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Abstract Model selection and model combination is a general problem in many areas.
Especially, when we have several different candidate models and also have gathered a new
data set, we want to construct a more accurate and precise model in order to help predict
future events. In this paper, we propose a new data-guided model combination method by
decomposition and aggregation. With the aid of influence diagrams, we analyze the depen-
dence among candidate models and apply latent factors to characterize such dependence.
After analyzing model structures in this framework, we derive an optimal composite model.
Two widely used data analysis tools, namely, Principal Component Analysis (PCA) and In-
dependent Component Analysis (ICA) are applied for the purpose of factor extraction from
the class of candidate models. Once factors are ready, they are sorted and aggregated in order
to produce composite models. During the course of factor aggregation, another important
issue, namely factor selection, is also touched on. Finally, a numerical study shows how this
method works and an application using physical data is also presented.
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1. Introduction

A model, which is usually in a mathematical form, is a proposed explanation of a particular
phenomenon. This proposed explanation is also used to predict future events. As more
evidence is gathered by subsequent observations, that model can be validated against data.
If the prediction error, i.e. difference between the prediction and the observation, is not
tolerable, the model has to be calibrated or modified in terms of its structure by incorporating
newly observed data. This cycle is then repeated iteratively as new observations become
available until the model provides a satisfactory explanation of all observed events.

Most often scientists propose models in order to explain a phenomenon from different
perspectives, based upon different theories or different data sets. For example, in thermal
hydraulics many different models were put forward to describe the behavior of two-phase
flows and to predict their pressure drops through a flow passage. Another example can be
the probabilistic seismic hazard analysis, where many ground motion attenuation models
were developed independently to predict the ground shaking given an earthquake. In such a
situation, we are facing the thorny problem of choosing the best model to predict the future
events. In general, we may also have some, but often sparse, data at hand. Thus we can
test the models against these data in order to select an optimal one. Several model selection
methods and procedures have been developed in order to achieve this goal.

However, selecting a single best model is not so desirable as it does not make efficient use
of the information at hand, e.g. a class of competing models and a new data set. Therefore,
alternatively model combination is proposed in order to improve model performance. The
benefits of model combination for augmenting model accuracy and reducing model uncer-
tainty has been noted in the literature (cf. Madigan & Raftery 1994; Clemen & Winkler,
1986). As we know, model uncertainty, categorized into “epistemic uncertainty”, stems from
incomplete or imprecise knowledge and can be reduced by improvements in data measure-
ments and model formulation. It is not surprising to see that combining different information
sources including candidate models and data could result in a better model. To date several
model combination methods have been proposed, for example the equally-weighted combi-
nation and Bayesian Model Averaging (BMA) (Hoeting et al., 1999) or Bayes factor (Kass
& Raftery, 1995) weighting method.

The basic idea behind model combination is to aggregate all available information, which,
however, may contain errors or noise, and then to build a new composite model as well as
possible. From this perspective, a good model combination method should have the following
properties:

(i) It should be able to aggregate information in all competing models and thereby reduce
model bias and uncertainty.

(ii) It should be able to detect errors in competing models to some degree, thereby reducing
model bias.

(iii) It should model dependencies among competing models and thus reduce information
redundancy.
As pointed out by Hogarth (1987), the poor performance of human judges relative to
statistical models stems largely from an inability to recognize and process redundant
information appropriately. Furthermore, reducing information redundancy helps to re-
duce model dimensionality, e.g. the number of factors in a factor model, and thus reduce
model uncertainty.

(iv) It should be able to combine different kinds of information, including models and data.
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(v) It should perform robustly when treating different sets of data.
(vi) It should be objective, involving no subjective judgment.

Ideally, a model selection process should be objective and therefore repeatable.
In order to achieve the above goals, basically improving both accuracy and precision,

we propose a new model combination method by utilizing decomposition and aggregation
based upon data. This method is mainly suitable to the situations where there is no well-
founded theory and only sparse data are available. Otherwise we might be able to derive a
more exact theoretical model. For example, in seismic risk analysis there are many seismic
attenuation models available for estimating ground motion given an earthquake. Some of
them are empirical models based upon historical data and others are created based upon
some theories in earth science such as geognosy. Our method can be applied to combine
these competing models so as to obtain more accurate ground motion estimations.

This paper is organized as follows. In Section 2, a brief review of related work is pre-
sented. In Section 3, a new model combination method is proposed. Meanwhile, dependence
among candidate models is analyzed and factor model is proposed in order to model such
dependencies. In Section 4, we discuss how to decompose a class of candidate models to
factors. After that, Section 5 presents a regression method to aggregate factors based upon
data. Finally, examples are presented in section 6 to demonstrate the performance of this
model combination method.

2. Related work

Closely related problems include model evaluation, model selection and model combination.
To date much effort has been devoted to these problems. In this section, we briefly review
some of them.

A model can be evaluated based upon how well the resulting prediction agrees with future
observations (Dawid, 1984). In the case where the same group of data is used for both model
calibration and validation, model selection method or its variants are widely applied.

By now a variety of model selection methods have been developed, including classical
hypothesis testing, penalized maximum likelihood, Bayesian methods, information criteria
and cross-validation. All these methods, which overlap with one another, provide an im-
plementation of Occam’s razor (Madigan & Raftery 1994) in one way or another, in which
parsimony or simplicity is somehow balanced against goodness-of-fit.

Among those model selection methods, information criteria are considered to be novel
and promising, and thus draw much attention. The name, i.e., information criterion, arises
from its close connection to the information theory. This class of model evaluation and
selection methods was pioneered by Akaike’s Information Criterion (AIC) (Akaike, 1973).
Later many other similar information criteria were derived from different perspectives, for
example, Bayesian Information Criterion (BIC) (Schwarz, 1978), Takeuchi’s Information
Criterion (TIC) (Takeuchi, 1976), Minimum Description Length (MDL) (Rissanen, 1978),
Hannan and Quinn criterion (HQ) (Hannan and Quinn, 1979). Basically, all these criteria
can be expressed as

I C = −2 log(Maximum likelihood) + penalty (k, n) (1)

where the maximum likelihood is the likelihood f (θ , x) evaluated at the maximum likelihood
estimate θ̂ , and the penalty term is a function of the model dimension k, the number of model
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parameters, and the sample size n. From Eq. (1), it is easily seen that this class of information
theoretic criteria can be viewed as modified maximum likelihood or penalized maximum
likelihood methods.

