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Received: February 11, 2005 / Revised: September 12, 2005 / Accepted: December 29, 2005 / Published
online: 28 March 2006
Springer Science + Business Media, LLC 2006

Abstract Most game programs have a large number of parameters that are crucial for their

performance. While tuning these parameters by hand is rather difficult, efficient and easy to

use generic automatic parameter optimisation algorithms are known only for special problems

such as the adjustment of the parameters of an evaluation function. The SPSA algorithm (Si-

multaneous Perturbation Stochastic Approximation) is a generic stochastic gradient method

for optimising an objective function when an analytic expression of the gradient is not avail-

able, a frequent case in game programs. Further, SPSA in its canonical form is very easy to

implement. As such, it is an attractive choice for parameter optimisation in game programs,

both due to its generality and simplicity. The goal of this paper is twofold: (i) to introduce

SPSA for the game programming community by putting it into a game-programming per-

spective, and (ii) to propose and discuss several methods that can be used to enhance the

performance of SPSA. These methods include using common random numbers and antithetic

variables, a combination of SPSA with RPROP, and the reuse of samples of previous perfor-

mance evaluations. SPSA with the proposed enhancements was tested in some large-scale

experiments on tuning the parameters of an opponent model, a policy and an evaluation

function in our poker program, MCRAISE. Whilst SPSA with no enhancements failed to make

progress using the allocated resources, SPSA with the enhancements proved to be competi-

tive with other methods, including TD-learning; increasing the average payoff per game by

as large as 0.19 times the size of the amount of the small bet. From the experimental study,

we conclude that the use of an appropriately enhanced variant of SPSA for the optimisation

of game program parameters is a viable approach, especially if no good alternative exist for

the types of parameters considered.
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1. Introduction

Any reasonable game program has several hundreds or thousands of parameters. These

parameters belong to various components of the program, such as the evaluation function

or the search algorithm. The performance of most game program depends strongly on the

settings of its parameters. While humans can make educated guesses about “good” parameter

values in certain cases, the hand-tuning of the parameters is a difficult, cumbersome and rather

time-consuming task. An alternative approach is to find the “right” values of these parameters

by means of some automatic parameter tuning algorithm.

The use of parameter optimisation methods for the performance tuning of game programs

is made difficult by the fact that the objective function is rarely available analytically, hence

those methods that rely on the availability of an analytic form of the gradient cannot be

used. The reasons for the lack of the knowledge of such an analytic form can be multiple.

First, game program designs rarely take into account the needs of parameter optimisation.

As a result parameters are often buried deeply into the code and the functional form of the

performance measure as a function of the parameters (if differentiable at all) will rarely, if

ever, be available analytically. Further, game designs evolve constantly and thus keeping the

analytic form of the gradient up-to-date might be prohibitively expensive.

As an example consider the problem of optimising parameters of some video game. For

the sake of specificity, consider MMORPGs. In an MMORPG a reasonable objective is to

look for parameters that achieve balance, i.e., ensuring that all character classes or skill

sets have roughly the same ‘power’. Formally, the optimisation problem could be set up as

the task of maximising f (θ ) = −d(p(θ ), u), where p(θ ) = (p1(θ ), . . . , pN (θ ))T is a vector

whose i th component gives the probability that character i wins given parameters θ , N is

the number of character classes, u = (1/N , . . . , 1/N ) is the uniform distribution and d is an

appropriate distance function. The numerous parameters include strength, speed, physical

attacks, physical defenses, magic attacks, magic defenses, various powerups and others.

Unlike card and board games, the rules of the game for an MMORPG change constantly

until the game is shipped, leaving little chance to the derivation of an analytic expression for

the gradient of the objective function.

Optimisation in card and board games, on the other hand, has its own problems. Consider,

for example, the problem of tuning search-control parameters in board games. Certainly,

such parameters may have a strong influence on the performance of the program, hence their

tuning is critical for creating a strong player. Although these parameters are often real-valued,

the resulting objective function is hard to express analytically and, oftentimes, it is not even

differentiable. Another difficulty may arise in games when action selection is based on some

Monte-Carlo computations. In this case, even when the objective function is differentiable,

its analytic form, though it might be available in a closed form, can be computationally

intractable.

In order to facilitate the forthcoming discussion, let us formalise some common properties

of those game-parameter optimisation problems that we are interested in here. We postulate

two assumptions. The first is that the objective function is given in the form of the expected

value of some random payoff, or reward, whose distribution depends on the parameters to

be optimised:

f (θ ) = E [R(θ )] .

Second, we assume that by means of running some computer simulations it is possible to

generate independent random realisations of R(θ ).
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Optimisation problems with the above characteristics are the subject of simulation
optimisation. The best known tools for simulation optimisation are infinitesimal pertur-

bation analysis (IPA), sample path optimisation and the likelihood ratio (LR) method

(e.g., Andradóttir, 1998). IPA and LR are different ways to get unbiased estimates of the

gradient using a simple simulation run, which in turn can be used in a stochastic gradient

ascent (SGA) procedure. When IPA methods are applicable they often yield better results

than LR methods. Unfortunately, this class is rather limited. We note that policy-gradient

methods (Williams, 1992) developed in the reinforcement learning (RL) community are in

fact specialised LR methods (Baxter and Bartlett, 2001).

Many problems in games can be posed as the task of controlling the learner’s environment

in an optimal manner. These problems can be attacked by value-functions based methods

(Sutton and Barto, 1998). State-value functions assign a value to each state which is then

used e.g. in 1-ply search to select the best controls (actions). Given an action-value func-

tion, on the other hand, control is generated by selecting the action with the highest value.

Temporal-difference methods, one cornerstone of RL, are designed for learning (optimal)

value functions (Sutton, 1988).1 Note that TD-methods have their own objective function,

separate from f (θ ). It follows that it is only when special conditions are met that TD-methods

automatically give rise to solutions that maximise f . However, when such conditions are met,

TD-methods are likely to be the method of choice (Sutton and Barto, 1998).

Interest in policy-gradient methods have increased recently in the RL community as re-

searchers try to extend the scope of current algorithms. As mentioned before, policy-gradient

methods are ultimately based on the LR method which, unfortunately, without no further

structural assumptions is well-known to scale badly with the length of the simulated trajec-

tories (the variance of the gradient estimates is huge). Hence, the central topic of research

on policy-gradient (and LR) methods is to design methods that achieve variance reduction

(Kakade & Langford, 2002) provides some examples when “pure” policy-gradient meth-

ods are likely to fail). Recently, Baird and Moore (1999) and Sutton et al. (2000) proposed

ways to combine value-function and policy-gradient methods. In particular, Baird and Moore

(1999) demonstrates by means of an example that the combined algorithm (which they call

VAPS) may have a considerable edge over methods that are either entirely value-function

based or use policy gradient alone. By analysing the variance of the gradient estimates,

Greensmith, Bartlett and Baxter (2002) find also that using value-function estimates in the

gradient-estimates can indeed be beneficial. We know of no systematic comparison of pure

value-based (i.e., when the value-function is estimated using TD-methods and the policy is

defined purely from the estimated value-function) and policy-gradient methods.

Returning to parameter optimisation in games, probably the best known success story in

learning to play uses TD-methods: Tesauro’s TD-Gammon program was trained by TD(λ) and

self-play where a simple extension of the above outlined greedy-action selection was used.

TD-Gammon achieved a level of play that exceeds that of the best human players (Tesauro,

1992). Another example that uses the value-function based approach is KnightCap, where

a variant of TD(λ) was used to tune the parameters of the evaluation function of a chess

program (Baxter, Tridgell & Weaver, 2000).

As mentioned previously, LR-methods are potentially advantageous to value-based

methods as they optimise for the objective function of interest directly. Despite this,

experience with using policy-gradient methods in real-world games to date is scarce.

1 From our perspective, we call a value function optimal if it gives rise to optimal behaviour when control is
generated by the above described methods.
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Bowling and Veloso (2002) demonstrated that the algorithm due to Sutton et al. (2000) where

value-functions were trained by Sarsa(0) “can learn” in the card-game Goofspiel.

When the objective function is non-differentiable or an analytic form of the gradient is

unavailable then one possibility is to resort to some general-purpose search procedure. Exam-

ples of such methods used in game parameter optimisation include the work of Kocsis (2003)

who considered several algorithms for parameter tuning, some of them being adaptations of

general-purpose gradient-free algorithms (like tabu-search), whilst others were specifically

designed to exploit the properties of the particular optimisation problems. Another example

is the work of Chellapilla and Fogel (1999) who used genetic algorithms to evolve neural-

networks to play the game of checkers. Tuning of search extension parameters in game-tree

search was considered by Björnsson and Marsland (2003), who suggested an algorithm that

we might view as a variant of the Finite-Difference Stochastic Approximations (FDSA), an

algorithm that we will consider later. Despite all the work done so far, we think that automatic

tuning of game program parameters remains a largely unexplored area of game development.

The purpose of this article is to investigate the use of SPSA (Simultaneous Perturbation

Stochastic Approximation), a gradient-free stochastic hill-climbing algorithm, for tuning

the parameters of game programs. Being a gradient-free method that is extremely easy to

implement, SPSA is an appealing choice, especially if a tractable analytic form of the objective

function’s gradient is not available. Unfortunately, in difficult problems such as, e.g., when

the objective function is observed in heavy noise, basic SPSA has little chance for producing

acceptable solutions or even just making progress. Hence, we propose and discuss several

methods to enhance SPSA.

In order to test the limits of the enhanced SPSA, we chose Omaha Hi-Lo Poker, a game

where payoffs are wildly random, as our test domain. Omaha Hi-Lo Poker is one of the

most complex poker variants, at least with regard to state-space complexity. A poker playing

program, MCRAISE was developed and the optimisation of various parts of it were considered

using the enhanced SPSA methods. Although MCRAISE is still in the development phase

and its performance has not been tested extensively yet, preliminary results suggests that the

program is much stronger than amateur players, and is probably competitive with professional

players as well.

We have found that parameters obtained by the enhanced SPSA yield programs that are

competitive or better in their strength than those whose parameters were obtained by other

methods, including TD-methods whilst utilising equivalent computational resources. The

enhancements include using common random numbers, antithetic variables, deck reuse and

combining SPSA and RPROP (“resilient backpropagation”) for adaptive step-size scheduling.

RPROP, originally developed for the batch training of neural networks by Riedmiller and

Braun (1993), employs local (componentwise) step-size adaptation and a sign-based scheme

to eliminate possible harmful influences of the derivatives’ magnitude on the weight updates.

The article is organised as follows: In Section 2 we give some background on stochastic

gradient based optimisation. In particular, first we consider methods that assume that an ana-

lytic expression for the gradient is available: we describe the basic Robbins-Monro procedure,

followed by the description of the LR method. Next, we consider two gradient-free meth-

ods, FDSA and SPSA. This section is closed by discussing the relative efficiencies of these

methods and the description of the method of common random numbers that can make them

competitive in terms of their asymptotic convergence-rates with gradient-based methods. We

also discuss options for parameter optimisation when the parameters are discrete-valued or

when the objective function is non-differentiable.

Section 3 is devoted to the description of some further methods that we propose to enhance

the performance of SPSA. First, we show that when the number of simulations for estimating
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the gradient is fixed then the best estimate of the gradient in terms of the estimate’s variance

is given when the number of perturbations is kept at maximum. Next, we describe RPROP

and how it is combined with SPSA, along with the potential advantages and disadvantages

of the proposed combination. A small numerical study is used to illustrate the point that the

combined algorithm can be more efficient than the canonical version of SPSA. Experiments

on our real-world game program, MCRAISE are described in Sections 4 and 5. In particular, the

rules of Omaha Hi-Lo Poker and the algorithms underlying our game program, MCRAISE, are

described in Section 4, whilst experimental results with RSPSA are given in Section 5. Here

RSPSA is compared with (R)FDSA and some TD-methods. Finally, we draw our conclusions

and discuss future work in Section 6.

2. Parameter optimisation via stochastic gradient ascent

2.1. Basic setup

The purpose of this section is to give a brief review of stochastic gradient ascent methods

and, in particular, introduce the SPSA algorithm. Consider the task of finding a maximiser

θ∗ ∈ Rd of some real valued function f = f (θ ). In our case f may measure the performance

of a player in some environment (e.g., against a fixed set of opponents), or it may represent

an auxiliary performance index of interest that is used internally in the algorithm such that

a higher value of it might ultimately yield a better play. In all cases θ represents some

parameters of the game program.

