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Abstract Two minimal requirements for a satisfactory multiagent learning algorithm are

that it 1. learns to play optimally against stationary opponents and 2. converges to a Nash

equilibrium in self-play. The previous algorithm that has come closest, WoLF-IGA, has

been proven to have these two properties in 2-player 2-action (repeated) games—assuming

that the opponent’s mixed strategy is observable. Another algorithm, ReDVaLeR (which

was introduced after the algorithm described in this paper), achieves the two properties in

games with arbitrary numbers of actions and players, but still requires that the opponents’

mixed strategies are observable. In this paper we present AWESOME, the first algorithm

that is guaranteed to have the two properties in games with arbitrary numbers of actions

and players. It is still the only algorithm that does so while only relying on observing the

other players’ actual actions (not their mixed strategies). It also learns to play optimally

against opponents that eventually become stationary. The basic idea behind AWESOME

(Adapt When Everybody is Stationary, Otherwise Move to Equilibrium) is to try to adapt to

the others’ strategies when they appear stationary, but otherwise to retreat to a precomputed

equilibrium strategy. We provide experimental results that suggest that AWESOME converges

fast in practice. The techniques used to prove the properties of AWESOME are fundamentally

different from those used for previous algorithms, and may help in analyzing future multiagent

learning algorithms as well.
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1 Introduction

Learning from experience is a key capability in AI, because it can be difficult to program a

system in advance to act appropriately. Learning is especially important in multiagent settings

where the other agents’ behavior is not known in advance. Multiagent learning (learning in

games) is complicated by the fact that the other agents may be learning as well, thus making

the environment nonstationary for a learner.

Multiagent learning has been studied with different objectives as well as with different

restrictions on the game and on what the learner can observe (e.g., Tan, 1993; Littman, 1994;

Sandholm & Crites, 1996; Sen & Weiss, 1998). Two minimal desirable properties of a good

multiagent learning algorithm are� Learning to play optimally against stationary opponents (or even opponents that eventually

become stationary).1� Convergence to a Nash equilibrium in self-play (that is, when all the agents use the same

learning algorithm).

These desiderata are minimal in the sense that any multiagent learning algorithm that fails

at least one of these properties is, in a sense, unsatisfactory. Of course, one might also want

the algorithm to have additional properties.2 We discuss alternative objectives for learning

in games in Section 7.

The WoLF-IGA (Bowling & Veloso, 2002) algorithm (an improvement over an earlier

algorithm (Singh, Kearns, & Mansour, 2000)) constituted a significant step forward in this

line of research. It is guaranteed to have both of the properties in general-sum (repeated)

games under the following assumptions:� (a) there are at most 2 players,� (b) each player has at most 2 actions to choose from,� (c) the opponent’s mixed strategy (distribution over actions) is observable, and� (d) gradient ascent of infinitesimally small step sizes can be used.3

Another algorithm, ReDVaLeR, was proposed more recently (Banerjee & Peng, 2004) (after

the introduction of the AWESOME algorithm, described in this paper, at the International

Conference on Machine Learning, 2003). ReDVaLeR achieves the two properties in general-

sum games with arbitrary numbers of actions and opponents, but still requires assumptions (c)

and (d). In addition, for a different setting of a parameter of the algorithm, ReDVaLeR achieves

constant-bounded regret. An interesting aspect of this algorithm is that it explicitly checks

whether the opponents’ strategies are stationary or not, and proceeds differently depending

on the result of this check. This serves to demonstrate just how powerful assumption (c) really

is, in that it allows one to achieve the two properties separately: if the result of the check is

positive, one can focus on converging to a best response, and if it is negative, one can focus on

1 This property has sometimes been called rationality (Bowling & Veloso, 2002), but we avoid that term
because it has an established, different meaning in economics.
2 It can be argued that the two properties are not even strong enough to constitute a “minimal” set of require-
ments, in the sense that we would still not necessarily be satisfied with an algorithm if it has these properties.
However, we would likely not be satisfied with any algorithm that did not meet these two requirements, even
if it had other properties. This is the sense in which we use the word “minimal”.
3 Bowling and Veloso also defined a more generally applicable algorithm based on the same idea, but only
gave experimental justification for it.
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converging to an equilibrium. Without assumption (c), this approach is not possible, because

the opponents’ empirical distributions of play will change over time even if the opponents’

actual mixed strategies are stationary.

In this paper we present AWESOME—the first algorithm that achieves both of the prop-

erties in general repeated games, and still the only algorithm that achieves them without any

of the assumptions (a), (b), (c), and (d). As per the above observations, especially the fact that

(c) is not required is significant. In fact, the sole purpose of many of the techniques in this

paper is precisely to avoid assuming (c). It has the two properties with any finite number of

agents and any finite number of actions; it only requires being able to observe other players’

actions (rather than the distribution that the actions are drawn from); and it does not rely on

infinitesimal updates. As in WoLF-IGA and ReDVaLeR, our notion of convergence is that

the stage-game strategy converges to the desired strategy (not just the long-term empirical

distribution of play).

AWESOME still makes some of the same assumptions that were made in the other the-

oretical work attempting to attain both of the properties (Singh, Kearns, & Mansour, 2000;

Bowling & Veloso, 2002; Banerjee & Peng, 2004). First, it only deals with repeated games—

that is, stochastic games with a single state. Second, it assumes that the structure of the game

is known (has already been learned). This assumption is made in much (though not all) of

the game theory literature on learning (for a review, see (Fudenberg & Levine, 1998)), but a

significant amount of other research in multiagent learning in computer science does attempt

to have the agents learn the game as well (Littman, 1994; Littman & Szepesvári, 1996; Hu &

Wellman, 1998; Claus & Boutilier, 1998; Brafman & Tennenholtz, 2000; Banerjee, Sen, &

Peng, 2001; Littman, 2001; Pivazyan & Shoham, 2002; Wang & Sandholm, 2002; Brafman

