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Abstract. We investigate techniques for analysis and retrieval of object trajectories. We assume that a trajectory is
a sequence of two or three dimensional points. Trajectory datasets are very common in environmental applications,
mobility experiments, video surveillance and are especially important for the discovery of certain biological
patterns. Such kind of data usually contain a great amount of noise, that makes all previously used metrics fail.
Therefore, here we formalize non-metric similarity functions based on the Longest Common Subsequence (LCSS),
which are very robust to noise and furthermore provide an intuitive notion of similarity between trajectories by
giving more weight to the similar portions of the sequences. Stretching of sequences in time is allowed, as well
as global translating of the sequences in space. Efficient approximate algorithms that compute these similarity
measures are also provided. We compare these new methods to the widely used Euclidean and Dynamic Time
Warping distance functions (for real and synthetic data) and show the superiority of our approach, especially under
the strong presence of noise. We prove a weaker version of the triangle inequality and employ it in an indexing
structure to answer nearest neighbor queries. Finally, we present experimental results that validate the accuracy
and efficiency of our approach.
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1. Introduction

In this paper we investigate the problem of discovering similar trajectories of moving objects.
The trajectory of a moving object is typically modeled as a sequence of consecutive locations
in a multidimensional (generally two or three dimensional) Euclidean space. Such data types
arise in many applications where the location of a given object is measured repeatedly over
time. Examples include features extracted from video clips, animal mobility experiments,
sign language recognition, motion-capture data, mobile phone usage, multiple attribute
response curves in drug therapy, and so on.

Moreover, the recent advances in mobile computing, sensor and GPS technology have
made it possible to collect large amounts of spatio-temporal data and there is increasing



302 M. VLACHOS, G. KOLLIOS AND D. GUNOPULOS

interest to perform data analysis tasks over this data (Barbará, 1999). For example, in mobile
computing, users equipped with mobile devices move in space and register their location
at different time instants via wireless links to spatio-temporal databases. In environmental
information systems, tracking animals and weather conditions is very common and large
datasets can be created by storing locations of observed objects over time. Data analysis in
such data include determining and finding objects that moved in a similar way or followed
a certain motion pattern. An appropriate and efficient model for defining the similarity for
trajectory data will be very important for the quality of the data mining tasks.

1.1. Robust distance metrics for trajectories

Typical trajectory data are obtained during a tracking procedure, with the aid of various
sensors. Here also lies the main obstacle of such data; they may contain a significant amount
of outliers (see figure 1) or in other words incorrect data measurements (unlike for example,
stock data which contain no errors whatsoever).

One of our objectives is the automatic classification of trajectories using a Nearest Neigh-
bor Classifier. It has been shown that the one nearest neighbor rule has asymptotic error
rate that is at most twice the Bayes error rate (Duda & Hart, 1973). Therefore, the problem
that must be addressed is the following: given a database D of trajectories and a query Q
(not already in the database), we want to find the trajectory T that is closest to Q. In order
to answer this query, we have to: (i) define a realistic distance function and (ii) design an
indexing scheme for answering the nearest neighbor query efficiently.

Previous approaches to model the similarity between time-series include the use of the
Euclidean and the Dynamic Time Warping (DTW) distance, which however are relatively
sensitive to noise. Distance functions that are robust to extremely noisy data will typically
violate the triangular inequality. These functions achieve this by not considering the most

Figure 1. Examples of 2D trajectories. Two instances of video-tracked time-series data representing the word
‘athens’. Start and ending contain many outliers.
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dissimilar parts of the objects. However, they are very useful because they represent an
accurate model of the human perception (Medin, Goldstone, & Gentner, 1993), since when
comparing any kind of data (images, trajectories etc), we mostly focus on the portions that
are similar and we are willing to pay less attention to regions of great dissimilarity.

For this kind of data we need distance functions that can address the following issues:

– Different Sampling Rates or different speeds. The time-series that we obtain, are not
guaranteed to be the outcome of sampling at fixed time intervals. The sensors collect-
ing the data may fail for some period of time, leading to inconsistent sampling rates.
Moreover, two time series moving at exactly the similar way, but one moving at twice
the speed of the other will result (most probably) to a very large Euclidean distance.

– Similar motions in different space regions. Objects can move similarly, but differ in the
space they move. This can easily be observed in sign language recognition, if the camera
is centered at different positions. If we work in Euclidean space, usually subtracting the
average value of the time-series, will move the similar series closer.

– Outliers. Might be introduced due to anomaly in the sensor collecting the data or can
be attributed to human ‘failure’ (e.g. jerky movement during a tracking process). In this
case the Euclidean distance will completely fail and result to very large distance, even
though this anomaly may be found in only a few points.

– Different lengths. Euclidean distance deals with time-series of equal length. In the case
of different lengths we have to decide whether to truncate the longer series, or pad with
zeros the shorter etc. In general its use gets complicated and the distance notion more
vague.

– Efficiency. It has to be adequately expressive but sufficiently simple, so as to allow
efficient computation of the similarity.

To cope with these challenges we use the Longest Common Subsequence (LCSS) model.
The LCSS is a variation of the edit distance. The basic idea is to match two sequences by
allowing them to stretch, without rearranging the sequence of the elements but allowing
some elements to be unmatched. The advantages of the LCSS method are twofold:

(1) Some elements may be unmatched, where in Euclidean and DTW all elements must be
matched, even the outliers.

(2) The LCSS model allows a more efficient approximate computation, as will be shown
later (whereas in DTW you need to compute a costlier L p Norm).

In figure 2 we can see the clustering produced by the Euclidean and DTW distance.
The sequences represent data collected through a video tracking process. Originally they
represent 2D series, but only one dimension is depicted here for clarity. The hierarchical
clustering on the pairwise DTW distances, fails to distinguish the two classes of words,
due to the great amount of outliers, especially in the beginning and in the end of the
trajectories. Using the Euclidean distance we obtain even worse results because it cannot
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Figure 2. Hierarchical clustering of 2D series (displayed as 1D for clarity). Four video-tracked time-series
representing 2 instances of the words Athens(A1 and A2) and Boston (B1 and B2) are used for this example.
The presence of many outliers in the beginning and the end of the sequences leads to incorrect clustering for the
Euclidean and the DTW distance. The LCSS focusing on the common parts achieves the correct clustering.

support compression in time. The LCSS produces the most intuitive clustering as shown in
the same figure. Generally, the Euclidean distance is very sensitive to small variations in
the time axis, while the major drawback of the DTW is that it has to pair all elements of the
sequences (see also figure 3).

Therefore, we use the LCSS model to define similarity measures for trajectories. Never-
theless, a simple extension of this model into 2 or more dimensions is not sufficient, because
(for example) this model cannot deal with parallel movements. Therefore, we extend it in
order to address similar problems. In our similarity model we consider a set of translations
in 2 or more dimensions and we find the translation that yields the optimal solution to the
LCSS problem.