We assume that the algorithm, whose task is to tune the parameters θ , can query the value

of f at any point θ , but the value received will be corrupted by noise. This value is typically

obtained by simulations that involve randomness. In particular, the randomness can originate

from randomised decisions of the players or from the randomness of the environment. In a card

playing game the randomness of cards represents a substantial source of randomness of the

winning chance of a strategy, though, obviously the randomness of the players’ actions will

also influence it. We shall assume that the value observed in the t th step of the algorithm when

the simulation is run with parameter θt is given by f (θt ; Yt ), where Yt is some random variable

such that the expected value of f (θt ; Yt ), conditioned on θt and given all past information

equals f (θt ):

f (θt ) = E [ f (θt ; Yt ) | θt ,Ft ] .

Here Ft is the sigma-field generated by Y0, Y1, . . . , Yt−1 and the previous parameter values

θ0, θ1, . . . , θt−1. The variables Yt represent the randomness involved of the simulations. We

shall call Yt the simulation noise.

Stochastic gradient ascent (SGA) algorithms work by changing the parameter θ in a

gradual manner so as to increase the value of f on average:

θt+1 = θt + αt ĝt (θt ). (1)

Here θt is the estimate of θ∗ in the t th iteration (time step), αt ≥ 0 is a learning-rate or

step-size parameter that governs the size of the changes to the parameters and ĝt (θt ) is some

approximation to the gradient of f . A typical assumption is that the expected value of ĝt (θt )

given past data is equal to the gradient g(θ ) = ∂ f (θ )/∂θ of f . Then, under some additional

regularity assumptions on the noise sequence {Yt } and f , and if αt converges to zero at
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an appropriate rate (in particular, if
∑∞

t=1 αt = ∞ and
∑∞

t=1 α2
t < ∞) then the parameter

sequence {θt } converges to a local maximum of f with probability one.

2.2. The Robbins-Monro algorithm

In the classical Robbins-Monro setup the main assumption is that direct unbiased estimates

of the gradient are available (Robbins & Monro, 1951). Consider the simplest case first, when

the random variables Yt entering f are independent, identically distributed and their common

underlying distribution is independent of θ . Then, the gradient of f (θ ) = E [ f (θ ; Yt )] can be

computed as

ĝt (θt ) = ∂ f (θt ; Yt )/∂θ, (2)

provided that expectation and differentiation can be exchanged and if the partial derivative

of f w.r.t. θ exists. In simulation optimisation ĝt as defined by Eq. (2) is called the IPA

(infinitesimal perturbation analysis) gradient estimate at θt .

When simulation noise depends on θ then the computation of the gradient is less straight-

forward.2 Assuming that the distribution of Yt for any given θ admits some density, pθ , with

respect to some fixed, θ -independent measure, ν. Then f (θ ) can be written as

f (θ ) =
∫

f (θ ; y)pθ (y) dν(y). (3)

In the special case when f in the integral does not depend on θ (e.g., f is a sort-of performance

measure that depends only on the outcomes of the game) and provided that integration and

differentiation can be exchanged, the gradient of f can be expressed as

f ′(θ ) =
∫

f (y)
d

dθ
(ln pθ (y))pθ (y) dν(y).

Here s(θ ) = d
dθ

(ln pθ (y)) is called the score function corresponding to pθ . An alternative

form of the above equation is given by

f ′(θ ) = E
[

f (Y )
d

dθ
(ln pθ (Y ))

]
.

Hence, f (Y )(d/dθ )(ln pθ (Y )) provides an unbiased estimate of the gradient. The method

just described is called the likelihood-ratio (or score function) method in the simulation

optimisation literature (Andradóttir, 1998; Spall, 2003). Policy-gradient methods that became

popular recently in the RL community belong to this class. In RL pθ often involves unknown

terms; a case that arises, e.g., when Y is obtained through interacting with an unknown
environment (Williams, 1992). A crucial observation is that despite this, the score function

can still be expressed with known quantities: the derivative of the logarithm of the product of

action-selection probabilities (actions serve as the input to the environment). Hence policy-

gradient methods require the knowledge of (only) the analytic forms of the action-selection

2 Note that usually there exist multiple ways to write the objective function; some forms may make the
simulation noise dependent, whilst others may make it independent of the optimised parameters. Which form
to use is then a non-trivial design question.
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probabilities. Although, in some cases it is easy to satisfy this requirement in other cases, such

as when action selection is based on random search trees, the analytic form of action-selection

probabilities will be intractable. In fact, this is the case for our poker playing program that

basis its action selection on evaluating the available actions by computing their values with

a Monte-Carlo procedure (cf. Section 5.1).

Another difficult case for LR methods is when Y represents a long random trajectory. In

this case pθ becomes a product of a large number of terms and hence the variance of LR-

based the gradient estimates, f (Y )(d/dθ )(ln pθ (Y )), will become huge. This problem was

well-known since the early stages of simulation optimisation and it is the subject of active

research in both the simulation optimisation and RL communities (see (Greensmith, Bartlett

and Baxter , 2002; Spall, 2003) and the references therein).3

2.3. The FDSA algorithm

An alternative to estimating the gradient by exploiting the structure of the optimisation

problem is to use methods that do not require the knowledge of the analytic form of f . The

earliest procedure that does not require an analytic expression for the gradient is the Kiefer-

Wolfowitz procedure (Kiefer & Wolfowitz, 1952). Originally, this algorithm was introduced

for one-dimensional problems (i.e., when d = 1). The multi-dimensional version, due to

Blum (1954), is called the finite difference stochastic approximation (FDSA) procedure and

works by approximating the i th component gi (θ ) of the gradient of f with the following

two-sided difference:

ĝti (θt ) = f (θt + ct ei ; Y +
ti ) − f (θt − ct ei ; Y −

ti )

2ct
. (4)

Here ei represents the i th unit vector in the d-dimensional Euclidean space and ct is step-

size. Since for any positive ct , the approximation has a non-zero “bias”, in order to make the

associated SGA procedure convergent ct must converge to zero at an appropriate rate (such

as, e.g., ct ∝ t−1/6). In the above equation Y +
ti and Y −

ti are random variables, independent

of each other. When the distribution of the simulation noise, Yt , depends on the parameter

vector then Y +
ti is obtained by running the simulation with parameters θ + ct ei , whilst Y −

ti is

obtained by running the simulation with parameters θ − ct ei . It can be readily observed that

computing an estimate of the full gradient of f via Eq. (4) requires 2 d evaluations of the

target function f .

2.4. SPSA

Simultaneous Perturbation Stochastic Approximation (SPSA) is a recently proposed alter-

native to FDSA. The main observation leading to SPSA is that FDSA may spend too much

effort on getting an approximation of all the components of the gradient. When measurements

are noisy, almost the same approximation accuracy to the gradient can be obtained by just

considering two two-sided perturbations of the parameter vector. In order to represent all di-

rections equally well, the perturbation vector is chosen to be a random vector. Let �t ∈ Rd be

3 Infinitesimal perturbation analysis (IPA) generally does not suffer from this problem. However, IPA methods
are generally unsuitable for parameter optimisation in games, as noted previously.
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this perturbation vector. Then the SPSA based estimate of the i th component of the gradient

is given by

ĝti (θt ) = f
(
θt + ct�t ; Y +

t

) − f
(
θt − ct�t ; Y −

t

)
2ct�ti

. (5)

Note that the numerator of this expression does not depend on index i and hence SPSA

requires running two simulations only to estimate the gradient. Despite this, SPSA provides

a relatively good approximation to the gradient. In particular, the following results were

proved by Spall (1992). Assume that the followings holds for any finite t :

(A1) the random perturbations �t are independent of the past of the process,

(A2) {�ti }i is an i.i.d. sequence,

(A3) the distribution of �ti is symmetric around zero,

(A4) |�ti | is bounded with probability one, and

(A5) E[�−1
ti ] is finite.

Then, assuming that f is sufficiently smooth, it holds that the bias of estimating the gradient,

g(θt ), by ĝt (θt ) is of order O(c2
t ). Further, if the step-sizes satisfy αt , ct > 0, limt→∞ ct = 0,∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t /c2

t < ∞ then the associated gradient ascent procedure converges

to a local optimum of f with probability one (Spall, 1992).4

A simple way to satisfy the conditions on �t is to choose its components to be inde-

pendent, ±1-valued, unbiased, Bernoulli-distributed random variables. Under certain con-

ditions on the objective function, f , this choice was claimed to be optimal in an asymp-

totic sense under the mean square error and probability criteria (Sadegh & Spall, 1997).

By means of a heuristic argument, Spall also concludes that under ‘reasonably general

conditions’ SPSA needs d times less evaluations of the objective function than FDSA (d
is the dimensionality of the parameter space) to achieve the same asymptotic statistical

accuracy (Spall, 1992). This claim was also backed up by some simulations in the same

article.

The above claims are asymptotic by their nature. In this paper, on the other hand, we

are primarily interested in the transient behaviour of the algorithms. This is because we do

not expect them to converge within the allocated time-frame to a small neighbourhood of a

stationary point, due to the inherent complexity of the optimisation task and the long running

times that are typical for game-simulations.

In the transient regime, according to some authors, FDSA might actually perform better

than SPSA. For example, Dippon (2003) writes that “although randomized and/or higher

order methods can outperform the standard methods in their asymptotic behavior, it is to be

expected that for a small or moderate number n of iteration steps the standard methods may be

superior” (the standard method means FDSA here). Also, Kushner and Yin (1997, pp. 318)

discusses at some length the non-asymptotic properties of some deterministic methods in

comparison to their randomised counterparts.

Another interesting feature of SPSA is that it is known to converge even when the ob-

jective function is non-differentiable (He, Fu & Marcus, 2003). For parameter optimisation

in games when the parameters to be optimised are discrete-valued, a variant of SPSA due

4 The independence assumptions on the components of �t make SPSA fundamentally different from the
method of random directions stochastic approximation, RDSA, where the perturbation vector is sampled
uniformly in the d-dimensional unit sphere and the two-sided differences are multiplied by �ti , unlike in
SPSA where they are multiplied by �−1

ti .
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to Gerencsér, Hill and Vágó (1999) could be used, though the analysis given by the authors

there is limited to convex functions (just like for the previously cited work). Actually, in games

defined over discrete structures, often the parameters are themselves continuous-valued, but

the objective function is discontinuous, e.g., piecewise constant. This is the case for some of

the objective functions in the poker domain that we consider later in this paper. One option

then is to use the noise injection method due to Gerencsér, Kozmann and Vágó (1998).

Formally, if f (θ ) is the objective function then instead of optimising f , the function

f̄ (θ ) = E [ f (θ + U )] is optimised. Here U is a random variable that is assumed to admit

a continuous density. The advantage of noise-injection is that the smoothness properties

of the smoothed objective function will depend on the smoothness of the density underly-

ing U only. Although this method alters the objective function, this change can be made

as small as desired by making U “small”. When the measurement noise of f (or that

of the gradient) is big then one expects that the noise injected would have negligible ef-

fect on the finite-sample behaviour. Hence, in our experiments we did not care to inject

noise.

2.5. Efficiency

It is well known that methods that rely on an analytic form of the gradient can converge

substantially faster than either FDSA or SPSA. Asymptotic convergence rate results provide

a firm theoretical background to this observation: the Robbins-Monro procedure converges

at the rate O(t−1/2), whilst SPSA and FDSA both converge at the rate O(t−1/3) provided

that f is three times differentiable and a decreasing learning rate of αt = α/t is used with a

sufficiently large α > 0. In fact, Chen (1988) and Polyak and Tsybakov (1990) showed that

for randomised Kiefer-Wolfowitz procedures and the class of p-times differentiable objective

functions with p ≥ 2, the optimal rate in the minimax sense is O(t−(p−1)/(2p)). Hence, for

p = 3, SPSA, FDSA and, by a recent result due to Dippon (2003), also RDSA attain the

optimal rate of convergence.

Besides the asymptotic rate of convergence, the asymptotic variance of the appropriately

normalised mean square error is also of considerable interest. A result of Fabian (1968)

can be used to show that this asymptotic variance is proportional to the variance of gradient

estimates. Hence methods that reduce the variance of the gradient’s estimate have the potential

to improve the rate of convergence to θ∗.

When the objective function is evaluated by means of running some computer simulation

then it has been observed that the method of Common Random Numbers (CRN) can

be used to decrease the variance of the gradient’s estimate (Glasserman & Yao, 1992;

L’Ecuyer & Yin, 1998; Kleinman, Spall & Neiman, 1999). In fact, if this method is

employed, the convergence rate is improved to O(t−1/2). This was shown for FDSA by

Glasserman and Yao (1992) and L’Ecuyer and Yin (1998) and later extended to SPSA by

Kleinman, Spall and Neiman (1999).