& Tennenholtz, 2003; Greenwald & Hall, 2003; Conitzer & Sandholm, 2003a; Wang &

Sandholm, 2003; Conitzer & Sandholm, 2004). However, so far this research has not been

able to make claims of the kind made in this paper. In any case, a recent result shows that

(for continuous-time dynamics) some knowledge of the other players’ payoffs is necessary to

converge to Nash equilibrium (Hart & Mas-Colell, 2003). If the game is not known initially,

but the agents can observe the realized payoffs of all agents, then, given that all the agents are

using the same learning algorithm, they could conceivably collaboratively explore the game

and learn the game structure, and then learn how to play. The third assumption is that the

agents can compute a Nash equilibrium.4 It is still unknown whether a Nash equilibrium can

be found in worst-case polynomial time (Papadimitriou, 2001), but it is known that certain

related questions are hard in the worst case (Gilboa & Zemel, 1989; Conitzer & Sandholm,

2003b). However, in practice Nash equilibria can be found for reasonably large games, us-

ing a variety of algorithms (Lemke & Howson, 1964; Porter, Nudelman, & Shoham, 2004;

Sandholm, Gilpin, & Conitzer, 2005).5

The basic idea behind AWESOME (Adapt When Everybody is Stationary, Otherwise Move
to Equilibrium) is to try to adapt to the other agents’ strategies when they appear stationary, but

otherwise to retreat to a precomputed equilibrium strategy. At any point in time, AWESOME

maintains either of two null hypotheses: that the others are playing the precomputed equi-

librium, or that the others are stationary. Whenever both of these hypotheses are rejected,

4 We assume that when there are multiple AWESOME players, they compute the same Nash equilibrium. This
is natural since they share the same algorithm.
5 Some of the literature on learning in games has been concerned with reaching the equilibrium through some
simple dynamics (not using a separate algorithm to compute it). This is certainly a worthwhile objective in our
opinion. However, in this paper the focus is on learning to play appropriately with respect to the opponent’s
algorithm.

Springer



26 Mach Learn (2007) 67:23–43

AWESOME restarts completely. AWESOME may reject either of these hypotheses based on

actions played in an epoch. Over time, the epoch length is carefully increased and the crite-

rion for hypothesis rejection tightened to obtain the convergence guarantee. The AWESOME

algorithm is also self-aware: when it detects that its own actions signal nonstationarity to the

others, it restarts itself for synchronization purposes.

The techniques used in proving the properties of AWESOME are fundamentally different

from those used for previous algorithms, because the requirement that the opponents’ mixed

strategies can be observed is dropped. These techniques may also be valuable in the analysis

of other learning algorithms in games.

It is important to emphasize that, when attempting to converge to an equilibrium, as is

common in the literature, our goal is to eventually learn the equilibrium of the one-shot
game, which, when played repeatedly, will also constitute an equilibrium of the repeated

game. The advantage of such equilibria is that they are natural and simple, always exist, and

are robust to changes in the discounting/averaging schemes. Nevertheless, in repeated games

it is possible to also have equilibria that are fundamentally different from repetitions of the

one-shot equilibrium; such equilibria rely on a player conditioning its future behavior on

the opponents’ current behavior. Interestingly, a recent paper shows that when players try to

maximize the limit of their average payoffs, such equilibria can be constructed in worst-case

polynomial time (Littman & Stone, 2003).

The rest of the paper is organized as follows. In Section 2, we define the setting. In Section 3,

we motivate and define the AWESOME algorithm and show how to set its parameters soundly.

In Section 4, we show that AWESOME converges to a best response against opponents that

(eventually) play stationary strategies. In Section 5, we show that AWESOME converges to

a Nash equilibrium in self-play. In Section 6, we experimentally compare AWESOME to

fictitious play. In Section 7, we discuss alternative objectives for learning in games (and, in

the process, we also discuss a large body of related research). In Sections 8 and 9, we present

conclusions and directions for future research.

2 Model and definitions

We study multiagent learning in a setting where a fixed finite number of agents play the

same finite stage game repeatedly. We first define the stage game and then the repeated

game.

2.1 The stage game

Definition 1 (Stage game). A stage game is defined by a finite set of agents {1, 2, . . . , n}, and

for each agent i , a finite action set Ai , and a utility function ui : A1 × A2 × · · · × An → IR.

The agents choose their actions independently and concurrently.

We now define strategies for a stage game.

Definition 2 (Strategy). A strategy for agent i (in the stage game) is a probability distribution

πi over its action set Ai , indicating what the probability is that the agent will play each action.

In a pure strategy, all the probability mass is on one action. Strategies that are not pure are

called mixed strategies.
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The agents’ strategies are said to be in equilibrium if no agent is motivated to unilaterally

change its strategy given the others’ strategies:

Definition 3 (Nash equilibrium). A strategy profile (π∗
1 , π∗

2 , . . . , π∗
n ) is a Nash equilibrium

(of the stage game) if, for every agent i and for every strategy πi ,

E(π∗
1 ,...,π∗

i−1,π
∗
i ,π∗

i+1,π
∗
2 ,...,π∗

n )ui (a1, a2, . . . , an)

≥ E(π∗
1 ,...,π∗

i−1,πi ,π
∗
i+1,π

∗
2 ,...,π∗

n )ui (a1, a2, . . . , an)

We call a Nash equilibrium a pure-strategy Nash equilibrium if all the individuals’ strategies

in it are pure. Otherwise, we call it a mixed-strategy Nash equilibrium.

2.2 The repeated game

The agents play the stage game repeatedly (forever). As usual, we assume that the agents

observe each others’ actions. An agent may learn from previous rounds, so its strategy in a

stage game may depend on how the earlier stage games have been played.

In the next section we present our learning algorithm for this setting, which has the

desirable properties that it learns a best-response strategy against opponents that (eventually)

are stationary, and it converges to a Nash equilibrium in self-play.

3 The AWESOME algorithm

In this section we present the AWESOME algorithm. We first give the high-level idea, and

discuss some additional specifications and their motivation. We then give the actual algorithm

and the space of valid parameter vectors for it.

