
Machine Learning, 58, 127–149, 2005
2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Automatic Feature Extraction for Classifying
Audio Data

INGO MIERSWA mierswa@ls8.cs.uni-dortmund.de
KATHARINA MORIK morik@ls8.cs.uni-dortmund.de
Artificial Intelligence Unit, University of Dortmund, Germany

Editor: Eamonn Keogh

Abstract. Today, many private households as well as broadcasting or film companies own large collections of
digital music plays. These are time series that differ from, e.g., weather reports or stocks market data. The task is
normally that of classification, not prediction of the next value or recognizing a shape or motif. New methods for
extracting features that allow to classify audio data have been developed. However, the development of appropriate
feature extraction methods is a tedious effort, particularly because every new classification task requires tailoring
the feature set anew.

This paper presents a unifying framework for feature extraction from value series. Operators of this framework
can be combined to feature extraction methods automatically, using a genetic programming approach. The con-
struction of features is guided by the performance of the learning classifier which uses the features. Our approach
to automatic feature extraction requires a balance between the completeness of the methods on one side and the
tractability of searching for appropriate methods on the other side. In this paper, some theoretical considerations
illustrate the trade-off. After the feature extraction, a second process learns a classifier from the transformed data.
The practical use of the methods is shown by two types of experiments: classification of genres and classification
according to user preferences.

Keywords: analysis of audio data, feature extraction, time series transformations, music recommender systems

1. Introduction

Since music is stored in digital form and distributed via the internet, there is a need for the
management and retrieval of audio data. How can we index large numbers of audio records?
How can we structure music databases according to genre (e.g., classic, pop, hip hop) or
occasions (e.g., dinner, party, wedding)? How can a system automatically recommend music
records to users? Information retrieval has started several efforts to automatic indexing
(Kurth & Clausen, 2001) and retrieval (e.g., querying by humming (Ghias et al., 1995)).
Machine learning has shown its benefits for text classification and ranked document retrieval
with respect to user preferences (Joachims, 2002a, 2002b). It is straightforward to expect a
similar benefit for the classification and personalized retrieval of music records.

Confronted with music data, machine learning encounters a new challenge of scalability:

– Music databases store millions of records.
– Given a sampling rate of 44100 Hz, a three minute music record has a length of about

8 · 106 values.

128 I. MIERSWA AND K. MORIK

Moreover, current approaches to time series indexing and similarity measures rely on a
more or less fixed time scale (Keogh & Smyth, 1997; Keogh & Pazzani, 1998). Music plays,
however, differ considerably in length. More general, time series similarity is determined
with respect to some (flexible and generalized) shape of curves (Yi, Jagadish, & Faloutsos,
1998; Kahveci & Singh, 2001). However, the shape of the audio curve does not express the
crucial aspect for classifying genres or preferences. The i-th value of a favourite song has no
correspondence to the i-th value of another favourite, even if relaxed to the (i ±n)-th value.
The decisive features for classification have to be extracted from the original data. Some
approaches extract features from music given in the form of Midi data, i.e. a transcription
according to the 12 tone system (Loy, 1989).1 This allows to include background knowledge
from music theory. Usually, music data is given in the form of—possibly compressed—
wave records, the audio data. Hence, feature extraction from audio data has become a hot
topic recently (Liu, Wang, & Chen, 1998; Zhang & Kuo, 1998; Guo & Li, 2003; Tzanetakis,
2002). Several specialized extraction methods have shown their performance on some task
and data set. It is now hard to find the appropriate feature set for a new task and data set. In
particular, the problems are:

Unifying framework missing: The large set of extraction methods has not yet been system-
atically investigated, a unifying framework is still missing. This makes it hard to compare
the proposed feature sets and to detect missing feature extraction methods.

Variety of feature sets: Different classification tasks ask for different feature sets (see
Section 4). It is not very likely that a feature set delivering excellent performance on
the separation of classical and popular music works well also for the separation of techno
and hip hop music. Classifying music according to user preferences even aggravates the
problem.

Large search space for feature sets: There is no concisive feature set from which we would
select an appropriate subset for a new task and data set by standard wrapper approaches
(Kohavi & John, 1997). Even if it existed, it would be most cumbersome to enumerate it.

In this paper, we present our approach to tackle the problems. We present a unified framework
for extraction methods in Section 2. The framework covers the known methods, and several
new ones have been added. The repository of elementary extraction operators allows us to
handle feature extraction as a sequence of data transformations which delivers a feature
set in the end. Hence, we construct a feature set for each given task and data set, anew.
Since it would be tedious to do so by hand, we apply a learning algorithm to construct the
feature set for us. Section 3 describes the genetic programming approach to the automatic
construction of (nested) sequences of data transformations, the method trees. The search
within the universe of method trees is guided by a fitness function. Here, we embed a
classification learner: the better the learning result using the transformed data, the higher
the fitness of the feature set (i.e., the method tree). Genetic programming puts together
the building blocks of feature extraction operators according to the targeted classification
task and data set. It outputs a feature extraction method tree. Applying a method tree
to the given audio data delivers a transformed data set, i.e., the examples rewritten by
the corresponding feature set. This becomes the input to a second learning step, namely

AUTOMATIC FEATURE EXTRACTION FOR CLASSIFYING AUDIO DATA 129

Figure 1. The overall process of automatic feature construction for classification.

classifier learning. Figure 1 shows the overall process with the two learning steps, one using
genetic programming, the other using the support vector machine mySVM (Rüping, 2000)
for classifier learning. Please note that the learning scheme used in the second learning step
is also part of the feature extraction training. In contrast to the second learning step described
here the embedded learning scheme works on an excerpt of the examples to estimate the
accuracy and provide a fitness value (fitness evaluation). Further details are explained in
Sections 3 and 4. The approach is tested on the learning tasks of genre classification and
user preferences (Section 4).