The basic observation that leads to CRNs is that in both FDSA and SPSA the i th gradient

is estimated as the difference �Fi = F+
i − F−

i . Since

Var (F+
i − F−

i ) = Var (F+
i ) + Var (F−

i ) − 2Cov (F+
i , F−

i ),

there is an opportunity to decrease the variance of the difference �i by increasing the covari-

ance of F+
i and F−

i , provided that the change does not alter the variance of F+
i and F−

i . In
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the case of SPSA F±
i ∝ f (θ ± c�; Y ±) and so when Y + and Y − are independent, we see5.

that

Cov (F+
i , F−

i ) = 0.

The same equality holds for FDSA. Hence, if F±
i are redefined to depend on the same

random value Y : F±
i ∝ f (θ ± c�; Y ), then the variance of F+

i − F−
i will decrease when

Cov ( f (θ + c�; Y ), f (θ − c�; Y )) > 0. The larger this covariance is, the larger the decrease

of the variance of the estimate of the gradient will be. A stronger statement giving conditions

when variance is minimised under CRNs was given by Rubinstein, Samorodnitsky and Shaked

(1985) (see also, Spall, 2003, Proposition 14.2).

In order to gain some further insight of how CRNs work, consider a simple example

when f is given by f (θ ; Y ) = θY . In this case, ( f (θ + c�; Y ) − f (θ − c�; Y ))/(2c�) = Y .

Hence, denoting the variance of Y by V , we get that the variance of the estimate that uses

CRNs is V . On the other hand, the variance of ( f (θ + c�; Y +) − f (θ − c�; Y −))/(2c�)

(conditioned on �) is equal to (θ2/(2c2�2) + 1/2)V . Hence, in this second case vari-

ance grows as c approaches zero,6 whilst in the first case it stays bounded independent

of c.

When samples of f are obtained by means of some simulations that use pseudorandom

numbers and if the distribution of Y is independent of the parameter vector to be optimised,

then F±
i = f (θ ± c�; Y )/(2c�i ) can be computed by saving the seed of the random number

generator (RNG) before running the simulation to compute F−
i , and then resetting the seed

to the saved value before computing F+
i . When the distribution of the simulation noise, Y ,

is not independent of the parameter vector, but can be separated into two parts so that the

distribution of the variables in the first part is independent of θ , whilst the distribution of the

variables that belong to the second part depends on θ , then it is recommended to use two

independent RNGs. The first RNG is used with previous procedure to produce samples from

variables of the first kind, whilst the second RNG should be used in computing the values of

the random variables of the second type. This will still yield some variance reduction. The

technique just described is termed the method of Partial Common Random Numbers (PCRN).

Some experimental results comparing SPSA and FDSA with and without (P)CRN are given

by Kleinman, Spall and Neiman (1999).

In order to see how PCRNs might be used in practice, consider a card game. Assume

that the parameters of a player’s strategy are to be optimised. The random deck (causing

typically a large proportion of the variance of the payoffs) can be viewed as a variable of the

first type, whilst actions generated and situations encountered by the players during a game

can be viewed as random variables of the second kind. If the action-selection procedure

is near-deterministic then even the action-situation trajectories generated will often remain

aligned, resulting possibly in a further reduction of variance.

Note, however, that often it is possible to use CRNs (and eliminate non-aligned vari-

ables) by changing the way randomness in the simulations is modelled. Actually, as it turns

out, CRNs can be used in a surprisingly large class of problems. To see how this is done,

consider imperfect information, alternating Markov games with the total reward criterion.

5 Here, expressions involving expectations are conditioned on �. In fact, with Z = F+
i − F−

i , the iden-
tity Var (Z ) = E [Var (Z |�)] + Var (E [Z |�]) can be used to complete the argument. Here Var (Z |�) =
E [(Z − E [Z |�])2|�]
6 Because αt → 0 sufficiently fast, the SPSA iterate converges despite that the variance of the gradient estimate
diverges as O(c−2

t ).
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Assume for the sake of simplicity that rewards are deterministic and that a game lasts for

at most T steps. Certainly many card and board games fit this description, including poker.

Consider optimising the payoff of Player 1 as a function of some parameters, θ , of its policy.

Let Y = (U1, . . . , UT , U ′
1, . . . , U ′

T ) be a collection of independent, uniformly distributed

random variables. It should be obvious that the payoff of Player 1 can be written in the

form f (θ ; Y ), though f , in general, will be a very complicated function of its arguments.7

What is important for us, however, is that since distribution of Y is independent of θ , the

CRN method applies. Note also that more often than not, f (θ ; Y ) will not be differentiable

w.r.t. θ , whilst f (θ ) = E [ f (θ ; Y )] will be (e.g., LR-based gradient-estimates, based on an

alternative representation, can be computed). We note in passing that there are cases when

the variance of the SPSA-difference based gradient estimate will be smaller than that of

the LR-based gradient estimate, showing that there is no easy rule of thumb to decide if

LR-based or SPSA based methods should be used (Spall, 2003, pp. 420 gives a related

example).

The (P)CRN method is not the only way to improve the performance of SPSA. In what

follows we will describe several other techniques that are potentially useful for decreasing

the variance of gradient estimates and hence for increasing the convergence rate. We note

that antithetic random variables work on principles similar to those underlying CRNs. We

shall discuss the relationship of CRNs and antithetic variables in Section 3.3.

3. SPSA implementation issues

In this section we consider several ways to enhance the performance of SPSA. In particu-

lar, in the next section (Section 3.1) we consider how to select the number of evaluations

per perturbation. An expression for the mean square error is derived that will be used to

show that, in fact, a single evaluation per perturbation is preferable. Next, in Section 3.2,

we introduce RPROP, a method that is known to enhance the performance of training neu-

ral networks. Here we propose a way to combine SPSA with RPROP. The behaviour of

the combined algorithm, RSPSA, will be illustrated on a synthetic task. We close the sec-

tion by discussing how the method of antithetic variables can be used in conjunction with

SPSA.

3.1. Multiple evaluations vs. multiple perturbations

In this section we investigate the issue of how many simulations to run per perturbation

when computing SPSA differences. Here, for the sake of simplicity, we assume that the

distribution of the simulation noise term, Y , entering the objective function is independent

of the parameter to be optimised.

If the variance of the evaluations is high then the estimate of the gradient as given by

Eq. (5) will posses an equally high variance. A natural idea is to average the results of a

few simulations to increase the precision of the estimate of the gradient before iterate θt is

7 To see how f is constructed, notice that state transitions can be written in the form Xt+1 = g(Xt , At , Ut ) with
appropriate g. Further, for stationary policies, the t action can be written as At = π (Xt , U ′

t ). The construction
is finished by noting that the reward at step t is a deterministic function of Xt , At . The idea extends trivially
to non-stationary, observation-based policies, as well as to other classes of sequential problems.
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updated. In the terminology of the neural-network literature this is called the technique of

using mini-batches. When the perturbations are kept fixed the resulting estimate is as follows:

ĝq,i (θ ) = 1

2c�i

(
1

q

q∑
j=1

f (θ + c�; Y +
j ) − 1

q

q∑
j=1

f (θ − c�; Y −
j )

)

= 1

q

q∑
j=1

f (θ + c�; Y +
j ) − f (θ − c�; Y −

j )

2c�i
.

Since we assumed that the distributions of the random variables Y ±
j do not depend on the

respective parameter vectors, we may employ the idea of CRNs. Using Y +
j = Y −

j = Y , we

arrive at

ĝq,i (θ ) = 1

q

q∑
j=1

f (θ + c�; Y j ) − f (θ − c�; Y j )

2c�i
. (6)

In the limit, as the number of simulations q grows to infinity, the estimate will tend to

∂i,c� f (θ ) = ( f (θ + c�) − f (θ − c�))/(2c�i ) with probability one. Hence, ultimately, the

variance that can be attributed to the simulation noise disappears and the final approxima-

tion error becomes equal to the numerical error associated with the error of the two-sided

difference, ∂i,c� f (θ ). It should be clear that due to this error, a very large sample size q will

hardly ever pay off.

By taking the average of r independent samples, {ĝ( j)
q,i (θ )} j=1,...,r , of ĝq,i (θ ), we may

further reduce the error of approximation. Denoting the resulting average by ĝr,q,i (θ ), it

follows by the law of large numbers that ĝr,q,i (θ ) converges to f ′
i (θ ) + O(c2) as r → +∞

with probability one (i.e., the estimate’s ultimate bias is of the order O(c2)). After a certain

point, increasing p
def= rq will not necessarily improve the rate of convergence and/or the

finite-sample performance of the optimisation algorithm. This is because although increasing

p increases the quality of approximation of the gradient, at the same time, it also decreases

the frequency of parameter updates.8

In order to gain further insight into the best choice of p, q and r , let us consider the

mean squared error of approximating the i th component of the gradient by ĝr,q,i : Mr,q,i =
E [(ĝr,q,i (θ) − f ′

i (θ ))2]. The following expression is derived for Mr,q,1 in Appendix A:

Mr,q,i = 1

r
E

[
�2

1

]
E

[
1/�2

1

]
·

d∑
j=2

{ (
1 − 1

q

)
E[ f ′

j (θ, Y1)2] + 1

q
E[ f ′

j (θ, Y1)]2

}

+ 1

rq
E[( f ′

1(θ, Y1) − f ′
1(θ ))2] + O(c2). (7)

8 Spall (1992) gives a heuristic calculation that shows that using decreasing gains of the form αt = a/tα and
ct = c/tγ with β = α − 2γ > 0, 0 < α ≤ 1, 0 < γ , the optimal choice of p is a minimiser of an function,
η(p), of the form pβ−1 A + pβ B. Here A, B > 0 are some, generally unknown, system parameters. Note that
η has a unique minimum at p = (1 − β)A/(β B). However, since A, B are unknown, this result is of little
practical use, except that it shows the nature of the tradeoffs involved in selecting p.

Springer



Mach Learn (2006) 63:249–286 261

Here f ′
i (θ ; Y ) is the partial derivative of f w.r.t. θi :

f ′
i (θ ; Y ) = ∂ f (θ ; Y )

∂θi
.

It follows from Eq. (7) that for a fixed budget of p = qr function evaluations, the smallest

mean squared error is achieved by taking q = 1 and r = p (disregarding the O(c2) bias term

which we assume to be “small” as compared to the other terms). Under mild conditions on f
and Y1 (ensuring that the expectation and the partial derivative operators can be exchanged),∑d

j=2 E[ f ′
j (θ, Y1)]2 = ∑d

j=2 f ′
j (θ )2. Hence, in this case with the choices q = 1, r = p, the

mean square error becomes equal to

1

p

{
E

[
�2

1

]
E

[
1/�2

1

] d∑
j=2

f ′
j (θ )2 + E[( f ′

1(θ, Y1) − f ′
1(θ ))2]

}
+ O(c2), (8)

which is composed of two terms in addition to the bias term O(c2). The first term, which con-

tains the sum
∑d

j=2 f ′
j (θ )2, represents the contribution of the “cross-talk” of the derivatives

of f to the estimation error of the gradient, whilst the second term, E [( f ′
1(θ, Y1) − f ′

1(θ ))2]

gives the mean square error of approximating f ′
1(θ ) with f ′

1(θ, Y1) (which is equal to the

variance of f ′
1(θ, Y1) in this case). The first term can be large when θ is far from a stationary

point of f , whilst the size of the second term depends on the amount of noise in the evalua-

tions of f ′
1. When the magnitude of these two terms is larger than that of the bias term O(c2)

then increasing p will increase the efficiency of the procedure, at least until 1/p becomes

comparable to O(c2). Hence, as another general rule of thumb, we conclude that it can be

beneficial to increase p as c is decreased, i.e., near equilibrium points.

3.2. Resilient SPSA: Combining SPSA and RPROP

SPSA, like other stochastic approximation algorithms has a number of parameters that need to

be tuned by the user. These parameters are the gain sequences αt , ct , the batch-size parameter,

p and the common distribution underlying the perturbations �t . When function evaluations

are expensive, small sample behaviour becomes important. Tuning the SPSA parameters to

optimise the transient performance is a non-trivial task.