All of these approaches select the model that minimizes this quantity based upon available
data. The only difference between them lies in the second term, that is, different evaluation
methods use different penalty terms as corrections.

As we mentioned, in addition to model selection another class of approaches is model
combination, which includes, for instance, equally weighted combinations, combinations
based upon information criteria evaluation, Bayesian model averaging. The equally weighted
combination is the simplest treatment in this class, because each model is assigned the same
weight. This approach does not involve new data, and thus is usually applied in cases where
there are no data available and all competing models have the same preference. When
some data are gathered, this approach is ready to be extended to a weighted combination.
For example, each model can be evaluated using Akaike’s information criterion (AIC) and
assigned different weights based on their AIC value (Burnham and Anderson 2002), for
example

wi = exp
(− 1

2 AI Ci
)

∑K
j=1 exp

(− 1
2 AI C j

) . (2)

A recently developed model combination method is that of Bayesian Model Averaging
(BMA) (Hoeting et al., 1999 ) or Bayes factor (Kass and Raftery 1995) weighting, which
became computationally possible since the invention of the Markov Chain Monte Carlo
algorithm (Gilks et al. 1998). The basic idea of BMA is very straightforward, that is, to
calibrate the probabilities of competing models using Bayesian updating method. After
obtaining the posterior model probability, the composite model can be expressed as

f (y | D) =
∑K

i=1
fi (y) Pr(Mi |D), (3)

where D is the observed data, K is the number of competing models that are assumed to be
mutually exclusive, fi(y) is the ith model, and according to the Bayesian formula the posterior
probability Pr(Mi|D) can be calculated as

Pr(Mi | D) = Pr(D | Mi ) Pr(Mi )
∑K

i=1 Pr(D | Mi ) Pr(Mi )
, (4)

where Pr(Mi) is the prior probability of model Mi. The difficulty of implementing BMA
partly consists in the computation of the integral

Pr(D | Mi ) =
∫

Pr(D | θi , Mi ) Pr(θi | Mi ) dθi , (5)

where Pr(θ i | Mi) is the prior density and θ i is the vector of parameters of model Mi.
Another class of methods of model combination is Bayesian information-aggregation,

which is also based upon the Bayesian method (Morris 1977; Clemen and Winkler 1993).
Suppose θ is a continuous quantity to be estimated, and we obtain a group of estimates
x1, . . . ,xK from a class of competing models, say, M1, . . . ,MK , respectively. According to the
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Bayesian formula, the posterior distribution of θ is

Pr(θ |x1, . . . , xK ) = Pr(x1, . . . , xK , θ )

Pr(x1, . . . , xK )
= Pr(x1, . . . , xK , θ )

∫
Pr(x1, . . . , xK , θ )dθ

, (6)

where according to the Markov’s property

Pr(x1, . . . , xK , θ ) = Pr(xK |xK−1, . . . , x1, θ ) · · · Pr(x2|x1, θ ) Pr(x1|θ ) Pr(θ ). (7)

The central idea of these method lies in modeling the dependence among models, which
is termed the conditional mean dependence assumption (CMDA) in Clemen and Winkler
(1993), that is,

E(Xi |Xi−1, . . . , X1, θ ) = βi,0 + βi,1 X1 + · · · + βi,i−1 Xi−1 + αiθ. (8)

In Eq. (8), the knowledge about the information sources is incorporated in the aggregation.
Thus, if we know the distribution of Xi in advance, we can obtain its conditional distribution
Pr(Xi|Xi−1, . . . , X1,θ ) with the expected value determined by Eq. (8). Finally, we obtain the
posterior distribution of θ .

Unfortunately, none of the above methods can give us a satisfactory solution to the
problem mentioned earlier. For example, the model selection methods can only choose a
single best model, the BMA method does not model the dependence in model structure among
candidate models and is computationally expensive, and Bayesian information-aggregation
methods cannot incorporate information in new data. These weaknesses are part of reasons
that motivated the work of this paper.

3. Model combination by decomposition and aggregation

Since the existing methods cannot achieve those model combination objectives discussed ear-
lier, in this section we propose a new model combination method by means of decomposition
and aggregation.

Before we proceed, it is time to further clarify our problem. Suppose that we have a set of
competing models, denoted as M1, . . . ,MK , which can be expressed in mathematical forms
as f1(x), . . . ,fK(x), and we gather a new set of data, i.e. {(xi, yi): i=1, . . . ,n}, where xi and
yi can be vectors of input variables and response variables, respectively. Now our question
is “how can we construct a more accurate composite model with lower uncertainty, given a
class of competing models and a set of sparse data?”

Note that here we evaluate a model using both accuracy and uncertainty criteria, being
consistent with the goals of Section 1.

From a theoretical point of view, it is advantageous to view models as sets of probabilistic,
or statistical, hypotheses (Forster, 2000), that is, given inputs a statistical model produces the
distribution of outputs pY|X(y|x). In fact, more generally a model only delivers mean values
f(x) rather than a distribution function. For example, in physics in order to interpret models in
a statistical context error distributions are associated with models. In fact, any measurement
involves measurement errors. In addition, the input X, which can be a vector, are often
assumed to be randomly drawn from distribution pX(x). Thus, in any case a deterministic
equation can be regarded as providing mean values of the dependent response variables given
a set of input variables. In this sense, a model can be reduced to a probability distribution

Springer



48 Machine Learning (2006) 63: 43–67

Fig. 1 Model decomposition and aggregation (The dashed lines mean that the pointed arc is under the guide
of data)

governed by a group of parameters. Therefore, throughout this paper, we restrict our attention
to statistical mathematical models, unless stated otherwise.

Consequently, a data set {(xi, yi): i=1, . . . ,n} can be viewed as a realization of a random
process, and the same for models. Consequently, this model combination problem can be
treated in a statistical framework.

The model combination method by decomposition and aggregation that we present in this
paper can be summarized as in Fig. 1. Basically, it first decomposes candidate models into
common latent factors and aggregate common factors into a composite model.

In the rest of this section, we make two arguments, (i) candidate models are dependent
upon each other and (ii) such dependencies can be modeled using common factors, and then
we will propose a model structure formula, based upon which an ideal model is then obtained.