The rest of the paper is organized as follows. In Sections 2 and 3 we formalize the
new similarity functions by extending the LCSS model, while in Section 4 we empirically

Figure 3. The support of flexible matching in spatio-temporal queries is very important. However, we can observe
that Dynamic Time Warping matches all points (so the outliers as well), therefore distorting the true distance. In
contrast, the LCSS model can efficiently ignore the noisy parts.
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justify our choice for constraining the warping region. Section 5 demonstrates efficient
algorithms to compute these functions and Section 6 elaborates on the indexing structure.
Section 7 provides the experimental validation of the accuracy and efficiency of the pro-
posed approach and Section 8 presents the related work. Finally, Section 9 concludes the
paper.

2. Similarity measures

In this section we define similarity models that match the user’s perception of similar trajec-
tories. First we provide some definitions and then we proceed by presenting the similarity
functions based on the appropriate models. We assume that objects are points that move on
the (x, y)-plane and time is discrete. In Table 1 we summarize the notation used throughout
the paper.

Let A and B be two trajectories of moving objects with size n and m respectively, where
A = ((ax,1, ay,1), . . . , (ax,n, ay,n)) and B = ((bx,1, by,1), . . . , (bx,m, by,m)). For a trajectory
A, let Head(A) be the sequence Head(A) = ((ax,1, ay,1), . . . , (ax,n−1, ay,n−1)).

Definition 1. Given an integer δ and a real number 0 < ε < 1, we define the LCSSδ,ε(A, B)
as follows:

LCSSδ,ε(A, B) =






0, if A or B is empty

1 + LCSSδ,ε(Head(A), Head(B)),
if |ax,n– bx,m | < ε and |ay,n– by,m | < ε and |n – m| ≤ δ

max(LCSSδ,ε(Head(A), B), LCSSδ,ε(A, Head(B))),
otherwise

Table 1. Notation used in the paper.

A (or B) 2-dimensional trajectories

Head(A) trajectory A without its last element

Ai (or Bi ) (x, y) position at time i of trajectory A (or B)

δ Allowed temporal matching
(maximum warping length)

ε Allowed spatial matching

F Set of translations in the x-y plane

fc,d x-translation by c, y-translation by d

S1 LCSS similarity for real values

S2 LCSS similarity with translation

S3 LCSS sigmoidal similarity

D1 Distance based on S1 similarity

D2 Distance based on S2 similarity
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Figure 4. The notion of the LCSS matching within a region of δ & ε for a trajectory. The points of the 2 trajectories
within the gray region can be matched by the LCSS function.

The constant δ controls how far in time we can go in order to match a given point from
one trajectory to a point in another trajectory. The constant ε is the matching threshold (see
figure 4).

The first similarity function is based on the LCSS and the idea is to allow time stretching.
Then, objects that are close in space at different time instants can be matched if the time
instants are also close.

Definition 2. We define the similarity function S1 between two trajectories A and B, given
δ and ε, as follows:

S1(δ, ε, A, B) = LC SSδ,ε(A, B)

min(n, m)

The division by the length of the sequence in S1, serves the purpose of comparing the
LCSS value between sequences of different lengths.

Now we use this S1 function to define another similarity measure that is more suitable for
trajectories. First, we consider the set of translations. A translation simply shifts a trajectory
in space by a different constant in each dimension. Let F be the family of translations. Then
a function fc,d belongs to F if fc,d (A) = ((ax,1 + c, ay,1 + d), . . . , (ax,n + c, ay,n + d)).
Next, we define a second notion of the similarity based on the above family of functions.

Definition 3. Given δ, ε and the family F of translations, we define the similarity function
S2 between two trajectories A and B, as follows:

S2(δ, ε, A, B) = max
fc,d∈F

S1(δ, ε, A, fc,d (B))
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Figure 5. Translation of trajectory B.

So the similarity functions S1 and S2 range from 0 to 1. Therefore we can define the
distance function between two trajectories as follows:

Definition 4. Given δ, ε and two trajectories A and B we define the following distance
functions:

D1(δ, ε, A, B) = 1 − S1(δ, ε, A, B)

and

D2(δ, ε, A, B) = 1 − S2(δ, ε, A, B)

Note that D1 and D2 are symmetric. LCSSδ,ε(A, B) is equal to LCSSδ,ε(B, A) and the
transformation that we use in D2 is a translation which preserves the symmetric property.

By allowing translations, we can detect similarities between movements that are parallel
in space, but not identical. In addition, the LCSS model allows stretching and displacement
in time, so we can detect similarities in movements that happen with different speeds, or
at different times. In figure 5 we show an example where a trajectory B matches another
trajectory A after a translation is applied. Note that the value of parameters c and d are
also important since they give the distance of the trajectories in space. This can be useful
information when we analyze trajectory data.

The similarity function S2 is a significant improvement over the S1, because: (i) now we
can detect parallel movements, (ii) the use of normalization does not guarantee that we will
get the best match between two trajectories. Usually, because of the significant amount of
noise, the average value and/or the standard deviation of the time-series, that are being used
in the normalization process, can be distorted leading to improper translations.

3. Sigmoidal matching function

Using the previous LCSS model we perform unweighted matching. Whenever the points
of two trajectories lie within ε in space the similarity is increased by one. This however
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Figure 6. Unweighted and weighted matching options for LCSS model.

penalizes the points that were marginally outside the matching region (assigning to them
a value of zero) and also makes the choice of ε an important issue. Therefore, one can
devise a weighted matching scheme that will give more significance to closer points and
less to distant points. The importance given to each matching point decreases gradually up
to a certain cutoff distance, therefore efficiently pruning the outliers (which will be given a
similarity of zero). Figure 6 depicts on the left the regular unweighted matching function
presented in the previous sections. Possible weighted functions are also shown, while in
the text that follows we delineate how the sigmoidal function can be used to enhance the
matching quality of the LCSS.

Using the LCSS paradigm one can allow for time compression and decompression. How-
ever now for the matching function between two trajectories A and B we use a sigmoidal
function and we set its matching width equal to min(std(A), std(B)), where std denotes
the standard deviation of a sequence’s values. Now all points with distance greater than the
matching threshold will not be matched (essentially the outliers), but the weighted approach
will help to reveal and accurately capture even small motion discriminations between two
sequences. A sigmoidal function has the form:

s(x) = 1
/(

1 + e−a(x−k−1)
)
, x = 1 . . . 2k + 1

One can use different parameters for the variable a, in the evaluation of function s(·), in
order to indicate where more matching weight should be given. In figure 7 we can observe
the different degree of similarity assigned between two points, for different values of a.
For our experiments we used a value of a = 0.25. The value of k essentially controls the
accuracy (more bins evaluate more accurately the sigmoidal value).

The weighted distance between two 2D points Ai = (ax,i , ay,i ), B j = (bx, j , by, j ) be-
longing to sequences A and B, respectively, is given by the SigmoidMatch function:

SigmoidMatch(Ai , B j )

=






0, if |ap,i − bp,i | > min(std(Ap), std(Bp)), p = x, y

1
2

y∑

p=x

s

(

� |(ap,i , bp,i )|
min(std(Ap), std(Bp))

· (2k + 1)�
)

, otherwise
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Figure 7. The SigmoidMatch function for different parameters and the weighted matching procedure.

where Ax = (ax,1, ax,2, . . . , ax,n), Ay = (ay,1, ay,2, . . . , ay,n) and similarly are defined
sequences Bx , By .

