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Abstract The application of Inductive Logic Programming to scientific datasets has been

highly successful. Such applications have led to breakthroughs in the domain of interest and

have driven the development of ILP systems. The application of AI techniques to mathemat-

ical discovery tasks, however, has largely involved computer algebra systems and theorem

provers rather than machine learning systems. We discuss here the application of the HR and

Progol machine learning programs to discovery tasks in mathematics. While Progol is an

established ILP system, HR has historically not been described as an ILP system. However,

many applications of HR have required the production of first order hypotheses given data

expressed in a Prolog-style manner, and the core functionality of HR can be expressed in

ILP terminology. In Colton (2003), we presented the first partial description of HR as an ILP

system, and we build on this work to provide a full description here. HR performs a novel

ILP routine called Automated Theory Formation, which combines inductive and deductive

reasoning to form clausal theories consisting of classification rules and association rules. HR

generates definitions using a set of production rules, interprets the definitions as classification

rules, then uses the success sets of the definitions to induce hypotheses from which it extracts

association rules. It uses third party theorem provers and model generators to check whether

the association rules are entailed by a set of user supplied axioms.

HR has been applied successfully to a number of predictive, descriptive and subgroup

discovery tasks in domains of pure mathematics. We survey various applications of HR which

have led to it producing number theory results worthy of journal publication, graph theory

results rivalling those of the highly successful Graffiti program and algebraic results leading

to novel classification theorems. To further promote mathematics as a challenge domain

for ILP systems, we present the first application of Progol to an algebraic domain—we use

Progol to find algebraic properties of quasigroups, semigroups and magmas (groupoids)

of varying sizes which differentiate pairs of non-isomorphic objects. This development is

particularly interesting because algebraic domains have been an important proving ground
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for both deduction systems and constraint solvers. We believe that AI programs written for

discovery tasks will need to simultaneously employ a variety of reasoning techniques such

as induction, abduction, deduction, calculation and invention. We argue that mathematics is

not only a challenging domain for the application of ILP systems, but that mathematics could

be a good domain in which to develop a new generation of systems which integrate various

reasoning techniques.

1. Introduction

If one were to take mathematics textbooks as indicating how mathematical theories are con-

structed, it would appear that the process is highly structured: definitions are made, then

conjectures involving the definitions are found and proved. However, this belies the fact that

mathematics evolves in a much more organic way. In particular, it would appear that mathe-

matics is produced in an entirely deductive way. While deduction and the notion of truth sets

mathematics apart from other sciences, inductive techniques are also very important in the

development of mathematical theories. Often, looking at particular examples or counterex-

amples to a theorem and generalising a property found for all of them leads to the outline of a

proof. Moreover, many theorems, including famous theorems such as Fermat’s Last Theorem

and open questions such as Goldbach’s conjecture (that every even number greater than 2

is the sum of two primes), were found inductively by looking at examples and generalising

results. Indeed, some mathematical geniuses such as Ramanujan have made entire careers

out of an ability to notice patterns in mathematical data (coupled with fine analytical abilities

to be able to prove that such patterns are not coincidences).

The application of machine learning techniques to scientific datasets has been highly

successful. Inductive Logic Programming has been a particularly useful method for scientific

discovery due to the ease of interpreting the first order hypotheses in the context of the

domain of interest. Such applications have led to breakthroughs in those domains of interest

and have also driven the development of ILP systems. The application of AI techniques

to mathematical discovery tasks, however, has largely involved computer algebra systems,

theorem provers and ad-hoc systems for generating concepts and conjectures. Such ad-hoc

systems have included the AM system (Lenat, 1982) which worked in set theory and number

theory, the GT system (Epstein, 1988) which worked in graph theory, the IL system (Sims &

Bresina, 1989) which worked with number types such as Conway numbers (Conway, 1976),

and the Graffiti program (Fajtlowicz, 1988), which has produced scores of conjectures in

graph theory that have gained the attention of graph theorists worldwide.

