions, and Fossil’s correlation cutoff. We use coverage space to
analyze stopping criteria, by visualizing regions of acceptable hypotheses.
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Figure 13. Thresholds on minimum coverage of positive examples (left) and total number of examples (right).

7.1. Minimum coverage constraints

The simplest form of overfitting avoidance is to disregard rules with low coverage. For
example, one could require that a rule covers a certain minimum number of examples or a
minimum number of positive examples. These two cases are illustrated in figure 13. The
graph on the left shows the requirement that a minimum fraction (here 20%) of the positive
examples in the training set are covered by the rule. All rules in the gray area are thus
excluded from consideration. The right graph illustrates the case where a minimum fraction
(here 20%) of examples needs to be covered by the rule, regardless of whether they are
positive or negative. Changing the size of the fraction will cut out different slices of the
coverage space, each delimited with a coverage isometric (−45◦ lines). Clearly, in both
cases the goal is to fight overfitting by filtering out rules whose quality cannot reliably
estimated because of the small number of training examples they cover. Notice that we can
include a cost model in calculating the coverage of positive and negative examples, thereby
changing the slope of the coverage isometrics. The two cases in figure 13 are then special
cases of this general cost-based coverage metric.

7.2. Support and confidence

There is no reason why a single measure should be used for filtering out unpromising
rules. The most prominent example for combining multiple estimates are the thresholds
on support and confidence that are used mostly in association rule mining algorithms,
but also in classification algorithms that obtain the candidate rules for the covering loop
in an association rule learning framework (Liu, Hsu, & Ma, 1998; Liu, Ma, & Wong,
2000; Jovanoski & Lavrač, 2001).

Figure 14 illustrates the effect of thresholds on support and confidence in coverage space.
Together, they specify an area for valid rules around the (0, P)-point in coverage space.
Rules in the grey areas will be filtered out. The dark grey region shows a less restrictive
combination of the two thresholds, the light grey region a more restrictive setting. In effect,
confidence constrains the quality of the rules, whereas support aims at ensuring a minimum
reliability by filtering out rules whose confidence estimate originates from too few positive
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Figure 14. Filtering rules with minimum support and minimum confidence.

examples. The combined effect is quite similar to a threshold on the g- or F-measures.
(Section 4.5), but it allows for more rules in the region near the intersection of the two
threshold lines.

7.3. CN2’s significance test

CN2 (Clark & Niblett, 1989; Clark & Boswell, 1991) filters rules for which the distribution
of the covered examples is not statistically significantly different from the distribution of
examples in the full data set. To this end, it computes the likelihood ratio statistic:

hlrs = 2

(
p log

p

ep
+ n log

n

en

)

where ep = (p + n) P
P+N and en = (p + n) N

P+N = (p + n) − ep are the number of positive
and negative examples one could expect if the p + n examples covered by the rule were
distributed in the same way as the P + N examples in the full data set.

Figure 15 illustrates CN2’s filtering criterion. The dark grey area shows the location of the
rules that will be filtered out because it can not be established with 95% confidence that the
class distribution of the covered examples is different from the class distribution in the full
dataset. The light grey area shows the set of rules that will be filtered out if 99% confidence
is required. Obviously, the area is symmetric around the diagonal, which corresponds to
random guessing.

Other significance tests than the likelihood ratio could be used. For instance, we have
already discussed hchi2 in Section 5.2. In the case of a two-by-two contingency table, both
hchi2 and hlrs are distributed as χ2 with one degree of freedom, but that doesn’t mean that
they are equivalent as heuristics. In fact, there are some interesting differences between the
isometric landscapes in figures 10 and 15. More specifically, the likelihood ratio isometrics
in figure 15 do not depend on the size of the training set. Any graph corresponding to a
bigger training set with the same class distribution (a proportion of P/(P + N ) positive



ROC ’N’ RULE LEARNING 67

Figure 15. Illustration of CN2’s significance test. Shown are the regions that would not pass a 95% (dark grey)
and a 99% (light grey) significant test.

examples) will contain this graph in its lower left corner. In other words, whether a rule
covering p positive and n negative examples is significant according to hlrs does not depend
on the size of the training set, but only on the class distribution of the examples it covers.

In contrast, hchi2 always fits the same isometric landscape into coverage space. As a result,
the evaluation of a point (n, p) depends on its relative location (n/N , p/P). In this case, the
same rule will always be evaluated in the same way, as long as it covers the same fraction of
the training data. Only the location of the significance cutoff isometric (e.g. 95%) depends
on P and N in the case of hchi2 .