The sigmoid based similarity function between two trajectories is now defined as:

Definition 5. Given an integer δ, we define the SigmoidSimδ(A, B) as follows:

SigmoidSimδ(A, B) = SigmoidMatch(An, Bm) +
max{SigmoidSim(Head(A), Head(B)),

SigmoidSim(Head(A), B),

SigmoidSim(A, Head(B))}
where, | n − m |≤ δ

It should be noted, that under the new similarity definition we have essentially eliminated
the matching parameter ε. The constant δ defines again the allowed flexibility for time
compression and decompression. An example of the sigmoidal matching (disregarding the
matching within δ) is depicted in figure 8, while the length normalized function is defined
below.

Definition 6. We define the similarity S3 between two trajectories A and B, given δ, as
follows:

S3(δ, A, B) = SigmoidSimδ(A, B)

min(n, m)

In the experiments we will demonstrate the enhanced accuracy that can be achieved using
the sigmoidal based similarity function, especially for noisy data.
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Figure 8. Sigmoidal matching of a sequence (without the time matching within δ). The similarity value at each
point of another sequence, declines up to a certain cut-off point.

The advantages of the model S3 are summarized below:

1. Only one parameter is required (parameter δ)
2. More accurate similarities can be captured against the unweighted distance models (that

utilize the ε matching threshold).

4. Constraining the warping

In all our similarity models we have used a constrained warping window within δ. This
significantly improves the run time execution of the algorithm, as will be shown in the next
section. However, we will demonstrate (using real datasets as examples), that we have more
to gain by constricting the matching window in time:

1. In most datasets there is no need to perform full length warping. In practice time warping
around 20% of the sequences’ length, proves sufficient for most datasets and applications.
We can usually observe convergence in the pairwise similarity between sequences after
a certain warping window. Therefore, allowing for larger windows, would not yield
changes in the similarity, at the expense of prolonged execution time.

Using the Camera Mouse program (Gips, Betke, & Fleming, 2000), we have obtained
multiple instances of various words created by tracking a human feature over time,
while utilizing a ‘virtual keyboard’. In this manner, we had at our disposal spatiotem-
poral sequences (figure 9), each one describing a different word. In figure 10 we can
observe how the LCSS similarity progresses, over increasing warping windows for vari-
ous pairwise computations. It is apparent that there are diminishing returns for extensive
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Figure 9. Two words of the cameraMouse dataset (two instances each).

Figure 10. Five pairwise LCSS similarity computations for increasing warping windows (parameter δ). The
similarity does not change for warping more than 25% of the sequence’s length.

warping, since time warping more than 20% of the sequence’s length, rarely changes
the computed sequence similarity.

Similar behavior has also been observed by Keogh and Ratanamahatana (2004) for
time-series datasets, that span in the areas of botany, video-tracking, text recognition etc.
The authors clearly suggest that full warping is simply futile, and does not yield better
results (for their datasets ranges of 3–10% warping returned the best results).

2. For certain datasets, extended warping not only may not yield additional gain, but it also
may hurt accuracy. We performed the following simple experiment; we tried to label each
sequence of some test datasets, using a ‘leave-one-out’ 1-Nearest-Neighbor classification
scheme. Therefore, each time-series was given the label of its nearest neighbor among
the remaining sequences. Figure 11 is illustrative of the accuracy results that we have
obtained for the cameraMouse dataset and for a subset of the Australian Sign Language
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Figure 11. ‘Leave-one-out’ classification accuracy for two datasets. We observe that excessive warping can hurt
the performance in certain datasets.

(ASL) dataset.1 While for the cameraMouse extensive warping does not further assist
the accuracy, in the case of the ASL, increasing the allowed warping in time to more than
30% actually penalizes the accuracy. This is easily explained, since excessive matching
envelopes not only distort the true distance, but also ‘force’ instances of words from
different classes to match with one another, by allowing long and degenerate matching
correspondences. Again, similar results that support this claim have also been noted in
Ratanamahatana and Keogh (2004) and Keogh and Ratanamahatana (2004).

This discussion denotes that our choice of constraining the warping in time (parameter δ),
not only improves the algorithm run time, but it is also a highly desirable feature for providing
better similarity estimates and for improving the classification/clustering accuracy.

5. Efficient algorithms to compute the similarity

5.1. Computing the similarity function S1

To compute the similarity functions S1, S3 we need to run an LCSS computation for the
two sequences. The LCSS can be computed by a dynamic programming algorithm in O(n2)
time. However we only allow matchings when the difference in the indices is at most δ, and
this allows the use of a faster algorithm. The following lemma has been shown in Berndt
and Clifford (1994) and Das, Gunopulos, and Mannila (1997).

Lemma 1. Given two trajectories A and B, with |A| = n and |B| = m, we can find the
LCSSδ,ε(A, B) in O(δ(n + m)) time.

If δ is small, the dynamic programming algorithm is very efficient (figure 12). However,
for some applications δ may need to be large. For that case, we can speed-up the above
computation using random sampling.
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Figure 12. Solution of the LCSS problem for trajectories using dynamic programming. The matching region in
time is indicated by the gray area (δ = 5). For this example, the constrained warping solution is the same as the
one provided when computing the whole array.

Random sampling has been effectively used in many scientific areas in order to speed up
the execution of costly algorithms. Such applications include clustering (Guha, Rastogi, &
Shim, 1998), or other data-mining applications (Kivinen & Mannila, 1994; Zaki et al., 1997),
where in general we have to examine a large amount of data. By taking a sufficiently small
amount of random samples from the original data, we can show that with high probability, the
random sample that we collected preserves the properties (shape, structure, average value,
etc) of the original population. This can be proven using several tail inequalities, such as the
Chebyshev’s inequality or the Chernoff bounds. In this work we use the Chernoff bounds.

Lemma 2. Given two trajectories A and B with length n, two constants δ and ε, and a
random sample of A, |R A| = s, we can compute an approximation of the LCSS(δ, ε, A, B)
such that the approximation error is less than β with probability at least 1 − ρ, in O(ns).

Proof: The idea is that for each element ai of R A we choose the elements from B that are
within a range of δ from ai (so, bi −δ, . . . , bi + δ). Suppose RB is the set of all such elements
from B and |RB| = min(2δ, n). Then we compute the LCSS(δ, ε, R A, RB) and let the result
be g. The LCSS is estimated as g∗n/s. Now, let Xi be a random variable that is 1 if we find a
match for ai in LCSS(δ, ε, R A, RB) and 0 otherwise. We can assume that all X1, X2, . . . , Xs

are independent random variables. Also, let LCSS(δ, ε, A, B) = m, we have that P(X j =
1) = m/n. Thus, the number of the sample points that match is given by the random
variable X = ∑s

j=1 X j . The expected value of X is µ = E[X ] = E[X = ∑s
j=1 X j ] =

∑s
j=1 E[X j ] = sm

n . Subsequently, using the Chernoff bound: P[X < (1 − β)µ] < e
−µβ2

2

and demanding this probability to be smaller than p, we get that: |s| = 2n
β2m log( 1

p )
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Figure 13. The general shape of a sequence remains the same even for down to 5% sampling.