3.1 The high-level idea

Roughly, the idea of the algorithm is the following. When the others appear to be playing

stationary strategies, AWESOME adapts to play the best response to those apparent strategies.

When the others appear to be adapting their strategies, AWESOME retreats to an equilibrium

strategy. (Hence, AWESOME stands for Adapt When Everybody is Stationary, Otherwise
Move to Equilibrium.)

3.2 Additional specifications

While the basic idea is simple, we need a few more technical specifications to enable us to

prove the desired properties.

� To make the algorithm well-specified, we need to specify which equilibrium strategy

AWESOME retreats to. We let AWESOME compute an equilibrium in the beginning, and it

will retreat to its strategy in that equilibrium every time it retreats. To obtain our guarantee

of convergence in self-play, we also specify that each AWESOME agent computes the
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same equilibrium.6 We observe that any equilibrium will work here (e.g., a social welfare

maximizing one), but AWESOME might not converge to that equilibrium in self-play—that

is, it may converge to another equilibrium.� When retreating to the equilibrium strategy, AWESOME forgets everything it has learned.

So, retreating to an equilibrium is a complete restart. (This may be wasteful in practice,

but makes the analysis easier.)� Best-responding to strategies that are close to the precomputed equilibrium strategies, but

slightly different, can lead to rapid divergence from the equilibrium. To avoid this, AWE-

SOME at various stages has a null hypothesis that the others are playing the precomputed

equilibrium. AWESOME will not reject this hypothesis unless presented with significant

evidence to the contrary.� AWESOME rejects the equilibrium hypothesis also when its own actions, chosen according

to its mixed equilibrium strategy, happen to appear to indicate a nonequilibrium strategy

(even though the underlying mixed strategy is actually the equilibrium strategy). This will

help in proving convergence in self-play by making the learning process synchronized

across all AWESOME players. (Since the other AWESOME players will restart when

they detect such nonstationarity, this agent restarts itself to stay synchronized with the

others.)� After AWESOME rejects the equilibrium hypothesis, it randomly picks an action and

changes its strategy to always playing this action. At the end of an epoch, if another action

would perform significantly better than this action against the strategies the others appeared

to play in the last epoch, it switches to this action. (The significant difference is necessary

to prevent the AWESOME player from switching back and forth between multiple best

responses to the actual strategies played.)� Because the others’ strategies are unobservable (only their actions are observable), we need

to specify how an AWESOME agent can reject, based on others’ actions, the hypothesis

that the others are playing the precomputed equilibrium strategies. Furthermore, we need

to specify how an AWESOME agent can reject, based on others’ actions, the hypothesis

that the others are drawing their actions according to stationary (mixed) strategies. We

present these specifications in the next subsection.

3.3 Verifying whether others are playing the precomputed equilibrium and detecting

nonstationarity

We now discuss the problem of how to reject, based on observing the others’ actions, the

hypothesis that the others are playing according to the precomputed equilibrium strategies.

AWESOME proceeds in epochs: at the end of each epoch, for each agent i in turn (in-

cluding itself), it compares the actual distribution, hi , of the actions that i played in the

epoch (i.e. what percentage of the time each action was played) against the (mixed) strategy

π∗
i from the precomputed equilibrium. AWESOME concludes that the actions are drawn

from the equilibrium strategy if and only if the distance between the two distributions is

small: maxai ∈Ai |pai
hi

− pai
π∗

i
| < εe, where pa

φ is the percentage of time that action a is played

in φ.

When detecting whether or not an agent is playing a stationary (potentially mixed) strategy,

AWESOME uses the same idea, except that in the closeness measure, in place of π∗
i it uses

6 This is at least somewhat reasonable since they share the same algorithm. If there are only finitely many
equilibria, then one way to circumvent this assumption is to let each agent choose a random equilibrium after
each restart, so that there is at least some probability that the computed equilibria coincide.
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the actual distribution, hprev
i , of actions played in the epoch just preceding the epoch that just

ended. Also, a different threshold may be used: εs in place of εe. So, AWESOME maintains

the stationarity hypothesis if and only maxai ∈Ai |pai
hi

− pai

hprev
i

| < εs .

The naı̈ve implementation of this keeps the number of iterations N in each epoch constant,

as well as εe and εs . Two problems are associated with this naı̈ve approach. First, even if

the actions are actually drawn from the equilibrium distribution (or a stationary distribution

when we are trying to ascertain stationarity), there is a fixed nonzero probability that the

actions taken in any given epoch, by chance, do not appear to be drawn from the equilibrium

distribution (or, when ascertaining stationarity, that the actual distributions of actions played

in consecutive epochs do not look alike).7 Thus, with probability 1, AWESOME would

eventually restart. So, AWESOME could never converge (because it will play a random

action between each pair of restarts). Second, AWESOME would not be able to distinguish

a strategy from the precomputed equilibrium strategy if those strategies are within εe of each

other. Similarly, AWESOME would not be able to detect nonstationarity if the distributions

of actions played in consecutive epochs are within εs .

We can fix both of these problems by letting the distance εe and εs decrease each epoch,

while simultaneously increasing the epoch length N . If we increase N sufficiently fast, the

probability that the equilibrium distribution would by chance produce a sequence of actions

that does not appear to be drawn from it will decrease each epoch in spite of the decrease in εe.

(Similarly, the probability that a stationary distribution will, in consecutive epochs, produce

action distributions that are further than εs apart will decrease in spite of the decrease in εs .)

In fact, these probabilities can be decreased so fast that there is nonzero probability that the

equilibrium hypothesis (resp. stationarity hypothesis) will never be rejected over an infinite

number of epochs. Chebyshev’s inequality, which states that P(|X − E(X )| ≥ t) ≤ V ar (X )
t2 ,

will be a crucial tool in demonstrating this.

3.4 The algorithm skeleton

We now present the backbone of the algorithm for repeated games.