7.4. Foil’s encoding length restriction

Foil (Quinlan, 1990) uses a criterion based on minimum description length (MDL) for
deciding when to stop refining the current rule. For explicitly indicating the p positive
examples covered by the rule, one needs hMDL bits:

hMDL = log2 (P + N ) + log2

(
P + N

p

)

This number is then compared to the number of bits needed to encode the rule, denoted by
l(r ). If hMDL(r ) < l(r ), i.e., if the encoding of the rule is longer than the encoding of the
examples themselves, the rule is rejected. As l(r ) depends solely on the encoding length
(in bits) of the current rule, Foil’s stopping criterion—like CN2’s significance test—also
depends on the size of the training set: the same rule that is too long for a smaller training
set might be good enough for a larger training set, in which it covers more examples.

For the purposes of our analysis, we can neglect the rule length as a parameter, and
interpret hMDL as a heuristic that is compared to a variable threshold, the size of which
depends on the length of the rule. Figure 16 shows the behavior of hMDL in coverage space.
The isometric landscape is equivalent to one for the minimum coverage criterion, namely
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Figure 16. Illustration of Foil’s encoding length restriction for domains with P < N (left) and P > N (right).
Lighter shades of gray correspond to larger encoding lengths for the rule.

parallel lines to the N -axis. This is not surprising, considering that hMDL is independent of
n, the number of covered negative examples.

For P < N , hMDL is monotonically increasing with p. As a consequence, for every rule
encoding length l(r ) there exists a threshold p(l(r )) such that for all rules r , hMDL(r ) >

l(r ) ⇔ hp(r ) > p(l(r )). Thus, in this case, hMDL and hp are essentially equivalent. The
more complicated formulation in the MDL-framework basically serves the purpose of
automatically mapping a rule to an appropriate threshold. It remains an open question,
whether there is a simpler mapping r → p(r ) that allows to obtain equivalent (or similar)
thresholds without the expensive computation of l(r ).

Particularly interesting is the case P > N (right graph of figure 16): the isometric
landscape is still the same, but the labels are no longer monotonically increasing. In fact,
hMDL has a maximum at the point p = (P + N )/2. Below this line (shown dashed in
figure 16), the function is monotonically increasing (as above), but above this line it starts
to decrease again. Thus, we can formulate the following

Theorem 7.1. hMDL is compatible with hp iff p ≤ (P + N )/2 and it is antagonistic to hp

for p > (P + N )/2.

Proof: (a) p ≤ P+N
2 :

hMDL = log2 (P + N ) + log2

(
P + N

p

)

∼ log2

∏p
i=1(P + N + 1 − i)∏p

i=1 i

=
p∑

i=1

log2(P + N + 1 − i) −
p∑

i=1

log2 i

=
p∑

i=1

(log2(P + N + 1 − i) − log2 i)
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The terms inside the sum are all constant. Thus, for two rules r1 and r2 with 0 ≤ hp(r1) <

hp(r2) ≤ P+N
2 , the corresponding sums only differ in the number of terms. As all terms are

> 0, hp(r1) < hp(r2) ⇔ hMDL(r1) < hMDL(r2)
(b) p > P+N

2 :

hMDL ∼ log2

(
P + N

p

)
= log2

(
P + N

P + N − p

)

Therefore, each rule r with coverage p has the same evaluation as some rule r ′ with coverage
P+N−p < (P+N )/2. As the transformation p → P+N−p is monotonically decreasing,

hMDL(r1) > hMDL(r2) ⇔ hMDL(r ′
1) > hMDL(r ′

2) ⇔
⇔ hp(r ′

1) > hp(r ′
2) ⇔ hp(r1) < hp(r2)

Corollary 7.2. hMDL is equivalent with hp iff P ≤ N.

Proof: hMDL reaches its maximum at p = P+N
2 , which is inside coverage space only if

P > N .