The above proof states that if we want to be within 0.1 of the true similarity of the
trajectories with a probability of 90% and the similarity between the examined trajectories
is around 0.8 we should sample the value at 250 positions of the original trajectory. Notice
that this number is independent of the length of the sequence. If we want to be able to
capture accurately the similarity between less similar trajectories (e.g. with 0.4 similarity)
then we should sample at 500 points. Therefore for long trajectories consisting of 10000
points, a sample of 5% is adequate. In practice, we can get very good results even for shorter
trajectories and for sampling down to 10% of the original series length. In figure 13 we show
how the general shape of the trajectory changes with the sample size. The original trajectory
consists of 1074 2d points and in figure we show the x coordinate. The only distortions that
we can observe on the sampled trajectory are noticed for samples lower than 10% of the
trajectory length.

5.2. Computing the similarity function S2

We now consider the more complex similarity function S2. Here, given two sequences
A, B, and constants δ, ε, we have to find the translation fc,d that maximizes the length
of the longest common subsequence of A, fc,d (B) (LCSSδ,ε(A, fc,d (B)) over all possible
translations.

Let the length of trajectories A and B be n and m respectively. Also assume that the
translation fc1,d1 is the translation that, when applied to B, gives a longest common subse-
quence: LCSSδ,ε(A, fc1,d1 (B)) = a, and it is also the translation that maximizes the length
of the longest common subsequence:

LCSSδ,ε(A, fc1,d1 (B)) = max
c,d∈R

LCSSδ,ε(A, fc,d (B)).



ELASTIC TRANSLATION INVARIANT MATCHING OF TRAJECTORIES 315

The key observation is that, although there is an infinite number of translations that we
can apply to B, each translation fc,d results in a longest common subsequence between
A and fc,d (B), and there is a finite set of possible longest common subsequences. In this
section we show that we can efficiently enumerate a finite set of translations, such that
this set provably includes a translation that maximizes the length of the longest common
subsequence of A and fc,d (B).

To give a bound on the number of transformations that we have to consider, we look at
the projections of the two trajectories on the two axes separately.

We define the x projection of a trajectory B = ((x1, y1), . . . (xm, ym)) to be the sequence
of the values on the x-coordinate: Bx = (bx,1, . . . , bx,m). A one dimensional translation
fc is a function that adds a constant to all the elements of a 1-dimensional sequence:
fc(x1, . . . , xm) = (x1 + c, . . . , xm + c).

Considering the x projections of A and B, Ax and Bx respectively, we can show the
following lemma:

Lemma 3. Given trajectories A, B, if LCSSδ,ε(A, fc1,d1 (B)) = a, then the length of the
longest common subsequence of the one dimensional sequences Ax and fc1 (Bx ) = (bx,1 +
c1, . . . , bx,m +c1), is at least a: LCSSδ,ε(Ax , fc1 (Bx )) ≥ a. Also, LCSSδ,ε(Ay, fd1 (By)) ≥ a.

Proof: The proof is clear from the fact that any locations that match for the two dimen-
sional longest common subsequence must also match at the projection.

Now, consider Ax and Bx . A translation by c′, applied to Bx can be thought of as a linear
transformation of the form f (bx,i ) = bx,i + c′. Such a transformation will allow bx,i to be
matched to all ax, j for which |i − j | < δ, and ax, j − ε ≤ f (bx,i ) ≤ ax, j + ε.

It is instructive to view this as a stabbing problem; consider the O(δ(n + m)) vertical line
segments ((bx,i , ax, j − ε), (bx,i , ax, j + ε)), where |i − j | < δ (figure 14).

These line segments are on a two dimensional plane, where on the x axis we put elements
of Bx and on the y axis we put elements of Ax . For every pair of elements [bx,i , ax, j ] in Ax

and Bx that are within δ positions from each other (and therefore can be matched by the

Figure 14. An example of two translations and the transformation into a stabbing problem.
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LCSS algorithm if their values are within ε), we create a vertical line segment that is centered
at the point (bx,i , ax, j ) and extends ε above and below this point. Since each element in Ax

can be matched with at most 2δ + 1 elements in bx , the total number of such line segments
is O(δn).

Since a one dimensional translation fc′ is a function of the form fc′ (bx,i ) = bx,i + c′,
it can be described on the Euclidean plane as a line of slope 1. After translating Bx by
fc′ , an element bx,i of Bx can be matched to an element ax, j of Ax if and only if the line
fc′ (x) = x + c′ intersects the line segment ((bx,i , ax, j − ε), (bx,i , ax, j + ε)).

Therefore each line of slope 1 defines a set of possible matchings between the ele-
ments of sequences Ax and Bx . The number of intersected line segments is actually an
upper bound on the length of the longest common subsequence because the ordering of
the elements is ignored. However, two different translations can result to different longest
common subsequences only if the respective lines intersect a different set of line segments.
For example, the translations f0(x) = x + 0 and f2(x) = x + 2 in figure 14 intersect
different sets of line segments and result to longest common subsequences of different
length.

The following lemma gives a bound on the number of possible different longest common
subsequences, by bounding the number of possible different sets of line segments that are
intersected by lines of slope 1.

Lemma 4. Given two one dimensional sequences Ax , Bx , there are O(δ(n + m)) lines of
slope 1 that intersect different sets of line segments.

Proof: Let fc′ (x) = x + c′ be a line of slope 1. If we move this line slightly to the left or
to the right, it still intersects the same number of line segments, unless we cross an endpoint
of a line segment. In this case, the set of intersected line segments increases or decreases
by one. There are O(δ(n + m)) endpoints. A line of slope 1 that sweeps all the endpoints
will therefore intersect at most O(δ(n + m)) different sets of line segments during the
sweep.

In addition, we can enumerate the O(δ(n + m)) translations that produce different sets
of potential matchings by finding the lines of slope 1 that pass through the endpoints.
Each such translation corresponds to a line fc′ (x) = x + c′. This set of O(δ(n + m))
translations gives all possible matchings for a longest common subsequence of Ax , Bx . By
applying the same process on Ay, By we can also find a set of O(δ(n + m)) translations that
give all matchings of Ay, By . To find the longest common subsequence of the sequences
A, B we have to consider only the O(δ2(n + m)2) two dimensional translations that are
created by taking the Cartesian product of the translations on x and the translations on
y. Since running the LCSS algorithm takes O(δ(n + m)) we have shown the following
theorem:

Theorem 1. Given two trajectories A and B, with |A| = n and |B| = m, we can compute
the S2(δ, ε, A, B) in O((n + m)3δ3) time.
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5.3. An efficient approximate algorithm

Theorem 1 gives an exact algorithm for computing S2, but this algorithm runs in cu-
bic time. In this section we present a much more efficient approximate algorithm. The
key to our technique is that we can bound the difference between the sets of line seg-
ments, that are intersected by different lines of slope 1, based on how far apart the
lines are.

Consider again the one dimensional projections Ax , Bx . Let us consider the O(δ(n +m))
translations that result in different sets of intersected line segments. Each translation is a line
of the form fc′ (x) = x +c′. Let us sort these translations by c′. For a given translation fc′ , let
L fc′ be the set of line segments it intersects. The following lemma shows that ’neighboring’
translations intersect similar sets of line segments.