Consider, e.g., selecting the perturbation size, c. It should be clear that if the magnitude of

�̄ = c� is large then the numerical error due to the use of two-sided differences will dominate

the overall estimation error. On the other hand, when the magnitude of �̄ is small then in

order to let the variance of the estimate match the size of the asymptotic bias term (whose

order is of O(c2)), larger batches should be used, as suggested previously. However, large

batch-sizes may slow down the rate of convergence. Hence, selecting good perturbation-sizes

is highly non-trivial.

It is likely that performance can be substantially improved if componentwise step-sizes

are introduced. In all previous works on SPSA known to us it was assumed that the d
components of the perturbations, �t , have identical distributions. When different coordinates

have different scales (which might be very common in practice) then it makes sense to let

each component has its own perturbation size parameter.9

9 Actually, having different scales for the different axes is a special case of when the problem is anisotropic,
in which case one might also want to consider distributions of � that are not even aligned with the
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The problem of selecting the ‘right’ scales arises in deterministic gradient methods, too.

Classically, second and higher-order methods are suggested as the natural way to approach

this issue. Gradient-free counterparts of such methods (e.g., 2SPSA) have been investigated

both theoretically and empirically by Spall (2000) and later by Dippon (2003). The excessive

computational complexity and memory requirements of these methods, however, make them

less attractive for practitioners. Further, although these methods (e.g., 2SPSA) are guaranteed

to achieve higher asymptotic convergence-rates, their superiority is less clear in the small

sample-size case.

Hence, we looked for options that avoid the excessive computational complexity of

gradient-free, higher order methods. The RPROP (“resilient backpropagation”) algorithm

due to Riedmiller and Braun (1993) and its variants have low computational complexity and

are amongst the best performing first-order batch neural-network gradient training methods.

Recently, Igel and Hüsken (2003) conducted an empirical comparison of RPROP and its

variants with alternative, gradient ascent algorithms such as BFGS, CG and others. They

have found RPROP methods to be generally very fast, accurate, robust to the choices of

their parameters and scale well with the dimensionality of the parameter vector. Additional

advantages of RPROP are that it is easy to implement, and since the updates are dependent

only on the sign of the partial derivatives of the objective function10 and not on the magnitude

of these partial derivatives, RPROP is thought to be well suited to applications where the

gradient is numerically estimated and/or is noisy. We shall discuss these matters after the

description of the algorithm.

3.2.1. RPROP

We shall consider here a variant of RPROP, called iRPROP−, due to Igel and Hüsken (2000) in

a form when it is applied to maximising an objective function f = f (θ ). iRPROP−’s update

equation is as follows:

θt+1,i = θt,i + δti sign(gti ), i = 1, 2, . . . , d, t = 1, 2, . . . .

Here δti ≥ 0 is the step-size for the i th component and gti is a gradient-like quantity:

gti = I(gt−1,i f ′
i (θt ) ≥ 0) f ′

i (θt ). (9)

In words, gti equals to the i th partial derivative of f at θ except when a sign reversal is

observed between the current and the previous partial derivative, in which case gti is set to

zero. Here I(·) is a {0, 1}-valued function working on Boolean values and I(L) = 1 if and

only if L is true, and I(L) = 0, otherwise.

The individual step-sizes, δti , are updated in an iterative manner based on the sign of the

product pt,i = gt−1,i f ′
i (θt ):

ηti = I(pt,i > 0)η+ + I(pt,i < 0)η− + I(pt,i = 0), (10)

δti = P[δ−,δ+](ηtiδt−1,i ), (11)

coordinate system. In this article, however, we restrict ourselves to the task of finding good componentwise
perturbation-sizes.
10 RPROP, though it was originally worked out for the training of neural networks, is applicable to any
optimisation task where the gradient can be computed or approximated.
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where 0 < η− < 1 < η+, 0 < δ− < δ+, and P[a,b] clamps its argument to the interval

[a, b].

Igel and Hüsken (2000) proposed another rule, iRPROP+, and demonstrated experimentally

that it performs slightly better than the rule just described. The difference between iRPROP+

and iRPROP− is that when a sign change is observed and if the objective function decreases

then iRPROP+ backtracks to the previous value of the given parameter. This is called blocking
in stochastic search (Spall, 2003). If the objective function is observed in noise then the utility

of blocking will be limited – hence we omitted it from our implementation.11

Now, let us discuss one claim of Igel and Hüsken (2000); namely, that the sign-based

approach is well suited for applications where the precise value of the gradient is unavailable,

e.g., when the gradient is observed in noise. Let us approach this claim by comparing how

closely the trajectories of the noisy updates simulate that of the respective trajectories with

noise-free updates.

First, notice that in both cases the size of the mini-batches, p, can be used to control

the ‘simulation-error’. Consider first the unmodified gradient-ascent update rule, Eq. (1).

After several steps of simplification, we get that after t steps the expected root mean squared

difference between the trajectories is of the order
√

tσ 2
p . Here σ 2

p is the variance of the

gradient estimates with a mini-batch of size p. For the sign-based rule, the difference is√
t2δp(1 − δp). Here δp is the probability that the sign of the estimated gradient is different

from that of the “true” gradient. Now, by the independence of measurements, σ 2
p = 1/pσ 2

1 . If

G is a positive lower bound on the (true) gradient in the neighbourhood of the current iterate,

then δp ∼ exp(−pG2/(2σ 2
1 )). Hence, the difference scales with 1/

√
p in the first case, whilst

it scales like exp(−p const) in the second case: The non-linear sign function is very effective

at suppressing noise.12 Although this argument is far from being rigourous, we think that it

still provides a nice intuitive explanation of why RPROP (or a sign-based update rule) might

be more successful.

Notice that the above reasoning is critically dependent on the assumption that the parameter

vector is not close to the stationary point of the objective problem (hence the gradient can be

bounded away from zero). As pointed out by Schraudolph (1999), one problem with RPROP

is that it can behave badly near the stationary points. This is because the sign function does not

commute with the expectation and hence the zero-mean property of the gradient estimates

at equilibrium will not transfer to that of the sign of the gradient estimates. In fact, this

may cause the step-sizes to converge to suboptimal values (divergence of the step-sizes is

prevented as they are bound to [δ−, δ+] by the update rule).13 Although this is a valid point,

we think that the problem will likely turn up only close to the equilibrium points, whilst

our interest here lies in the transient behaviour. Hence, in the present context, we do not

see the problem a serious limitation of the method. Further, when equilibrium behaviour is

important, the problem can be mitigated by increasing the size of mini-batches (as we saw

beforehand, for optimal performance, the size of the mini-batches should be increased near

equilibrium points anyway). Yet another possibility might be to adopt a variant of RPROP

that renders it globally convergent, such as, e.g., the GRPROP algorithm due to Anastasiadis,

Magoulas and Vrahatis (2005).

11 In some weak form, blocking still exists in our code: In practice the performance is typically monitored
during the search procedure, i.e, time-to-time the parameters are evaluated. It is then natural to keep at the end
those parameters that were observed to result in the best performance.
12 In a rigourous derivation, Bernstein’s inequality could be used to derive a bound on δp .
13 Note that another source of non-convergence of RPROP is that typically δ− > 0 in which case, near
equilibriums, at best it will behave as a constant gain stochastic gradient ascent procedure.
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3.2.2. RSPSA

We call the combined SPSA-iRPROP− algorithm RSPSA (“resilient SPSA”). The simplest

combined algorithm works by replacing f ′
i (θt ) in the iRPROP− equations with its noisy

estimate, ĝp,1,i (θt ). By virtue of the previous discussion, we speculate that the performance

of RSPSA might often surpass that of SPSA.

However, there is an extra potential that arises from the combination of RPROP and SPSA,

that we discuss now. Assuming that | f ′
i (θ )| > G, Markov’s inequality14 gives the following

bound:

P(sign(ĝp,1,i (θ )) �= sign( f ′
i (θ ))) ≤ P(|ĝp,1,i (θ )) − f ′

i (θ )| ≥ G) ≤ Mp,1,i

G2
.

Hence the performance of RSPSA will be bound by the mean square error Mp,1,i . As discussed

previously, the distribution of the perturbations �ti may influence this quantity strongly and

it is not reasonable to expect that the same scales will work well for all coordinates.

Obviously, there is no way to decide a priori the ‘best’ scales. In fact, in flat areas (with a

smaller average gradient magnitudes) larger scales are desirable, whilst where the objective

function varies a lot, smaller scales could be more beneficial. Thus, ideally, the perturbations

should fit the local characteristics of the objective function.

An attractive idea then is to couple the SPSA perturbation parameters �ti and the step-

sizes of RPROP. This is motivated by the observation that the step-sizes, δti , of RPROP are

expected to grow in “flat areas” where the sign of appropriate partial derivatives does not

change, whilst they are expected to decay in areas where the sign of the partial derivatives

varies a lot. A simple way to couple the two step-sizes is to set

�ti = ρ δti ,

where ρ is some positive constant, to be selected by the user.

3.2.3. Empirical results on a synthetic task

In order to gain some experience with RSPSA and compare its performance to that of SPSA,

we have tested it on a toy problem, the 10-5-10 encoder, used by Riedmiller and Braun (1993)

and others. The problem is to tune the weights of a neural network so as the trained network

maps specific binary inputs to outputs that are exactly identical to the inputs. The 10 input

patterns have the form (0, 0, . . . , 1, . . . , 0) such that the i th pattern has exactly one non-zero

value at its i th position. The task is non-trivial as the number of neurons in the hidden layer

is less than that in the input layer. The objective function to be maximised is written as

f (θ ) = E [ f (θ ; Y )] = −E

[
10∑

i=1

‖h(xi ; θ ) − Yi (xi )‖2

]
, (12)

where xi goes through the 10 input patterns and Yi (xi ) is the noise-corrupted output pattern

corresponding to xi . Some details of these experiments, such as the definition of the outputs,

Yi (xi ), or the choice of the various step-sizes used in the algorithms are given in Appendix B.

14 We could use here a tighter tail inequality, e.g., Hoeffding’s or Bernstein’s. However, the bounds would not
change as far as their scaling behaviour is concerned with respect to the mean square error and G.
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The research questions investigated here were as follows:

– How does SPSA perform on this simple problem? In particular, we were interested in the

dependence of its performance on parameter c and on the size of the mini-batches.

– How does RSPSA perform as a function of the above two parameters? Does coupling help

to improve RPSA’s performance?

We also experimented with SMD, another local step-size adaptation rule due to Schraudolph

(1999). However, no results are presented here for SMD, as they showed that, in this case

at least, SMD is not effective in improving performance (it did not prove to be competitive

with either SPSA or RSPSA).

Each experiment was repeated 15 times. The performance of a network is defined as its

mean square error (MSE) over the 10 patterns. The curves in the figures show the smallest

errors obtained until a given moment. This somewhat unconventional measure is motivated

by current practice of parameter tuning in game programs: since parameter tuning takes a

long time, one typically monitors performance during learning, if not for other reasons than to

make sure that things work normally. At the end of training, since performance measurements

are available for many parameter settings, it is natural to keep the best parameter settings

encountered. The values shown in the figures below are the average of these values over 15

runs, whilst the error bars shown are computed as the minimum and maximum of the ‘middle’

13 values of the 15 values (i.e., the error bars correspond roughly to 0.05 and 0.95 percentiles).

In all figures, three curves are plotted, each curve corresponding to the performance after a

specific number of function evaluations (1000, 10, 000 and 50, 000, marked respectively by

1 k, 10 k and 50 k there).

When testing SPSA, we used constant step- and perturbation-sizes in these experiments

in line, optimised to the task. Further, a momentum term was added so as to further improve

performance (the gain of the momentum term was also tuned to the task). Figure 1 shows

the results obtained for SPSA when there is no gradient averaging (the size of mini-batches

is 1). The figure shows performance as a function of the size of SPSA perturbations (c).

The exact values of the step-sizes are given in Appendix B). As it can be observed from the
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Fig. 1 Mean square error of SPSA as a function of the size of SPSA perturbations. The size of mini-batches
is 1. The three curves correspond to performance after a specific number of objective function evaluations (1k,
10k and 50k mean 1, 000, 10, 000 and 50, 000 evaluations, respectively)
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Fig. 2 Mean square error of SPSA as a function of the size of SPSA perturbations. The size of mini-batches
is 50. The three curves correspond to performance after a specific number of objective function evaluations
(1k, 10k and 50k mean 1, 000, 10, 000 and 50, 000 evaluations, respectively)

figure, performance is not very sensitive to the value of the perturbation size, at least when the

perturbation size is above a certain critical value. However, convergence is slow. We believe

that this is caused by the large noise of the output patterns, which, in turn, is inherited by the

gradient estimates.