2. Methods for feature extraction

Audio data are time series, where the y-axis is the current amplitude corresponding to a
loudspeaker’s membrane and the x-axis corresponds to the time. They are univariate, finite,
and equidistant. We may generalize the type of series which we want to investigate to value
series. Each element xi of the series consists of two components. The first is the index
component, which indicates a position on a straight line (e.g., time). The second component
is a m-dimensional vector of values which is an element of the value space.

Definition 1. A VALUE SERIES is a mapping x : N → R × C
m where we write xn instead

of x(n) and (xi)i∈{1,...,n} for a series of length n.

This general definition covers time series as well as their transformations. All the methods
described in the following refer to value series. They are not only applicable to audio data,
but to value series in general. The usage of a complex number value space instead of a real
number value space allows a convenient way to use basis transformations like the Fourier
transformation. Finally, the introduction of the index component allows both equidistant
and non-equidistant value series.

Feature extraction methods for value series can be described in a general framework.
Such a framework offers the following advantages:

– Missing features for classification can be detected and their extraction methods be
developed.

130 I. MIERSWA AND K. MORIK

– Specialized methods can be decomposed into their general extraction methods.
– The repository of general extraction methods can easily be implemented and extended.
– Combinations of extraction operators can be built, generating a large variety of feature

sets.

In other words, organizing a repository of elementary feature extraction methods allows
us to see the feature extraction for a certain learning task as a sequence of methods. The
known methods are fixed sequences of such elementary extraction methods. Here, we give
an overview of the building blocks, so that we later on can flexibly construct sequences.
Details are omitted.2 Only the new notions of general windowing and interval mark-up are
presented in more detail.

2.1. Basis transformations

Basis transformations map the data from the given vector space into another space. Audio
data—like all univariate time series—are originally elements of the vector space R

2. The ba-
sis B of a vector space V is a set of vectors which can represent all vectors in V by their linear
combination. The only required operation on vector spaces as the domain of transformations
is the scalar product. Since the most common basis transformation performed on audio data is
the transformation into the infinite space of harmonic oscillations we assume Hilbert spaces.

Definition 2. Let H be a vector space with an inner product 〈 f, g〉. H is called HILBERT

SPACE if the norm defined by | f | = √〈 f, f 〉 turns H into a complete metric space, i.e. any
Cauchy sequence of elements of the space converges to an element in the space.

The assumption of Hilbert spaces is no constraint, because all finite-dimensional spaces
with a scalar product (such as Euclidean space with ordinary scalar product) are Hilbert
spaces. However, we use Hilbert spaces with an infinite number of dimensions to introduce
the concept of Fourier transformations. Therefore, we need an infinite-dimensional Hilbert
space of functions.

Definition 3. Let P be a Hilbert space. If the elements f ∈ P are functions, P is called a
FUNCTION SPACE.

Example 1. The set of all functions f : R → R with a finite integral
∫ ∞

−∞
f 2(x) dx

together with the inner product

〈 f, g〉 =
∫ ∞

−∞
f (x)g(x) dx

form a well known function space: L2.

AUTOMATIC FEATURE EXTRACTION FOR CLASSIFYING AUDIO DATA 131

Figure 2. Overlay of two curves, ν1 = 2 Hz, a1 = 3 and ν2 = 8 Hz, a2 = 1, shown left in time space, right in
frequency space after a Fourier transformation.

2.1.1. Frequency space. The goal of Fourier analysis is to write the series (xi)i∈{1,...,n}
as a (possibly infinite) sum of multiples of the given base functions, which are eiνx for all
frequencies ν. A Fast Fourier Transformation (Cooley & Tukey, 1965) maps the given time
space into this frequency space and is valid for audio data (figure 2). The frequency space
is a special case of a function space. Therefore, the transformation uses the infinite number
of complex valued dimensions of a Hilbert space. Complex numbers are necessary because
Fourier transformations actually deliver two values: the intensity of occurring frequencies
and the phase shifts.

2.1.2. Correlation space. The frequency space expresses a sort of correlation between
values in terms of frequencies. For some features it would be more appropriate to express
the correlation in terms of time dependencies. Therefore, the transformation into another
space is used.

Definition 4. The calculation of correlations of values between two points in time, i and
i + k, produce the CORRELATION SPACE, where for each lag k their correlation coefficient
in [−1, +1] is indicated.

Transforming audio data into the correlation space eases the recognition of the speed of
the music, measured in beats per minute. Assuming T is the number of beats per measure
and S R the sampling rate. If we shift the original time series by shift = T · S R · 60/X for
several values of X we can determine the correlation between the original and the shifted
time series. Maximal correlation corresponds to minimal difference between the shifted and
the original series. Figure 3 shows the differences of original values with the shifted ones.
Clearly, the difference at 97 beats per minute is minimal.

2.1.3. Reconstruction of state space. Nonlinear dynamic systems can be described with
the aid of non-linear differential equations. The number of variables which must be known
to completely describe the behavior of such a system corresponds to the dimension of this
system. These variables are called state variables.

132 I. MIERSWA AND K. MORIK

Figure 3. Autocorrelation differences for a phase shift depending on speeds ranging from 90 to 170 beats per
minute.

Definition 5. The basis of the STATE SPACE of a dynamic system is given by the STATE

VARIABLES of the system, i.e. the variables which must be known to describe the system.
The elements of a state space represent the values of the state variables at the examined
(time) points.

The state space emphasizes characteristics which can hardly be seen in the original space.
Since the state variables are often unknown, a topologically equivalent space is constructed
(Takens, 1980). This is known as reconstruction of state space.

Definition 6. Vectors within PHASE SPACE are constructed, where the components are parts
of the original series:

pi = (
xi , xi+d , xi+2d , . . . , xi+(m−1)d

)

where d is the delay, and m the dimension of the phase space. The set

Pd,m = {pi | i = 1, . . . , n − (m − 1)d}

is the phase space representation of the original series (xi)i∈{1,...,n}.