First we describe the variables used in the algorithm. Me refers to the AWESOME player.

π∗
p is player p’s equilibrium strategy. φ is the AWESOME player’s current strategy. hprev

p

and hcurr
p are the histories of actions played by player p in the previous epoch and the epoch

just played, respectively. (hcurr
−Me is the vector of all hcurr

p besides the AWESOME player’s.)

t is the current epoch (reset to 0 every restart). APPE (all players playing equilibrium)

is true if the equilibrium hypothesis has not been rejected. APS (all players stationary) is

true if the stationarity hypothesis has not been rejected. β is true if the equilibrium hy-

pothesis was just rejected (and gives one epoch to adapt before the stationarity hypothesis

can be rejected). εt
e, ε

t
s, N t are the values of those variables for epoch t . n is the num-

ber of players, |A| the maximum number of actions for a single player, μ (also a con-

stant) the utility difference between the AWESOME player’s best and worst outcomes in the

game.

Now we describe the functions used in the algorithm. ComputeEquilibriumStrategy com-

putes the equilibrium strategy for a player. Play takes a strategy as input, and plays an action

drawn from that distribution. Distance computes the distance (as defined above) between

strategies (or histories). V computes the expected utility of playing a given strategy or action

against a given strategy profile for the others.

7 This holds for all distributions except those that correspond to pure strategies.
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We are now ready to present the algorithm.

We still need to discuss how to set the schedule for (εt
e, ε

t
s, N t ). This is the topic of the

next section.

3.5 Valid schedules

We now need to consider more precisely what good schedules are for changing the epochs’

parameters. It turns out that the following conditions on the schedule for decreasing εe and εs

and increasing N are sufficient for the desirable properties to hold. The basic idea is to make
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N go to infinity relatively fast compared to the εe and εs . The reason for this exact definition

will become clear from the proofs in the next section.

Definition 4. A schedule {(εt
e, ε

t
s, N t )}t∈{0,1,2,...} is valid if� εt

s, ε
t
e decrease monotonically and converge to 0.� N t → ∞.� ∏

t∈{1,2,...}(1 − |A|� 1

N t (εt+1
s )2

) > 0 (with all factors > 0), where |A|� is the total number of

actions summed over all players.� ∏
t∈{1,2,...}(1 − |A|� 1

N t (εt
e)2 ) > 0 (with all factors > 0).

The next theorem shows that a valid schedule always exists.

Theorem 1. A valid schedule always exists.

Proof: Let {εt
e = εt+1

s }t∈{0,1,2,...} be any decreasing sequence going to 0. Then let

N t = � |A|�
(1− 1

2
( 1

t )2
)(εt

e)2 	 (which indeed goes to infinity). Then,
∏

t∈{1,2,...} 1 − |A|� 1

N t (εt+1
s )2

=∏
t∈{1,2,...} 1 − |A|� 1

N t (εt
e)2 ≥ ∏

t∈{1,2,...}
1

2( 1
t )2

(we also observe that all factors are > 0). Also,∏
t∈{1,2,...}

1

2( 1
t )2

= 2

∑
t∈{1,2,...} log 1

2
( 1

t )2 = 2
∑

t∈{1,2,...} −( 1
t )2

. Because the sum in the exponent con-

verges, it follows that this is positive. �

4 AWESOME learns a best-response against eventually stationary opponents

In this section we show that if the other agents use fixed (potentially mixed) strategies, then

AWESOME learns to play a best-response strategy against the opponents. This holds even

if the opponents are nonstationary first (e.g., because they are learning themselves), as long

as they become stationary at some time.

Theorem 2. With a valid schedule, if all the other players play fixed strategies forever after
some round, AWESOME converges to a best response with probability 1.

Proof: We prove this in two parts. First, we prove that after any given restart, with nonzero

probability, the AWESOME player never restarts again. Second, we show that after any given

restart, the probability of never restarting again without converging on the best response is

0. It follows that with probability 1, we will eventually converge.

To show that after any given restart, with nonzero probability, the AWESOME player

never restarts again: consider the probability that for all t (t being set to 0 right

after the restart), we have max p 
=Me{d(φt
p, φp)} ≤ εt+1

s
2

(where the AWESOME player

is player Me, φt
p is the distribution of actions actually played by p in epoch t ,

and φp is the (stationary) distribution that p is actually playing from). This proba-

bility is given by
∏

t∈{1,2,...}(1 − P(max p 
=Me{d(φt
p, φp)} >

εt+1
s
2

)), which is greater than∏
t∈{1,2,...}(1 − ∑

p 
=Me P(d(φt
p, φp) >

εt+1
s
2

)), which in turn is greater than
∏

t∈{1,2,...}(1 −∑
p 
=Me

∑
a P(|φt

p(a) − φp(a)| >
εt+1

s
2

)) (where φp(a) is the probability φp places on a). Be-

cause E(φt
p(a)) = φp(a), and observing Var(φt

p(a)) ≤ 1
4N t , we can now apply Chebyshev’s

inequality and conclude that the whole product is greater than
∏

t∈{1,2,...} 1 − |A|� 1

N t (εt+1
s )2

,

Springer



32 Mach Learn (2007) 67:23–43

where |A|� is the total number of actions summed over all players.8 But for a valid schedule,

this is greater than 0.

Now we show that if this event occurs, then APS will not be set to false on account of the

stationary players. This is because

d
(
φt

p, φ
t−1
p

)
> εt

s ⇒ d
(
φt

p, φp
) + d

(
φt−1

p , φp
)

> εt
s ⇒

d
(
φt

p, φp
)

>
εt

s

2
∨ d

(
φt−1

p , φp
)

>
εt

s

2
⇒ d

(
φt

p, φp
)

>
εt+1

s

2
∨ d

(
φt−1

p , φp
)

>
εt

s

2

(using the triangle inequality and the fact that the εs are stricly decreasing).