Next, we investigated how the number of samples in the mini-batches effect performance.

Results indicated that batch-sizes around 25–50 are optimal for this task. Accordingly, in the

next figure (Fig. 2) the size of the mini-batches is increased to 50 samples. Note that in the

figures performance is given as a function of the number of samples drawn from f (θ ; Y ), as

opposed to the number of updates of the parameters. Thus, compared with the previous figure,

the number of updates for a given curve here is 50 times less than that for the corresponding

curve of the previous experiment. Despite this, we see that performance improves at least

when comparing the best results. In fact, for the best results, the conclusion holds for all the

sample-sizes shown, indicating an overall speedup of convergence.

Next, we investigated the performance of the RPROP + SPSA combination. Initially, the

combination was tested with no coupling between the SPSA perturbation-sizes and the SPSA

step-sizes. The batch-size was kept at 50. (Experiments with other batch-sizes showed that,

in line with our expectations, performance gets worse faster than for SPSA as the batch-size

is decreased. For larger batch-sizes the two algorithms seem to behave qualitatively in the

same manner.) Results shown in Fig. 3 indicate a significant performance improvement for

the respective best perturbations.

Finally, Fig. 4 shows the performance of RSPSA when SPSA step-sizes are coupled to

RPROP step-sizes. In contrast to previous figures, performance here is shown as a function of

the coupling factor. The parameters of RPROP were kept the same as those found to perform

the best in the previous experiment.

Notice that coupling is very effective: For a wide range of the coupling factors conver-

gence is faster with coupling than without it. Further, (i) the performance curve seems to be

more-or-less convex as a function of the coupling parameter and (ii) optimal performance is

achieved for a wide range of the coupling factors. We also note that the shapes of the three

curves in Fig. 3 are roughly identical: As a result, in this case at least, it looks possible to
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Fig. 3 Mean square error of RSPSA as a function of the size of SPSA perturbations with no coupling between
the RPROP step-sizes and the SPSA perturbation sizes. The size of mini-batches is 50. The three curves
correspond to performance after a specific number of objective function evaluations (1 k, 10 k and 50 k mean
1,000, 10,000 and 50,000 evaluations, respectively)
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Fig. 4 Mean square error of RSPSA as a function of the parameter that couples SPSA perturbation-sizes to
RPROP step-sizes. The size of mini-batches is 50. The three curves correspond to performance after a specific
number of objective function evaluations (1 k, 10 k and 50 k mean 1,000, 10,000 and 50,000 evaluations,
respectively)

find good coupling factors by testing a few selected values while keeping the sample size

small. These observations suggest that simple methods might work well for identifying a

near-best coupling factor in an efficient manner (a similar conclusion seems to hold for the

perturbation-size parameter, as well; cf. Figs. 1 and 2). On another note let us remark that

compared with the standard RPROP parameter values the parameters that we found to per-

form well for these tasks are less extreme. This is indeed what can be expected taking into

account the noise in the gradient estimates.

In summary, the investigated problem illustrates that having somewhat larger mini-batches

and using RSPSA with coupling can indeed be beneficial in improving the performance of
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SPSA. Further, at least in this simple problem, it is possible to find good values of the coupling

factor in an efficient manner.

3.3. Antithetic variables

Suppose that one wishes to compute the expected value, I , of a random variable R: I = E [R].

The variance of the straightforward Monte-Carlo estimate,

In = 1

n
(R1 + · · · + Rn) ,

is (1/n) Var (R). Here R1, . . . , Rn are i.i.d. and share the distribution of R. Now, assume that

n is even, say n = 2k, and consider the estimate

I A
n = 1

k

k∑
i=1

R+
i + R−

i

2
,

where now it is assumed that E[R+
i ] = E[R−

i ] = I (thus E[I A
n ] = I ) and that {R+

1 , . . . , R+
k }

are i.i.d., just like {R−
1 , . . . , R−

k }. Note that no assumption is made on the independence of

R+
i and R−

j . Since

Var

(
R+

i + R−
i

2

)
= Var(R+

i ) + Var(R−
i ) + 2Cov(R+

i , R−
i )

4
,

we see that

Var
(
I A
n

) = (1/k) Var((R+
1 + R−

1 )/2)

= (1/4k) (Var(R+
i ) + Var(R−

i ) + 2Cov(R+
i , R−

i ))

≤ Var (In) ,

provided that Var(R+
i ) + Var(R−

i ) ≤ 2Var(Ri ) and Cov(R+
i , R−

i ) ≤ 0. When R+
i , R−

i share

a common distribution, but Cov(R+
i , R−

i ) < 0 then we say that R+
i and R−

i are antithetic. It

follows then that if R+
i and R−

i are antithetic and the common distribution of R±
i is identical

to the distribution of R then the estimated variance of I A
n will be smaller than that of In .

Notice the similarity to the CRN method introduced in Section 2.5: In both cases introducing

correlation helps decreasing the variance of some estimates. Actually, however, the two

methods work in a complementary way. The CRN method introduces positive correlation

between random variables that are subtracted from each other, whilst the method of antithetic

variables introduces negative correlation between random variables that are added together,

whilst in both cases the random variables share a common distribution.

As an example on how to use antithetic variables (AVs) in SPSA, or more generally, in

game parameter optimisation, consider the performance of a player in a non-deterministic

game. Let us collect all random choices external to the players into a random variable Y
and let f (Y ; W ) be the performance of the player in the game. Here W collects the random

choices of the players. For example, in back-gammon variable Y would collect the outcomes

of dice-rolls, whilst in a card-game, such as poker, Y can be chosen to represent the cards of

the shuffled deck.
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Assuming that the player’s play reasonably well, the influence of the random choices Y
on the outcome of the game will be strong. By this we mean that the value of f (Y ; W ) is

largely determined by the value of Y . For example, it may happen that in backgammon the

dices roll in favour of one of the players. Another example is in poker when one player gets

a strong hand, whilst the others get weak ones. Staying with this example and assuming

two-players, a natural idea to mitigate the influence of Y on the measured performance is

to reverse the hands of the players: the hand of the first player becomes that of the second

and vice versa (the community cards are kept the same). Denoting the cards in this new

scenario by Y ′, it is expected that Cov( f (Y ; W1), f (Y ′; W2)) < 0 (here W1 represents the

random choices in the first play with cards Y and W2 represents the random choices in

the play with cards Y ′; W1 and W2 are assumed to be independent of each other). Since

the distribution of Y and Y ′ are identical (the mapping between Y and Y ′ is a bijection),

if the players play “perfectly”, the same will hold for the distribution of f (Y ; W1) and

− f (Y ′; W2). Hence f (Y ; W1) and f (Y ; W2) will be antithetic. When the random choices Y
influence the outcome of the game strongly then we often find that f (Y ; W1) ≈ − f (Y ′; W2).

More generally, this is the case then Cov( f (Y ; W1), f (Y ′; W2)) ≈ −Var ( f (Y ; W )) and thus

Var
(
I A
n

) ≈ 0. Of course, f (Y ; W1) = − f (Y ′; W2) will rarely, if ever, hold and hence the

variance of I A
n will of course remain positive. Nevertheless, the argument shows that we can

expect to achieve sizeable variance reduction by using this method.

This method can be used in the estimation of the gradient or when the performance of the

players is evaluated. A simple way to introduce AVs in the case of gradient estimation using

SPSA is to replace the SPSA gradient estimate defined by Eq. (5) with15

ĝti (θt ) = 1

4ct�ti
(( f (θt + ct�t ; Yt ) + f (θt + ct�t ; Y ′

t ))

− ( f (θt − ct�t ; Yt ) + f (θt − ct�t ; Y ′
t ))).

In our poker experiments we measured a reduction of the variance by a factor of ca. 20 in

game evaluations. We expect that similar improvements are possible in other games when

‘external randomness’ influences the outcome of the game strongly.

4. Test domain: Omaha Hi-Lo Poker and MCRAISE

Let us now turn to the description of our test domain. We start by the description of the rules

of Omaha Hi-lo Poker. Next, we discuss topics that arise when measuring relative strengths of

players. The game program, MCRAISE, used in the experiments is introduced in Section 4.2.

4.1. The rules

Omaha Hi-Lo is an N -person, zero-sum, alternating Markov game with imperfect informa-

tion. It is played by 2–10 players, who place their betting actions sequentially in clockwise

order.

A game begins with two forced bets, the small blind and the big blind. After the blinds, four

hole (private) cards are dealt to each player, followed by the first round of betting. In a betting

round, the player on turn (usually) has three options: fold, check/call, or bet/raise. On fold,

15 Note that the same technique can be used to reduce the variance of FDSA gradient estimates.
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the player becomes inactive, not having the possibility of further bets, nor winning a share

of the pot. On check/call, the player levels his contribution to the pot with the outstanding

bet level. On bet/raise, the player increases the bet level. A maximum of four bets or raises

are allowed per betting round. A betting round terminates when all active players matched

the current bet level. After the first betting round, three community cards are dealt face up

(the flop). This is followed by a second betting round. On the turn a fourth community card

is dealt, followed by the third betting round. A fifth community card is dealt on the river,

followed by the final (fourth) betting round.

After the last betting round, at showdown, the pot is split among the active players de-

pending on the strength of their cards. The players form a high hand and (if possible) a low
hand, each consisting of exactly two hole cards and three community cards. The high side
of the pot is won by the best high hand according to the usual ranking of poker hands. For

the low side, a hand with five cards with different numerical values from Ace to eight has to

be constructed. The winning low hand is the one with the lowest high card. If more players

have the same high card, the second highest will decide, and so on. Ties are possible for both

sides of the pot. In this case that side is split. If there is at least one low hand then both sides

equal half of the pot, otherwise the whole pot goes to the high side.

There are several rules for limiting the amount that can be raised by a player. We use the

fixed-limit stake structure, which in the first two betting rounds sets this amount to a value

termed small bet, and in the next two rounds to the big bet. The big bet is twice the value of

the small bet.

A natural performance measure of a player’s strength is the average amount of money won

per hand divided by the value of the small bet (sb/h). Typical differences between players

are in the range of 0.05 to 0.2 sb/h. For showing that a 0.05 sb/h difference is statistically

significant in a two player game, one has to play up to 20,000 games. This number was

estimated by means of extensive simulations.

To illustrate the difficulty of obtaining reliable performance estimates, let us consider

some bounds on the number of games sufficient for detecting a difference of 0.05 sb/h with

an error probability limited to 5%. (In fact, these were the actual design parameters of our

experiments.)

Without any further information about the distribution of the payoffs, the best bound is

obtained by Hoeffding’s inequality. Unfortunately, the resulting number comes out to be very

large: with δ denoting the error probability and K denoting the maximum gain/loss per player

in a single game, we get that m(δ) = 2 ln(2/δ) (K/0.05)2 games are required, which, for the

case considered, is about 1,700,000, even if only two-player games are considered. This huge

number is the result of the conservative nature of Hoeffding’s inequality that relies only on

the maximum gain/loss per player, which, in two-player games can be as large as 24 sb in

a single game.16 When the variance of the reward distribution is known, then Bernstein’s

inequality gives tighter bounds than Hoeffding’s. In fact, in our case the variance of the

rewards is estimated to be about 36 (sb/h)2. Plugging this into Bernstein’s inequality yields

the bound of 107,420 games. (This number is just about the same as the number that can be

obtained from the central-limit theorem.)17

Fortunately, we can do even better by introducing AVs. As suggested in Section 3.3, in

every second game each player is dealt his/her opponents’ cards of the previous game, while

16 All these figures get substantially larger when the number of players is larger than two.
17 That according to our extensive Monte-Carlo simulations 20,000 games proved to be sufficient is caused
by the significant non-normality of the payoff-distribution.
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the community cards are kept the same. As we will see, such antithetic dealing results in a

drastic reduction of the number of required games. We note that this is crucially important,

since running 20,000, let alone 100,000 simulations every time a player’s strength needs to

be measured would be prohibitive. (Simulating a single game takes ca. 1 second on average

on an AMD Opteron, 2 GHz machine. Hence playing 20,000 games lasts ca. 5 and a half

hours.)

With antithetic dealing, variance per play drops to 1.44 sb/h. Plugging this into Bernstein’s

inequality gives the modest bound of 5,430 games, a reduction by a factor of about 20.

