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Abstract. Knowledge discovery in databases is used to discover useful and understandable knowledge
from large databases. A process of knowledge discovery consists of two steps, the data mining step and
the evaluation step. In this paper, evaluating and ranking the interestingness of summaries generated from
databases, which is a part of the second step, is studied using diversity measures. Sixteen previously analyzed
diversity measures of interestingness are used along with three not previously considered ones, brought from
different well-known areas. The latter three measures are evaluated theoretically according to five principles
that a measure must satisfy to be qualified acceptable for ranking summaries. A theoretical correlation study
between the eight measures that satisfy all five principles is presented based on mathematical proofs. An
empirical evaluation is conducted using three real databases. Then, a classification of the eight measures is
deduced. The resulting classification is used to reduce the number of measures to only two, which are the
best over all criteria, and that produce non-similar results. This helps the user interpret the most important
discovered knowledge in his decision making process.

Keywords: data mining, diversity measures, association rules

1. Introduction

One of the most important problems in the field of knowledge discovery is the develop-
ment of effective interestingness measures. These measures are divided into objective
measures, those based upon the structure of discovered patterns (Han & Kamber, 2001),
and subjective measures, those based upon the belief and the class of users who examine
the patterns (Silberschatz & Tuzhilin, 1995). The latter measures are also divided by Sil-
berschatz and Tuzhilin (1996) into two classes: actionability measures where a pattern
is interesting if the user can do something to his advantage with it, and unexpectedness
measures which rate a pattern as interesting if it is surprising to the user.

One approach to giving good measures of interestingness is the use of diversity ones
as heuristic measures of interestingness. In the context of ranking the interestingness
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Table 1. A sales database.

Store Qty Amount

1 2 20

2 3 30

3 1 10

4 4 40

5 1 10

6 3 30

of summaries, generated from databases, Hilderman and Hamilton (1999) proposed the
use of sixteen measures. In this paper, besides those proposed, three measures not used
previously are presented and evaluated. The goal is to select particular measures that
are representative of distinct classes of interestingness measures. This will make the
decision making easier and more objective: easier by reducing the number of measures
and more objective by using only the ones which are the best over all criteria instead of
applying all members of the set of measures or arbitrarily choosing one of them.

The use of valid interestingness measures, satisfying all required criteria, is very
important in this context since the number of generated summaries from the same
database may reach many thousands. The assessment of such number of summaries is
a very hard task.

The remainder of this paper is organized as follows. Section 2 gives some prelimi-
naries by defining a summary on which our methodology of treating the databases is
based. In Section 3, diversity measures are discussed. In Section 4, we show that the
new measures satisfy the five principles that a useful measure must satisfy. Then, a
theoretical correlation study is made. In Section 5, we propose an empirical evaluation
of the measures by describing their distribution characteristics. Hence, the eight theo-
retically acceptable measures are applied to three real databases and their classification
is deduced.

2. The summary concept

Let S be a set of tables summarizing a given database using generalization techniques
such as Concept Hierarchy (CH) or Domain Generalization Graph (DGG) that replace
attribute values with more general concepts according to user specifications. Hence, S is
a set of summaries. To explain this concept, we propose the following example: Table 1
gives a sales database and Figure 11 presents a CH and a DGG for this database.

A possible representation deduced from the DGG is the following set S = S1, S2, S3,
where Si is summary i such that summary S1, given in Table 2, gives a representation
according to the first rule. Summaries S2 and S3, presented in Tables 3 and 4 respectively,
give representations according to the second and the third rules.

The summaries correspond to the following three hypothetical rules:

– Sales are influenced by the fact of being in different regions.
– Sales are influenced by the fact of being in different cities.
– Sales are influenced by the fact of being in different stores.
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Figure 1. A concept hierarchy and a domain generalization graph for the store attribute.

These three rules might be chosen a priori according to the initial database by taking
into consideration existing generalization relations in the DGG.

The last columns in Tables 2– 4, or Count, represent the number of occurrences of
the values in the store column and they are the important ones for our study.

3. Heuristic measures of interestingness

The process of generating a summary from a database produces a set of tuples which are
unique. Hence, they can be considered as a population with a probability distribution.
Hilderman and Hamilton (1999) discussed sixteen heuristic measures of interestingness
which are based on diversity measures taken from different well-known areas such
as statistics, ecology, information theory, and management. Hilderman and Hamilton
(2001) mentioned that these measures evaluate the distribution within a tuple and assign

Table 2. Summary S1.

Store Qty Amount Count

East 11 110 5

West 3 30 1

Table 3. Summary S2.

Store Qty Amount Count

Tunis 6 60 3

Mahdia 5 50 2

Tozeur 3 30 1
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Table 4. Summary S3.

Store Qty Amount Count

Store1 2 20 1

Store2 3 30 1

Store 3 1 10 1

Store 4 4 40 1

Store 5 1 10 1

Store 6 3 30 1

Table 5. Results of the hypothetical example.

Summary Interestingness value Ranks assigned

S1 x1 1

S2 x2 2

S3 x3 3

Table 6. Notation.

m The total number of tuples in a summary

ni The value of the derived count attribute for tuple ti

N = ∑m
i=1 ni The total count (It is assumed that N ≥ 2)

pi = ni
N The actual probability for tuple ti

q = 1
m The uniform probability for tuple ti (for all i=1,2, . . . ,m

u = N
m The count for tuple ti (i=1,2,. . .,m) according to a uniform distribution

ri = ni +u
2N The probability for tuple ti

a single real-valued index that represents its interestingness. Thus, they allow the as-
signment of a rank to the current summary according to the set of summaries generated
from the original database.