All that is left to show for this part is that, given that this happens, APS will, with some

nonzero probability, not be set to false on account of the AWESOME player. Certainly this

will not be the case if APPE remains true forever, so we can assume that this is set to false
at some point. Then, with probability at least 1

|A| , the first action b that the AWESOME

player will choose after APPE is set to false is a best response to the stationary strategies.

(We are making use of the fact that the stationary players’ actions are independent of this

choice.) We now claim that if this occurs, then APS will not be set to false on account of the

AWESOME player, because the AWESOME player will play b forever. This is because the

expected utility of playing any action a against players who play from distributions φt
−Me

(call this uMe(a, φt
−Me)) can be shown to differ at most n|A| maxp 
=Me d(φp, φ

t
p)μ from the

expected utility of playing action a against players who play from distributions φ−Me (call

this uMe(a, φ−Me)). Thus, for any t and any a, we have

uMe
(
a, φt

−Me

) ≤ uMe(a, φ−Me) + n|A|εt+1
s μ ≤ uMe(b, φ−Me) + n|A|εt+1

s μ

(because b is a best-response to φ−Me), and it follows that the AWESOME player will never

change its strategy.

Now, to show that after any given restart, the probability of never restarting again with-

out converging on the best response is 0: there are two ways in which this could happen,

namely with APPE being set to true forever, or with it set to false at some point. In the

first case, we can assume that the stationary players are not actually playing the precom-

puted equilibrium (because in this case, the AWESOME player would actually be best-

responding forever). Let p 
= Me and a be such that φp(a) 
= π∗
p(a), where π∗

p(a) is the

equilibrium probability p places on a. Let d = |φp(a) − π∗
p(a)|. By Chebyshev’s inequality,

the probability that φt
p(a) is within d

2
of φp(a) is at least 1 − 1

N t d2 , which goes to 1 as t
goes to infinity (because N t goes to infinity). Because εt

e goes to 0, at some point εt
e < d

2
, so

|φt
p(a) − φp(a)| < d

2
⇒ |φt

p(a) − π∗
p(a)| > εt

e. With probability 1, this will be true for some

φt
p(a), and at this point APPE will be set to false. So the first case happens with probability

0. For the second case where APPE is set to false at some point, we can assume that the

AWESOME player is not playing any best-response b forever from some point onwards,

because in this case the AWESOME player would have converged on a best response. All we

have to show is that from any epoch t onwards, with probability 1, the AWESOME player

will eventually switch actions (because starting at some epoch t , εs will be small enough that

this will cause APS to be set to false). If playing an action a against the true profile φ−Me

gives expected utility k less than playing b, then by continuity, for some ε, for any strategy

profile φ′
−Me within distance ε of the true profile φ−Me, playing a against φ′

−Me gives expected

utility at least k
2

less than playing b. By an argument similar to that made in the first case, the

8 We used the fact that the schedule is valid to assume that the factors are greater than 0 in the manipulation.
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probability of φt
−Me being within ε of the true profile φ−Me goes to 1 as t goes to infinity;

and because eventually, n|A|εt+1
s μ will be smaller than k

2
, this will cause the AWESOME

player to change actions. �

5 AWESOME converges to a Nash equilibrium in self-play

In this section we show that AWESOME converges to a Nash equilibrium when all the other

players are using AWESOME as well.

Theorem 3. With a valid schedule, AWESOME converges to a Nash equilibrium in self-play
with probability 1.

Proof: We first observe that the values of APPE and APS are always the same for all the

(AWESOME) players, due to the synchronization efforts in the algorithm. It can be shown

in a manner similar to the proof of Theorem 2 that after any restart, with nonzero probability,

we have, for all t , maxp{d(φt
p, π

∗
p)} ≤ εt

e (where φt
p is the distribution of actions actually

played by p in epoch t , and π∗
p is the equilibrium strategy for p). In this case, APPE is never

set to false and the players play the equilibrium forever.

All that is left to show is that, after any restart, the probability of never restarting while

not converging to an equilibrium is 0. This can only happen if APPE is set to false at some

point, and the players do not keep playing a pure-strategy equilibrium forever starting at some

point after this. As in the proof of Theorem 2, all we have to show is that from any epoch t
onwards, with probability 1, some player will eventually switch actions (because starting at

some epoch t , εs will be small enough that this will cause APS to be set to false). Because

we can assume that at least one player is not best-responding to the others’ actions, the proof

of this claim is exactly identical to that given in the proof of Theorem 2. �

It is interesting to observe that even in self-play, it is possible (with nonzero probability)

that AWESOME players converge to an equilibrium other than the precomputed equilibrium.

Consider a game with a pure-strategy equilibrium as well as a mixed-strategy equilibrium

where every action is played with positive probability. If the mixed-strategy equilibrium is

the one that is precomputed, it is possible that the equilibrium hypothesis (by chance) is

rejected, and that each player (by chance) picks its pure-strategy equilibrium action after

this. Because from here on, the players will always be best-responding to what the others

are doing, they will never change their strategies, the stationarity hypothesis will never be

rejected, and we have converged on the pure-strategy equilibrium.

6 Experimental results

In this section, we present an experimental evaluation of the AWESOME algorithm. We

compare AWESOME’s performance to the performance of fictitious play. Fictitious play

is one of the simplest algorithms for learning in games: the learner simply plays the best

response to the opponents’ historical distribution of play. In spite of its simplicity, fictitious

play has several properties that make it a natural algorithm for comparison: it can be applied

to arbitrary games, it does not require the learner to know the opponents’ actual mixed

strategies, and it converges to a best response against stationary opponents. In addition, when

both players use fictitious play, then the players’ empirical (marginal) distributions of play

converge to a Nash equilibrium under various conditions—for example, when the game is

zero-sum (Robinson, 1951), or has generic payoffs and is 2 × 2 (Miyasawa, 1961), or is
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Fig. 1 Play against the stationary player (0.4, 0.6, 0) in rock-paper-scissors

solvable by iterated strict dominance (Nachbar, 1990). However, there are also games in

which the distributions do not converge under fictitious play (Shapley, 1964).