General purpose machine learning systems have rarely been used for discovery tasks

in mathematics. We discuss here the application of the HR (Colton, 2002b) and Progol

(Muggleton, 1995) machine learning programs to discovery tasks in mathematics. We aim

to show that mathematics is a challenging domain for the use of learning systems such

as Inductive Logic Programming, and we hope to promote the usage of inductive tools for

mathematical discovery tasks. While Progol is an established ILP system, HR has historically

not been described as an ILP system. However, many applications of HR have required the

production of first order hypotheses about data and background knowledge expressed in a

Prolog-style manner, and the core functionality of HR can be expressed in ILP terminology.

In Colton (2003), we presented the first partial description of HR as an ILP system, and we

build on this work to provide a full description here. HR performs a novel ILP routine called

automated theory formation (ATF), which combines inductive and deductive reasoning to

form clausal theories consisting of classification rules and association rules. HR generates
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definitions using a set of production rules, interprets the definitions as classification rules,

then uses the success sets of the definitions to induce hypotheses from which it extracts

association rules. It uses third party theorem provers and model generators to check whether

the association rules are entailed by a set of user supplied axioms. Moreover, it measures the

value of each definition and drives a heuristic search by choosing the best definitions to build

new ones from.

HR has been applied successfully to a number of predictive, descriptive and subgroup

discovery tasks in domains of pure mathematics. We provide a detailed survey of applications

of HR which have led to it producing number theory results worthy of journal publication;

graph theory results rivalling those of the highly successful Graffiti program (Fajtlowicz,

1988); and algebraic results leading to novel classification theorems and challenge problems

for automated theorem provers. We have also applied the ATF algorithm to the enhancement

of AI techniques such as constraint solving and theorem proving, with much success.

We believe the key to HR’s success lies in three areas. Firstly, the production rules have

been developed over a number of years to enable HR to construct important concepts in

mathematics. While not necessarily mimicking mathematicians, the production rules have

proven to be highly general by constructing many important, existing concepts and many

interesting new concepts for which they were not originally conceived. Secondly, HR’s ability

to induce conjectures from the data alone means that it can construct empirically plausible

but non-trivial to prove hypotheses about the data. The history of mathematics is littered with

theories born out of an analysis of a seemingly unexplainable pattern. Thirdly, HR’s ability

to call upon third party software means that we can draw upon the wealth of research into

other areas of mathematical reasoning. This has greatly enhanced HR’s power and flexibility.

Whether other ILP techniques and machine learning approaches in general can be as

successful as ATF in mathematics is an interesting open question. To further promote pure

mathematics as a challenging domain for ILP systems, we present the first application of

Progol to an algebraic domain—we use Progol to find properties of quasigroups, semigroups

and magmas of varying sizes which differentiate pairs of non-isomorphic objects. This devel-

opment is particularly interesting because algebraic domains have been an important proving

ground for both deduction systems and constraint solvers. We believe that AI programs writ-

ten for discovery tasks will need to simultaneously employ a variety of reasoning techniques

such as induction, abduction, deduction, calculation and invention. Moreover, we argue that

mathematics is not only a challenging domain for the application of ILP systems, but that

mathematics could be a good domain in which to develop a new generation of systems which

integrate various reasoning techniques.

In Section 2, we describe the Automated Theory Formation routine and its implementation

in the HR system. We include details of input to and output from the system, how knowledge

is represented and how theory formation steps are used to build up the theory. In Section 3,

we provide more details of how HR forms new definitions from old ones, and we provide

a partial characterisation of the space of definitions it searches. In Section 4, we describe

recent developments which have enabled HR to work with noisy and incomplete data. In

Section 5, we describe various search strategies available to HR, and we describe how HR

evaluates the worth of the definitions it produces. In Section 6, we describe three successful

applications of HR to mathematical discovery, and in Section 7, we discuss how Automated

Theory Formation has been used to enhance other AI techniques. Finally, in Section 8, we

compare HR to other ILP systems and provide details of an application using Progol to solve

a set of algebraic discrimination problems. We conclude by further promoting mathematics

as a worthy domain for machine learning applications, and we discuss future directions for

this work.
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2. Automated theory formation

We describe here how HR forms a theory using the Automated Theory Formation (ATF)

algorithm. To do so, in Section 2.1, we discuss the inputs to and outputs from the system. In

Section 2.2, we describe how knowledge is represented within the system. In Section 2.3, we

describe how theory formation steps add knowledge to the theory. We will use a session in

number theory as a running example. In Sections 3, 4 and 5, we expand on three important

aspects of the ATF algorithm and its implementation.