3.1. Model dependence

Intuitively, the dependencies among competing models are obvious because they are intended
to describe the same phenomena and predict the same future events. When considering how
models are built, we also notice that each model is built upon the basis of some theories and
data, which may be shared with other models.

In order to explain information sources and the dependence among competing models,
it is useful to introduce influence diagram (Howard and Matheson 1984; Shachter 1986,
1988), which offers a convenient graphical tool to model the dependence among different
information sources. For example, Fig. 2 shows a typical example, where each circle or oval
represents nodes, which can be the truth or the full reality, a theory, a set of data or a model,
and each directed arc refers to conditional dependence between a chance node and a decision
node, which conveys information from a node to another and implies causality. Note that here
we use the term, theory, to denote any set of statements or principles devised to explain a group
of facts or phenomena, while model refers to mathematical models in particular. Different
theories are proposed to explain the same phenomena, termed as truth in Fig. 2, and different
sets of data are generated by the same true model, so in fact there exist dependencies even
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Fig. 2 Influence diagram for
models

among different theories and different sets of data. Furthermore, the overlapping information
source, including theory and data, serves as a vehicle for representing dependence among
the models. Therefore, influence diagrams can give us a clear idea where the information
sources of modelers come from.

In reality, such dependence is quite common. For example, the correlation coefficients
among economic forecasters are usually around 0.9 (Clemen & Winkler, 1986; Figlewski &
Urich, 1983).

3.2. Factor model

In the previous subsection, we have analyzed the dependencies among candidate models,
and now we apply a latent factors model to treat such dependencies. Our key argument is that
the propagation of information beginning at the truth and ending with models occurs through
latent factors, or components, and the dependencies among candidate models is due to their
sharing of common factors. This factor model is not a new idea and it has been applied in
many areas. For example, factor analysis (Bartholomew and Knott 1999) is widely used in
such areas as psychology, chemistry and economics.

It is easy to modify the influence diagram in Fig. 2 slightly into a factor diagram as in Fig. 3.
Note that in this factor diagram, information is characterized by factors and correspondingly
each directed arc is associated with a set of pairs of factor and weight, i.e. Qij = {(fij, wij)}.
In such a scheme, information is propagated from the node of truth to the nodes of models
in the form of factors, but it is obvious that the sets of factors received by candidate models
are not necessarily to be the same. The loss of information and misspecification can also be
described in terms of factors.

3.3. Optimal model structure

Now that we analyzed the model dependence and how to model it, we are ready to discuss
how to build an optimal composite model in this scheme.

First, let us define the full truth or the true model. In terms of factors, the true model can
be expressed as

MT (x) =
∑N

i=1
wi (x) fi (x), (9)

Springer



50 Machine Learning (2006) 63: 43–67

Fig. 3 Factor diagram for
candidate models

where fi(x) ∈ F, the factor set, and wi(x) is its corresponding weight, intensity, or factor
loading as in factor analysis (cf. Bartholomew & Knott 1999), N is the number of total
factors, x is an input variable. In a linear case, wi(x) is constant, independent of x. Actually, in
a nonlinear case we can divide the range of input variables and approximate each subrange
by a linear model. Therefore, in this paper we will assume that the true model is linear with
respect to factors.

We believe that usually “truth” or full reality has essentially infinite dimension, i.e. N
tends to infinity, and therefore it cannot be revealed with only finite samples of data and
a limited set of candidate models. At best, we can only build a model providing a good
approximation to the data available. Thus, a candidate model, an approximate representation
of the system, can be expressed in a similar way, for example, the kth candidate model

Mk(x) =
∑Nk

i=1
wki (x) fki (x), (10)

where fki(x) ∈ Fk with Fk the set of factors for kth model and Nk is the number of factors
in Fk. Note that in a nonlinear case this mixture of factors model is in spirit similar to the
Mixture of Experts model by Jacobs et al. (1991 ).

As noted, a model is only a simplification or approximation of the reality and hence
certainly reflects the full truth to some degree. Whether a model is good depends on the
quality of the data and the theoretical foundation underlying the modeling. In the factor
model framework, the disagreement between a candidate model and the true model can be
caused by the following:

(i) The set of factors contained in a certain candidate model is incomplete, i.e. Fk ⊂ F;
(ii) The factor loadings are biased or imprecise, i.e. wki �= wi for the same factor;

(iii) A candidate model incorporates an erroneous or spurious factor, i.e. fki /∈ F.

In addition, distinct competing models might incorporate different subsets of components,
which are overlapping as illustrated by the Venn diagram of Fig. 4.

It is convenient to divide a set of factors into two parts, i.e. common factors, which are
shared by all the candidate models, and unique factors. Actually, unique factors are so called
only in the sense that they are not shared by all the candidate models. This differentiation can
be easily understood because candidate models are created based on common knowledge
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Fig. 4 Model factor space
diagram

and individual intelligence. Therefore, every competing model can potentially contribute to
the composite model. It is clear that the union of F1, . . . ,FK give us a better approximation
to F than any single subsets.

Meanwhile, as pointed out a while ago, each candidate model may contain erroneous
or spurious factors. For example, unique factors may be attributed to personal bias and be
incorrect. Such bias or error is also what we must try to eliminate in forming a combination.
At this point, data come to play their crucial roles just as in a general modeling process data
are used to calibrate and validate a model. The detection of erroneous factors is inherent in
composite model construction.

In order to aggregate information in all competing models, it is important to model
dependence among multiple competing models and reduce information redundancy. Our
factor model enables us to extract those important common factors, thus reducing model
dimensionality and redundancy with the minimum loss of information by discarding those
trivial components.

Once a set of factors is ready, we can construct an optimal composite model by linearly
aggregating factors, i.e.

M(x) = α +
∑

i∈Sc

wi fi (x). (11)

where Sc denotes the set of selected factors.
In the above Eq. (11), the factor weights and constant α can be determined based upon

data. In the course of aggregating factors, whether a factor is valid or not is determined by
its agreement with the data.

With these manipulations, the incompleteness, imprecision, error, information redun-
dancy as well as model dimensionality can be reduced, and at last we can obtain an optimal
composite model, which is closer to the true model than any other candidate models individ-
ually. But, we still have not solved two difficult key issues, namely, (1) How can we extract
factors from a class of candidate models? and (2) How should we integrate factors and detect
erroneous ones?

In the next sections, we propose some methods to attack these two obstacles.