Within the phase space, several features can be extracted, e.g., the angles between vectors.
Small variances of angles indicate smooth changes of the state variables, large variances
harsh changes. This is a dominant feature when separating classic from the more percussive
pop music as shown in figure 4.

2.1.4. Reversibility. Basis transformations most often are reversible, because only the
basis, not the position of the elements is changed. In contrast, if intervals in the index
dimension are used, the transformation is not reversible. If, for instance, we summarize the
original series by some time intervals and assign a value to each interval, the transformed

AUTOMATIC FEATURE EXTRACTION FOR CLASSIFYING AUDIO DATA 133

Figure 4. Phase space representation of a popular song (left) and a classical piece (right).

Figure 5. Intervals found in the index dimension are summarized.

series has still the same number of elements but fewer different values (see figure 5 for
illustration). We will discuss some possible ways to detect intervals in different dimensions
of a value series in Section 2.3.

2.2. Filters

Filters transform elements of a series to another location within the same space. Moving
average and exponential smoothing, for instance, are filters. Many known transformations
are subsumed by weighting functions. We consider the window functions Bartlett, Hanning,
Hamming, Blackman-Harris, linear and exponential functions as particular instances of a
function fw(i) which weights the position within the window.

Definition 7. Given a value series (xi)i∈{1,...,n}, a filter yi = fw(i) · xi is a WEIGHT FILTER.
The weighting function fw only depends on the position i .

Other filters are the frequency passes, filtering the extremes, the Bark-filter, and the ERB
filter, which are all often used when analyzing music data.

134 I. MIERSWA AND K. MORIK

2.3. Mark-up of intervals

In analogy to mark-up languages for documents, which annotate segments within a text,
also segments within a time series can be annotated.

Definition 8. A MARK-UP M : S → C assigns an arbitrary characteristic C to a segment
S.

We define special instances of mark-up by assigning characteristic value types to intervals
in one of the dimensions of the considered space.

Definition 9. An INTERVAL I : S → C is a mark-up within one dimension. The segment
S = (d, s, e) is given by the dimension d, the starting point s, and the end point e. The
characteristic E = (t, �) indicates a type t and a density �.

Often clustering (e.g., k-means) is used in order to detect suitable intervals (Hastie,
Tibshirani, & Friedman, 2001). A clustering scheme is only usable in dimensions with
a non-equidistant value distribution. Additionally, clustering in one or several dimensions
is a batch process to be applied to the complete series. An incremental process is the signal
to symbol process (Morik & Wessel, 1999):

Signal to symbol processing: Given the series (xi)i ∈ {1, . . . , n} with n values, a decision
function fe and an interval dimension,
initialize the interval counter with t = 1, start a new interval It and add the first point.

For the remaining points of the series, do:

1. If fe(It , xi) = 1, then add xi to the current interval It .
2. Else close It , increase t by 1, and add xi to the new It .

Typical examples of the decision function fe refer to the gradient, delivering characteris-
tics such as, e.g., increase, decrease. Signal to symbol processing is applied to the index
dimension (time). If intervals have already been found in the value dimension, these can be
used to induce intervals in the index dimension. For instance, whenever a interval change
in the value dimension has been found, the current interval in the index dimension is closed
and a new one is started. Figure 6 illustrates this combination.

2.4. Generalized windowing

Many known operators on times series involve windowing. Separating the notion of windows
over the index dimension from the functions applied to the values within the window segment
allows to construct many operators of the kind.

Definition 10. Given the series (xi)i∈{1,...,n}, a transformation is called WINDOWING, if it
shifts a window of width w over (xi)i∈{1,...,n} using a step size s and evaluates in each window

AUTOMATIC FEATURE EXTRACTION FOR CLASSIFYING AUDIO DATA 135

Figure 6. The process of finding intervals in a series (a), first in the value dimension (b), then projected on the
index dimension (c), delivering (d).

the function F :

y j = F
(
(xi)i∈{(j ·s+1,..., j ·s+w}

)
.

All y j together form again a series (y j) j∈{0,...,�(n−w)/s�}.

Definition 11. A windowing which performs an arbitrary number of transformations in
addition to the function F is called GENERAL WINDOWING.

The function F summarizes values within a window and thus prevents general windowing
from enlarging the data set too much. Since the size of audio data is already rather large,
it is necessary to consider carefully the number of data points which is handled more than
once.

Definition 12. The OVERLAP of a general windowing with step size s and width w is
defined as g = w/s.

Only for windowings with overlap g = 1 the function can be omitted. Such a windowing
performs transformations for each window and is called piecewise filtering. Section 2.6
investigates the runtime effects of transformations used within general windowing and the
overlap.

Combining general windowing with the mark-up of intervals allows to consider each
interval being a window. This results in an adaptive window width w and no overlap, i.e.
g = 1. Of course, this speeds up processing considerably.

136 I. MIERSWA AND K. MORIK

Figure 7. Constructing the cepstral method from elementary extraction operators.

2.5. Functions

Transformations convert a series into another series. In contrast, functions calculate single
values from a series. The group of functions includes all kinds of statistics like different
averages, variance and standard deviation. They refer to the value dimension. We may
also consider the index dimension, for instance, the point with the largest value or highest
amplitude. Often used functions are those indicating peaks.

Definition 13 (k-Peaks function). The k-Peaks function delivers for a series (xi)i∈{1,...,n}
the position (index dimension), the height, and the width of the k largest peaks.

It is an instance of finding extremes (minimum, maximum). Similarly, the gradient of
a regression line can be formulated. For audio data, the spectral flatness measure or the
spectral crest factor can be expressed as an arithmetic combination of simple functions
(Jayant & Noll, 1984). The mel-frequency cepstral coefficients can be constructed as a gen-
eral windowing, where the frequency spectrum of the window is calculated, its logarithm
is determined and a psychoacoustic filtering is performed, and the inverse Fourier transfor-
mation is applied to the result. Figure 7 shows how the methods for feature extraction are
put together to compute the cepstral coefficients. From these coefficients additional features
can be extracted. It is easy to see how variants of this series can be generated, e.g., replacing
the frequency spectrum and its logarithm by the gradient of a regression line.