Compared with playing 20,000 games, the reduction factor is still considerable (4) and

antithetic deals have the added benefit of stronger theoretical guarantees. Of course, antithetic

dealing assumes that players do not exploit this specific dealing strategy. This holds, of course,

for our computer programs, by their design.18 Given the huge variance reduction it buys, in all

of our experiments described below we used antithetic dealing. In fact, when we report some

player’s strength, then this is always the empirical mean of the payoffs of 20,000 antithetic

games. During learning, for monitoring purposes, however, the number of antithetic deals is

kept at 5,000.

4.2. McRaise

Let us now describe our poker programs’, MCRAISE’s, action-selection mechanism. Our

program, MCRAISE, borrows several ideas from other poker playing programs developed for

another variant of poker, Texas Hold’em (Billings et al., 2002, 2003, 2004). The name of the

program originates from the use of Monte-Carlo simulations and the program’s aggressive

style.

MCRAISE, as used in the experiments employs a rather simple 1-ply search. Although the

program is capable of looking further ahead, the resulting gain in performance is small, whilst

the computation time can easily double. Hence, in the experiments we restricted ourselves

to the simple, 1-ply search variant that we describe now.

4.2.1. Basic principles of MCRAISE’s action-selection strategy

Probably the most important element in poker play is to estimate one’s winning chances, or

more precisely to predict how much share one will get from the pot. In order to succeed at

this task, a player has to evaluate correctly the strength and potential of his/her own cards,

which, however, can be done only in light of his/her opponents’ (unknown) hole cards. One

approach to this is to guess the opponents’ cards based on their betting actions of the current,

and possibly previous games. Betting actions encountered in previous games can be used to

adjust a model of the opponent (human players do something like this when categorising their

opponent into categories like ‘tight-passive’, ‘loose-passive’, ‘tight-aggressive’, and ‘loose-

aggressive’). Given an opponent model, the player might try to ‘deduce’ his/her opponents’

hole cards, given the betting actions of the current game. Obviously, guessing the opponent’s

private cards should result in no particular hand, but a probability distribution over the possible

hands.

This is exactly MCRAISE’s approach: The opponents’ betting models are used to derive a

probability distribution over the possible hands, taking into account all previous information,

18 When playing against humans, antithetic dealing can still be used by making assumptions on the number
of games a human can remember and then mixing ‘well’ a large number of pairs of antithetic decks.
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namely MCRAISE’s private cards, the community cards and the betting history. Ideally, one

would like to know the full probability distribution over all possible hands, as it was done in

Poki by Billings et al. (2002). Unfortunately, this is clearly infeasible to achieve, especially

when playing against multiple opponents: Whilst in Texas Hold’em (Poki’s domain) every

player has two hole cards, in Omaha Hi-Lo the number of private cards is four. MCRAISE’s

solution to this is to represent the distribution by a weighted random sample. Given such a

weighted sample, MCRAISE computes the expected payoff, Q(s, a), for each of the available

actions a (here s denotes the information available to MCRAISE). Given Q(s, a), the action

with the highest value is selected:

a(s) = argmax
a

Q(s, a).

4.2.2. Estimating action values under the “everyone’s checking” assumption

Consider a game situation when it is MCRAISE’s turn to act. Let s be the corresponding game

history known to MCRAISE.

We define the value of action a given history s, Q(s, a), as MCRAISE’s expected payoff

provided that MCRAISE’s next action is a, and assuming that subsequently it plays optimally

against its opponents (it follows that we assume here that the opponents’ strategies are fixed).

If R denotes the pot size at the end of the game, when MCRAISE’s total contribution to the

pot is R1, then Q(s, a) = E [w(C, I )R − R1|s, a]. Here C is a random card configuration

and R, R1 and I are random variables whose distribution depends on s and a. In particular,

I is the index-set of the active players at the end of the game and for any such index set and

card configuration c, w(c, I ) is the percentage of pot won by MCRAISE.

Computing Q(s, a) obviously requires looking ahead in the game tree. Since the variance

of future payoffs can be very high, one may want to opt for an alternative, lower variance

estimate. An option, that from the point of view of computational efficiency looks particularly

appealing, is to estimate Q(s, a) under the assumption that every player checks (including

MCRAISE) from the current point of the game until showdown. We call this the “Everyone’s

Checking” (EC) Assumption. In what follows we shall denote by Q̂(s, a) the corresponding

value.

Let us now discuss the consequences of adopting EC. First, note that since Q̂(s, fold) =
Q(s, fold), the discussion can be restricted to the case when the action considered is either

‘raise’ or ‘check’. Clearly, the pot size obtained under EC will never be larger than R except

when some player folds before he/she would match the current bet level. Note that the pot-size

under EC, denoted by �(s, a), can be computed from s and a alone. Further, the expected

proportional payoff (EPP) under EC, which we denote by w̄(s, a) = EEC [w(C, I )|s, a], is

always lower than the EPP without EC. This is because if no opponent folds then these two

values are the same. On the other hand, when some opponents fold then the winning chance

of MCRAISE increases. Hence, w̄(s, a) is a lower bound on the proportion of the pot won. In

summary, unless some of the opponents folds before the end of the current betting round,

the value computed under EC will be a lower bound on the true value. Further, for the fold

action the two values are equal.

Let us now look at the problem of computing Q̂(s, a). Under EC game-tree search can be

avoided altogether:

Q̂(s, a) = EEC [w(C, I )R − R1|s, a]

= w̄(s, a)�(s, a) − B(s, a). (13)
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Here B(s, a) = EEC [R1|s, a] is the total contribution of MCRAISE to the pot, assuming EC.

It is easy to see that B(s, a) can be computed from s and a alone.

In particular, when a is the fold action then B(s, a) = −B0(s) and w̄(s, a) = 0 and there-

fore Q̂(s, a) = −B0(s). Here B0(s) represents MCRAISE’s current contribution to the pot.

When a is not the fold action then B(s, a) = B0(s) + D(s, a), where D(s, a) is MCRAISE’s

contribution to the pot when action a is selected. Further, �(s, a) = �0(s) + (P1(s) −
P2(s))(D(s, a) − D(s, check)) + P2(s)D(s, a), where �0(s) is the pot-size in s, P1(s) is

the number of active players and P2(s) is the number of players who have not yet matched

the current bet level in the current betting round (before MCRAISE’s turn). Note that the ac-

tion selected by MCRAISE can be expressed as a function of D(s, raise), D(s, check), P1(s),

P2(s), �0(s), and w̄(s, raise) = w̄(s, check), alone. The exact the functional form of action

selection can be found after some straightforward algebra. What is perhaps surprising at the

first glance, at least, is that B0(s), MCRAISE’s current contribution to the pot, does not enter

the action-selection function. We note in passing that this will be true for any action-selection

procedure that is based on estimates of the future payoffs.

4.2.3. Estimating the expected proportional payoff

The only remaining undefined term in the definition of Q̂(s, a) is w̄(s, a). Obviously, if a is

the fold action then this quantity equals zero. Otherwise, under EC, we have I = I (s) and

thus

w̄(s, a) = E [w(C, I (s))|s, a] =
∑

c

w(c, I (s))p (c | s).

Here c goes through all the card configurations and p(c|s) denotes the probability of a card

configuration given history s:

p (c | s) = p (c | s)p(c)

p(s)
.

MCRAISE estimates w̄(s, a) by weighted importance sampling (WIS) by sampling ran-

dom card configurations. Before going into how this is done, it will be beneficial to dis-

cuss how WIS works. Consider the problem of estimating the expected value E [ f (X )] =∑
x f (x)p(x). Assume that we can draw independent samples Y1, . . . , Yn from a distribution

q whose support includes that of p (i.e., q(y) �= 0 whenever p(y) �= 0 holds for any y). The

WIS-estimate of E [ f (x)] is given by

Sn =
∑n

i=1 f (Yi )λ(Yi )∑n
i=1 λ(Yi )

,

where λ(Yi ) = p(Yi )/q(Yi ) are the so-called importance weights. Since

E [ f (Yi )p(Yi )/q(Yi )] = E [ f (X )] and E [p(Yi )/q(Yi )] = 1, it follows by the law of

large numbers that the WIS estimate will converge to E [ f (X )] with probability one as

n → ∞. A crucial property of WIS-based estimation is that for computing Sn the values

of the importance weights, λ(Yi ), are needed only up to a constant factor. Note that the

‘missing’ constant factor can depend on anything except the random variables themselves.

Accordingly, when computing the importance weights of a card configuration, it follows

that it is sufficient to compute p (c | s) (or a value that is proportional to it up to a constant
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factor, independent of c). Clearly, since the history s contains the actions of the opponents,

p (c | s) will depend on these actions and the action-selection strategies of the opponents.

Assume for the sake of specificity that the total number of actions in s is m. Let i1, i2, . . . , im

be the playing order of the players in s, and let at (s) denote the t th action in s. By Bayes’ law

and since all players must base their decisions on information available to them, we arrive at

p (c | s) = p(π1(s) | c)
m∏

t=1

pit (at (s) | st , cit (c)).

Here π1(s) denotes the private cards of MCRAISE, pi is the action-selection model of player

i , st is the public history up to stage t (including actions and known community cards, but

excluding π1(s)) and πi (c) denotes the private cards of player i given the card configuration

c. When computing the value of p (c | s), MCRAISE replaces pit with its own models of the

other players’ respective action-selection strategies. In order to simplify the notation, we do

not introduce new symbols for these functions.

Note that p(π1(s) | c) ∝ I(π1(s) = π1(c)). Of course, in practice, sampling will take into

account this: MCRAISE will only sample card configurations that satisfy the compatibility

relation π1(s) = π1(c).

Now, let r (s) denote the number of betting rounds in s. Fix r and i and collect those t time

indexes that belong to actions of round r and player i . Denote the set of these time indeces

by T (r, i). Reordering the terms in the above product yields19

p (c | s) ∝ I(π1(s) = π1(c))
n∏

i=1

r (s)∏
r=1

∏
t∈T (r,i)

pi (at (s) | st , ci (c)).

Notice that when computing the importance weights, the product of action-selection

probabilities corresponding to MCRAISE’s own actions (i = 1) need not be calculated as

p1(at (s) | st , c1(c)) = p1(at (s) | st , c1(s)) is independent of c.

Since complex opponent models are hard to tune, we chose a simple one where the action

probabilities for a given history and opponent depend only on a small number of quantities,

such as the a priori strength of the opponent’s cards, the actual bet size, pot level, and

simple statistics of the action histories of the opponent’s opponents like the maximum of the

opponent’s opponents’ discounted empirical raise probabilities. In particular, we decided that

the opponent’s own previous actions should not influence these action-probabilities directly.

However, if such an opponent model is plugged into the above equation then it will fail to

capture that players typically try to balance their actions throughout the game. Our solution

is to take into account the dependency among the actions at the level of betting rounds, by

modelling the joint probability of an action sequence, up to a constant factor by the following

equation:20

∏
t∈T (r,i)

pi (at (s)|st , ci (c)) ∝ 1

|T (r, i)|
∑

t∈T (r,i)

q(at (s)|φ(st , ci (c)))

q(at (s))
. (14)

19 The empty product is defined as 1.
20 Implicitly, we are assuming therefore that players’ actions belonging to different betting rounds are inde-
pendent of each other.
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Here φ(st , πi (c)) are features extracted from history st and the private card configuration,

πi (c), of player i , q(a|φ) is the probability of action a as a function of φ and q(a) is the

probability of seeing action a. In words, this equation says that the probability of seeing a

sequence of actions of opponent i in a given round is proportional to the average of the ex-

cess probabilities of the individual actions. Compared with the values that would be obtained

by invoking the independence assumption, this equation will weight those action sequences

where q(at (s)|φ(st , πi (c))) > q(at (s)) substantially heavier. This means that those card con-

figurations will get larger weights for which these excess opponent-model probabilities are

large. In order to get a better understanding of this equation let us assume that q in (14) does

not depend on the features, φ, but just on the card configuration. Now assume that for some

card configuration the ratio of the probability of raise to its a priori probability is smaller

than the same ratio for check (the considered hand is ‘weak’). Consider a sequence of two

actions. Assume that the first action of the sequence is raise. Using Eq. (14) it is then possible

to show that the probability that the second action is raise is smaller than it was in the first

round. Conversely, the probability of check is larger than its probability in the first round.

Hence, the equation indeed balances the action-selection procedure. Although this equation

is admittedly ad-hoc, we have found it to work pretty well in practice.

5. Experiments

We tested RSPSA by optimising two components of MCRAISE, the opponent model and the

action selection. For both cases, we compare the performance gain achieved using RSPSA

with that of obtained by some competing algorithms.