In our example in Section 2, we assume that, by using a given measure of interesting-
ness, the values generated are x1, x2 and x3 for summaries S1, S2 and S3, respectively.
Also we assume that x1 > x2 > x3

2. Results are presented in Table 5 which says that
summary S1 is the most interesting one. This allows us to conclude that sales are more
influenced by the fact of being in different regions than of being in different cities or
different stores which means that the first rule is the most interesting.

To introduce these measures, the used notation is presented in Table 6.3 Table 7
presents the measures previously studied by Hilderman and Hamilton (1999, 2000,
2001).

In the following, three not previously considered measures of interestingness are
presented. Some modifications are introduced to the original formulas to produce valid
interestingness measures. Note that the measures are independent of measurement units.
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Table 7. Hilderman and Hamilton’s set of interestigness measures.

IVariance =
∑m

i=1(pi −q)2

m−1

ISimpson = ∑m
i=1 p2

i

IShannon = −∑m
i=1 pi log2 pi

ITotal = m × IShannon

IMax = log2 m

IMcIntosh = N−
√∑m

i=1 n2
i

N−√
N

Ilorentz = q
∑m

i=1(m − i + 1)pi

IGini = q
∑m

i=1
∑m

j=1 |pi −p j |
2

IBerger = max(pi)

IShutz =
∑m

i=1|pi −q|
2mq

IBray =
∑m

i=1 min(ni ,u)
N

IWhittaker = 1 − (
0.5

∑m
i=1 |pi − q|)

IKullback = log2 m −
(∑m

i=1 pi log2
pi
q

)

IMacArthur = (− ∑m
i=1 ri log2 ri

) −
(

(− ∑m
i=1 pi log2 pi )+log2 m

2

)

ITheil =
∑m

i=1 |pi log2 pi −q log2 q|
mq

IAtkinson = 1 −
(∏m

i=1
pi
q

)q

3.1. The IRae measure

The IRae measure, introduced by Rae and Taylor (1970), is based on an index of ethnic
fractionalization. It measures the degree of ethnic diversity and it is given by

IRae =
∑m

i=1 ni (ni − 1)

N (N − 1)
. (1)

When applied to Table 2, IRae yields 0.667.

3.2. The ICON measure

The ICON measure, introduced by Egghe and Rousseau (1991), is based on concentration
measuring. It is given by

ICON =
√(∑m

i=1 p2
i

) − q

1 − q
. (2)

When applied to Table 2, ICON yields 0.667.
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3.3. The IHill measure

The IHill measure, introduced by Hill (1973), is based on a compound diversity measure
which depends on the species proportional abundance. It is given by

IHill = 1 − 1
√∑m

i=1 p3
i

. (3)

When applied to Table 2, IHill yields −0.310.

4. Theoretical evaluation

4.1. Interestingness principles

Hilderman and Hamilton (2000, 2001) proposed five principles that a measure should
satisfy to be acceptable for ranking the interestingness of discovered summaries. Among
the five principles, Egghe and Rousseau (1991) used four to classify concentration
measures. The following notation is used:

– (n1, . . ., nm) is a vector of values derived from the database (e.g. the count values in
the example in Table 2) such that n1 ≥ n2 · · · ≥ nm .

– f (n1, . . ., nm) is a function of m variables which is a general measure of interestingness.

The principles are used below to evaluate measures of interestingness for summaries
deduced from a single dataset, so N is fixed (ni’s and N have the same meaning as in
Section 3).

Zero-valued ni’s are eliminated because we suppose that a zero in the count column
is without importance for our study.

4.1.1. Minimum value principle (P1). Given a vector (n1, n2, . . ., nm) if ni = n for all
i; f (n1, n2, . . ., nm) = f (n, n, . . ., n) attains its minimum.

P1 means that the interestingness is at its minimum level when the tuple counts are
all equal. For example (3, 3), (17, 17, 17), etc.

4.1.2. Maximum value principle (P2). Given a vector (n1, n2, . . ., nm) if n1 = N – m
+ 1, ni = 1 for i = 2, . . ., m and N > m, f (n1, n2, . . ., nm) = f (N – m + 1, 1, . . ., 1)
attains its maximum.

This means that the interestingness must have its maximum value in the case of perfect
concentration between the tuple counts. For example for m = 2 and 3 respectively, N =
5 and 45 respectively, we have (4, 1) and (43, 1, 1).

4.1.3. Skewness principle (P3). Given a vector (n1, . . ., nm) where n1 = N – m + 1,
ni = 1, i = 2, . . ., m, N > m, and a vector (n1 – c, n2, . . ., nm, nm+1, . . ., nm+c), where n1

– c > 1 and ni = 1, i = 2, . . ., m + c; then f (n1, n2 . . ., nm) > f (n1 – c, n2, . . . nm, nm+1,
. . . nm + c).
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In the case of perfect concentration, P3 means that a summary containing m tuples
will be more interesting than a summary containing (m + c) tuples. For example f (44,
1) > f (43, 1, 1).

4.1.4. Permutation invariance principle (P4). Given a vector (n1, . . ., nm) and any
permutation (i1, . . ., im) of (1, . . ., m); f (n1, . . ., nm) = f (ni1, . . ., nim).

This principle states that interestingness is not a labeled property, meaning that
interestingness does not change when the order of tuple counts changes. For example
f (1, 2, 3) = f (1, 3, 2) = f (2, 3, 1) = f (2, 1, 3) = f (3, 2, 1) = f (3, 1, 2).