Thus, for skewed class distributions with many positive examples, there might be cases
where a rule r2 is acceptable, while a rule r1 that has the same encoding length (l(r1) = l(r2)),
covers the same number or fewer negative examples (n(r1) ≤ n(r2)), but more posi-
tive examples (p(r1) > p(r2)) is not acceptable. For example, in the example shown on
the right of figure 16, we assumed P = 48 and N = 20. A rule r1 = (0, 48) that cov-
ers all positive examples and no negative examples would be allowed approximately
62.27 bits, whereas a rule r2 = (20, 34) that covers only 34 positive examples but all
20 negative examples would be allowed approximately 70.72 bits. The reason is that
hMDL is independent of the number of covered negative examples and that p = 34 =
(P + N )/2 maximizes the second term in hMDL. Thus, if we assume that both rules
have the same encoding length (e.g., l(r1) = l(r2) = 65 bits), r2 would still be ac-
ceptable, whereas the perfect rule r1 would not. This is very counter-intuitive and sheds
some doubts upon the suitability of Foil’s encoding length restriction for such
domains.

7.5. Fossil’s correlation cutoff

Fossil (Fürnkranz, 1994) imposes a threshold upon its correlation metric (Section 5.2).
Only rules that evaluate above this threshold are admitted. Figure 17 shows the effect
of this threshold for the stopping value 0.3 which appears to perform fairly well over
a variety of domains (Fürnkranz, 1997). It can be clearly seen that, like with CN2, the
main focus of this approach is to filter out uninteresting rules, i.e., rules whose example
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Figure 17. Illustration of Fossil’s cutoff criterion.

distribution does not deviate much from the example distribution in the full training set.
As discussed in Section 5.2, rules that cover few negative examples and rules that cover
many positive examples are preferred, as witnessed by the bended shape of the isometric
lines.

Note that Fossil applies this filtering criterion also to incomplete rules, i.e., to rules that
could still be refined into a better rule. This differs from the approach taken by CN2, where
only candidates that appear to be better than the current best rule are tested for significance,
but it behaves like Foil, where the encoding length of each candidate rule is tested. Like
Foil, Fossil also does not return the rule with the highest evaluation, but it continues to add
conditions until the stopping criterion fires. Thus, the cutoff line shown in figure 17 may be
viewed as a minimum quality line: learning stops as soon as the path of the learner crosses
this line (from the acceptable region to the non-acceptable region), and the last rule above
this line is returned.

In this context, it should be noted that the correlation metric as proposed in (Fürnkranz,
1994) is only used for local optimization. The correlation is not computed on the entire
training set, but only on the set of examples covered by the predecessor of the rule. As a
consequence, Fossil cannot return the rule with the largest correlation (because the corre-
lations for different rules may be computed on different example sets), but it will always
return the last rule searched. Thus, as in Foil, the heuristic is only used for determining the
best refinement of the currently searched rule, and not for finding an optimum among all
candidate rules. For this type of algorithms, the stopping criterion is particularly crucial.
Later versions of Fossil adopted a global evaluation, but no strict empirical comparison of
the approaches was performed.

8. Discussion and open questions

In this section we discuss various issues that are brought up by the previous analysis,
including the relative merits of calculating coverage as an absolute or a relative frequency,
overfitting avoidance, and the evaluation of incomplete rules.
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8.1. Absolute vs. relative coverage

Evaluation metrics differ in their response to changes in the shape of the coverage space, i.e.,
to changes in sample size or sample distribution. For example, weighted relative accuracy
always assumes cost lines that are parallel to the diagonal of the coverage space. Thus,
the relative location of a rule covering a certain number of positive and negative examples
may change with changes in the sample distribution, even if the rule’s coverage remains
the same. It is particularly important to be aware of this property when working with
separate-and-conquer algorithms because the covering algorithm constantly modifies the
sample distribution by removing the covered examples after each learned rule. Typically,
this process will lead to increasingly skewed example distributions because the rules will
cover predominantly positive examples, so that their proportion in the remaining examples
will decrease.

On the other hand, iso-accuracy lines always have a slope of 1, independent of the actual
distribution of negative and positive examples. Thus, the relative costs of rules covering
the same number of positive and negative examples will remain the same, irrespective
of the sample distribution. This is the property that allows global optimization in nested
coverage spaces. Note, however, that a change in the example distribution may also cause
a corresponding change in the coverage of the rule. In this case, the location of the rules
relative to the isometrics will change with a different sample, even though the isometrics
themselves remain in place.

The difference between these two approaches is particularly important when design-
ing stopping criteria: In the first approach (exemplified by Fossil’s cutoff criterion) the
filtering criterion depends only on the relative coverage of a rule, whereas in the sec-
ond approach (exemplified by CN2’s significance test) it depends on its absolute cov-
erage. Which of the two approaches is preferable depends on whether the number of
training examples covered by a rule in the target concept is proportional to the size of
the training set or remains approximately the same, independent of the size of the train-
ing set. If we assume the existence of an underlying target theory with a fixed num-
ber of rules, the former assumption appears to be more logical. However, empirical ev-
idence shows that the number of found rules is typically increasing with the size of the
training set (see, e.g., Oates & Jensen, 1998), which could be interpreted as evidence
for the latter approach. More work is needed to give more definite answers to these
questions.