In our experiments, we study the convergence of (1) the empirical distribution of play (that

is, the entire history of actions that were played), (2) the empirical distribution over the last 500

rounds only (a “moving average”), and (3) the actual mixed strategy used in a specific round.

We only show 3) for AWESOME, because fictitious play chooses actions deterministically

and therefore will never converge to a mixed strategy in this sense. As our distance measure

between two distributions p1 and p2 over a set S, we use d(p1, p2) = maxs∈S |p1(s) − p2(s)|.
We use a valid schedule for AWESOME: we set εt

s = 1/t and define the other parameters as

in the proof of Theorem 1.

6.1 Rock-paper-scissors

The first game that we study is the well-known rock-paper-scissors game, which is often used

as an example to illustrate how fictitious play can be effective (Fudenberg & Levine, 1998).

0.5, 0.5 0, 1 1, 0

1, 0 0.5, 0.5 0, 1

0, 1 1, 0 0.5, 0.5
Rock-paper-scissors.

In the unique Nash equilibrium of this game, each player plays each action with probability

1/3. In Fig. 1, we show experimental results for playing against a stationary opponent that

uses the mixed strategy (0.4, 0.6, 0).9 Fictitious play converges to the best response very

9 There is no particular reason for using this distribution (or, for that matter, for using any other distribution).
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Fig. 2 Self-play in rock-paper-scissors

rapidly. This is not surprising, as fictitious play is an ideal algorithm for playing against

a stationary player: it best-responds against the best estimate of the opponent’s strategy.

AWESOME initially plays the equilibrium strategy, but eventually rejects the equilibrium

hypothesis, and from that point plays the best response. It takes a large number of rounds

for AWESOME’s historical distribution to converge because of the other actions it played

before it rejected the equilibrium hypothesis; but the moving distribution converges rapidly

once AWESOME starts best-responding.

In Fig. 2, we show experimental results for self-play (in which each algorithm plays

against a copy of itself). Both algorithms perform well here (note the changed scale on

the y-axis). For fictitious play, it is known that the players’ empirical distributions of play

converge to the equilibrium distributions in all zero-sum games (Robinson, 1951), and rock-

paper-scissors is a zero-sum game. AWESOME never rejects the equilibrium hypothesis and

therefore always plays according to the Nash equilibrium. We note that the 500-round moving

distribution cannot be expected to converge exactly: when drawing from a mixed strategy a

fixed number of times only, the empirical distribution will rarely coincide exactly with the

actual distribution.

6.2 Shapley’s game

The other game that we study is Shapley’s game, which is often used as an example to

illustrate how fictitious play can fail (Fudenberg & Levine, 1998).

0, 1 0, 0 1, 0

0, 0 1, 0 0, 1

1, 0 0, 1 0, 0
Shapley’s game.
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Fig. 3 Play against the stationary player (0.4, 0.6, 0) in Shapley’s game

Again, in the unique Nash equilibrium of this game, each player plays each action with

probability 1/3. In Fig. 3, we show experimental results for playing against a stationary

opponent that uses the mixed strategy (0.4, 0.6, 0). The results are similar to those for rock-

paper-scissors.

Finally, in Fig. 4, we show experimental results for self-play. Fictitious play now cycles

and the empirical distributions never converge (as was first pointed out by Shapley him-

self (Shapley, 1964)). Because the length of the cycles increases over time, the 500-round

moving distribution eventually places all of the probability on a single action and is therefore

as far away from equilibrium as possible. AWESOME, on the other hand, again never rejects

the equilibrium hypothesis and therefore continues to play the equilibrium.

7 Discussion of alternative learning objectives

In this section, we discuss alternative objectives that one may pursue for learning in games,

and we argue for the importance of the objectives that we pursued (and that AWESOME

achieves).

7.1 Convergence to equilibrium in self-play

In self-play, AWESOME converges to a Nash equilibrium of the stage game. One may

well wonder whether this requirement is unnecessarily strong: various weaker notions are

available. For instance, one may consider correlated equilibrium (Aumann, 1974), in which

the players receive correlated random signals (before playing the stage game), on which they

can then base their play. This is not unreasonable, and it has the advantages that correlated
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Fig. 4 Self-play in Shapley’s game

equilibria can support better outcomes, and that correlated equilibria can be computed in

polynomial time using linear programming. However, it does rely on the presence of signals

in the world that allow the correlated equilibria to be played. The fewer the signals that are

available in the world, the fewer the correlated equilibria that can be played; and, in the

extreme case where no correlated signals are available, the set of correlated equilibria that

can be played coincides with the set of Nash equilibria. Thus, any learning algorithm that is

robust to the absence of correlated signals must be able to converge to Nash equilibrium. We

note that there is a family of algorithms that converge to the set of correlated equilibria in

terms of the empirical distribution of play (Foster & Vohra, 1997; Fudenberg & Levine, 1999;

Hart & Mas-Colell, 2000; Cahn, 2000; Greenwald & Jafari, 2003; Kakade & Foster, 2004).

This is a much weaker criterion and it does not require the presence of any external correlated

signals. We will compare convergence of the stage-game strategies with convergence of the

empirical distribution of play in Subsection 7.3.

One may also consider (Nash) equilibria of the repeated game that do not correspond to

an equilibrium of the stage game. For instance, cooperation in the Prisoner’s Dilemma—a

dominated strategy in the stage game—can correspond to equilibrium play in the repeated

game, if the players believe that once they defect, the opponent will defect in the future.

Again, this is a very reasonable solution concept, and, as the Prisoner’s Dilemma example

shows, it may even lead to better outcomes (as in the case of correlated equilibrium). Nash

equilibria of the repeated game can also be constructed in polynomial time, if players wish

to maximize the limit of their average payoff (Littman & Stone, 2003). Nevertheless, there

are various reasons to prefer an algorithm that converges to a Nash equilibrium of the stage

game. First of all, it is in general impossible to state whether strategies constitute a Nash

equilibrium of the repeated game, unless we know how the agents value future outcomes.