4.1.5. Transfer principle (P5). Given a vector (n1, . . ., nm); 0 < c < nj and ni ≥ nj;
then f(n1, . . ., ni + c, . . ., nj – c, . . ., nm) > f (n1, . . ., ni, . . ., nj, . . ., nm).

If we make a strictly positive transfer from a tuple count to another whose count is
greater, P5 states that interestingness increases. For example f (6, 5, 2, 1) > f (6, 4, 3, 1).

4.2. Proofs

In this section, it is shown that the three proposed measures are acceptable to evaluate
and rank the interestingness of discovered summaries according to the five principles
described in Section 4.1. Mathematical proofs are given in the following.

4.2.1. Principle P1. Given a vector (n1, n2, . . ., nm) if ni = n for all i; f (n1, n2, . . ., nm)
= f (n, n, . . ., n) attains its minimum.
IRae: It needs to be shown that for any vector (n + c, n – d2, . . ., n – dm) whose values
are not uniformly distributed where at least one di > 0 and

∑m
i=2 di = c;

f (n + c, n − d2, . . . , n − dm) > f (n, n, . . . , n),

we need to determine the sign of

∑m
i=1 n(n − 1)

N (N − 1)
− (n + c)(n + c − 1) + ∑m

i=2(n − di )(n − di − 1)

N (N − 1)
,

which has the same sign as

A = mn2 − mn −
[

n2 + c2 + 2nc − n − c +
m∑

i=2

n2 +
m∑

i=2

d2
i

−2n
m∑

i=2

di −
m∑

i=2

n +
m∑

i=2

di

]

= mn2 − mn −
(

mn2 + c2 − mn +
m∑

i=2

d2
i

)
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= c2 −
m∑

i=1

d2
i < 0.

⇒ IRae satisfies P1.

ICON: It is needed only to show that

m∑

i=1

p2
i <

(
n + c

N

)2

+
m∑

i=2

(
n − di

N

)2

.

m∑

i=1

p2
i =

m∑

i=1

(
ni

N

)2

=
m∑

i=1

(
n

N

)2

=
m∑

i=1

(
1

m

)2

= m

(
1

m2

)

= 1

m
.

Hence, we need to find the sign of

N 2

m N 2
− (n + c)2

N 2
− 1

N 2

m∑

i=2

(n − di )
2,

which has the same sign as

B = N 2

m
− (n + c)2 −

m∑

i=2

(n − di )
2

= N 2

m
− n2 − 2nc − c2 −

m∑

i=2

n2 + 2n
m∑

i=2

di −
m∑

i=2

d2
i

= N 2

m
− mn2 − c2 −

m∑

i=2

d2
i

= m2n2

m
− mn2 − c2 −

m∑

i=2

d2
i

= −c2 −
m∑

i=2

d2
i < 0

⇒ ICON satisfies P1.

IHill: We need to show that

m∑

i=1

p3
i <

(
n + c

N

)3

+
m∑

i=2

(
n − di

N

)3

,

where

m∑

i=1

p3
i =

m∑

i=1

(
ni

N

)3

=
m∑

i=1

(
n

N

)3
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which is equivalent to determining the sign of

C =
m∑

i=1

n3 − (n + c)3 −
m∑

i=2

(n − di )
3

= mn3−(n3+3n2c+3nc2+c3)−
(

m∑

i=2

n3 − 3n2
m∑

i=2

di +3
m∑

i=2

nd2
i −

m∑

i=2

d3
i

)

= −3nc2 − c3 − 3n
m∑

i=2

d2
i +

m∑

i=2

d3
i < 0, since c3 =

(
m∑

i=2

di

)3

>

m∑

i=2

d3
i .

⇒ IHill satisfies P1.

4.2.2. Principle P2. Given a vector (n1, n2, . . ., nm) if n1 = N – m + 1, ni = 1 for i =
2, . . ., m and N > m, f (n1, n2, . . ., nm) = f (N-m + 1, 1, . . ., 1) attains its maximum.
IRae: Let n1 = n′

1 + c.We need to show that

f (n′
1 + c, n′

2 − d2, . . . , n′
m − dm) f (n′

1, n′
2, . . . , n′

m)

D = (n′
1 + c)(n′

1 + c − 1) +
m∑

i=2

(n′
i − di )(n

′
i − di − 1) −

m∑

i=1

n′
i (n

′
i − 1)

= n′2
1 + 2n′

1c + c2 − n′
1 − c +

m∑

i=2

n′2
i +

m∑

i=2

d2
i − 2

m∑

i=2

n′
i di

−
m∑

i=2

n′
i +

m∑

i=2

di −
m∑

i=1

n′2
i +

m∑

i=1

n′
i

=
m∑

i=1

n′2
i + 2n′

i c + c2 −
m∑

i=1

n′
i − c +

m∑

i=2

d2
i − 2

m∑

i=2

n′
i di

+
m∑

i=2

di −
m∑

i=1

n′2
i +

m∑

i=1

n′
i

= c2 +
m∑

i=2

d2
i + 2n′

1c − 2
m∑

i=2

n′
i di

= c2 +
m∑

i=2

d2
i + 2n′

1

m∑

i=2

di − 2
m∑

i=2

n′
i di > 0.

⇒ IRae satisfies P2.

ICON: It is sufficient to show that

(
n′

1 + c

N

)2

+
m∑

i=2

(
n′

i − di

N

)2

>

m∑

i=1

(
ni

N

)2



184 N. ZBIDI, S. FAIZ AND M. LIMAM

or that

(n′
1 + c)2 +

m∑

i=2

(n′
i − di )

2 >

m∑

i=1

n2
i .