Lemma 5. Let f1(x) = x + c′
1, . . . , fN (x) = x + c′

N be the different translations for
sequences Ax and Bx , where c′

1 ≤ · · · ≤ c′
N . Then the symmetric difference L fi �L f j =

|i − j |.

Proof: Without loss of generality, assume i < j . The difference between fi and fi+1

is simply that we cross one additional endpoint. This means that we have to either add or
subtract one line segment to L fi to get L fi+1 . By repeating this step ( j − i) times we create
L f j .

We can now prove our main theorem:

Theorem 2. Given two trajectories A and B, with |A| = n and |B| = m, and a constant
0 < β < 1, we can find an approximation AS2δ,β(A, B) of the similarity S2(δ, ε, A, B)
such that S2(δ, ε, A, B) − AS2δ,β(A, B) < β in O((m + n)δ3/β2) time.

Proof: Let a = S2(δ, ε, A, B). We consider the projections of A and B onto the x and
y axes. There exists a translation fi on the x axis only, such that L fi is a superset of the
matches in the optimal LCSS of A and B. In addition, according to the previous lemma,
there are 2b translations ( fi−b, . . . , fi+b) that have at most b different matchings from the
optimal.

Therefore, if we use the translations fib, for i = 1, . . . , � 2δ(n+m)
b � in the ordering described

above, we are within b different matchings from the optimal matching of A and B (figure
15). We can find these translations in O(δ(n +m) log(n +m)) time if we find and sort all the
translations.

Alternatively, we can find these translations in O( δ(n+m)
b δ(n+m)) time if we run � 2δ(n+m)

b �
quantile operations. The same is true for Ay and By .

So we get a total of ( 2δ(m+n)
b )2 pairs of translations in the (x, y) plane. Since there is one

that is b away from the optimal in each dimension, there is one that is 2b away from the
optimal in 2 dimensions. Setting b = β(n+m)

2 completes the proof.

Given trajectories A, B with lengths n, m respectively, and constants δ, β, ε, the approx-
imation algorithm works as follows:
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Figure 15. If we can afford to be within a certain error range then we don’t have to try all translations.

1. Using the projections of A, B on the two axes, find the sets of all different translations
on the x and y axis.

2. Find the i β(n+m)
2 -th quantiles for each set, 1 ≤ i ≤ 4δ

β
.

3. Run the LCSSδ,ε algorithm on A and B, for each of the ( 4δ
β

)2 pairs of translations.
4. Return the highest result.

6. Indexing trajectories for similarity retrieval

Even though the approximation algorithm for the distance D2 significantly reduces the
computational cost over the exact algorithm, it can still prove costly when one is interested
in similarity search on massive trajectory databases.

Here we will show how to utilize the tree produced by a hierarchical clustering algorithm
in order to efficiently answer nearest neighbor queries.

The major obstacle in providing an indexing scheme for the distance function D2 is
that it is not a metric, since it does not obey the triangle inequality. This makes the use of
traditional indexing techniques difficult. Indeed, it is easy to construct examples where we
have trajectories A, B and C , where D2(δ, ε, A, C) > D2(δ, ε, A, B) + D2(δ, ε, B, C).
Such an example is shown in figure 16, where D2(δ, ε, A, B) = D2(δ, ε, B, C) = 0 (since
the similarity is 1), and D2(δ, ε, A, C) = 1 (because the similarity within ε in space is
zero).
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Figure 16. An example where the triangle inequality does not hold for the D2 distance.

We can however prove a weaker version of the triangle inequality, which can help us
avoid examining a large portion of the database objects. First we define:

LCSSδ,ε,F (A, B) = max
fc,d∈F

LCSSδ,ε(A, fc,d (B))

Clearly, D2(δ, ε, A, B) = 1− LCSSδ,ε,F (A,B)
min(|A|,|B|) (as before, F is the set of translations). Now we

can show the following lemma:

Lemma 6. Given trajectories A, B, C :

LCSSδ,2ε,F (A, C) ≥ LCSSδ,ε,F (A, B) + LCSSδ,ε,F (B, C) − |B|

where |B| is the length of sequence B.

Proof: Clearly, if an element of A can match an element of B within ε, and the same
element of B matches an element of C within ε, then the element of A can also match the
element of C within 2ε. It follows that:

LCSSδ,2ε,F (A, C) = � points in B that match A and C within ε

≥ (� points in B) - (� B points not matching A)

− (� B points not matching C) = |B|
−(|B| − LCSSδ,ε,F (A, B)) − (|B| − LCSSδ,ε,F (B, C))

= LCSSδ,ε,F (A, B) + LCSSδ,ε,F (B, C) − |B|.
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6.1. Indexing structure

We first partition all the trajectories into sets according to their length, so that the longest
trajectory in each set is at most a times the shortest (typically we use a = 2.) We apply a
hierarchical clustering algorithm on each set, and we use the tree that the algorithm produced
as follows:

For every node C of the tree we store the medoid (MC ) of the cluster represented by this
node. The medoid is the trajectory that has the minimum distance (or maximum LCSS)
from every other trajectory in the cluster: maxvi ∈C minv j ∈C LCSSδ,ε,F (vi , v j , e). However,
keeping only the medoid is not enough since we need to have a way to efficiently prune
part of the tree during the search procedure. Namely, given the tree and a query sequence
Q, we want to examine whether to follow the subtree that is rooted at C . However, from
the previous lemma we know that for any sequence B in C :

LCSSδ,ε,F (B, Q) < |B| + LCSSδ,2ε,F (MC , Q) − LCSSδ,ε,F (MC , B)

or in terms of distance:

D2(δ, ε, B, Q) = 1 − LCSSδ,ε,F (B, Q)

min(|B|, |Q|) > 1 − |B|
min(|B|, |Q|)

− LCSSδ,2ε,F (MC , Q)

min(|B|, |Q|) + LCSSδ,ε,F (MC , B)

min(|B|, |Q|)

In order to provide an upper bound on the similarity (or a lower bound on the distance)
we have to maximize the expression |B| − LCSSδ,ε,F (A, B). Therefore, for every node
of the tree along with the medoid we have to keep the trajectory rc that maximizes this
expression. If the length of the query is smaller than the shortest length of the trajectories
we are currently considering we use that, otherwise we use the minimum and maximum
lengths to obtain an approximate result.

6.2. Searching the index tree for nearest trajectories

We assume that we search an index tree that contains trajectories with minimum length
min l and maximum length max l. For simplicity we discuss the algorithm for the 1-Nearest
Neighbor query, where given a query trajectory Q we try to find the trajectory in the set
that is the most similar to Q.

The search procedure takes as input a node N in the tree, the query Q and the distance
to the closest trajectory found so far (figure 17). For each of the children C , we check if the
child is a trajectory or a cluster. In case that it is a trajectory, we just compare its distance
to Q with the current nearest trajectory. If it is a cluster, we check the length of the query
and we choose the appropriate value for min(|B|, |Q|). Then we compute a lower bound
L to the distance of the query with any trajectory in the cluster and we compare the result
with the distance of the current nearest neighbor mindist. We need to examine this cluster
only if L is smaller than mindist.
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Figure 17. Search procedure for nearest neighbor queries.