One way in which future outcomes may be valued is to take the limit of the average payoff.
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This has the odd property that the agent will not care about the outcomes of any finite set

of periods of play. Another way to value future outcomes is through discounting. In the

limit case where the future is extremely discounted, only the outcome of the current period

matters, and thus any equilibrium of the repeated game is an equilibrium of the stage game.

Thus, any algorithm that is robust to extreme discounting must be able to converge to an

equilibrium of the stage game. Another reason to prefer learning algorithms that converge

to an equilibrium of the stage game is the following: equilibria of the repeated game do not

make much sense in scenarios in which the game is repeated only for learning purposes,

e.g. when we are training our agent to play (say) soccer by having it play over and over

again. In such scenarios, it does not make much sense to talk about discount factors and the

like. Finally, equilibria of the repeated game require the agent to have complex beliefs over

what the other agents would do in various future scenarios, and it is less clear where such

beliefs might come from than it is for simple beliefs over what the other agents will play

next.

We do not think that these relaxed equilibrium notions should be dismissed for the purpose

of learning in games, since they (for example) may lead to better outcomes. Nevertheless, we

believe that the arguments above show that learning algorithms should be able to converge

to a Nash equilibrium of the stage game at a minimum, because at least in some settings this

is the only sensible outcome.

One may also criticize the Nash equilibrium concept as being too weak—for example,

one may require that play converges to a Pareto optimal Nash equilibrium. This falls under

the category of requiring the algorithm to have additional properties, and we have already

acknowledged that this may be desirable. Similarly, convergence against a wider class of

learning opponents, rather than just in self-play, is a desirable goal.

7.2 Best-responding against stationary opponents

One may also wonder whether the other requirement—eventual best response against sta-

tionary opponents—is really necessary. Stationary agents are irrational (at least those that

continue to play a strategy that is not optimal for themselves), so why should they ever occur?

There are various possible reasons for this. First, especially for complex games, humans often

design agents by crafting a strategy by hand that the human believes will perform reasonably

well (but that is definitely suboptimal). Learning to take advantage of such suboptimal op-

ponents (in competitive scenarios) or to perform reasonably well in spite of such opponents’

suboptimality (in cooperative scenarios) is an important capability for an agent. As another

reason, the process that controls the opponent’s actions may not actually correspond to a

rational agent; rather, our agent may in reality be playing against (indifferent) Nature. (This

will also happen if the opponent agent is unable to change its strategy, for example because

the agent is defective.)

Another possible reason is that the other agents may merely be satisficing (Simon, 1982),

pursuing a level of utility that they consider satisfactory. Indeed, satisficing approaches in

learning in games have been proposed (Stimpson, Goodrich, & Walters, 2001). In this case

they will be content to continue playing any strategy that gives them this desired level of

utility, even if it does not maximize their utility. If the desired level of utility is low enough,

these agents will be content to play any mixed strategy; thus, any learning algorithm that is

robust to this extreme satisficing scenario needs to be able to converge to a best response

against any stationary opponents. (Of course, this is assuming that we ourselves do not take

a satisficing approach.)
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Again, one may criticize this criterion as being too weak and suggest something stronger.

For example, we may wish the average regret against any opponents to go to zero.10 This

is an admirable objective that has been pursued (and achieved) in a significant body of

research (Littlestone & Warmuth, 1994; Auer et al., 1995; Fudenberg & Levine, 1995; Freund

& Schapire, 1999; Hart & Mas-Colell, 2000; Jafari et al., 2001; Greenwald & Jafari, 2003;

Zinkevich, 2003; Bowling, 2005). Alternatively, we may wish to learn to best-respond against

larger classes of opponents (Powers & Shoham, 2005a,b).

7.3 Convergence of stage-game strategies versus convergence of empirical distribution

of play

In self-play, we require that the agents’ stage-game strategies converge to a Nash equilibrium.

This is much stronger than, for example, convergence of the empirical distribution of play,

where the distribution of the obtained outcomes converges to some equilibrium. A variety

of approaches is available for converging, in terms of the empirical distribution of play, to

the set of correlated equilibria (Foster & Vohra, 1997; Fudenberg & Levine, 1999; Hart &

Mas-Colell, 2000; Cahn, 2000; Greenwald & Jafari, 2003) (or even to the set of convex

combinations of Nash equilibria (Kakade & Foster, 2004), which is contained in the set of

correlated equilibria). We believe that it is important that the agents’ stage-game strategies

converge, for the following reason. Convergence in the empirical distribution of play may be

achieved by an agent whose stage-game strategy is entirely unlike the empirical distribution

of play. For example, an agent that never randomizes over the next action to take may converge

to a mixed-strategy equilibrium in the empirical distribution of play. It does not seem that the

agent has actually learned how to play the game in this case, because even in the end the agent

is not actually playing a mixed strategy. The agent could conceivably eventually take a step

back, consider the empirical distribution of play, and play a (mixed) strategy corresponding to

this distribution. This has the rather awkward effect of separating the process into a learning

phase, during which the agent’s strategy remains unlike the desired strategy, and an execution

phase, in which the agent stops the learning process and decides to play according to what it

has learned. Stopping the learning process may prevent the agent from converging completely

to the desired strategy—for example, it is well-known that certain games have only equilibria

with irrational probabilities (Nash, 1950), which cannot correspond to the fraction of time

that an action was played during a finite number of rounds. Another disadvantage of such an

approach is that once the learning phase has ended, the agent will no longer be able to adapt to

changes in the opponent’s strategy (for example, the opponent may irrationally stop playing

a best response because it is defective, or, alternatively, the opponent may switch to another

best response, to which the former agent’s equilibrium strategy is not a best response).

7.4 Thinking about the learning process strategically

A final criticism of our approach, one that goes beyond discussions of which variant of a

definition should be used, is that the learning process itself should be viewed strategically.