E = n′2
1 + 2n′

1c + c2 +
m∑

i=2

n′2
i − 2

m∑

i=2

n′
i di +

m∑

i=2

d2
i −

m∑

i=1

n2
i

=
m∑

i=1

n′2
i + 2n′

1c + c2 − 2
m∑

i=1

n′
i di +

m∑

i=1

d2
i −

m∑

i=1

n′2
i

= 2n′
1c + c2 − 2

m∑

i=1

n′
i di +

m∑

i=1

d2
i > 0.

⇒ ICON satisfies P2.

IHill: We need only to show that

(
n′

i + c

N

)3

+
m∑

i=2

(
n′

i + di

N

)3

>

m∑

i=1

(
ni

N

)3

or

(n′
1 + c)3 +

m∑

i=2

(n′
i + di )

3 >

m∑

i=1

n3
i

F = n′3
1 + 3n′2

1 c + 3n′
1c2 + c3 +

m∑

i=2

n′3
i − 3

m∑

i=2

n′2
i di

+3
m∑

i=2

n′
i d

2
i −

m∑

i=2

d3
i −

m∑

i=1

n′3
i

= 3n′2
1 c + 3n′

i c
2 + c3 − 3

m∑

i=2

n′2
i di + 3

m∑

i=2

n′
i d

2
i −

m∑

i=2

d3
i > 0.

⇒ IHill satisfiesP2.

4.2.3. Principle P3. Given a vector (n1, . . ., nm) where n1 = N – m + 1, ni = 1, i = 2,
. . ., m, N > m, and a vector (n1 – c, n2, . . ., nm, nm+1, . . ., nm + c), where n1 – c > 1 and
ni = 1, i = 2, . . ., m + c; then f (n1, n2 . . ., nm) > f (n1 – c, n2, . . . nm, nm+1, . . . nm+c).
IRae: We need to show that

m∑

i=1

ni (ni − 1) > (n1 − c)(n1 − c − 1) +
m+c∑

i=2

(ni )(ni − 1)
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we have

m∑

i=2

ni (ni − 1) = 0

because

ni = 1; i = 2, . . . , m + c.

Therefore, it is obvious that

m∑

i=1

ni (ni − 1) >

m∑

i=1

(ni c)(ni c − 1).

⇒ IRae satisfies P3.

ICON: We need only to show that

m∑

i=1

(
ni

N

)2

>

(
n1c

N

)2

+
m+c∑

i=2

1

N

or

m∑

i=1

n2
i > (n1 − c)2 +

m+c∑

i=2

1

G = n2
1 + m − 1 − n2

1 + 2n1c − c2 − (m + c − 1)

= 2n1c − c2 − c,

which has the same sign as

2n1 − c − 1 > 0.

⇒ ICON satisfiesP3.

IHill: We need only to show that

m∑

i=1

(
ni

N

)3

>

(
n1 − c

N

)3

+
m+c∑

i=2

(
1

N

)3

or

n3
1 +

m∑

i=2

1 > (n1 − c)3 +
m+c∑

i=2

1

H = n3
1 + m + 1 − (n3

1 − 3n2
1c + 3n1c2 − c3 + m + c − 1)

= 2 + 3n2
1c − 3n1c2 + c3 − c
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= 2 + c3 + 3n1c(n1 − c) − c > 0.

⇒ IHill satisfies P3.

4.2.4. Principle P4. Given a vector (n1, . . ., nm) and any permutation (i1, . . ., im) of
(1, . . ., m); f (n1, . . ., nm) = f (ni1, . . ., nim)

All measures satisfy P4 since ranking order is not a factor.

4.2.5. Principle P5. Given a vector (n1, . . ., nm); 0 < c < nj and ni ≥ nj; then f (n1, . . .,
ni + c, . . ., nj – c, . . ., nm) > f (n1, . . ., ni, . . ., nj, . . ., nm).
IRae: We have to show that

j−1∑

i=1

ni (ni − 1)

N (N − 1)
+ (n j + c)(n j + c − 1)

N (N − 1)
+

k−1∑

i= j+1

ni (ni − 1)

N (N − 1)
+ (nkc)(nkc − 1)

N (N − 1)

+
m∑

i=k+1

ni (ni − 1)

N (N − 1)
>

j−1∑

i=1

ni (ni − 1)

N (N − 1)
+ n j (n j − 1)

N (N − 1)

+
k−1∑

i= j+1

ni (ni − 1)

N (N − 1)
+ nk(nk − 1)

N (N − 1)
+

m∑

i=k+1

ni (ni − 1)

N (N − 1)
,

which is equivalent to show the following:

(n j + c)(n j + c − 1) + (nk − c)(nk − c − 1) − n j (n j − 1) − nk(nk − 1) > 0

I = 2cn j + 2c2 − 2cnk + n j + nk

= n j + nk + 2c(c + n j − nk) > 0.

Assuming that

n1 ≥ n2 ≥ · · · ≥ nm,

⇒ IRae satisfies P5.

ICON: We need only to show that

j−1∑

i=1

(
ni

N

)2

+
(

n j + c

N

)2

+
k−1∑

i= j+1

(
ni

N
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⇒ ICON satisfies P5.
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IHill: We need only to show that
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⇒ IHill satisfies P5.

Given the results presented in this section, we conclude that our three measures
satisfy the five principles and hence, they are acceptable for evaluating and ranking the
interestingness of discovered knowledge. Adding these three measures to the five ones
presented by Hilderman and Hamilton (2001), we end up with a set of 8 measures that
are theoretically acceptable for such a task.

Table 7 summarizes the status of all interestingness measures mentioned with respect
to the five principles, where a “×” means that a measure satisfies the respective principle.
In Table 7, we added the properties of the three new measures as compared to the table
presented by Hilderman and Hamilton (2001).