2.6. Some properties of the methods

Since large amounts of data have to be processed, each method must be fast. Of course,
the mere sequence of methods is then fast, too. What needs to be checked is the effect of
general windowing. How much does the runtime increase, if we apply methods running in
O(n2) within the windows? How many data points are handled more than once? If the step
size s is 1, k windows of width n − k can be built. The number of values to be processed
increases from n to k · (n − k). The value k = n/2 maximizes this product. In other words,
for a step size of 1 the worst case is a window size of w = n/2 for a series of length n.
Then g = n/2 values are handled more than once.

AUTOMATIC FEATURE EXTRACTION FOR CLASSIFYING AUDIO DATA 137

In general, the number of windows for a series of length n and a step size s is

k = n − w

s
+ 1 = n

s
− g + 1 (1)

We assume that all transformations occur only once in a sequence of methods and that the
number of methods is finite. The resulting runtime for methods in O(n) is generally stated
by Lemma 1.

Lemma 1. General windowing using methods in O(n) has the worst case runtime of
O(gn − gw + w), where g is the overlap.

Proof: Processing data within a window costs O(w). k windows are to be processed. The
overall runtime is k · w:

k · w =
(n

s
− g + 1

)
· w

= n

s
w − gw + w

= gn − gw + w

Lemma 1 means, that for g = 1, a series is processed in O(n). For g = 2 the effort
becomes 2n −w which is more expensive than processing the methods on the overall series
since w is always less than n. If g = n/2, the general windowing effort becomes n2

2 − wn
2 +w

which is an order of magnitude larger than the runtime of the inner methods applied to the
whole series.

Analogously, we state the runtime for general windowing for methods with logarithmic
complexity, with quadratic complexity, and those with exponential complexity.

Lemma 2. Assuming that each method is applied at most once, general windowing using
methods in O(n log n) has the worst case runtime of O(gn log w − gw log w + w log w),
where g is the overlap, n the length of the series, and w the width of the windows.

Lemma 3. Assuming that each method is applied at most once, general windowing using
methods in O(n2) has the worst case runtime of O(gnw − gw2 + w2), where g is the
overlap, n the length of the series, and w the width of the windows.

Lemma 4. Assuming that each method is applied at most once, general windowing using
methods in O(n p) has the worst case runtime of O(gnw p−1 − gw p + w p), where g is the
overlap, n the length of the series, and w the width of the windows.

Lemma 5. Assuming that each method is applied at most once, general windowing using
methods in O(an) has the worst case runtime of O(gn

w
aw − gaw + aw), where g is the

overlap, n the length of the series, and w the width of the windows.

138 I. MIERSWA AND K. MORIK

We elaborate on the most common overlap of 2 and the worst of n/2. The result indicates,
when to use windowing and when to process the overall series. For all but the linear
complexity methods, the general windowing is faster than applying the methods to the
overall series, if g = 1, and at least as fast if g = 2. If g = n/2, the runtime for windowing
is worse than the runtime for applying the methods to the overall series except for exponential
inner methods.3

3. Automatic construction of method trees

The elementary methods described above are combined in order to construct more complex
features for classification tasks. Figure 7 already showed how elementary methods can be
used for the reconstruction of known complex feature extraction methods. There are many
more complex feature extraction methods which can be built using the framework described
above (Section 2). For instance, the general windowing may apply a Fourier transformation
so that the peaks of the transformed series can be related with windows in time:

y j = max
index

(
FT

({xi }i∈{ j ·s+1,..., j ·s+w}
))

The result is a value series, where the value of y j denotes the highest frequency for each
window. From this series, the average and variance is built, yielding a good feature for the
separation of techno and pop music—the variance is greater in pop music.

It is rather cumbersome to find such combinations that perform well for a classification
task. We are looking for chains of method applications. Moreover, there might be some
windowing within which such chains are applied. This is a rather large search space (see
Section 3.3). It is too large to be inspected manually. Hence, genetic programming is applied
in order to look for the best combination of methods (Holland, 1986; Koza, 1992). The result
is a complex method. Its use for the classifier learning will be shown in Section 4.

In order to structure the huge search space, we may separate functions, chains of method
applications, and general windowing, where a chain of method applications is applied to
each window.

Definition 14. A CHAIN consists of an arbitrary number of transformations and a function
at the end.

A function is a chain with no transformations. It has the length 1. A longer chain consists
of some transformations followed by a function. In any case, a chain delivers one value.
Incorporating windowings leads to the concept of method trees:

Definition 15. A METHOD TREE is a general windowing whose children build a chain. If
the chain entails a windowing, this becomes the root of a new, embedded method tree.

The methods which are performed on each window can be seen as children of the win-
dowing operator. Together they output a value series. The tree structure emerges from the
nesting of windowing operators.

AUTOMATIC FEATURE EXTRACTION FOR CLASSIFYING AUDIO DATA 139

Figure 8. A method tree for feature extraction built of elementary methods. Solid arrows show the data flow,
dashed lines define the tree structure.

An example of a method tree is shown in figure 8, where the root identifies the el-
ement within the search space. Its four children are exponential smoothing, a filtering,
another method tree consisting of the chain just described (Fourier transformation with
peaks applied to windows), and the average of the peaks. This last child returns the desired
features.

Before the genetic programming approach is technically described, figure 9 presents the
process of automatically extracting features for a given classification task and data set.
The picture details on the first box of figure 1 above which shows the overall process.
The search space within which the best method tree is to be found is called the universe
of method trees. A population is a set of method trees. The navigation within the uni-
verse of method trees is a cycle of selecting a population, applying the method trees to
the raw data, evaluating the fitness of the population, and enhancing the fittest method
trees further to build a new population (Section 3.2). This cycle corresponds to the stan-
dard process of genetic algorithms. What differs from the standard is that method trees
instead of binary vectors form the search space, that the search space is structured, and that
the fitness evaluation is not merely a function but the result of running another learning
algorithm.