4. Model decomposition

Our model combination method consists of two stages, decomposition and aggregation. In
this section we propose different approaches to commit model decomposition.
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4.1. Model factor extraction

In Section 3, we model the dependencies among candidate models by means of common
factors. Thus, factors can be extracted from candidate models by taking advantage of this
relationship. Before introducing the factor extraction method, let us further clarify model
structure and also assume some simplification to make it mathematically tractable.

If we fuse all of the unique factors of the kth candidate model into a single factor, fku(x),
we obtain a simpler model structure as

Mk(x) =
∑Nc

i=1
wki (x) fci (x) + fku(x), (12)

where fci(x)’s are common factors and fku(x) is the single unique factor of kth candidate
model, and Nc is the number of common factors extracted, and k = 1, . . . ,K. If we rewrite
the above Eq. (12) in a matrix notation, we have

M = W fc + fu, (13)

where candidate model vector M=[M1, . . . ,MK]T, common factor vector fc=[fc1, . . . ,fcN]T,
the unique factor fu=[fu1, . . . ,fuK]T, and the factor loading matrix W=[w1, . . . ,wK]T with
wk=[wk1, . . . ,wkN]T. In particular, Eq. (13) reduces to a linear transformation from common
factors to candidate models when assuming no unique factors.

To further simplify, we might assume that the unique factors follow the same probability
distribution and are independent as in factor analysis, that is,

M = W fc + fr , (14)

where fr is the random factor which generates different unique factors.
Such decomposition is similar to the Mosleh and Apostolakis (1986) additive error model

of experts. As a result, the average of the unique factors becomes an estimate of another
common factor.

Actually, we have not precisely defined model dependence yet. In the following discussion
we define dependence in two different ways and propose a second-moment as well as a
higher-order statistical method for performing factor extraction.

4.2. Principal component analysis (PCA)

Principal Component Analysis (PCA) (Jolliffe, 1986; Christensen, 2001) is the most com-
monly used subspace-related techniques for dimensionality reduction, filtering and data
modeling. The basic idea of PCA is to find the components that can explain the maximum
amount of variance of original variables, e.g. M1, . . . ,MK in the current case.

PCA can be defined in a recursive way as described below. The direction of the first
principal component (PC) is so defined that the variance of the projection on that direction
is maximized, i.e.

w1 = arg max
‖w‖=1

V ar (wT M) = arg max
‖w‖=1

{
E

[(
wT M

)2] − E
[
wT M

]2}
, (15)
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where w is a vector of same dimension as M. The first principal component is then given by
f1 = w1

TM.
In general, after determining the first k−1 principal components, the kth component can

be determined similarly as the principal component of the residual:

wk = arg max
‖w‖=1

V ar

(
wT

(
M −

∑k−1

i=1
wiw

T
i M

))
. (16)

This process continues until the dimensions of the space are used up. Note that all principal
components are sorted naturally by their variances.

Alternatively, the computation of the wi can be accomplished simultaneously by the
singular value decomposition (SVD) of the (sample) covariance matrix of M, i.e.

∑
M=

E[(M−E(M))(M−E(M))T], which can be decomposed as :

∑

M
= W T�W (17)

where � is a diagonal matrix composed of eigenvalues and W is composed of eigenvectors.
Those eigenvectors correspond to w1, . . . ,wk found by Eq. (15) and (16). Finally, all principal
components, or factors, are obtained as f = WTM.

PCA can at least serve two purposes in our case. First, it helps in reducing model dimension
and reducing information redundancy, since the first several components, having the largest
variance, also contain most information. Second, noise or error may be reduced by removing
the principal components ranking in the tail, which are more likely due to error or bias.

4.3. Independent component analysis (ICA)

Under the classical assumption of Gaussianity, lack of correlation is equivalent to statistical
independence. However, for non-Gaussian variables, it is not the case any more. Rather,
uncorrelated variables are only partially independent. Therefore, in the case of non-Gaussian
random variables, much more sophisticated techniques have to be devised to achieve in-
dependence, which can incorporate the information of higher-order moments. Independent
Component Analysis (ICA) algorithms are developed to satisfy this purpose.

To date many different ICA methods have been developed. In spite of such diversity,
the basic idea of ICA remains the same, that is, components or factors fc = W −1 M are
so determined that fci is independent of fcj for i �= j. The diversity of ICA methods is due
to different independence measures and various optimization algorithms used to maximize
these independence measures. For details, please refer to Hyvärinen (1999). In the work of
this paper, the FastICA algorithm by Hyvärinen and Oja (2000) is applied.

In FastICA, the dependence is measure by negentropy or equivalently nongaussianity
(Hyvärinen & Oja, 2000), which is approximated by

J (Y ) ≈
∑p

i=1
ki (E[Gi (Y )] − E[Gi (YG)])2, (18)

where ki are some positive constants, both Y and YG are of zero mean and unit variance, and
the functions Gi(·) are some nonquadratic functions. Hyvärinen and Oja (2000) suggested
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two nonquadratic functions:

G1(u) = 1

a1
log cosh a1u, G2(u) = − exp

(
−u2

2

)
, (19)

where 1 ≤ a1 ≤ 2 is some suitable constant.
Then, the FastICA algorithm applies a fixed-point iteration scheme to find a direction, i.e. a

unit vector w, such that the projection wT M maximizes nongaussianity measured by Eq. (18).
Similar to PCA, FastICA can extract independent components either one by one or all once
in a symmetric way. For details on FastICA, please refer to Hyvärinen and Oja (2000). In
our simulation, we use the FastICA package downloaded from the authors’ website.

ICA is often considered a tool for explanatory data analysis. This is not surprising
because causes can be defined in terms of conditional probability or dependence in some
circumstance (cf. Ellery, 1991; Forster, 1984). ICA is also efficient for redundancy reduction
as each components (features) are independent from each other, that is, they provide no
information to predict one variable using another one (Deco & Obradovic 1995). Another
wide application of ICA is in noise reduction. Such denoising capability of the ICA was
particularly noted in blind source separation (Jutten & Herault 1991). With these desirable
properties, ICA can serve as a good tool for us to extract factors from candidate models.

5. Factor selection and aggregation

Applying the methods proposed earlier, we can extract factors from a class of candidate
models. With factors being available, the next step is to select a subset of factors and
integrate them based upon available data.