4.3. Theoretical correlation study

To check if there are possible correlations between future results generated by theoret-
ically acceptable measures, we proceed by mathematical proofs. When there is not a
linear transformation, we opt to study the tendency or the behaviour of the measure’s
functions.
First, it is noticed that the measure IVariance is a linear transformation of ISimpson:

IVariance =
∑m

i=1(pi − q)2

m − 1
=

∑m
i=1(p2

i − 2pi q + q2)

m − 1

=
∑m

i=1 p2
i − 2q
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i=1 pi + nq2

m − 1

=
∑m

i=1 p2
i − 2q + nq2

m − 1
,

while
m∑

i=1

pi = 1

IVariance = ISimpson − 2q + nq2

m − 1
.



188 N. ZBIDI, S. FAIZ AND M. LIMAM

Second, ITotal = m × IShannon which is a linear transformation of IShannon.
The following shows that there is a possible relation between the results generated by

IRae and IMcIntosh:

IRae =
∑m

i=1 ni (ni − 1)
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The measure IRae is a linear transformation of ISimpson as demonstrated in the following:

IRae =
∑m
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A possible correlation between results generated by IShannon and ISimpson is established
by the following:

IShannon = −
m∑

i=1

pi log2 pi = −
m∑

i=1

pi
log pi

log 2
= − 1

log 2

m∑

i=1

pi log pi ,

knowing that pi log pi has the same variation and behaviour of p2
i .

The relation between ICON and ISimpson is given by the following:

ICON =
√(∑m

i=1 p2
i

) − q

1 − q
=

√(
ISimpson

) − q

1 − q
.

From this section we conclude that theoretically, results generated by IVariance, ISimpson,
IShannon, IMcIntosh, IRae and ITotal could be correlated and that ICON, without considering
the square root, is a linear transformation of ISimpson. Finally, we were not able to relate
IHill to any other measure.

In the following, we will check if these theoretical dependencies are apparent when
the measures are applied to actual databases.
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5. Experimental evaluation

The experimental evaluation of the interestingness measures is divided into three parts.
The first one consists of their evaluation using a fictitious database. The second part
consists of an application to three real databases and the last one consists of a study of
similarities in the ranks assigned to summaries generated from the databases. Finally a
classification of the eight measures is conducted.

5.1. Evaluation of the interestingness measures

By using the input data of Table 8 which is used previously by Hilderman and Hamilton
(2001), we analyzed the statistical distribution of the indices values produced by the
19 measures. The input data used here consists of 16928 vectors which are the list of
all possible ordered arrangements of a set of 50 objects among 10 classes. Vectors are
ordered as follows: the first one presents the case of perfect concentration and the last,
the case of uniform distribution.

Our purpose is to study the attitude of every measure and to check if its distribution
is close to the Standard Normal Distribution (SND). The SND is taken as a point of
reference in this step. This distribution plays a crucial role in a large body of statistics
because it is very tractable analytically and its symmetry makes it an attractive choice
for many population models. In addition to the following, the normal distribution can
be used as an approximation of a large variety of distributions in large samples via the

Table 8. Summary of interestingness properties regarding the five principles.

Measure P1 P2 P3 P4 P5

IVariance × × × × ×
ISimpson × × × × ×
IShannon × × × × ×
IMcIntosh × × × × ×
ITotal × × × × ×
IRae × × × × ×
ICON × × × × ×
IHill × × × × ×
ILorentz × × ×
IGini × × × ×
IBerger × × × ×
IShutz × × ×
IBray × × ×
IWhittaker × × ×
IMacArthur × × × ×
ITheil × × ×
IAtkinson × × × ×
IKullback ×
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Table 9. Ordered arrangements of 50 objects among 10 classes.

50 Objects/ 10 classes

(41, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(40, 2, 1, 1, 1, 1, 1, 1, 1, 1)

(39, 3, 1, 1, 1, 1, 1, 1, 1, 1)

· · ·
· · ·
· · ·
(6, 6, 5, 5, 5, 5, 5, 5, 4, 4)

(6, 5, 5, 5, 5, 5, 5, 5, 5, 4)

(5, 5, 5, 5, 5, 5, 5, 5, 5, 5)

Central Limit Theorem. Hence, the minimum value, the maximum value, the number of
tuples less than, or greater than, the middle and the skewness and kurtosis coefficients
are determined.

The skewness coefficient measures the symmetry of a distribution. A zero value
means that the distribution is symmetric and a positive (negative) value means that it is
clustered more to the left (right). The kurtosis measures the peakedness or flatness of
a distribution. A zero value means that the distribution has a SND peak and a positive
(negative) value means that the distribution has a sharper (flatter) peak than the SND.

For example, the minimum value of IRae is 0.08163, the maximum value is 0.66938,
there are 16761 tuples less than middle, and 167 tuples greater than middle. The skewness
coefficient is equal to 1.844 meaning that the distribution is asymmetric and clustered
more to the left. The kurtosis coefficient is equal to 5.570, meaning that the distribution
has a sharper peak than the SND. For ICON, the minimum value is 0, the maximum value
is 0.8, there are 14784 tuples less than middle, and 2144 tuples greater than middle. The
skewness coefficient is equal to 0.716 which means that the distribution is asymmetric
and it is clustered more to the left, but it is less than IRae. The kurtosis coefficient is equal
to 0.883 meaning that the distribution has a sharper peak than the SND and a flatter peak
than IRae.

The summary of the first step of the experimental evaluation is given in Table 9 (where
IMax is not calculated because it is a constant in this case) and in Table 10. These two
tables include a calculation of the values concerning the three not previously considered
measures and a re–calculation of the existing ones. The top eight measures in these two
tables are the ones which satisfy the five principles.