Figure 9. Automatic feature extraction using genetic programming.

140 I. MIERSWA AND K. MORIK

Figure 10. XML method tree representation for YALE .

3.1. Representation

Genetic programming constructs finite automata. Here, method trees are to be constructed.
They are represented by XML expressions. Figure 10 shows the representation of the method
tree from figure 8. The YALE system executes such trees and takes care of the syntactic
well-formedness.

The restriction that chains are concluded by a function implies a level-wise structure of
all possible method trees. The lowest level 1 entails only functions. These are chains of
length 1. The next level, 2, covers chains with a concluding function. Levels 3 and above
entail windowing. Method trees are constructed according to their levels. The level-wise
growing means small changes to a current method tree. On the one hand, this reduces the
probability of missing the optimal method tree. On the other hand, it may slow down the
search, if the fitness of the lower levels does not distinguish between good and bad method
trees.

3.2. Mutation, crossover, and selection

The operations of genetic programming are mutation and crossover. By random, mutations
insert a new method, delete a method, or replace a method by one of the same class, i.e.
by a function or transformation. Crossover replaces a sub-tree from one method tree by a
sub-tree from another method tree, respecting the well-formedness conditions. This means
that the roots of the sub-trees must be of the same type of methods.

For selection purposes, the fitness of all method trees is expressed by a roulette wheel, i.e.
fitness proportional parts of a wheel’s 360 degrees. The larger the portion, the more likely
it becomes that the particular individual is selected for the next generation or crossover.
Other possible selection schemes include tournament selection, where t method trees are
randomly chosen from the population and the winner of this set, i.e. the method tree with
the largest fitness, is added to the next generation. The parameter t allows the definition of
selection pressure.

AUTOMATIC FEATURE EXTRACTION FOR CLASSIFYING AUDIO DATA 141

3.2.1. Fitness evaluation. Since method trees serve classification in the end, the quality
of classification is the ultimate criterion of fitness. Individuals which provide better classifi-
cation results when used as features for the classification task at hand should have a greater
probability to survive into the next generation. To evaluate the fitness of each method tree
in a population the following steps are performed:

1. Each individual method tree is applied to an excerpt of the raw data.
2. This method application returns a transformed data set, which is used by classifier

learning.
3. A k-fold cross validation is executed to estimate the performances of the learning scheme

in combination with the feature sets provided by the method trees.
4. The mean accuracy, recall, and/or precision of the result becomes the fitness value of

the applied feature construction method trees.
5. The fitness values of the method trees are used to build the next population with one of

the selection schemes described above.

3.3. Some properties of the search space

Automatically constructing methods for feature extraction which deliver well suited feature
sets for classifier learning is a demanding task. How fast can we expect a good result to
be found? This general question can be split into three more specific ones. First, the size
of the search space is important. Second, the complexity of processing one individual in
the search space helps to bound the overall complexity of search. Third, the convergence
to an optimum determines the speed of the genetic programming. The last issue is not yet
solved. Even simple evolutionary algorithms demand complicated proofs (Droste, Jansen,
& Wegener, 1998). Here, we answer the first and second question.

3.3.1. Size of the search space. If all mathematical operations were allowed within method
trees, the search space would become infinite, hence only a fixed set of transformations
and functions are allowed. Let T0 be the number of transformations and F the number
of functions, n the length of the input series. The number of possible methods at level 1
becomes F . At level 2, transformations could be applied once in any order. The two levels
can be summarized. For chains of length k, there exist the following number of different
chains:

K0 = F ·
T0∑

k=0

T0!

(T0 − k)!
(2)

The higher levels are produced by windowing. Within the windows, a chain of trans-
formations is executed, if no nested windowing is allowed. Hence, there exist as many
windowing operations as there are chains (Eq. (2)). Adding the number of windowed trans-
formation chains K0 to the other transformations T0 returns the number of method trees at

142 I. MIERSWA AND K. MORIK

level 3:

T1 = T0 + K0 = T0 + F ·
T0∑

k=0

T0!

(T0 − k)!
(3)

For nested structures, the recursive structure can be illustrated by Eq. (4):

T2 = T0 + K1 = T0 + F ·
T1∑

k=0

T1!

(T1 − k)!
(4)

The depth of nested windowing is restricted by the length of the series: after n − 1 levels of
embedded windowing, there is no data of a series with n points left for further windowings.
Hence the overall size of the search space of all method trees is upper bounded by:

|SearchSpace| ≤ F ·
Tn−1∑
k=0

Tn−1!

(Tn−1 − k)!
(5)

Each element in the search space delivers as many features as are determined by the con-
cluding function. If genetic programming has to construct more features, it can either be
applied several times, or transformations can be applied more than once. In the latter case,
Eq. (5) states the lower bound of the search space size.

3.3.2. Processing a method tree. Until now we have ignored that the window size of
embedded windowings must become smaller for increased depth of embedding. Regarding
the embedded windowing operators leads to the notion of dynamic windowing.

Definition 16. Let (xi)i∈{1,...,n} be the original value series of length n and d ∈ {2, ...n/2}.
Windowing with overlap g, width w = n/d and step size s = n/gd is called DYNAMIC

WINDOWING.

The maximal depth of a method tree can now be determined.

Lemma 6. Given a value series (xi)i∈{1,...,n} of length n, a method tree using dynamic
windowing cannot exceed the depth of logd n − 1.

Proof: Dynamic windowing splits the series into windows of width n/d. The width de-
pends on the length of the series as well as on parameter d. For embedded windowing, only
n/d values are available. Windows on this smaller series have a window width of n/d2.
Only logd n − 1 repetitions are possible. The last embedding of windowing with width

n

d logd n−1
= n

d logd n

d

= nd

n
= d

AUTOMATIC FEATURE EXTRACTION FOR CLASSIFYING AUDIO DATA 143

does not allow any further windowing, because then only one value would remain for a
window.