The factors are aggregated in a linear form as shown in Eq. (9), in the same manner
that the candidate models are decomposed. The multiple linear regression method is used to
estimate factor loadings. The basic idea of factor selection is to check whether a factor is
supported by the empirical data. In other words, if inclusion of a factor makes the resultant
composite model worse, it is likely to be an erroneous one and should be ruled out. Some
criteria must be introduced to accomplish factor selection.

As is mentioned earlier, factor selection is not a separate activity that precedes the model
calibration; rather, it is a critical and integral part of model building. In the context of multiple
regression analysis, it is especially known as variable selection.

5.1. Sorting factors

In factor selection and assembly, the importance rank of factors becomes an important matter,
especially when the pool of factors is quite large. For example, suppose we have N factors,
then the total number of subsets of factors is equal to 2N , which means that we will have
to compare 2N possible composite models in order to choose the optimal one. However, if
factors are ranked, a stepwise factor selection can be applied, which makes the procedure of
factor selection and aggregation substantially easier and accordingly save computing costs
dramatically, because we have only N possible composite models. Also, we are able to
construct a sequence of subsets of factors, which are nested, and therefore some statistical
model selection method can be applied.

The principal components are naturally sorted by their capability of explaining variance
of original variables, or equivalently the variance of components. Typically, the variances of
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components, or the eigenvalues of the covariance matrix in Eq. (17), decrease very fast. This
implies that a principal component contains more information about a system and therefore
more important than those ranked below it.

As pointed out by some authors (cf. Hyvärinen, 1999; Cheung & Xu, 2001), one of
the drawbacks of ICA is that components resulting from ICA are not sorted, having zero
mean value and unit variance. Here we propose two simple methods to order independent
components (ICs) based upon their contribution to reconstruction of original data, which is
similar to the ordering of principal components.

The first method is based upon the mixing matrix W as in Eq. (13). An assumption behind
this method is that the candidate models are close to the true model and thus factors make
similar contributions to both the true model and the candidate models. Meanwhile, we can
expect that the larger the absolute value of an entry Wji in the mixing matrix W, the greater the
contribution in terms of variation that the ith factor makes to the jth candidate model, because
all the ICs are normalized to have zero mean and unit variance. Therefore, we define as a
component importance measure (CIM) the average coefficients of an IC in reconstructing
the candidate models,

CIMi = 1

K

∑K

j=1

∣
∣W ji

∣
∣, (20)

where | · | stands for the absolute value.
The second method is based upon the sample correlation between a factor and the observed

data. As we will see later on, the contribution of an IC to the composite model is determined
by how it is supported by the data. Thus, it is reasonable to rank ICs based upon their
agreement with data. In this method, the CIM is defined as

CIMi = 1

n

∑n

j=1

(
fi (x j ) − f̄i

) · (
y j − ȳ

)
, (21)

where f̄i = 1
n

∑n
j=1 fi (x j ) and ȳ = 1

n

∑n
j=1 y j , and (xj, yj), j = 1, . . . , n are observed data.

This is closely related to the statistics R2 in regression analysis.
Although these two measures are based upon different information, one on original

candidate models and the other on new observations, they produce similar results under the
assumption that candidate models are close to the true model.

The ordering of the importance of independent components can be verified using a little
more complicated method. The rank checking can be accomplished both forwards and
backwards. The forward method starts with an empty queue and ranks components based on
their squared error reduction worth (ERW) �L2−, that is, based upon how much the squared
error defined in Eq. (26) is reduced by adding a certain component to a set of factors. The
larger is the ERW, then the more important is a factor, also. In contrast, the backward method
begins with a full queue and ranks factors based upon their squared error achievement worth
(EAW) �L2+, i.e., how much the squared error is increased by deleting a particular factor
from a set of factors. Once again, the larger is the EAW, the more important is a factor. In
our empirical study, it shows that all the above methods give us consistent results.

However, we have to point out that the ranking of ICs is far from so simple. As we note
subsequently in our numerical study, the ordering of the non-dominant ICs according to the
methods introduced above is quite subtle and even changes with regard to data, although
the ordering of the dominant ICs is in good agreement with that resulting from the above
component importance measures. Here, we define dominant ICs as those whose ICMs are
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significantly larger than those of others. Therefore, ICs can only be partially ranked in
advance.

Another important issue is that unlike PCs ICs cannot be determined uniquely, as demon-
strated in the FastICA algorithm (Hyvärinen & Oja 2000). Applying a different a nonlinearity
function G(·) leads to a different group of ICs, and furthermore even with the same function
G(·), different initial guesses of w in iteration also leads to different optima although those
dominant ICs will remain very similar. Thus, it is beneficial to repeat ICA many times so as
to choose a group of ICs which include as many dominant ICs as possible.

5.2. Model calibration

As in Eq. (3), a composite model of factors can be expressed as

Mc(x) = α +
∑N

i=1
wi fi (x) = wT f (x), (22)

where w = [w1, . . . ,wN]T and f(x)=[f1(x), . . . , fN(x)]T .
In the above equation, fi(x) is a function of input variable x, and so is the composite model.

Furthermore, fi(x), i=1, . . . ,K, forms a set of orthogonal base functions. The factor loadings
wi are assumed to be constant over the range of input variable x. Now the task of model
calibration is to estimate factor weights, i.e. wi, given a data set {(xi, yi): i = 1, . . . ,n}. In the
face of such a problem, a general solution is first to define a loss function and then design
an algorithm to search for parameters such that minimize the loss function. The most widely
used loss function is the mean squared error loss function, i.e.

L2 = 1

n

∑n

i=1
(yi − Mc(xi ))

2 = 1

n

∑n

i=1

(
yi − wT f (xi )

)2
. (23)

Thus, the estimated factor weights are

ŵ = arg min
w

L2 = arg min
w

1

n

∑n

i=1

(
yi − wT f (xi )

)2
. (24)

The above equation can be solved analytically, and we obtain

ŵ = (F T F)−1 F T y, (25)

where F=[f1, . . . ,fN] with fi=[fi(x1), . . . , fi(xn)]T and y = [y1, . . . ,yn]T. This is exactly the
well-known Ordinary Least Squares (OLS) method.