In our scheme we use an approximate algorithm to compute the LCSSδ,ε,F . Consequently,
the value of LC SSδ,ε,F (MC ,B)

min(|B|,|Q|) that we compute can be up to β times higher than the exact value.
Therefore, since we use the approximate algorithm of Section 3.2 for indexing trajectories,
we have to subtract β ∗ min(|MC |,|B|)

min(|B|,|Q|) from the bound we compute for D2(δ, ε, B, Q). Note
that we don’t need to worry about the other terms since they have a negative sign and the
approximation algorithm always underestimates the LCSS.

7. Experimental evaluation

We implemented the proposed approximation and indexing techniques as they are described
in the previous sections and here we present experimental results evaluating our techniques.
We describe the datasets and then we continue by presenting the results. The purpose of our
experiments is twofold: first, to evaluate the efficiency and accuracy of the approximation
algorithm presented in Section 5 and the sigmoidal matching function of Section 3. Second,
to evaluate the indexing technique that we discussed in the previous section. Our experiments
were run on a PC AMD Athlon at 1 GHz with 1 GB RAM and 60 GB hard disk.

7.1. Time and accuracy experiments

Here we present the results of some experiments using the approximation algorithm to
compute the similarity function S2. Our dataset consists of marine mammals’ satellite
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Table 2. Similarity values between two sequences from the SEALS dataset.

Approximate for K tries

δ ε Exact 4 9 25 49

2 0.25 0.316 0.1846 0.22 0.253 0.273

2 0.5 0.571 0.410 0.406 0.510 0.521

4 0.25 0.387 0.196 0.258 0.306 0.323

4 0.5 0.612 0.488 0.467 0.563 0.567

6 0.25 0.408 0.250 0.313 0.357 0.367

6 0.5 0.653 0.440 0.4912 0.584 0.591

tracking data.2 It contains of sequences recording the geographic locations of various marine
animals (dolphins, sea lions, whales, etc) tracked over different periods of time, that range
from one to three months (SEALS dataset). The length of the trajectories is close to 100.
Examples have been shown in figure 1.

In Table 2 we show the computed similarity between a pair of sequences in the SEALS
dataset. We run the exact and the approximate algorithm for different values of δ and ε and
we report here some indicative results. K is the number of times the approximate algorithm
invokes the LCSS procedure (that is, the number of translations (c, d) that we try). We can
observe that for K = 25 and 49 we get very good results. We got similar results for synthetic
datasets. Also, in Table 3 we report the running times to compute the similarity measure
between two trajectories of the same dataset. The approximation algorithm uses again from
4 to 49 different runs. The running time of the approximation algorithm is much faster even
for K = 49.

One can notice from the experimental results that the running times of the approximation
algorithm is not proportional to the number of runs (K ). This is achieved by reusing the
results of previous translations and terminating early the execution of the current translation,
if it is not going to yield a better result. The main conclusion of the above experiments is

Table 3. Running time (sec) of the exact and approximate LCSS model.

Approximate for K tries

δ ε Exact 4 9 25 49

2 0.25 17.705 0.0012 0.0014 0.0017 0.0022

2 0.5 17.707 0.0012 0.0014 0.00169 0.0022

4 0.25 32.327 0.0016 0.0018 0.0022 0.00281

4 0.5 32.323 0.0015 0.0018 0.0023 0.00280

6 0.25 90.229 0.0017 0.00191 0.00231 0.0031

6 0.5 90.232 0.0017 0.00193 0.0023 0.0031
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that the approximation algorithm can provide a very tractable time vs accuracy trade-off
for computing the similarity between two trajectories, when the similarity is defined using
the LCSS model.

7.2. Classification using the approximation algorithm

We compare the clustering performance of our method to the widely used Euclidean and
DTW distance functions. Specifically:

1. The Euclidean distance is only defined for sequences of the same length (and the length
of our sequences vary considerably). We tried to offer the best possible comparison
between every pair of sequences, by sliding the shorter of the two trajectories across the
longer one and recording their minimum distance.

2. For DTW we modified the original algorithm in order to match both x and y coordinates.
In both DTW and Euclidean we normalized the data before computing the distances (z-
normalization: subtract mean, divide by standard deviation). While the z-normalization
is optimal under the Euclidean distance (Goldin & Kanellakis, 1995), this does not
necessarily hold under warping conditions. However, it still provides more intuitive
results than working with un-normalized sequences. Our method does not need any
normalization, since it evaluates the similarity under a diverse set of translations, that
guarantee the matching quality.

3. For LCSS we used a randomized version with and without sampling, and for vari-
ous values of δ. The time and the correct clusterings represent the average values
of 15 runs of the experiment. This is necessary due to the randomized nature of our
approach.

7.2.1. Determining the values for δ & ε. The values we used for δ and ε are clearly
dependent on the application and the dataset. For most datasets we had at our disposal, we
discovered that setting δ to more than 10–20% of the trajectories length did not yield signifi-
cant improvement. Furthermore, after some point the similarity stabilizes to a certain value.
Therefore, the δ parameter can be first approximated using the DTW measure (which uses
just one parameter) and estimating the warping length, after which classification accuracy
does not get improved.

Subsequently the parameter ε can be estimated by probing a few values on the discovered
δ parameter and recording the one that provides the best class separation. In our experiments
we used values in the range of 10–25% of the standard deviation of the examined trajectories,
which yielded good and intuitive results. Nevertheless, when we use the index the value of
ε has to be the same for all pairs of trajectories.

Even though the setting of the second parameter ε may seem to reduce the usability of the
S1 and S2 measures, it is actually a significant asset of the LCSS method. This is because
it provides additional spatial filtering abilities. For example, a possible query at an airport
watch tower, can be: “Find all planes that took a similar route as plane X , and were always
within a radius of ε”. Such queries can be easily answered only using the LCSS model.



324 M. VLACHOS, G. KOLLIOS AND D. GUNOPULOS

7.2.2. Experiment 1—Video tracking data. The 2D time series obtained represent the X
and Y position of a human tracking feature (e.g. tip of finger). In conjunction with a ”spelling
program” the user can ”write” various words (Gips, Betke, & Fleming, 2000; Betke, Gips,
& Fleming, 2002). We used 3 recordings of 5 different words. The data correspond to the
following words: ‘athens’, ‘berlin’, ‘london’, ‘boston’, ‘paris’. The average length of the
series is around 1100 points. The shortest one is 834 points and the longest one 1719 points.

To determine the efficiency of each similarity measure we perform a simple clustering
experiment. We take all instances for each pair of words (i.e. N = 3 ∗ 2 sequences) and we
compute the distance matrix between all pairs of sequences using N 2/2 distance operations.
This experiment is performed for each all pairs of words (that is, for this dataset we perform
the experiment 5 ∗ 4/2 = 10 times).

A hierarchical clustering is run on the distance matrix of each similarity measure, with the
expectation to produce a correct partition into 2 classes (based on our knowledge of which
word each trajectory actually represents). While at the lower levels of the dendrogram the
clustering is subjective, if the top level provides an accurate division into two classes, then
the clustering is considered correct, otherwise not. Using IR terminology, in this experiment
we essentially estimate the ’precision’ of each method.

We have performed the clustering experiment using single, complete and average linkage.
However, since the best results for every distance function are produced using the complete
linkage, we report only the results for this approach (Table 4). The same experiment is
conducted with the rest of the datasets. Results have been also collected for various sequence
sample sizes and values of δ (as a percentage of the original series length).