Remember that the number of windows with overlap g on a series of length n is n/s−g+1
(Eq. (1)). Combining the maximal depth of a method tree with the number of windows and
their computation efforts estimates the worst runtime complexity of a method tree.

Theorem 1. Let C M(n) be the complexity of applying an internal method of at most
quadratic time complexity to a series of length n. Using dynamic windowing, no method
tree requires a runtime which is exponential in the length of the series (xi)i∈{1,...,n}.

Proof: The number of windows times the effort per window determines the overall effort.
Using Eq. (1) this is for a first level:

(
n

s
− g + 1

)
· C M

(
n

d

)
= (g(d − 1) + 1) · C M

(
n

d

)

Embedding a further windowing delivers at level i the following effort estimation:

(g(d − 1) + 1)i · C M

(
n

di

)

Using Lemma 6 for the bound of i results in the total effort:

(g(d − 1) + 1)logd n−1 · C M

(
n

d logd n−1

)
= (g(d − 1) + 1)logd n−1 · C M

(
n · d

n

)

= (g(d − 1) + 1)logd n−1 · C M(d) (6)

For the worst case of C M(d) = d2, Eq. (6) becomes:

(g(d − 1) + 1)logd n−1 · d2 = d2

g(d − 1) + 1
· n

1
logg(d−1)+1 d

= d2

g(d − 1) + 1
· nlogd (g(d−1)+1)

As is easily seen, the runtime is not exponential in the length of the series, but is limited by
the overlap and the parameter d and is therefore pseudo-polynomial.

Dynamic windowing avoids a particular case with exponential effort, which otherwise
could easily be constructed. If, for instance, the series was divided into two windows at
each level with a fixed step size but dynamic window width, the effort would be 2i · O(n

2i) at
the i-th level. After n − 1 splits, no further embedding of windowing is possible, since only
two values are left. Hence, the overall effort would be 2n . This exponential construction,
however, does not obey dynamic windowing with fixed overlap and dynamic width. Hence,
it cannot happen in our scenario.

144 I. MIERSWA AND K. MORIK

Figure 11. Classifier learning step using the best method tree found by the genetic programming approach.

4. Classification using learned method trees

Automatic feature construction aims at good results of a second learning step which uses the
features, namely classifier learning. Remember figure 1 from the introduction, where genetic
programming were presented to deliver the input to classifier learning. Now, figure 11 details
the second box of the overall picture.

Feature construction is already guided by the classification task in that cross-validated
learning determines the fitness of method trees (individuals of genetic programming). Now,
also feature selection is performed by a simple evolutionary method, namely the (1+1)EA
(Bäck, Hammel, & Schwefel, 1997). Again, the classification task decides upon the fitness.
The feature set is built using a subset of the training data. The selected method trees are
then applied to all the training data. The support vector machine mySVM is applied to these
rewritten data and learns a classifier.

4.1. Classifying genres

Since results are published for the genre classification task, we have applied our approach
to this task, too. Note, however, that no published benchmark data sets exist. Hence, the
comparison can only show that feature construction and selection leads to similar perfor-
mance as achieved by other approaches. For the classification of genres, three data sets have
been built.

– Classic/pop: 100 pieces for each class were available in Ogg Vorbis format.
– Techno/pop: 80 songs for each class from a large variety of artists were available in Ogg

Vorbis format.
– Hiphop/pop: 120 songs for each class from few records were available in MP3 format

with a coding of 128 kbits/s.

The classification tasks are of increasing difficulty. Using mySVM with a linear kernel,
the performance was determined by a 10-fold cross validation and is shown in Table 1.

AUTOMATIC FEATURE EXTRACTION FOR CLASSIFYING AUDIO DATA 145

Table 1. Classification of genres with a linear SVM using the task specific feature sets.

Classic/pop Techno/pop Hiphop/pop

Accuracy (%) 100 93.12 82.50

Precision (%) 100 94.80 85.27

Recall (%) 100 93.22 79.41

Error (%) 0 6.88 17.50

Concerning classic vs. pop, 93% accuracy, and concerning hiphop vs. pop, 66% accuracy
have been published (Tzanetakis, 2002; Tzanetakis, Essl, & Cook, 2001).

41 features have been constructed for all genre classification tasks. For the distinction
between classic and pop, 21 features have been selected for mySVM by the evolutionary
approach. Most runs selected features referring to the phase space (angle and variance).
The use of features can also be inspected by restricting a top-down induction of decision
trees to a few levels. For a one level stump, 93% accuracy could be achieved by just using
the RMS volume, i.e. the root mean square average of the series.

For the separation of techno and pop, 18 features were selected for mySVM, the most
frequently selected ones being the filtering of those positions in the index dimension where
the curve crosses the zero line. The decision tree starts with a phase space feature, the
average of angles. A one level stump uses the starting value of the second frequency band,
giving a benchmark of 76% accuracy.

For the classification into hiphop and pop, 22 features were selected with the mere volume
being the most frequently selected feature. The decision tree classifying hiphop against pop
is rather complex. It starts with the length of the songs. Experiments with naive Bayes
and k-NN did not change the picture: an accuracy of about 75% can easily be achieved,
increasing the performance further demands better features.

To demonstrate the effect of tailored feature sets for each classification task we performed
experiments with the same feature set for all data sets. We used only features which were
used in at least 50% of all subsets produced by feature selection for all data sets to simulate
a reasonable standard feature set. Table 2 shows the classification performance for a linear
SVM estimated with a 10-fold cross validation. The performance is significantly lower than
the performance which can be achieved using the tailored feature sets (see Table 1).

Table 2. Classification performance using the same non-tailored standard feature set for all classification tasks
(linear SVM).