With factor weights estimated, we are able to calculate the estimated mean squared loss
as

L̂2 = 1

n

∑n

i=1

(
yi − ŵT f (xi )

)2
. (26)

If we denote a subset of factors as �, then we designate L̂2(�) as the estimated squared
loss of the composite model using all factors in �, whose factor weights are estimated by
Eq. (25). It is easy to see that

L̂2(�) ≥ L̂2(�), for ∀� ⊃ �. (27)
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Fig. 5 Example of models fitted to a set of data

This means adding more factors will definitely reduce the estimated loss using the same
data set as for calibration, but the capability of predicting the future data is not necessarily
improved, and is likely deteriorated. This phenomenon is called overfitting in statistical
literature (Burnham & Anderson 2002 ).

The danger of overfitting is that it tends to identify spurious features unique to a single data
set and so calibrated model cannot be generalized. In contrast to overfitting, an underfitted
model fails to identify effects or factor that are actually supported by the data set. Generally, a
fitted model starts with underfitting and end up with overfitting with the number of variables
increasing. Quantitatively, the prediction error decreases at first and goes up at last by
adding more predictors. The balance point between underfitting and overfitting is considered
optimal. To understand this, it is helpful to take a look at the bias-variance tradeoff.

Let us first define the expected prediction error at x as E[(y−Mc(x))2], which can be
decomposed as follows:

E
[
(y(x) − Mc(x))2

] = E
[(

y(x) − E (Mc(x)) + E (Mc(x)) − Mc(x)
)2]

= (y(x) − E (Mc(x)))2 + E
[
(E (Mc(x)) − Mc(x))2

]
,

= {Bias (Mc(x))}2 + Variance (Mc(x)) (28)

where E[Mc(x)] is the expected composite model given a certain subset of factors and given
the sample size. The expectation and variance of Mc(x) is formulated with respect to observed
data, because the composite changes from data set to data set.

In general, adding more factors can reduce the model bias, the first term, or in other words
achieve better fit, but in the meantime model variance is increased because the sample size
becomes smaller relative to the number of model parameters to be estimated. In the case of
underfitting, the bias in parameter estimation is generally substantial while the variance is
underestimated. As for overfitting, the parameter estimation is usually free of bias but has a
large variance. In view of this trade-off, we need to identify a balance point in this tradeoff,
which is considered optimal, thereby minimizing expected predictive squared error in the
future. Figure 5 may provide an intuitive sense of the relationship between underfitting and
overfitting.

5.3. Factor selection

In the current situation factor selection is actually the same as variable selection in regression.
However, since the factors have been already ranked in terms of their importance, the factor
selection process is much simpler. We present a stepwise factor selection procedure to
complete this.
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Before designing a factor selection procedure, let us first formulate how to evaluate
a composite model. To this end, we must apply some statistical model selection method
or criterion. The first criterion we use is Schwarz’s Bayesian Information Criterion (BIC)
(Schwarz, 1978; Kass & Raftery, 1995), which is simple in computation and was proven to
be consistent (Woodroofe 1982). Similar to a general information criterion as in Eq. (1), BIC
is expressed as

BIC = −2 log L(θ̂ |x) + k · log(n), (29)

where log L(θ̂ |x) is the maximum log-likelihood of a model with k model parameters based
on data x = (x1, . . . ,xn), that is,

log L(θ̂ | x) =
∑n

i=1
log f (xi |θ̂), (30)

and where f (· | θ̂ ) is a conditional pdf and θ̂ is the maximum likelihood estimate of that
model. In the current case, θ = (w1, . . . ,wk). For a linear regression model, under the
assumption of Gaussian error the BIC can be derived as follows:

The log-likelihood can be expressed as

L(x, y, θ ) = −n

2

[
log

(
2π

n

)
+ log(RSS) + 1

]
(31)

where RSS = ∑n
j=1 (y j − ŷ j )2 is the residual sum of squared error.

Thus, we obtain the BIC as

BIC = −2L(x, y, θ ) + k log n = −n
[
log(n/2π ) − log RSS − 1

] + k log n (32)

In our case, the model dimension is equal to the number of factors plus 2 (one constant α

and σ 2 are also estimated). According to this criterion, a model having a smaller BIC value
is thought of as better than others with larger BIC values.

Another resampling model evaluation method is Cross-Validation (CV), which is usually
considered to be a natural treatment. It estimates the generalization error or expected pre-
diction error by mimicking future observations. In a simple version of cross-validation, the
data set is divided into two parts: one part for model calibration, training set, and the other
part for model validation, test set. That is,

L̂2 = 1

L

∑L

i=1

(
yl − ŵT f (xl )

)2
, (33)

where yl are data points in the test set and L is the size of test set, and ŵ is estimated using
the training data set.

As a rule of thumb, one-third of the data should be used for the purpose of validation.
Although simple, this version requires that the data set be large. In a more complicated
L-fold cross-validation scheme, the data set is randomly broken into L partitions, and then
one trains on all the points not in the lth partition with the lth partition serving as test set,
and at last one finds the average testing error. In L-fold cross-validation, the procedure of
model calibration and cross-validation test should be repeated L times. In this version, the
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estimated generalization error is

L̂2 = 1

L

∑L

l=1

1

J

∑J

j=1

(
yl j − ŵT

l f (xl j )
)2

, (34)

where L is the total number of data partitions and J is the partition size, (xlj, ylj) are data
points in the lth partition, the model parameters ŵl are estimated using the L−1 partitions of
data excluding the lth partition.

In a situation where only sparse data are available, L-fold cross-validation is more data-
efficient, and thus a better choice. Therefore, in the work of this paper we set L equal
to 5.

With the model evaluation approach ready, now let us start the design of factor selection
procedure, supposing that the factors f1, . . . ,fK are already been ordered. The stepwise factor
selection procedure starts with an empty subset of factors and let k = 0, and then goes through
the following steps:

(1) Add factor fk+1 to the subset and estimate a composite model Mck+1 by OLS;
(2) Evaluate the newly created model Mck+1 by BIC or cross-validation;

In the case of ICs, each unused IC can be a candidate for fk+1, and therefore we have
to try several different Mck+1 correspondingly and then choose the best one among
them.

(3) If according to the above assessment the result Mck+1 is worse than Mck, then we stop;
otherwise we go back to step (1).

(4) f1, . . . , fk are selected as good factors and correspondingly Mck is considered to be the
optimal composite model.

If we apply cross-validation, the above step (4) is slightly different. That is, after an
optimal subset of factors is determined, we use the whole data set, instead of L-1 partitions,
to fit a composite model, Mck.