For the opponent model we consider the tuning of the parameters of the opponent models

(denoted by q(a|φ) above). In the case of optimising action selection two options were

considered: (i) optimising the parameters of an after-state value function that is then used in

a 1-ply search, and (ii) introducing and optimising an action-network that directly assigns

scores to the actions, that is used in turn to define a probability distribution over the actions.

The experiments for the opponent-model optimisation are described in Section 5.1, whilst

those for action-selection optimisation are given in Section 5.2.

5.1. Tuning the opponent model

The opponent model of MCRAISE assigns probabilities to the opponent’s actions given some

features φ. The current opponent model uses in total six parameters. The a priori values of

these parameters were obtained by tuning them to some game databases. Here, we consider if

RSPSA is able to improve the tuning of these parameters of MCRAISE whilst playing against

MCRAISE with the default parameters. Before describing the experiments, however, let us

look at the differentiability of the objective function, and, in connection to this, the potential

of using the LR (or policy-gradient) method described earlier in Section 2.2 for this problem.

The objective function can be written as

f (θ ) = E [Rθ (C)] ,

where Rθ (C) is the payoff of the MCRAISE given the card configuration C . Denoting the

sequence of actions of the players by U and the set of players that are active at the end

of the game by I (U ), it should be clear that (i) the distribution of U depends on C and θ ,

and (ii) Rθ (C) = r (U, C) for some (deterministic) function r . Hence, f (θ ) can be written
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in the form

f (θ ) = 1

N

∑
c

∑
u

w(c, I (u))r (u, c)pθ (u | c).

Here N is the number of card configurations and pθ (u | c) is the probability of an action se-

quence given card configuration c. Hence, the objective function takes the form of Eq. (3) in

Section 2.2. Therefore, in theory, the LR method can be used to estimate the gradient of f . As

discussed previously, for this we need to calculate the score function (∂/∂θ ) ln pθ (u | c), which

in turn boils down to the calculation of the score functions associated with the action-selection

probability functions, pθ (a | s). By construction, the action probability pθ (a | s) can be writ-

ten in the form P(Fa(WM,θ (s, a)) ≥ 0) for some smooth function Fa (see Section 4.2.2).

Here WM,θ (s, a) is the estimate of w̄(s, a), computed by sampling M card configurations,

C1, . . . , CM , and weighted importance sampling, as described in the previous section. De-

noting by λθ (Ci , s) the importance weight calculated for card configuration Ci and assuming

that a is not the fold action, we get

pθ (a | s) =
(

1

Nπ1(s)

)M ∑
c1,...,cM s.t.π1(ci )=π1(s)

�θ (c1, . . . , cM , s, a),

where Nπ1(s) is the number of card configurations c that satisfy π1(c) = π1(s) and where

�θ (c1, . . . , cM , s, a) = χ

(
Fa

(∑M
i=1 w(ci , I (s))λθ (ci , s)∑M

j=1 λθ (c j , s)

))
.

Here χ (s) = I(s ≥ 0) is the characteristic function of [0, ∞). Hence, in general pθ (a | s)

will not be differentiable w.r.t. θ (as noted in Section 2.4, the non-differentiability of the

objective function does not need to create any major difficulties for SPSA). One possible

remedy is to smooth the characteristic function in the above expression. Still, in this case,

exact differentiation of the action-selection probability function would be computationally

intractable. One idea to overcome this is to use sampling. In particular, it looks natural to reuse

the same card configurations that define the value of WM,θ (s, a). Unfortunately, this would

result in an intolerably large bias. This is because for an action that is actually selected, by

construction, �θ (C1, . . . , CM , s, a) = 1. This means that the score function value estimates

based on C1, . . . , CM alone would always be severely biased towards zero. When another

single card configuration set, say C ′
1, . . . , C ′

M , were used, then the variance of the resulting

estimate would be huge.21 Hence, although it is certainly possible to use the LR method

and there are other possibilities to make it work besides the one considered here, we remain

dubious regarding the potential of LR-methods in this special case.

Let us now return to the description of the experiments. For problems where the number of

parameters is small, FDSA is a natural competitor to SPSA. Therefore, we have tested SPSA

and FDSA with and without RPROP (we shall call the combination of FDSA and RPROP

21 Consider the case when χ is replaced by a sigmoid, σ (x) = 1/(1 + exp(−γ x)), γ controlling the approx-
imation error. Since σ ′(x)/σ (x) = γ (1 − σ (x)), we get that the score function scales with γ . In fact, when
C ′

1, . . . , C ′
M is such that �θ (C ′

1, . . . , C ′
M , s, a) = 0, then the value of the score function will scale with γ ,

making the estimate’s variance large when γ is big. Sampling a large number of card configurations is not
feasible, either, due to the increase in computational complexity.
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Table 1 Learning parameters of RSPSA and RFDSA for opponent model (OM),
RSPSA and TD for evaluation function (EF) and RSPSA for policy (POL) learn-
ing. η+, η−, δ0 (the initial value of δti ), δ

− and δ+ are the RPROP parameters; ρ

is the RSPSA (or RFDSA) coupling factor, λ is the parameter of TD; batchsi ze
is the number of performance evaluations (games) within an iteration which, for
RSPSA and RFDSA, is equal to the product of the number of perturbations (r ),
the number of directions (2) and the number of evaluations per perturbation (q).

η+ η− δ0 δ− δ+ ρ(λ) batchsize

RSPSA (OM) 1.1 0.85 0.01 1e-3 1.0 1 40 × 2 × 250

RFDSA (OM) 1.1 0.85 0.01 1e-3 1.0 1 6 × 2 × 1500

RSPSA (EF) 1.2 0.8 0.05 1e-3 1.0 10/7 100 × 2 × 100

RSPSA (POL) 1.1 0.9 0.01 1e-3 1.0 10/3 100 × 2 × 100

TD (EF) 1.2 0.5 0.1 1e-6 1.0 0.9 10000

‘RFDSA’). Despite all efforts early experiments with SPSA and FDSA (without RPROP)

failed to produce acceptable results: Hence, we give only the results for RSPSA and RFDSA

here.

In the process of estimating the derivatives we employed antithetic dealing and CRNs.

Further, the following deck reuse procedure was implemented: Remember that the CRN

principle dictates using the same decks when evaluating the two opposite perturbations.

As a result, many of the decks will produce zero SPSA differences, thus producing zero

contribution to the estimate of the gradient. Therefore, those relatively infrequent decks

that resulted in non-zero differences were saved for reuse. In subsequent steps, half of the

decks used for a new perturbation were taken from those previously stored, whilst the other

half was generated randomly. Reuse was based on recency, so as to ensure that no decks

persist for longer periods.22 We note that the reuse method obviously introduces bias in the

gradient estimates. Though, in theory, we could correct for this bias, it turns out that the

bias introduced is sufficiently benign so that we do not care about it. This is because under

reasonable conditions the bias introduced can be modelled as the multiplication of the SPSA

differences by a positive constant factor (larger than 1) that depends on the probability of

observing non-zero SPSA differences given a random card configuration. Hence, when this

factor is constant or varies slowly as a function of the optimised parameters, we expect that

its effect on the optimisation will be negligible. Actually, in the case of the RPROP based

updates where the update depends only on the sign of the gradient multiplying the gradient

by a positive factor larger than one is actually beneficial.

The parameters of the algorithms that were hand-tuned by running some tests for each al-

gorithm considered, are given in the first two lines of Table 1 (rows labelled by RSPSA(OM)

and RFDSA(OM)). Attention was paid to allocate the same amount of time to the tuning

of the parameters of the various algorithms (including SPSA and FDSA). The experiments

were conducted on a cluster of 16 computers that were used previously in the development of

MCRAISE. Since during this development the most time consuming task was the evaluation

of the new variants against the previous ones (remember that simulating 5,000 games takes

22 The decision to use half of the saved decks for reuse is admittedly ad-hoc. Obviously, no reuse increases
variance for reasons described previously and full reuse introduces serious bias. Hence reusing half of the
saved decks looked like a natural idea. The recency-based strategy is preferred to random resampling from the
saved decks for the same reason that in particle filters residual resampling is preferred to random resampling.
For a discussion of these issues see (Douc, Cappé & Moulines, 2005).
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ca. one hour and 20 minutes on a single machine), a software-library was developed that par-

allelised the evaluation process. This library was reused in the experiments presented here.

One unfortunate consequence of this design is that we had to use more than one evaluation

per perturbation in the SPSA experiments, too. Actually, in order to reduce communication

overhead, the number of evaluations per perturbation was kept above 100 in all the exper-

iments. As mentioned earlier, 5,000 games were used to measure the performance of the

iterates. The parameters of the opponent model were initialised to the parameter settings

used in MCRAISE.

The evolution of the performance for the two algorithms is plotted in Fig. 5 against the

number of iterations. The best performance obtained for RSPSA was + 0.170 sb/h, whilst

it was + 0.095 sb/h in the case of RFDSA. Since the performance of the program that uses

the RSPSA-tuned parameters is almost twice as good as that of the program that uses the

parameters tuned by RFDSA, we conclude that despite the small number of parameters,

RSPSA is the better choice here. This is a somewhat surprising result, especially in light of

the discussion of the transient behaviour of FDSA and SPSA (Section 2.5).

5.2. Learning policies and evaluation functions

As described previously, MCRAISE selects the action that has the best estimated value. This

can be cast as a 1-ply search w.r.t. the so-called after-state evaluation function, V , defined as

follows. Let s ′ = T (s, a) be the situation right after action a is executed from situation s (and

before the opponents would bet). Then V (s ′) is defined by −D(s, a) + V (s ′) = Q(s, a).

Here D(s, a) is the cost of executing action a from s. Note that V is well-defined by the

definition of Q. In the first set of experiments described here, V is replaced by a neu-

ral network, Vθ . The optimisation task is to tune the weights of this ‘value-network’ so

as to yield an increase in the average payoff per game. Action selection is implemented

via argmaxa [−D(s, a) + Vθ (T (s, a))], both during learning and when evaluating the learnt

value-function. Note that due to the highly stochastic nature of poker, introducing explicit

exploration seemed to be unnecessary. This approach proved to be successful earlier in

learning to play backgammon (Tesauro, 1992).
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Learning evaluation functions is by far the most studied learning task in games. One of the

most successful algorithms for this task is TD(λ) (Sutton, 1988) and the best known example

of successfully training an evaluation function is TDGammon (Tesauro, 1992). By some,

the success of TD-learning in backgammon can mostly be attributed to the highly stochastic

nature of this game. As poker is similarly stochastic, TD-algorithms might enjoy the same

benefit in this domain, too. We note in passing that temporal-difference learning had some

success in deterministic games as well, for example, TD-based parameter tuning contributed

significantly to the success of the world champion Lines of Action program, MIA (Winands

et al., 2002). In our experiment we use a similar design, combining TD(λ) with RRPOP, as

the one that was the highly successful for tuning the evaluation function of MIA. (In fact, the

idea of combining RPROP and SPSA was partly motivated by this earlier success.)

In the second set of experiments, action selection is done in a probabilistic manner as

follows: a neural network (“action network”) with three outputs, each associated with one

action computes the scores for the three actions. These are then normalised to yield a proba-

bility distribution over the set of available actions (when raise is not available, then it is left

out in this step). The next action is then sampled from this distribution. Tuning the weights

of the action-network can be thought thus implements a form of policy search.

Inputs to the neural networks include the estimate of the expected proportional payoff, the

strength of the player’s hand (i.e., the a priori chance of winning), the position of the player

within the round, the pot size, the current bet level and some statistics about the recent betting

actions of the opponent. After some initial experimentation, the network architectures were

fixed at 12-10-1 and 12-10-3 for the value- and the action-networks, respectively.

When the parameters of the action network are optimised, the objective function will be

differentiable and the LR method applies, though, again, since the EPP-estimate, WM,θ (s, a),

is an input of the network, the exact computation of the score functions is intractable. We

leave it for future work to compare the efficiency of LR-based policy-gradient methods to

the methods tested here. In the case when the after-state value function is represented by a

neural-network, we face the same difficulties as those encountered in the previous section,

as far as the differentiability of the objective function is concerned. Note that TD-methods

avoid differentiability issues as they optimise for another criterion.