Classic/pop Techno/pop Hiphop/pop

Accuracy (%) 96.50 64.38 72.08

Precision (%) 94.12 60.38 70.41

Recall (%) 95.31 64.00 67.65

Error (%) 3.50 35.63 27.92

146 I. MIERSWA AND K. MORIK

Table 3. Classification errors with respect to different learning schemes.

Classic/pop Techno/pop

SVM (linear) (%) 0.00 6.88

SVM (rbf) (%) 1.50 14.38

C4.5 (%) 0.00 7.50

k-NN (%) 3.00 9.38

Naive Bayes (%) 2.50 10.63

Table 3 shows the achieved classification errors with respect to different learning schemes.
Since the extraction of features and the transformation in another feature space is performed
by the applied method tree, the usage of a linear kernel function is actually no restriction.
Therefore, we use a linear SVM for all our experiments and as inner learner to estimate
the fitness of the method trees. The conclusions which can be drawn from Tables 2 and 3
indicate that a tailored set of task specific features and not the quality of the learning scheme
is the crucial aspect for the successful classification of audio data.

4.2. User preferences

Recommendations of songs to possible customers are currently based on the individual
correlation of record sales. This collaborative filtering approach ignores the content of the
music. A high correlation is only achieved within genres, because the preferences traversing
a type of music are less frequent. The combination of favourite songs into a set is a very
individual and rare classification. It is not a generalization of many instances. Therefore, the
classification of user preferences beyond genres is a challenging task, where for each user
the feature set has to be learned. Of course, sometimes a user is interested only in pieces
of a particular genre. This does not decrease the difficulty of the classification task. In
contrast, if positive and negative examples stem from the same genre, it is hard to construct
distinguishing features. Genre characteristics might dominate the user-specific features. As
has been seen in the difficulty of the data set for hiphop vs. pop, sampling from few records
also increases the difficulty of learning. Hence, four learning tasks of increasing difficulty
have been investigated.

Four users brought 50 to 80 pieces of their favourite music ranging through diverse
genres. They also selected the same number of negative examples. User 1 selected positive
examples from rock music with a dominating electric guitar. User 2 selected positive as
well as negative examples from jazz music. User 3 selected music from classic over latin
and soul to rock and jazz. User 4 selected pieces from different genres but only from few
records. Using a 10-fold cross validation, mySVM was applied to the constructed and
selected features, one feature set per learning task (user). Table 4 shows the results.

The excellent learning result for a set of positive instances which are all from a certain style
of music corresponds to our expectation (user 1). The expectation that learning performance
would decrease if positive and negative examples are taken from the same genre is not

AUTOMATIC FEATURE EXTRACTION FOR CLASSIFYING AUDIO DATA 147

Table 4. Classification according to user preferences.

User1 User2 User3 User4

Accuracy (%) 95.19 92.14 90.56 84.55

Precision (%) 92.70 98.33 90.83 85.87

Recall (%) 99.00 84.67 93.00 83.74

Error (%) 4.81 7.86 9.44 15.45

supported (user 2). Surprisingly well is the learning result for a broad variety of genres
among the favourites (user 3). This fact indicates that for this user the constructed feature
set supports the building of preference clusters in feature space instead of dominating genre
clusters. In contrast to this result the (negative) effect of sampling from few records can
be seen clearly (user 4). Applying the learned decision function to a database of records
allowed the users to assess the recommendations. They were found very reasonable. No
particularly disliked music was recommended, but unknown plays and those, which could
have been selected as the top 50.

Of course, this method of user preference recognition is just the first step. There are
several ways to improve the results. For instance, users could indicate those examples that
must be classified correctly, because they feel that it is an essential expression of their
taste. Weighting examples as a further cost function for learning has been investigated in
(Klinkenberg, 2004). The inspection of the chosen features by the users themselves is not
yet possible. Regular users are not acquainted with Fourier transformation and peaks, for
instance, but would like to see understandable and interpretable features. Perhaps some
visualization of features and mySVM results could satisfy the users’ curiosity. An open
question is how to circumvent or at least decrease the required number of negative examples,
since users don’t like to go through long play lists in order to gather negative examples.

5. Conclusion

In this paper, operators for the analysis of large collections of audio data have been presented
in a unifying framework. Some new operators have been developed, for instance those in
the phase space. Other operators have been generalized, for instance, the windowing and
mark-up operators. The operators are organized by method trees, which extract complex
features. All known feature extraction methods for audio data are covered, either directly as
an operator, or as the result of a method tree. Many different method trees (features) can be
built from the primitives of the framework. The method trees are automatically generated
for a certain classification task by a genetic programming approach.

Of course, complexity has been an issue. The construction of method trees is restricted
to functions at the first level, chains concluded by a function at the second level, and to win-
dows embedding chains at higher levels. The complexity of windowings including methods
of a certain complexity has been investigated. It was shown under which circumstances
windowing decreases runtime, compared to processing the overall value series. Dynamic
windowing with reasonable parameters prevents the approach from becoming infinite or

148 I. MIERSWA AND K. MORIK

exponential in the length of a series. The countable search space for method trees has been
shown to be very large but at least not infinite if each transformation is only allowed once.
On the one hand, the size of the search space makes automatic feature extraction a hard
task. This seems to be a disadvantage. On the other hand, the large number of elements
in the search space means that very many feature extraction methods are covered by the
implemented system. This seems to be an advantage. A tight bound tells how many different
method trees can be constructed.

The crucial question is whether the covered methods and their automatic construction are
tractable, feasible, and deliver good classification results in the end. Two types of classifier
learning tasks have been tried in order to answer this question: classifying genres and user
preferences. The experiments showed encouraging results. Further work should decrease
the required number of negative examples and ease user interaction by visualization of both,
features and classification results. Since all methods are defined for value series in general,
it would be interesting to see whether the approach can also be applied to image data in the
form of vectors or other high-dimensional series data. Another topic for further research is
the real-time classification according to user preferences. Genre classification can be done
in real-time, because an appropriate feature set can be learned in advance. In contrast, a real-
time classification of the preferences of diverse users does not allow to find the feature sets
beforehand. Recommendation systems address different users, so that they cannot adjust to
a particular one. Real-time recommendation would require automatic feature construction
while the user classifies some examples. Here, a combination of collaborative filtering and
feature extraction for types of users could be combined. Finally, an electronic DJ would
be a challenging system to develop. In addition to the classification of single music plays,
appropriate sequences of plays would then need to be taken into account.