The results with the Euclidean distance have many classification errors and the DTW has
some errors, too. For the LCSS the only real variations in the clustering are for sample sizes
s ≤ 10%. Still the average incorrect clusterings for these cases were constantly less than
one (<0.7). For 15% sampling or more, there were no errors.

Table 4. Results using the video tracking data for various sizes of sample s and δ.

Correct clusterings (out of 10)
Distance function Time (sec) complete linkage

Euclidean 34.96 2

DTW 237.641 8

LCSS:

s = 5%, δ = 20% 2.733 9.800

s = 10%, δ = 20% 8.041 9.933

s = 15%, δ = 20% 16.173 10

s = 20%, δ = 20% 28.851 10

s = 25%, δ = 20% 45.065 10

s = 30%, δ = 20% 65.203 10

s = 40%, δ = 20% 113.583 10

s = 60%, δ = 20% 266.753 10

s = 100%, δ = 20% 728.277 10
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Figure 18. Four recordings of the word ‘norway’ in the Australian Sign Language. The graph depicts the x & y
position of the writer’s hand.

7.2.3. Experiment 2—Australian sign language dataset (ASL). The dataset3 consists of
various parameters (such as the X ,Y, Z hand position, azimuth etc) tracked while different
writers sign one the 95 words of the ASL. These series are relatively short (50-100 points).
We used only the X and Y parameters and collected 5 recordings of the following 10 words:
‘Norway’, ‘cold’, ‘crazy’, ‘eat’, ‘forget’, ‘happy’, ‘innocent’, ‘later’, ‘lose’, ‘spend’. This is
the experiment conducted also in Keogh and Pazzani (2000) (but there only one dimension
was used). Examples of this dataset can be seen in figure 18.

The performance of the LCSS in this experiment is similar to the DTW (DTW recognized
correctly 20 clusters and LCSS recognized 21 clusters). This is expected since this dataset
does not contain excessive noise and furthermore the data seem to be already normalized and
rescaled within the range [−1 . . . 1]. Therefore in this experiment we used also the similarity
function S1 (no translation), since the use of translations was not going to provide any
further improvement (see figure 20). Sampling is only performed down to 75% of the series
length (these trajectories are already short). As a consequence, even though we don’t gain
much in accuracy, our execution time is comparable to the Euclidean (without performing
any translations). This is easily explained, since the computation of the L2 Norm is more
computationally intensive, than the simple range comparison that is used in our approach.

7.2.4. Experiment 3—ASL with added noise. We added noise at every sequence of
the ASL at a random starting point and for duration equal to the 15% of the series
length (see figure 19). The noise was added using the function: 〈	xnoise, 	ynoise〉 = 〈	x, 	y〉 +
randn ∗ rangeValues, where randn produces a random number, chosen from a normal dis-
tribution with mean zero and variance one, and rangeValues is the range of values on X or
Y coordinates. In this last experiment we wanted to see how the addition of noise would
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Figure 19. Instance of the ASL dataset after the addition of noise.

affect the performance of the various distance functions. Again, the running time is the
same as with the original ASL data.

The LCSS proves to be more robust than the Euclidean and the DTW under noisy
conditions (Table 5, figures 20 and 21). The Euclidean again performed poorly, recognizing
only 5 clusters, the DTW recognized 7 and the LCSS (S1 and S2) up to 14 clusters (almost
as many recognized by the Euclidean without any noise!). The sigmoidal based similarity
function (S3), proved to be the most robust to noise recognizing 17 clusters.

7.2.5. Experiment 4—Comparison of sigmoidal matching to various Lp-Norm based func-
tions. In the previous experiment we verified the high resilience to noise of the sigmoidal
matching function. It has also been noted that the use of Norms lower than L1 typically
provide better performance for noisy datasets (because extreme values don’t dominate the

Table 5. Results for ASL data and ASL with added noise for the Euclidean, DTW and the LCSS based distance
functions. The sigmoidal matching function S3 provides the best clustering results.

Correct clusterings Correct clusterings (out of 45)
Distance Time (sec) (out of 45) ASL ASL with noise

Euclidean 2.271 15 5

DTW 9.112 20 7

S1 2.703 21 14

S2 51.320 21 14

S3 3.034 23 17
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Figure 20. ASL data: Time required to compute the pairwise distances of the 45 combinations (same for ASL
and ASL with noise).

Figure 21. Noisy ASL data: The correct clusterings of the LCSS method using complete linkage.

total distance (Aggarwal, Hinneburg, & Keim, 2001)). Here we provide a comprehensive
comparison of the sigmoidal function to the L p Norms, as well as to the Dynamic Time
Warping distance that utilizes different L p-Norms as the base distance function.

For this experiment we use a smaller instance of the ASL dataset comprised of 7 classes
of objects, with 5 instances per class (ASLsmall). Now the possible class pairings for our
experiment are 7 ∗ 6/2 = 21. This dataset is also corrupted with noise, in a similar fashion
as in the previous experiment and the new dataset is called ASLsmallNoise. The distorted
part of the sequence can be considered non-recoverable.

Figures 22 and 23 depict the number of correct clusters (out of 21) discovered by the var-
ious distance functions. We observe that the use of the lower Norms improves the clustering
accuracy, however the sigmoidal function (denoted as SigmoidSim) performs consistently
better. The dataset with the additional noise shows the true potential of our method. Under
the strong presence of noise, the sigmoidal function is almost twice as accurate than the other
distance functions (figure 23), with comparable accuracy performance as the L0.1-Norm on
the same dataset without any noise.
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Figure 22. Clustering accuracy comparison between the sigmoidal matching function and various L p-norms.
We observe that the use of smaller norms can improve the clustering results.

Figure 23. Under the presence of noise, the SigmoidSim is noticably superior to the other alternatives (depicting
almost twice as high accuracy).

7.3. Evaluating the quality and efficiency of the indexing technique

In this part of our experiments we evaluated the efficiency and effectiveness of the proposed
indexing scheme. We performed tests over datasets of different sizes and different number
of clusters. To generate large realistic datasets, we used real trajectories (from the SE AL S
and ASL datasets) as “seeds” to create larger datasets that follow the same patterns. To
perform tests, we used queries that do not have exact matches in the database, but on the
other hand are similar to some of the existing trajectories. For each experiment we run 100
different queries and we report the averaged results.
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Figure 24. Performance for increasing number of Nearest Neighbors.

We have tested the index performance for different number of clusters in a dataset con-
sisting of a total of 2000 trajectories. We executed a set of K -Nearest Neighbor (K-NN)
queries for K 1, 5, 10, 15 and 20 and we plot the fraction of the dataset that has to be
examined in order to guarantee that we have found the best match for the K-NN query. Note
that in this fraction we included the medoids that we check during the search since they are
also part of the dataset.