2.1. Input and output

The knowledge input to HR consists of information in one of five different formats. Firstly,

the user can supply some constants, which may represent different objects such as integers,

graphs, groups, etc. Secondly, the user can supply some predicates which describe these

constants. For instance, in number theory, background predicates may include a test of

whether one number divides another. Thirdly, the user may supply a set of axioms, which are

taken to be true hypotheses relating some of the predicates in the background knowledge.

During theory formation, attempts will be made by an automated theorem prover to determine

whether certain association rules are entailed by these axioms. Hence, the axioms are given

in the language of the theorem prover being employed, which is usually Otter, a state of

the art resolution prover (McCune, 1990). The predicate names in the axioms must match

with those in the background knowledge. Fourthly, for predictive tasks, the user may supply

a classification of a set of examples, to be used in an evaluation function during theory

formation. Finally, the program runs as an any-time algorithm by default, but the user may

also supply termination conditions, which are often application specific.

The background predicates and constants are usually supplied in one background theory

file, and the axioms in another, so that the same axioms can be used with different background

files. The classification of examples and the specification of termination conditions is done

on-screen. The background theory and axiom files for a number theory session are given in

Fig. 1. We see that the user has supplied the constants 1 to 10 and four background predicates.

The first of these is the predicate of being an integer, which provides typing information for the

constants appearing in the theory. The other three background predicates are: (i) leq(I,L)
which states that integer L is less than or equal to integer I (ii) divisor(I,D), which states

that integer D is a divisor of integer I and (iii) multiply(I,A,B) stating that A * B =

I. Note that typing information for each variable in each predicate is required, which is why

the background file contains lines such as leq(I,L) -> integer(L). The axioms in the

integer.hra file are obvious relationships between the predicates supplied in the background

file. For instance, the line:

all a b c (multiply(a,b,c) <-> multiply(b,a,c)).

portrays the axiom that multiplication is commutative.

All five types of information are optional to some extent. In particular, in algebraic domains

such as group or ring theory, the user may supply just the axioms of the domain, and provide

no constants or background predicates. In this case, HR extracts the predicates used to

state the axioms into the background knowledge file, and uses the MACE model generator

(McCune, 1994) to generate a single model satisfying the axioms. MACE, which uses the

same input syntax as Otter, will be used repeatedly during theory formation to disprove

various false hypotheses made by HR, and this will lead to more constants being added to the
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Fig. 1 Example input files for number theory

theory. Alternatively, the user may supply no axioms, and only background predicates and

constants. In this case, the system would not be able to prove anything, unless the user provided

axioms during theory formation, as responses to requests from HR. Note that predicates in

the background knowledge file may call third party software, in particular computer algebra

systems like Maple (Abell & Braselton, 1994) and (Gap, 2000), or hard-coded functions inside

HR. For details of the integration of HR and computer algebra packages, see (Colton, 2002d).

The output from HR is voluminous and varied. Of particular importance, however, is

the theory consisting of a set of classification rules and a set of association rules1 that HR

1 Note that the definition of association rules used here is different from that used in data mining applications.
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produces. Each classification rule is expressed as a predicate definition, i.e., a disjunction of

program clauses with the same head predicate. Each program clause in the definition is range

restricted2 and of the form:

conceptC (X1, . . . , Xn) ← p1(A1,1, . . . , A1,n1
) ∧ . . . ∧ pm(Am,1, . . . , Am,nm )

where C is a unique identification number, each Xi is a variable, and each Ai, j may be a

constant or a variable which may or may not be the same as a head variable. Body literals

may be negated, and there are further restrictions so that each definition can be interpreted

as a classification rule, as described in Section 3. Association rules are expressed as range

restricted clauses of the form:

q0(X1, . . . , Xn) ← q1(A1,1, . . . , A1,n1
) ∧ . . . ∧ qm(Am,1, . . . , Am,nm )

where the Xi and each Ai, j are variables as before, and each qk is either a predicate supplied

in the background theory file or is one invented by HR. Each body literal may be negated,

and the head literal may also be negated.