Notes

1. For an overview see (Pickens, 1996).
2. For details and the comprehensive set of methods see the YALE system which is available at http://yale.

cs.uni-dortmund.de (Fischer et al., 2002).
3. When constructing features from audio data, exponential methods are not used.

References

Bäck, T., Hammel, U., & Schwefel, H.-P. (1997). Evolutionary computation: Comments on the history and current
state. IEEE Transactions on Evolutionary Computation, 1:1, 3–17.

Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine computation of the complex Fourier series.
Mathematics of Computation, 19, 297–301.

Droste, S., Jansen, T., & Wegener, I. (1998). On the analysis of the (1 + 1) evolutionary algorithm. Technical
Report CI 21/98, SFB 531, Univ. Dortmund, Germany.

Fischer, S., Klinkenberg, R., Mierswa, I., & Ritthoff, O. (2002). Yale-yet another learning environment tutorial.
Technical Report CI 136/02, SFB 531, Univ. Dortmund, Germany.

Ghias, A., Logan, J., Chamberlin, D., & Smith, B. C. (1995). Query by humming: Musical information retrieval
in an audio database. In Proc. of ACM Multimedia (pp. 231–236).

Guo, G., & Li, S. Z. (2003). Content-based audio classification and retrieval by support vector machines. IEEE
Transaction on Neural Networks, 14:1, 209–215.

AUTOMATIC FEATURE EXTRACTION FOR CLASSIFYING AUDIO DATA 149

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer series in statistics, Springer.

Holland, J. H. (1986). Escaping brittleness: The possibilities of general-purpose learning algorithms applied to
parallel rule-based systems. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine Learning–An
artificial intelligence approach, Chapt. 20, Vol. 2 (pp. 593–624). Palo Alto, CA: Morgan Kaufmann.

Jayant, N. S., & Noll, P. (1984). Digital coding of waveforms: Principles and applications to speech and video.
Prentice Hall.

Joachims, T. (2002a). Learning to classify text using support vector machines, Vol. 668 of Kluwer International
Series in Engineering and Computer Science. Kluwer.

Joachims, T. (2002b). Optimizing search engines using clickthrough data. In Procs. of the 8th Conference on
Knowledge Discovery in Databases.

Kahveci, T., & Singh, A. K. (2001). An efficient index structure for string databases. In Proceedings of the 27th
VLDB (pp. 352–360). Morgan Kaufmann.

Keogh, E., & Pazzani, M. (1998). An enhanced representation of time series which allows fast classification,
clustering and relevance feedback. In Procs. of the 4th Conference on Knowledge Discovery in Databases.
(pp. 239–241).

Keogh, E., & Smyth, P. (1997). An enhanced representation of time series which allows fast classification, clustering
and relevance feedbacA probabilistic approach to fast pattern matching in time series databases. In Procs. of
the 3rd Conference on Knowledge Discovery in Databases (pp. 24–30).

Klinkenberg, R. (2004). Learning drifting concepts: Example selection vs. example weighting. Intelligent Data
Analysis (IDA), Special Issue on Incremental Learning Systems Capable of Dealing with Concept Drift, 8:3.
(to appear).

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97:1/2, 273–324.
Koza, J. (1992). Genetic programming: On the programming of computers by means of natural selection. Cam-

bridge, MA: MIT Press.
Kurth, F., & Clausen, M. (2001). Full-text indexing of very-large audio data bases. In 110th Convention of the

Audio Engineering Society.
Liu, Z., Wang, Y., & Chen, T. (1998). Audio feature extraction and analysis for scene segmentation and classifi-

cation. Journal of VLSI Signal Processing System.
Loy, G. (1989). Musicians make a standard: The MIDI phenomenon. Computer Music Journal, 9:4.
Morik, K., & Wessel, S. (1999). Incremental signal to symbol processing. In K. Morik, M. Kaiser, & V. Klingspor

(Eds.), Making robots smarter–combining sensing and action through robot learning Chapt. 11. (pp. 185–198).
Kluwer Academic Publ.

Pickens, J. (1996). A Survey of feature selection techniques for music information retrieval. Technical report,
Center of Intelligent Information Retrieval, Department of Computer Science, University of Masschusetts.

Rüping, S. (2000). mySVM-Manual. Universität Dortmund, Lehrstuhl Informatik VIII. http://www-ai.cs.uni-
dortmund.de/SOFTWARE/MYSVM/.

Takens, F. (1980). Detecting strange attractors in turbulence. In D. A. Rand & L. S. Young (Eds.), Dynamical
systems and turbulence, Vol. 898 of Lecture Notes in Mathematics (pp. 366–381). Berlin: Springer.

Tzanetakis, G. (2002). Manipulation, analysis and retrieval systems for audio signals. Ph.D. thesis, Computer
Science Department, Princeton University.

Tzanetakis, G., Essl, G., & Cook, P. (2001). Automatic musical genre classification of audio signals. In Procs. of
the Int. Symposium on Music Information Retrieval (ISMIR) (pp. 205–210).

Yi, B., Jagadish, H., & Faloutsos, C. (1998). Efficient retrieval of similar time series under time warping. In Procs.
14th Conference on Data Engineering (pp. 201–208).

Zhang, T. & Kuo, C. (1998). Content-based classification and retrieval of audio. In SPIE’s 43rd Annual Meeting–
Conference on Advanced Signal Processing Algorithms, Architectures, and Implementations VIII. San Diego.

Received March 22, 2004
Revised October 7, 2004
Accepted October 7, 2004
Final manuscript October 7, 2004