By use of such a procedure, we can avoid confronting exhaustive combination of factors,
and thus, can save computation cost. In such a stepwise factor selection, those factors ranked
in the tail have a much smaller chance to be included in the optimal subset of factors, which
seems reasonable. This is because those factors assigned smaller importance have smaller
contributions to explaining the observed data and are more likely to be corrupted by noise
or error.

6. Numerical results

By now we have already developed the data-guided model combination method by decom-
position and aggregation, and in this section we will demonstrate its performance with both
artificial and physical examples.

6.1. An artificial example

In the following we will first use an artificial example to illustrate the model combination
method and also show how it works. Based upon Monte Carlo simulation results, some
general conclusions are drawn. For the purposes of demonstration, we would like to use an
artificial example, where the true model is supposed to be known.
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Suppose for some particular system the true model is already known and a set of ob-
servations are also obtained somehow. Let us assume that the true model can be expressed
as

ly(x) = 150 − 150 exp(−2x) + x2 − 0.1x3 + 4x + 30 exp(−x/3) · sin(x)

+15 sin(1.5x) − 20 ln(x + 1), (35)

where the real number x ∈ [0, 10].
Correspondingly, its realistic data generating model can be written as

y = y(x) + ε, (36)

where ε is supposed to assume a normal distribution, i.e. N(0, σ 2), where σ 2 is set as being
equal to 64 in the current example. From this generative model, we gathered a set of data
with the sample size n = 20, i.e. (xi, yi), where xi is evenly distributed within [0, 10].

Meanwhile, suppose that we also collected a class of competing models, all of which can
predict the system behavior to a similar degree.

y1(x) = 150 − 150 exp(−2x) + 4x + 15 sin(1.5x) − 20 log(x + 1);
y2(x) = 150 − 150 exp(−2x) + x2 − 0.1x3;
y3(x) = 150 − 150 exp(−2x) + x2 − 0.1x3 + 30 exp(−x/3) · sin(x);
y4(x) = 150 − 150 exp(−2x) + 6x + 30 exp(−x/3) · sin(x) − 20 · log(x + 1);
y5(x) = 150 − 150 exp(−2x) + x2 − 0.1x3 + 15 sin(1.5x);
y6(x) = 150 − 150 exp(−2x) + 15 cos(2x) − 15 + 0.004x2;

(37)

Note that each candidate model is either incomplete or erroneous, or both. Now we will
apply our model combination method to derive a composite model, which will gives us
better predictions of future data.

If we plot both the truth and the candidate models in a single figure as in Fig. 6, we see
that each candidate model does approximate the true model to some degree. Next we apply
both PCA and ICA to extract orthogonal factors from the class of candidate models. The
mixing matrices obtained in PCA and ICA, respectively, are as follows:

WP =






0.3572 −0.2513 0.6192 −0.2198 −0.1678 −0.5911
0.4335 −0.0932 −0.42 0.5593 0.3426 −0.4436
0.4119 −0.2443 −0.4771 −0.1913 −0.701 0.123
0.3888 −0.0061 −0.1883 −0.6863 0.5695 0.1339
0.4326 −0.3134 0.3968 0.3563 0.1096 0.6468
0.4202 0.8776 0.1403 0.0656 −0.1636 0.0497






and

WI =






−0.1349 −0.2476 0.1194 −0.0169 0.2302 0.0390
−0.0977 −0.0689 −0.0261 0.0319 0.1082 0.0056
−0.1817 −0.1311 0.0182 0.1508 0.1524 −0.0279
−0.0720 0.1390 −0.3287 0.2578 0.0731 −0.0681
−0.2512 −0.1761 0.0450 0.0580 0.2294 0.0673
−0.3456 −0.1843 0.0539 0.0397 0.3815 0.0039






.
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Fig. 6 Artificial candidate models

Fig. 7 Principal components

The corresponding separating matrices are the inverse of the mixing matrices and thus factors
f = W−1 M.

The resultant principal components and independent components are shown in Figs. 7
and 8, respectively.

Springer



62 Machine Learning (2006) 63: 43–67

Table 1 Residual sum of squared errors of composite models

Models −IC2∗ −IC1 −IC4 −IC3 −IC5 −IC6

RSS 19838 3665 1278.7 717.2 679 671.3

∗Sign minus means that a specific IC is excluded.

Fig. 8 Independent components

As for independent components, before proceeding we must rank them first. Based upon
the mixing matrix WI , the ICs can be ordered as IC2, IC1, IC4, IC3, IC5 and IC6 according
to the labels in Fig. 8. This is consistent with the result from the backward approach shown
in Table 1. According to this ordering, IC6 is the least important one, but as noted earlier,
the ordering of those non-dominant ICs, such as IC3, IC5, and IC6, is rather subtle.

Alternatively, if we regress on the data using all the six factors, we obtain:

y = 143.97 + 12.0926 · IC1 − 24.4966 · IC2 − 0.6979 · IC3 + 5.6838 · IC4

−1.5551 · IC5 + 0.3299 · IC6

Therefore, the ordering of the estimated factor loading is the same as the result implied
by Table 1, but this provides us a simpler way.

After factor ordering, we are ready to construct a composite model by aggregating factors.
The result is shown in Tables 2 and 3.

Note that the IC models listed in the above table are the best ones among those having
the same number of factors.

Tables 2 and 3 also show the evaluation of composite models using both BIC and Cross-
Validation together with global mean squared error (GMSE), which is computed against the
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Table 2 Evaluation of composite models using PCA

PC models 1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs

RSS 2418.8 1585.4 955.2 671 670.2 669.5
k 3 4 5 6 7 8
BIC 161.7 156 149 145 148 151
CV 108.8 58.9 49.9 28 22.4 22.6
GMSE 107.8 67.9 40.9 17.7 17.1 18.3

Table 3 Evaluation of composite models using ICA

C models 1 IC 2 ICs 3 ICs 4 ICs 5 ICs 6 ICs

RSS 4289.2 1354.8 728.9 681.4 671.3 669.5
k 3 4 5 6 7 8
BIC 171 153 146 145.3 148 151
CV 179.4 21.48 12.2 16.2 18.8 22.5
GMSE 204.5 35 16.1 16.6 19 18.3

true model as

GMSE = 1

m

∑m

i=1
(y(xi ) − Mc(xi ))

2, (38)

where m is so large as to provide a satisfactory approximation.
Based upon this information, an optimal composite model can be determined for both

cases. As for the PC models, four PCs should be selected in terms of BIC and five PCs
should be chosen in terms of CV to be optimal; while for the IC models, both BIC and CV
suggest that three dominant ICs form the optimal subset. Since the true model is supposed
to be known, and thus we can compare our composite models directly with the truth, which
tells us that the optimal numbers of factors are five and three for PC model and IC model,
respectively. Therefore, both model evaluation methods, BIC and CV, are acceptable, except
that BIC chooses the second best option in the case of PC models.