Histograms of the distributions of index values generated by our three measures for
the vectors described in Table 8 are presented in figures 2, 3 and 4, where the horizontal
axes describe the intervals of the values generated and the vertical axes describe the
number of vectors in each interval.

5.2. Application to real databases

The second step of this experimental evaluation consists of generating summaries from
three databases and evaluating their interestingness by the eight selected measures. The
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Table 10. Distribution characteristics of the interestingness measures.

Measure Min Max Middle <Middle >Middle

IVariance 0 0.06400 0.03200 16760 168

ISimpson 0.10000 0.67600 0.38800 16760 168

IShannon 1.25066 3.32193 2.28630 613 16315

IMcIntosh 0.20710 0.79640 0.50175 509 16419

ITotal 12.50660 33.21930 22.86295 613 16315

IRae 0.08163 0.66938 0.37551 16761 167

ICON 0 0.80000 0.40000 14784 2144

IHill 0.99920 0.99999 0.99959 1720 15208

ILorentz 0.55000 0.91000 0.73000 4703 12225

IGini 0 0.72000 0.36000 4671 12256

IBerger 0.10000 0.82000 0.46000 15836 1092

ISchutz 0 0.72000 0.36000 9996 6932

IBray 0.52000 1.00000 0.76000 4209 12719

IWhittaker 0.28000 1.00000 0.64000 7441 9487

IMacArthur 0 0.42084 0.21042 15683 1245

ITheil 0 2.14143 1.07072 5549 11379

IAtkinson 0 0.71006 0.35503 11432 5496

IKullback 1.25066 3.32193 2.28630 613 16315

IMax – – – – –

Figure 2. Histogram of IRae.

first one is a research awards database (D1), which is available in the public domain
from the Natural Sciences and Engineering Research Council of Canada (NSERC). It
consists of a set of tables giving information about the distribution and the amounts of
the awards granted to researchers in 67 universities in Canada. This database is used
in previous data mining research such as the work presented by Carter and Hamilton
(1995a, 1995b). The second one is a heart disease diagnosis database (D2) from the
UCI ML. It consists of 270 observations and gives information about the attributes that
can influence the fact of being affected. The third is Hayes Roth database (D3) from the
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Table 11. Kurtosis and skewness of the interestingness measures.

Measure Kurtosis Skewness

IVariance 5.570 1.844

ISimpson 5.570 1.844

IShannon 1.357 –0.958

IMcIntosh 2.316 –1.243

ITotal 1.357 –0.957

IRae 5.570 1.844

ICON 0.883 0.716

IHill 0.360 –0.791

ILorentz –0.233 –0.144

IGini –0.233 –0.144

IBerger 1.139 0.976

ISchutz –0.131 0.132

IBray 0.145 –0.345

IWhittaker –0.131 –0.132

IMacArthur 0.485 0.684

ITheil –0.236 –0.056

IAtkinson –0.422 0.166

IKullback 1.357 –0.957

IMax – –

Figure 3. Histogram of ICON.

UCI ML which consists of 132 persons and gives information about the attributes that
influence the classification of persons into classes.

Results of the eight measures are presented in Tables 12 , 13 and 14 , where real
values are assigned to the summaries generated from the initial database according to
the set of indices used as heuristic measures of interestingness. The purpose is to rank
these summaries by interestingness and then, select the most interesting ones.

The S column contains the summary numbers (summaries are ordered increasingly
from the one which has the fewest number of tuples to the summary with the greatest
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Figure 4. Histogram of IHill.

number of tuples). The No of T column describes the number of tuples in each summary,
the remainder of the columns give the interestingness of each summary according to the
set of measures described above.

For example, for the IRae measure and with D1, summaries are numbered from 1 to
12. The number of tuples in summary 1 is 4, summary 2 contains 5 tuples, and so on
until summary 12 which has 67 tuples. For this measure, summary 2 which has 5 tuples,
has an IRae value equal to 0.5807, which is the highest value, so it is the most interesting,
summary 4 with an IRae value equal to 0.3989 is the second highest, summary 12 with an
IRae equal to 0 is the least interesting one. According to these values, ranks are assigned
to the 12 summaries. Therefore, summary 2 is ranked first, summary 4 is second, etc.
When the same analysis is conducted for the ICON measure, summary 2 is ranked first
(most interesting) and summary 12 is the twelfth (least interesting). Tables 15–17 give
the ranks assigned to each summary. In the case of equal interestingness, the same rank
is assigned. According to the ranks presented, we notice that there are measures that
give the same order of summaries, which means, there are similarities in the results and
in the ranks deduced. This result caused us to study these similarities.

Table 12. Empirical results for D1.

S No of T IVariance ISimpson IShannon IMcIntosh ITotal IRae ICON IHill

1 4 0.0015 0.2546 1.9861 0.5643 7.9443 0.2433 0.0785 –2.8973

2 5 0.0967 0.5870 1.1855 0.2664 5.9274 0.5807 0.6955 –0.5427

3 8 0.0107 0.1998 2.5445 0.6299 20.3556 0.1877 0.2924 –3.5796

4 9 0.0371 0.4079 1.9272 0.4116 17.3444 0.3989 0.5778 –1.0728

5 10 0.0099 0.1891 7373 0.6438 27.3728 0.1768 0.3147 –3.6764

6 12 0.0063 0.1522 3.0055 0.6948 36.0658 0.1393 0.2740 –5.0049

7 18 0.0035 0.1147 3.5467 0.7533 63.8414 0.1013 0.2503 –6.3450

8 21 0.0029 0.1054 3.7154 0.7694 78.0231 0.0918 0.2462 –7.1205

9 21 0.0031 0.1094 3.7073 0.7624 77.8526 0.0959 0.2547 –6.4707

10 26 0.0017 0.0806 4.0570 0.8157 105.4820 0.0669 0.2094 –8.9532

11 29 0.0015 0.0777 4.2499 0.8215 123.2460 0.0638 0.2117 –9.1126

12 67 0 0.0149 6.0661 1.0000 406.4280 0 0 –66.0000
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Table 13. Empirical results for D2.