8.2. Overfitting avoidance

The reader should keep in mind that a learning algorithm typically evaluates a large number
of candidate rules, which makes it quite likely that one of them fits the characteristics of
the training set by chance. The evaluation of such a rule (and thus its location in coverage
space) may change when evaluated on an independent test set. It will be an interesting task
for further work to study the differences in the coverage paths of a metric on the training
and test sets. Such a study could be helpful in understanding overfitting and possibly in
devising heuristics to counter this effect.
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In fact, one of the main reasons why the Laplace and m-estimates are favored over
precision is because they are less sensitive to noise in the data and more effective in
avoiding overfitting (Džeroski & Bratko, 1992). Our interpretation of these estimates
as ways of trading off between precision hpr and the linear cost metric hcosts supports
this view: For large training sets, hcosts can be expected to be less prone to overfitting
than hpr because it will typically be easy to find a general rule that has a higher eval-
uation than a rule that fits a single example. For example, there will usually be many
rules that have hacc = p − n > 1, while a rule with hpr = 1 will be hard to beat, even if
it only covers a single example. However, for small example sets, each rule will only
cover a few examples, causing the same type of problems. As small training sets are
typically bound to happen at the end of the covering phase, hcosts will eventually also
overfit.

Another subject for further study is how to equip heuristic functions with a bias against
coverage regions that are prone to overfitting. Currently used algorithms handle the over-
fitting problem exclusively with stopping criteria or with pruning. Our analysis, however,
has also shown that criteria such as CN2’s significance test or Fossil’s correlation cutoff are
biased towards rules with low coverage. The reason is that these approaches are targeted
towards identifying statistically valid deviations from random classification. Our results
show that this is not necessarily a good approach for avoiding overfitting.

8.3. Evaluation of incomplete rules

In accordance with most rule learning algorithms, we also tacitly made the assumption that
incomplete rules (or incomplete rule sets) should be evaluated in the same way as complete
rules (or complete theories). However, it should be noted that this is not necessarily the
case: the value of an incomplete rule does not lie in its ability to discriminate between
positive and negative examples, but in its potential of being refined into a high-quality
rule. For example, Gamberger and Lavrač (2002) argued that for incomplete rules, it is
more important to cover many positives (hence a flatter slope is acceptable), while for
complete rules it is more important to cover as few negatives as possible (hence a steeper
slope). A similar argument has been made by Bradley (1996) who argued that the non-linear
isometrics of the χ2 statistic should be used in order to discriminate classifiers that do “little
work” from classifiers that achieve the same accuracy but are preferable in terms of other
metrics like sensitivity and specificity.

9. Related work

Rule learning has a long history, but the investigation of search and pruning heuristics has
not yet gone beyond its explorative phase. Numerous heuristics have been tried by various
authors but independent comparative reviews are very scarce. Fürnkranz (1999) provides
a broad survey of heuristics that can be found in the literature but does not attempt to
compare them. Lavrač, Cestnik, and Džeroski (1992a, 1992b) offer a limited review for
classification rule learning in inductive logic programming, and provide some empirical
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results and tentative conclusions. A first step towards a theoretical framework for analysis
has been made by Lavrač, Flach, and Zupan (1999).

Visualization in ROC-like spaces is primarily used as a tool for finding a suitable set
of classifiers under unknown costs (Swets, Dawes, & Monahan, 2000; Provost & Fawcett,
2001), but its importance for analyzing evaluation metrics has been previously recognized
as well. We refer to Flach (2003) for a systematic treatment of visualization of evaluation
metrics and their isometrics in ROC space.

Bradley (1996) analyzed the χ2-test on a confusion matrix and concluded that its isomet-
rics are more suitable for comparing classifiers than the isometrics of accuracy. Coverage
spaces were—under the name of TP/FP space—already used by Gamberger and Lavrač
(2002) for motivating the introduction of an equivalent form of the g-measure (Theorem 4.7).
Highly related to our work is the work of Vilalta and Oblinger (2000) who analyzed evalu-
ation metrics by proposing a bias similarity measure based on the area between isometric
lines through a fixed point in ROC space, and tried to relate the similarity between metrics
to the performance of classifiers that use these metrics. The main difference to our work is
that they focused on decision-tree metrics, where the average impurity over all successor
nodes is measured, whereas we focus on a rule learning scenario where only the impurity
of a single node (the rule) is of interest.