In figure 24 we show some results for K -Nearest Neighbor queries. We used datasets
with 5, 8 and 10 clusters. As we can see the results indicate that the algorithm has good
performance even for queries with large K . We also performed similar experiments where
we varied the number of clusters in the datasets. As the number of clusters increased the
performance of the algorithm improved considerably. This behavior is expected and it
is similar to the behavior of recent proposed index structures for high dimensional data
(Chakrabarti & Mehrotra, 2000; Beyer et al., 1999; Goldstein & Ramakrishnan, 2000). On
the other hand if the dataset has no clusters, the performance of the algorithm degrades,
since the majority of the trajectories have almost the same distance to the query. This
behavior follows again the same pattern of high dimensional indexing methods (Beyer
et al., 1999; Weber, Schek, & Blott, 1998).

The last experiment evaluates the index performance, over sets of trajectories with in-
creasing cardinality. We indexed from 1000 to 16000 trajectories. The pruning power of
the inequality is evident in figure 25. As the size of the database increases, we can avoid
examining a larger fraction of the database.

8. Related work

Most of the related work on time-series has concentrated on the use of some metric L p Norm.
The Norm distance between two n-dimensional vectors x̄ and ȳ is defined as L p(x̄, ȳ) =
(
∑n

i=1(|xi − yi |)p)
1
p . For p = 2 it is the well known Euclidean distance and for p = 1
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Figure 25. The pruning power increases along with the database size.

the Manhattan distance. The advantage of this simple metric is that it allows efficient
indexing by a dimensionality reduction technique (Agrawal, Faloutsos, & Swami, 1993; Yi
& Faloutsos, 2000; Faloutsos, Ranganathan, & Manolopoulos, 1994). On the other hand
the model cannot deal well with outliers and is very sensitive to small distortions in the time
axis (Vlachos, Kollios, & Gunopulos, 2002). There are a number of interesting extensions
to the above model to support various transformations such as scaling (Chu & Wong,
1999; Rafiei & Mendelzon, 2000), shifting (Chu & Wong, 1999; Goldin & Kanellakis, 1995),
normalization (Goldin & Kanellakis, 1995) and moving average (Rafiei & Mendelzon,
2000). Other recent works on indexing time series data for similarity queries assuming
the Euclidean model include (Keogh et al., 2001; Kahveci & Singh, 2001). A domain
independent framework for defining queries in terms of similarity of objects is presented in
Jagadish, Mendelzon, and Milo (1995).

Other techniques to define time series similarity are based on extracting certain features
(Landmarks (Perng et al., 2000) or signatures (Faloutsos et al., 1997)) from each time-series
and then using these features to define the similarity. Another approach to represent a time
series using the direction of the sequence at regular time intervals is presented in Qu, Wang,
and Wang (1998). Ge and Smyth (2000) present an alternative sequence similarity model
which is based on probabilistic matching, using Hidden Markov Models. However, their
approach cannot be scaled to large databases. A recent work that proposes a method to
cluster trajectory data is due to Gaffney and Smyth (1999). They use a variation of the EM
(expectation maximization) algorithm to cluster small sets of trajectories. However, their
method is a model based approach that usually has scalability problems.

Most of the above work has concentrated on 1D time-series. Work on multidimensional
sequences can be found in Lee et al. (2000) and Kahveci, Singh, and Gurel (2002), but only
support the use of Euclidean distance, which cannot capture flexible similarities.

Although the vast majority of database/data mining research on time series data mining
has focused on Euclidean distance, virtually all real world systems that use time series
matching as a subroutine, utilize a similarity measure which allows warping. In retrospect,
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this is not very surprising, since most real world processes, particularly biological processes,
can evolve at varying rates. For example, in bioinformatics, it is well understood that
functionally related genes will express themselves in similar ways, but possibly at different
rates. Because of this, warping distances have been used for gene expression data mining
(Aach & Church, 2001; Bar-Joseph et al., 2002), for tracking time series extracted from video
(Gavrila & Davis, 1995), classifying handwritten text (Rath & Manmatha, 2002; Munich
& Perona, 1999) and even fingerprint indexing (Kovács-Vajna, 2000). Finally, perhaps the
most familiar example of easy classifiable patterns, which nevertheless cause problems for
Lp metrics, are electrocardiograms. The cardiological community has used DTW for several
decades (Strik & Boves, 1988).

Approaches to mitigate the large computational cost of the DTW have appeared in Yi,
Jagadish, and Faloutsos (1998); Kim, Park, and Chu (2001); Keogh (2002), Zhu and Shasha
(2003) where lower bounding functions are used in order to speed up the execution of
DTW. Keogh (2002) and Zhu and Shasha (2003) utilize envelope based approaches for
approximating the DTW distance, while (Vlachos et al., 2003) generalizes these approaches
for multiple distance measures (without however providing translation invariant matching).

The flexibility provided by DTW is very important, however its efficiency deteriorates for
noisy data, since by matching all the points, it also matches the outliers distorting the true
distance between the sequences. An alternative approach is the use of Longest Common Sub-
sequence (LCSS), which is a variation of the edit distance (Levenshtein, 1966). The basic idea
is to match two sequences by allowing them to stretch, without rearranging the order of the el-
ements but allowing some elements to be unmatched. Using the LCSS of two sequences, one
can define the distance using the length of this subsequence (Agrawal et al., 1995; Bozkaya,
Yazdani, & Ozsoyoglu, 1997; Bollobás et al., 1997; Das, Gunopulos, & Mannila, 1997).

The majority of the above work on warping distances deals with 1-dimensional time-
series. (Vlachos et al., 2003) has presented ways to speed up the execution of the mul-
tidimensional LCSS case. However, while most previous work typically utilizes some
heuristic normalizations (e.g. subtract mean and divide by standard deviation the time-
series) to align distant sequences and identify similar patterns, this is the only work that
can provide guarantees on the quality of the match for trajectories, even under translation
transformations. In that sense, this work is more appropriate for applications where more
weight is given on the accurate registration of time-series (eg for bio-medical or engineering
applications).

9. Conclusion

In this paper we presented efficient techniques to accurately compute the similarity between
trajectories of moving objects. Our distance measure is based on the LCSS model and per-
forms very well for noisy signals. Since the exact computation is inefficient, we presented
approximate algorithms with provable performance bounds. Moreover, we presented an
efficient index structure, which is based on hierarchical clustering, for similarity (nearest
neighbor) queries. The distance that we use is not a metric and therefore the triangle inequal-
ity does not hold. However, we prove that a similar inequality holds (although a weaker
one) that allows to prune parts of the datasets without any false dismissals.
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Our experimentals indicate that the approximation algorithm can be used to get an accu-
rate and fast estimation of the distance between two trajectories even under noisy conditions.
Also, results from the index evaluation show that we can achieve good speed-ups for search-
ing similar trajectories comparing to the brute force linear scan.

We plan to investigate biased sampling to improve the running time of the approximation
algorithms, especially when full rigid transformations (eg. shifting, scaling and rotation)
are necessary. Another approach to index trajectories for similarity retrieval is to use em-
beddings and map the set of trajectories to points in a low dimensional Euclidean space
(Faloutsos & Lin, 1995). The challenge of course is to find an embedding that approximately
preserves the original pairwise distances and gives good approximate results to similarity
queries.
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Notes

1. More descriptions about the datasets can be found in the experimental section.
2. http://whale.wheelock.edu/whalenet-stuff/stop 11 cover.html
3. http://kdd.ics.uci.edu/databases/auslan2/auslan.data.html
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