S No of T ISimpson IVariance IShannon IMcIntosh ITotal IRae ICON IHill

1 2 0,0632 0.5632 0.9068 0.2657 1.8136 0.5616 0.5616 –0.7030

2 2 0.3951 0.8951 0.3095 0.0574 0.6191 0.8947 0.5616 –0.7030

3 3 0.0751 0.4835 1.1548 0.3244 3.4643 –1.0087 0.5616 –0.7030

4 3 0.1001 0.5336 1.1205 0.2870 3.3614 0.5318 0.5616 –0.7030

5 4 0.0841 0.5022 1.2157 0.3102 4.8628 0.5003 0.5616 –0.8646

6 5 0.0288 0.3150 1.7931 0.4672 8.9657 0.3125 0.5616 –2.0336

7 5 0.0573 0.4290 1.4577 0.3674 7.2886 0.4269 0.5616 –1.2130

8 6 0.0225 0.2792 2.0502 0.5021s 12.3010 0.2766 0.3675 –2.2876

9 6 0.0292 0.3126 2.0098 0.4695 12.0590 0.3100 0.4184 –1.7888

10 8 0.0197 0.2628 2.2573 0.5190 18.0581 0.2600 0.3968 –2.3868

11 9 0.0090 0.1832 2.6793 0.6090 24.1135 0.1802 0.2848 –3.8925

12 10 0.0163 0.2469 2.3524 0.5357 23.5244 0.2441 0.4041 –2.6383

13 11 0.0065 0.1554 2.8905 0.6450 31.7957 0.1523 0.2664 –5.0293

14 16 0.0063 0.1568 3.1339 0.6432 50.1430 0.1536 0.3171 –4.3116

15 20 0.0023 0.0920 3.6887 0.7418 73.7729 0.0887 0.2103 –8.5338

Table 14. Empirical results for D3.

S No of T ISimpson ISimpson IShannon IMcIntosh ITotal IRae ICON IHill

1 2 0.1327 0.6327 0.7990 0.2241 1.5981 0.6299 0.5152 –0.4923

2 4 0.0227 0.3182 1.7880 0.4775 7.1520 0.3130 0.3015 –1.9758

3 6 0.0091 0.2124 2.3753 0.5906 14.2517 0.2063 0.2341 –3.4447

4 8 0.0119 0.2082 2.5525 0.5955 20.4198 0.2022 0.3084 –3.2820

5 12 0.0022 0.1076 3.3577 0.7361 40.2924 0.1007 0.1625 –7.7885

6 16 0.0040 0.1220 3.4264 0.7127 54.8219 0.1153 0.2520 –5.9773

7 23 0.0013 0.0711 4.0804 0.8034 93.8486 0.0640 0.1698 –11.6671

8 28 0.0017 0.0825 4.0938 0.7807 114.6270 0.0755 0.2203 –9.1923

9 39 0.0004 0.0421 4.8755 0.8705 190.1440 0.0348 0.1301 –19.5354

10 51 0.0007 0.0541 4.7794 0.8407 243.7520 0.0468 0.1875 –14.9488

11 57 0.0002 0.0289 5.4314 0.9090 309.5920 0.0215 0.1076 –28.9620

12 69 5.84E-07 0.0200 0.8506 0.9405 403.6880 0.0125 0.0746 –44.6432

5.3. Similarity study

The last step in the experimental evaluation is to study similarities deduced from ranks
assigned to generated summaries. Ranking similarities between measures was conducted
by Hilderman, Hamilton and Barber (1999a) using the Gamma correlation coefficient.
In this paper, the Spearman’s rank correlation coefficient is used. Computed correlations
are given in Tables 18–20 and for databases D1, D2 and D3, respectively.
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Table 15. Ranks assigned for D1.

IVariance ISimpson IShannon IMcIntosh ITotal IRae ICON IHill

11 3 3 3 2 3 11 3

1 1 1 1 1 1 1 1

3 4 4 4 4 4 4 4

2 2 2 2 3 2 2 2

4 5 5 5 5 5 3 5

5 6 6 6 6 6 5 6

6 7 7 7 7 7 7 7

8 9 9 9 9 9 8 9

7 8 8 8 8 8 6 8

9 10 10 10 10 10 10 10

10 11 11 11 11 11 9 11

12 12 12 12 12 12 12 12

Table 16. Ranks assigned for D2.

IVariance ISimpson IShannon IMcIntosh ITotal IRae ICON IHill

5 2 2 2 2 2 11 2

1 1 1 1 1 1 1 1

4 5 4 5 4 5 5 5

2 3 3 3 3 3 3

3 4 5 4 5 4 2 4

8 7 7 7 7 7 9 9

6 6 6 6 6 6 4 6

9 9 9 9 9 9 10 8

7 8 8 8 8 8 6 7

10 10 10 10 10 10 8 10

12 12 12 12 12 12 13 12

11 11 11 11 11 11 7 11

13 14 13 14 13 14 14 14

14 13 14 13 14 13 12 13

15 15 15 15 15 15 15 15

A correlation equal to 1 means a total similarity in the ranks assigned. A threshold of
95% is used to declare two ranks as similar or highly correlated. Correlations are used to
classify the measures into homogeneous classes. In a homogeneous class of measures,
all measures give the same order or are highly correlated with minimum intra–classes
differences and maximum inter–classes differences.