10. Conclusions

In this paper, we analyzed the most common evaluation metrics for separate-and-conquer
rule learning algorithms. We looked at heuristics for evaluating rules as well as filtering and
stopping criteria, and covered learning of single rules as well as learning of rule sets. Our
main tool of analysis, visualization in coverage space (a variant of ROC space) proved to
be particularly suitable for understanding both the behavior of heuristic functions and the
dynamics of the covering algorithm.

Our results show that there is a surprising number of equivalences and similarities among
commonly-used evaluation metrics. For example, we found that the relevant regions of
Foil’s information gain metric can be reasonably well approximated by a conceptually
simpler cost-weighted difference between positive and negative examples, if the precision
of the parent clause is used as the cost ratio. In fact, we identified two basic prototype
metrics, precision and the above-mentioned linear cost metric, and showed that they follow
complementary strategies: precision tries to optimize the area under the ROC curve for
unknown misclassification costs, whereas the cost metric tries to directly find the best
theory under known costs. We also showed that a straightforward generalization of the
well-known m-estimate may be regarded as a means for trading off between these two
prototypes.

Stopping and filtering criteria are more diverse and less explored. For example, even
though CN2’s significance test and Fossil’s evaluation metric and stopping criterion use
a χ2-distribution, their isometric landscapes are different and they are not equivalent. In
any case, both criteria focus on statistically valid deviations from random guessing (the
diagonal of coverage space). While this is certainly a reasonable thing to do in general,
our results show that it is questionable whether this is a suitable technique for avoiding
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overfitting because it does not seem to penalize regions with low rule coverage. On the
other hand, simple approaches like thresholding the coverage of a rule, may be quite
appropriate for this purpose. In fact, Foil’s MDL-based encoding length restriction is
equivalent to a variable threshold on the coverage of the positive examples. However,
the threshold, which depends on the encoding length of the rule, seems to be problem-
atic for example distributions with predominantly positive examples, where it may prefer
a rule with partial coverage over a perfect rule of the same length that covers all posi-
tive and no negative examples. Overall, we believe that our analysis has shown that we
are still far from a systematic understanding of stopping criteria. The fact that, unlike
decision-tree algorithms, most state-of-the-art rule learning algorithms use pruning for
noise-handling may not necessarily be a strong indicator for the superiority of this approach,
but may also be interpreted as an indicator of the inadequacy of currently used stopping
criteria.

In conclusion, we are confident that the analytic technique used in this paper can ef-
fectively be turned around for designing new criteria—quite literally—from the drawing
board.
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Notes

1. These algorithms can handle multi-class problems by transforming them into a set of binary learning problems
that discriminate each class from the union of all other classes (Clark & Boswell, 1991; Cohen, 1995) or
discriminate all pairs of classes (Fürnkranz, 2002).

2. Strictly speaking this would involve the construction of confidence bands as the ROC curve has to be estimated
from samples. This is, however, outside the scope of this paper.

3. In previous work (Fürnkranz & Flach, 2003, 2004) we used the term PN-space. However, we prefer the term
coverage space as it is more meaningful.

4. An alternative approach is to decrease the weight of covered examples as in Cohen and Singer (1999) and
Lavrač et al. (2004).

5. The reader may have noted that for m → ∞, hgm → c for all p and n. Thus for m = ∞, the function
does not have isometrics because all evaluations are constant. However, this is not a problem for the above
construction because we are not concerned with the isometrics of the function hgm at the point m = ∞, but
with the convergence of the isometrics of hgm for m → ∞. In other words, the isometrics of hcosts are not
equivalent to the isometrics of hgm for m = ∞, but they are equivalent to the limits to which the isometrics of
hgm converge if m → ∞.

6. This formulation assumes that we are learning in a propositional setting. For relational learning, Foil does not
estimate the precision from the number of covered instances, but from the number of proofs for those instances.

7. The preferences would even reverse if fractional examples (i.e., coverage counts smaller than 1) are possible.
We do not consider this case here.

8. One may say that hpr assumes a different cost model for each point in the space, depending on the relative
frequencies of the covered positive and negative examples. Such local changes of cost models are investigated
in more detail by Flach (2003).
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