The parameters of the algorithms are given in the second half of Table 1. Again, these

parameters were obtained by experimenting with the algorithms and selecting the best pa-

rameters found. Attention was paid to dedicate the same amount of time for the tuning of the

various algorithms. For RSPSA the same enhancements as those given in Section 5.1 were

used. We tested four algorithms:

(1) RSPSA for tuning the parameters of the after-state evaluation function (RSPSA(EF)),

(2) RSPSA for tuning the action-network (RSPSA(POL)),

(3) TD for tuning an evaluation function (TD(EF)), and

(4) TD for evaluation function tuning with a supervised start-up

(spvTD(EF)).

For the latter, before TD-learning, a simple supervised algorithm was used to tune the

weights of the value-network to match values estimated by MCRAISE at a set of states sampled

using self-play.

The learning curves of the four algorithms are given in Fig. 6. The best performance

obtained for RSPSA(EF) was +0.194 sb/h, for RSPSA(POL) it was +0.152 sb/h, for TD(EF)

it was +0.015 sb/h, and for spvTD(EF) it was +0.220 sb/h. It is fair to say that TD performed

better than RSPSA, which is a result one would expect given that TD uses more information

about the gradient. However, we observe that for TD it was essential to start from a good
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set of weights, those obtained by supervised learning. When started from random weights,

the initial policy is probably too bad and learning gets stuck at a local minimum. This is in

contrast to TDGammon that was able to learn starting from random weights (Tesauro, 1992).

We note that although the two RSPSA algorithms did not reach the performance obtained

by the combination of supervised and TD-learning, they did give a considerable performance

gain even though they were started from scratch. As noted earlier, a difference of 0.2 sb/h

represents a significant difference in player-strength. Hence, given that MCRAISE is thought

to be competitive with professional players, we think that the performance improvement

achieved by RSPSA(EF) is noteworthy. Of course, since these results are obtained by training

against a fixed opponent (though, a strong one), the resulting player should be tested against

a wide range of players before making any definite conclusion about its playing strength.

Even better, the experiments could be repeated by playing against a larger set of opponents.

We note in passing that we have also experimented with SPSA without the enhancements

proposed here. Even if all the enhancements, except the combination with RPROP were used,

no parameter settings were found using which SPSA could produce acceptable results in this

case.

6. Conclusions and future work

This article investigated the value of a general purpose optimisation algorithm, SPSA, for the

automatic tuning of game parameters. Several theoretical and practical issues were analysed,

which in turn led to the design of a new variant of SPSA that we called RSPSA. RSPSA

combines the strengths of RPROP and SPSA: SPSA is a gradient-free stochastic hill-climbing

method that requires only function evaluations, while RPROP is a first order method that

is known to improve the transient behaviour of gradient ascent. The proposed combination

couples the perturbation parameter of SPSA and the step-size parameters of RPROP. It was
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argued that this coupling is natural. By means of some preliminary experiments, it was shown

that the combined method can indeed improve the convergence rate.

For achieving a good performance in our test domain, it proved to be essential to employ

a number of other enhancements that aim at reducing the variance of the gradient estimates.

The effect of performing a larger number of perturbations was analysed. An expression for

the mean square error of the estimate of the gradient was derived as the function of the

number of (noisy) evaluations of the objective function per perturbation (q) and the number

of perturbations (r ). It was found that to optimise the mean square error with a fixed budget

p = qr , the number of perturbations should be kept at maximum.

We suggested that besides using the method of Common Random Numbers, antithetic

variables should be used for a further reduction of the variance. In addition, a method for

reusing decks that produced non-zero differences was proposed for the same purpose. In our

test domain, these methods together are estimated to yield a speed-up by a factor larger than

ten (since with the proposed methods a smaller number of function evaluations is enough to

achieve the same level of accuracy in estimating the gradient). It was the overall effect of these

enhancements that made it possible to apply SPSA-techniques for tuning the parameters of

several variants of our poker playing program, MCRAISE.

In our experiments the optimisation of two components of MCRAISE were attempted:

the opponent model and the action-selection algorithm. The latter task was attempted both

directly, when the policy was represented explicitly, and indirectly via the tuning of the

parameters of an after-state value function. In addition to testing RSPSA, for both components

an alternative optimiser was tested (resp., RFDSA, and TD(λ)). On the task of tuning the

parameters of the opponent model, RSPSA resulted in a significantly better performance as

compared to that obtained by using RFDSA. This confirms some of the previous findings

such as those of Spall, Kleinman, Spall and Neiman (1992, 1999), whilst it contradicts some

expectations published elsewhere, such as in Kushner and Yin (1997) and Dippon (2003).

In the case of policy optimisation, RSPSA was competitive with TD-learning, although

the combination of supervised learning followed by TD-learning outperformed RSPSA.

Nevertheless, the performance of RSPSA was encouraging on this second task, as well. In

fact, using RSPSA, it was possible to achieve an impressive improvement of 0.194 sb/h in

the case of tuning the action-network while playing against MCRAISE.

There are several lines of future research that look important. Extensive numerical studies

would be needed to gain more insight into the behaviour of SPSA (and RSPSA) as a function

of its parameters. In particular, we believe that the coupling of the RPROP step-size and the

SPSA perturbation size can be improved by using more information such as the learning

“stage” and the variance of the gradient. Also, our theoretical results indicate that p, the

size of mini-batches should be selected to match the scale of the perturbation step-sizes. The

optimisation of the size of the mini-batches was not attempted here, although we think that

optimised batch-sizes may result in further performance improvements.

In connection to this let us note that there exist results that show that it is possible to

use SPSA with deterministic perturbation sequences and with such sequences, in fact, it

is possible to improve the transient behaviour (Xiong, Wang & Fu, 2002). It would be

interesting to see if performance can be further improved using this technique. In this article,

we have not compared the performance of the SPSA-based methods with that of LR (a.k.a.,

policy-gradient) methods. In cases when LR methods are applicable, they might have an

advantage over SPSA-based methods as they use more information. Nevertheless, as we

have discussed it extensively, LR methods are not without problems either. At present, it is

largely unclear how LR methods would fare when compared with SPSA-based methods on

the tasks considered here.
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There exist other opportunities to enhance the convergence rate of SPSA. In fact, any adap-

tive step-size method could be used that is designed to enhance the performance of stochastic

gradient ascent. One particularly appealing such algorithm extends conjugate gradient to a

stochastic settings (Schraudolph & Graepel, 2002). Recently, Anastasiadis, Magoulas and

Vrahatis (2005) introduced a globally convergent version of RPROP. It is an interesting open

question if their modifications are effective in a stochastic settings, as well.

In order to get a better understanding of the behaviour and utility of RSPSA for game-

program parameter tuning, it should be tested in several other games. A first indication that

RSPSA can be successful in other games than poker is given in Kocsis (2005) where RSPSA

is used for tuning the realisation probability weights of MIA in Lines of Action.

Regarding the poker environment, several components of MCRAISE could be improved.

The opponent model, for example, could be made adaptive (or replaced entirely). Preliminary

results where bandit algorithms are used to select the best opponent model from a fixed pool

given past plays are reported in Kocsis and Szepesvári (2005). As we mentioned earlier,

our experience so far suggests that deep searches do not yield a sizeable performance gain.

However, foreseeing the future betting of the opponents plays an important role in human play,

suggesting that higher gains should be attainable by an improved search algorithm. Currently

an important weakness of the program might be its predictability. A potential solution to this

problem is the game-theoretic approach (i.e., attempting to find Nash-equilibrium strategies)

that proved successful in Texas Hold’em (Billings et al., 2003).

From the point of view of poker play another significant deficiency of the the experiments

of the present paper is that training happened whilst playing against a single opponent.

Such an approach may result in strategies that perform very poorly against some opponents.

Training against a larger set of opponents would be a simple-minded and expensive solution.

Ideas from bandit problems or active learning could be borrowed to improve the performance

of this approach. We believe that substantially more work would be desirable to explore this

exciting area.

Appendix A: Multiple perturbations vs. Multiple evaluations

In this section we provide a derivation of Eq. (7). Let

δ f (θ, Y, c�) = f (θ + c�; Y ) − f (θ − c�; Y ).

Using elementary analysis, it can be shown that if f is three times continuous differentiable

in a sufficiently large neighbourhood of θ then

δ f (θ, Y, c�)

2c�i
= f ′

i (θ ; Y ) +
d∑

j=1
j �= i

f ′
j (θ ; Y )

� j

�i
+ O(c2). (15)

Without the loss of generality we will consider the approximation of f ′
1 only. Consider

Aq = 1

q

q∑
i=1

{
δ f (θ, Yi , c�)

2c�1

− f ′
1(θ )

}
,
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where � ∈ Rd is a random variable such that its components are i.i.d., Yi are i.i.d. random

variables, and � is independent of {Y1, . . . , Yq}. We assume just like Spall (1992) that �i is

symmetrically distributed around zero. We shall further assume that | f ′
j (θ ; Y ) |, | �i | and

1/ | �i | are bounded by some common deterministic upper bound K > 0 with probability

one.23

Let A(1)
q , . . . , A(r )

q be independent realisations of Aq . Defining

Ar,q = ĝr,q,1(θ ) − f ′
1(θ )

it is clear that Ar,q = (1/r )
∑r

j=1 A( j)
q . Hence,

E
[
A2

r,q

] = 1/r2

(
r∑

j=1

E
[
(A( j)

q )2
] +

∑
j �= j ′

E
[
A( j)

q A( j ′)
q

])

= (1/r ) E
[
(A(1)

q )2
] + O(c2),

where we have used that by Lemma 1 of (Spall, 1992) E
[

A( j)
q

]
= O(c2) (this follows from

Eq. (15)).

Therefore it suffices to consider E
[
A2

q

]
. Using Eq. (15) we get

Aq = 1

q

q∑
i=1

d∑
j=2

f ′
j (θ, Yi )

� j

�1

+ 1

q

q∑
i=1

( f ′
1(θ, Yi ) − f ′

1(θ )) + O(c2).

Denoting the first and second terms on the right hand side by Vq and Wq , respectively, we get

E [A2
q ] = E [V 2

q ] + E [W 2
q ] + O(c2), where the cross term E [Vq Wq ] cancels because � j is

independent of {Yi } and E [� j ] = 0. Now, standard calculations give

E
[
W 2

q

] = (1/q) E
[
( f ′

1(θ, Y1) − f ′
1(θ ))2

]
and

E
[
V 2

q

] = D
d∑

j=2

{(
1 − 1

q

)
E [ f ′

j (θ, Y1)2] + 1

q
E [ f ′

j (θ, Y1)]2

}
+ O(c2),

where D = E [�2
1] E [1/�2

1]. Therefore

E
[
A2

r,q

] = D
d∑

j=2

{(
1

r
− 1

rq

)
E [ f ′

j (θ, Y1)2] + 1

rq
E [ f ′

j (θ, Y1)
2
]

}

+ 1

rq
E

[
( f ′

1(θ, Y1) − f ′
1(θ ))2

] + O(c2).

This shows that if p = r q is fixed then choosing r = p yields the smallest mean square

error since in this case the term multiplied by (1/r − 1/(rq)) cancels, whilst the other terms

23 With some more work the condition on the boundedness on | 1/�i j | could be replaced by E
[|1/�i j |] < K .
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do not change. In this case the mean squared error of the approximation of the gradient

becomes

1

p
E [�2

1] E [1/�2
1]

{
d∑

j=2

E [ f ′
j (θ, Y1)

2
] + E [( f ′

1(θ, Y1) − f ′
1(θ ))2]

}
+ O(c2),

which is the same as the expression given in Eq. (8).

Appendix B: Details of the experiments on the synthetic task

In this section we describe some of the details of the experiments on the 10-5-10 encoder

problem (cf. Section 3.2.3). The architecture of the neural network is fixed by the problem.

Noise was injected in the outputs as follows: For input (0, . . . , 0, 1, 0, . . . , 0), we used

(Z1, . . . , Zi−1, 1 − Zi , Zi+1, . . . , Z10), where the random variables Zi are independent and

uniformly distributed in the interval [0, 0.5]. Network weights were initialised using the same

fixed seeds to small random weights.

In the experiments reported the following parameter values were used:

– Figure 1, SPSA, update rule step-size is 0.1, momentum 0.5

– Figure 2, SPSA, update rule step-size is 0.01, momentum 0.5

– Figure 3, RSPSA with no coupling, η+ = 1.05, η− = 0.95, δ0 = 0.5, δ− = 1e − 6, δ+ =
1.0

– Figure 4, RSPSA with coupling, η+ = 1.05, η− = 0.95, δ0 = 0.5, δ− = 1e − 6, δ+ = 1.0

(same values as used when RSPSA was used with no coupling).
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