According to our empirical study, summary 2 for D1 and D2 and summary 1 for
D3 are preferred by all measures. For the three considered databases, IHill produced
highly correlated results with many other measures which is in contradiction with the
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Table 17. Ranks assigned for D3.

IVariance ISimpson IShannon IMcIntosh ITotal IRae ICON IHill

1 1 1 1 1 1 1 1

2 2 2 2 2 2 3 2

4 3 3 3 3 3 5 4

3 4 4 4 4 4 2 3

6 6 5 6 5 6 9 6

5 5 6 5 6 5 4 5

8 8 7 8 7 8 8 8

7 7 8 7 8 7 6 7

10 10 10 10 9 10 10 10

9 9 9 9 10 9 7 9

11 11 11 11 11 11 11 11

12 12 12 12 12 12 12 12

Table 18. Spearman’s correlations for D1.

Measure IVariance ISimpson IShannon IMcIntosh ITotal IRae ICON IHill

IVariance 1.000 0.748 0.748 0.748 0.685 0.748 0.979 0.748

ISimpson 0.748 1.000 1.000 1.000 0.993 1.000 0.727 1.000

IShannon 0.748 1.000 1.000 1.000 0.993 1.000 0.727 1.000

IMcIntosh 0.748 1.000 1.000 1.000 0.993 1.000 0.727 1.000

ITotal 0.685 0.993 0.993 0.993 1.000 0.993 0.664 0.993

IRae 0.748 1.000 1.000 1.000 0.993 1.000 0.727 1.000

ICON 0.979 0.727 0.727 0.727 0.664 0.727 1.000 0.727

IHill 0.748 1.000 1.000 1.000 0.993 1.000 0.727 1.000

theoretical assumptions. This contradiction can be due to the nature of data used in this
study.

D1 produces the following two classes:

– Class 1: {IVariance, ICON},
– Class 2: {ISimpson, IShannon, IMcIntosh, IRae, IHill, ITotal}.

D2 and D3 produce the following classes:

– Class 1: {ICON},
– Class 2: {IVariance,ISimpson, IShannon, IMcIntosh, IRae, IHill, ITotal}.

The purpose of this classification is to select one representative measure from each
class. The criteria used are the skewness and kurtosis coefficients, as determined in
Section 5.1. Hence, the best measure in a class is the one which is less skewed and
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Table 19. Spearman’s correlations for D2.

Measure IVariance ISimpson IShannon IMcIntosh ITotal IRae ICON IHill

IVariance 1.000 0.971 0.971 0.971 0.971 0.971 0.871 0.971

ISimpson 0.971 1.000 0.993 1.000 0.993 1.000 0.786 0.989

IShannon 0.971 0.993 1.000 0.993 1.000 0.993 0.768 0.982

IMcIntosh 0.971 1.000 0.993 1.000 0.993 1.000 0.786 0.989

ITotal 0.971 0.993 1.000 0.993 1.000 0.993 0.768 0.982

IRae 0.971 1.000 0.993 1.000 0.993 1.000 0.786 0.989

ICON 0.871 0.786 0.768 0.786 0.768 0.786 1.000 0.793

IHill 0.971 0.989 0.982 0.989 0.982 0.989 0.793 1.000

Table 20. Spearman’s correlations for D3.

Measure IVariance ISimpson IShannon IMcIntosh ITotal IRae ICON IHill

IVariance 1.000 0.993 0.979 0.993 0.972 0.993 0.937 1.000

ISimpson 0.993 1.000 0.986 1.000 0.979 1.000 0.916 0.993

IShannon 0.979 0.986 1.000 0.986 0.993 0.986 0.867 0.979

IMcIntosh 0.993 1.000 0.986 1.000 0.979 1.000 0.916 0.993

ITotal 0.972 0.979 0.993 0.979 1.000 0.979 0.846 0.972

IRae 0.993 1.000 0.986 1.000 0.979 1.000 0.916 0.993

ICON 0.937 0.916 0.867 0.916 0.846 0.916 1.000 0.937

IHill 1.000 0.993 0.979 0.993 0.972 0.993 0.937 1.000

whose peak is the closest to the peak of the SND. From class 1, ICON is chosen because
it has skewness and kurtosis coefficient values close to 0 in the three databases. From
class 2, IHill is chosen for the same reason.

6. Conclusion

Based on three real databases and an experimental evaluation, a classification of in-
terestingness measures into two classes was deduced. This classification reduces the
number of measures needed to evaluate databases such as D1, D2 and D3, to only two
measures by taking a representative one from each class. This is in spite of the contra-
dictions encountered between the theoretical and the empirical checking of correlations.
The choice of the representative measure from each class is based on the evaluation
of skewness and kurtosis coefficients. The advantage of this reduction is to allow the
user to take under consideration only the ranks deduced from the two representative
measures. Using only two measures eases the decision making and the interpretation of
generated results.

Our empirical study, based on only three databases, which are of relatively small
size, could be extended by using large databases. Moreover, future research is needed
to suggest new enhanced interestingness measures.
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Notes

1. Adapted from the figure given by Hilderman, Hamilton and Cercone (1999b)
2. For this example, we assume that a higher value produced by the heuristic measure means higher interest-

ingness which is not always the case.
3. The same notation is used by Hilderman and Hamilton (1999).
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