In addition, the optimal IC model has better performance, or smaller GMSE, than the
optimal PC model. This may tell us that ICA is potentially more efficient in terms of factor
extraction. What is more, the optimal number of ICs is two less than the optimal number of
PCs, which means that ICA is more efficient in term of information redundancy reduction.

Finally, let us compare the performance of the two composite models with any single
model. Before comparison, let us suppose that a candidate model can also be calibrated
based upon data in the following way:

M ′
i (x) = ai + bi Mi (x). (39)

After such calibration, we found that the best-calibrated model had GMSE 40.4, which
is much greater than those of the two composite models. This means that combination does
improve the model performance.

Through the above demonstration we present the performance of this new method by an
example. However, usually in statistics a single specific case might not be so meaningful.
Thus, in order to obtain a general result the above procedure is repeated many times with
different training data sets by the means of Monte Carlo simulation. The average errors of the
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Table 4 Monte Carlo
simulation results of average
errors

Sample size All models PCA ICA

20 24.95 19.82 11.8
50 9.78 9.62 7.30

Table 5 Comparison of models.

A single
best model

Linear combination
of all models

New method
with PCA

New method
with ICA

Test error 0.1935 0.163 0.146 0.140

resultant composite models are listed in Table 4, for two different factor extraction methods
and with different sample sizes.

From the above table, we can draw some conclusions. First, the new model combination
method outperforms the simple linear combination of all models. Second, ICA leads to better
composite models than PCA. Third, the smaller the sample size, the more effective the new
method is and also the more advantageous ICA is relative to PCA.

6.2. Physical example

In the above subsection, we demonstrated our method using manufactured data. Now let us
apply our method to a real physical example in order to see if it works there also.

The physical example we use here is that of ground motion attenuation models used in
seismology. In this example, the purpose is to build a more accurate composite model which
is applicable to south California in the United States. A sample data set of size 102 is obtained
from the literature (Steidl & Lee 2000). Correspondingly, the candidate attenuation models
include the attenuation relations by Boore et al. (1997), Sadigh et al. (1997), Abrahamson
and Silva (1997), Campbell and Bozorgnia (1997), Spudich et al. (1997) and Idriss (1995).
All of these attenuation relations may be found in Seismological Research Letters, Volume
68, Number 1, January/February, 1997. All these attenuation relationships were developed
for shallow crustal earthquakes in active tectonic regions, and thus they should be applicable
to southern California.

Both the candidate models and the sample data are plotted together in the same Fig. 9.
From Fig. 9, it is easy to note that all of the models are close to be a straight line, which
means that unlike the artificial example the dependencies among the candidate models are
mostly linear.

Once the candidate models and sample data are ready, we apply the same procedure as in
the artificial example to combine candidate models under the guidance of the sample data,
namely decomposing the candidate models, selecting factors and aggregating the factors into
a composite model by use of the multiple linear regression method. In order to evaluate the
resultant composite model, the cross-validation is applied, in which two-thirds of the data
set is used for model calibration and the remaining one third is used to test the model. The
results are shown in Table 4, where the test error is the mean squared error.

In this example, the same conclusion can be drawn that this new method outperforms both
a single best model and simple linear combination of all models. Meanwhile, ICA seems
work better than PCA again. However, it is noteworthy that since the non-uniqueness of
FastICA, ICA is used several times and the best result is chosen. Compared to the artificial
example, the advantage of ICA over PCA is not so significant in the current case. In fact, this

Springer



Machine Learning (2006) 63: 43–67 65

Fig. 9 Candidate ground motion attenuation models and data

observation is in agreement with our expectation. In general, the advantage of ICA compared
to PCA is to incorporate higher order nonlinear dependence, but in the current case the models
are close to being straight lines and there is only very little if any nonlinear dependence. As
a result, ICA simply reduces to PCA. Therefore, in cases where more nonlinear dependence
is involved, the strength of ICA will be more significant.

Meanwhile, in the case of ICA, three independent factors are chosen while with PCA
four uncorrelated factors are used. This once again verifies our expectation that ICA is more
efficient in information compression, which leads to the use of less valid factors.

7. Conclusions and discussion

In this paper we present a model combination method by taking advantage of the factor
extraction, noise reduction and information redundancy reduction capability of both PCA
and ICA. By some numerical results, we also show that this method works well. But, some
problems still remain unsolved, which include

(1) Nonlinear factor loadings, which depend upon the input variables x: For example, factors
play different roles over the range of input variables. In our current method, we only
suppose that the linear assumption is valid based upon our assumption that the candidate
models are similar to the true model to some degree. In considering this nonlinear
possibility, a design of mixture of composite local models is helpful (Jacobs et al., 1991;
Jordan & Jacobs, 1994).

(2) Unique factor issue: In our current method, we reduce the general model structure to
that of a linear transformation by treating equally weighted unique factors as another
common factor, but obviously in so doing we may loss some useful information. In order
to address this problem, a hierarchical model structure may help, which is similar to
hierarchical factor analysis (Schmid & Leiman, 1957; Ghahramani & Hinton, 1997).
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(3) Explanation of factors: In our discussion above, although we extracted some factors
from a class of candidate models, we have no idea what these factors are physically, or
what effects they provide a proxy for. Although explanation of factor entails knowledge
about a specific system, it will help us to interpret factors and further refine a composite
model, for instance, in factor selection.

(4) Factor selection: Factor selection is always a difficult task just as in general model
selection. Although in our numerical study both BIC and CV seem satisfactory, we need
a more robust factor selection method, thereby helping to reduce model uncertainty.

(5) Composite model uncertainty. Model uncertainty is central to the performance of a
model. How to reduce such model uncertainty is a current active research problem.

Solving these problems can further refine this method or extend it to more general cases.
These remaining issues are important future work.
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