Thus, we should apply equilibrium notions to the learning process itself, or at the very least

attempt to obtain a good result relative to our opponents’ strategies (not just the strategies

used in rounds of the game, but their entire learning strategies). For example, in this view,

10 Technically this is not a stronger criterion because one may play any strategy (even one far away from any
best response) infinitely often and still have the average regret go to 0, but in practice this is unlikely to occur.
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having our agent rapidly converge to an equilibrium that is bad for it is not as desirable as

trying to steer the learning process towards an equilibrium that is good for it, even if this may

fail with some probability. This line of reasoning has been advocated for at least a decade,

and some results down that avenue have recently been derived (Brafman & Tennenholtz,

2004, 2005).

While this argument is entirely sensible, the question that immediately arises is what the

role of learning is in this setting, and why this does not correspond to “simply” computing

an equilibrium of the repeated game. One possibility is that (parts of) the payoff matrices

are not known and have to be learned (although, in principle, this can still be modeled as an

(even larger) game of incomplete information). Interestingly, if agents have beliefs directly

over their opponents’ strategies and update these beliefs using Bayes’ rule, then a well-

known result states that play will converge to Nash equilibrium, if every measurable set of

outcomes that has positive probability under their actual strategies has positive probability

under each agent’s prior belief (Kalai & Lehrer, 1993). However, it has been argued that this

last requirement is unreasonably restrictive (Nachbar, 1997, 2001), and that there exist in fact

games where such “rational learning” will never come close to a Nash equilibrium (Foster &

Young, 2001). The notion of Efficient Learning Equilibrium (Brafman & Tennenholtz, 2004,

2005) has been proposed as an alternative to the use of prior distributions over either the game

being played or the opponents’ strategies. Under this equilibrium definition, deviations must

become irrational after a polynomial number of steps, and the payoffs must approach those

of a Nash equilibrium after a polynomial number of steps if everyone sticks to the learning

algorithm.

A few of the difficulties that we pointed out in the context of learning an equilibrium

of the repeated game occur in the context of strategic learning as well. It is not always

clear how future payoffs should be compared to current ones (such as in the setting where

we are merely training our agent). Also, strategic learning requires the agent to have very

sophisticated models of its opponents’ future behavior. Still, it would be desirable to design

an algorithm that achieves some notion of strategic rationality in addition to the properties

pursued in this paper—to the extent that this is possible.

8 Conclusions

We have argued that a satisfactory multiagent learning algorithm should, at a minimum,

learn to play optimally against stationary opponents, and converge to a Nash equilibrium

in self-play. The previous algorithm that has come closest, WoLF-IGA, has been proven

to have these two properties in 2-player 2-action repeated games—assuming that the op-

ponent’s mixed strategy is observable. Another algorithm, ReDVaLeR (which was intro-

duced after the AWESOME algorithm), achieves the two properties in games with arbi-

trary numbers of actions and players, but still requires that the opponents’ mixed strate-

gies are observable. ReDVaLeR explicitly checks whether the opponents’ strategies are

stationary, and behaves differently based on the result of the check. Hence, the assump-

tion that the mixed strategies are observable allows this algorithm to achieve each property

separately.

In this paper we presented AWESOME, the first algorithm that is guaranteed to have the

two properties in games with arbitrary numbers of actions and players, and still the only

algorithm that does so while only relying on observing the other players’ actual actions (not

their mixed strategies). AWESOME also does not use infinitesimal step sizes, and it learns

to play optimally against opponents that eventually become stationary.
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The basic idea behind AWESOME (Adapt When Everybody is Stationary, Otherwise Move
to Equilibrium) is to try to adapt to the other agents’ strategies when they appear stationary,

but otherwise to retreat to a precomputed equilibrium strategy. At any point in time, AWE-

SOME maintains either of two null hypotheses: that the others are playing the precomputed

equilibrium, or that the others are stationary. Whenever both of these hypotheses are rejected,

AWESOME restarts completely. AWESOME may reject either of these hypotheses based on

actions played in an epoch. Over time, the epoch length is carefully increased and the crite-

rion for hypothesis rejection tightened to obtain the convergence guarantee. The AWESOME

algorithm is also self-aware: when it detects that its own actions signal nonstationarity to the

others, it restarts itself for synchronization purposes.

While the algorithm is primarily intended as a theoretical contribution, experimental re-

sults comparing AWESOME to fictitious play suggest that AWESOME actually converges

quite fast in practice. Fictitious play converges to a best response against a stationary op-

ponent faster than AWESOME, which is not surprising because fictitious play plays a best

response against the best estimate of the opponent’s strategy. However, in a game where

fictitious play converges to a Nash equilibrium in self-play (in terms of the empirical dis-

tribution of play), both algorithms converge similarly fast. Unlike AWESOME, fictitious

play does not always converge in self-play, and does not converge to a mixed stage-game
strategy.

9 Future research

The techniques used in proving the properties of AWESOME are fundamentally different

from those used for other algorithms pursuing the same properties, because the requirement

that the opponents’ mixed strategies can be observed is dropped. These techniques may also

be valuable in the analysis of other learning algorithms in games.

The AWESOME algorithm itself can also serve as a stepping stone for future multiagent

learning algorithm development. AWESOME can be viewed as a skeleton—that guarantees

the satisfaction of the two minimal desirable properies—on top of which additional techniques

may be used in order to guarantee further desirable properties (such as those discussed in

Section 7).

There are several open research questions regarding AWESOME. First, it is important

to determine which valid schedules give fast convergence. This could be studied from

a theoretical angle, by deriving asymptotic bounds on the running time for families of

schedules. It could also be studied experimentally for representative families of games. A

related second question is whether there are any structural changes that can be made to

AWESOME to improve the convergence time while maintaining the properties derived in

this paper. For instance, maybe AWESOME does not need to forget the entire history when

it restarts. A third question is whether one can integrate learning the structure of the game

seamlessly into AWESOME (rather than first learning the structure of the game and then

running AWESOME).
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