For a non-mathematical example of classification and association rules, one can imagine

HR producing these two clauses when forming a theory about animals3:

concept17(X ) ← mammal(X ), number of legs(X, 2)

class(X, fish) ← has gills(X ), produces eggs(X )

The first of these is a classification rule, which HR uses to subgroup objects in the theory—in

this case mammals with 2 legs. The second of these is an association rule, which HR presents

to the user as potentially useful information about the domain—in this case that an animal is

a fish if it has gills and produces eggs.

For a mathematical example, an output file for a short, illustrative, number theory session

is given in Fig. 2. HR has many modes for its output and—dependent on the application at

hand—it can produce more information than that presented in Fig. 2. However, the clausal

information is usually the most important, and we have presented the clausal theory in a

Prolog style for clarity. The first four definitions are those given in the input file. Note that

HR has added the variable typing information to them, so that it is clear, for instance, in

concept2/2 that both variables are integers. This is important information for HR, and in

every clause for each classification rule HR produces, there are typing predicates for every

variable in the body or head. Following the user-given definitions in the output file, we see

that HR has invented a new predicate, called count1/2 which counts the number of divisors

of an integer (the τ function in number theory). The first classification rule it has introduced

is concept5/2, which checks whether the second variable is the square root of the first

variable. The next definition provides a boolean classification into square numbers and non-

squares. Following this, concept7/2 uses count1 to count the number of divisors of an

integer (there seems to be redundancy here, but count1/2 can be used in other definitions—

in fact it is used in concept8). Finally, concept8/1 provides a classification into prime

and non-prime numbers, because prime numbers have exactly two divisors.

2 A range restricted clause is such that every term in the head literal is found in at least one body literal.
3 For example using the background theory to the animals dataset supplied with distributions of the Progol
program (Muggleton, 1995).
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Fig. 2 An example output file in number theory

In the output file, each classification rule is followed by the way in which the rule is

interpreted to categorise the constants (which, in this case, are the integers 1 to 10). More

details about this are given in Section 3. After the classification predicates, the program has

listed the unproved association rules it has found so far. The first of these states that if an integer

is a square number (i.e., integers X for which there is some Y such that multiply(X,Y,Y)),

then it will not be a prime number. The second states that if an integer is a prime number then

it cannot be a square number. While both of these are in fact true, they are listed as unproved

in the output file, because Otter could not prove them. This is actually because no attempt

was made to use Otter, as rules containing counting predicates are usually beyond the scope

of what Otter can prove.

2.2. Representation of knowledge

HR is implemented in Java and so is an object oriented program. Each theory constituent

(definition, association rule, etc.) occupies an object of the appropriate class. For clarity, we

will use the more abstract notion of frames (Brachman & Levesque, 1985), as objects can be

seen as frames, and this allows us to easily describe the components of the theories that HR

produces. The first slot in each frame contains clausal information, so HR effectively builds

up a clausal theory embedded within a frame representation. There are three types of frame:� Constant frames. The first slot in these frames contains a single ground formula of the form

type(constant), where type is the name of a unary predicate which has appeared in

the background theory and constant is a constant which has either appeared in the

background theory or has been generated by the theory formation process. Each constant

will appear in a single constant frame, and hence will be of only one type. For instance, in
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the example session described in Section 2.1, there would be a constant frame for each of

the numbers 1 to 10, where the ground formula is integer(1), integer(2), etc.� Concept frames. The first slot in these frames contains a definition of the form for clas-

sification rules described above. The other slots contain the results of calculations related

to the definition. In particular, one slot contains the success set of the definition. Another

slot contains the classification of the constants in the theory afforded by the definition (see

Section 3.1). At the end of the session in our running example, there are 8 concept frames,

and, for example, the 6th of these contains a definition with a single clause of the form:

concept6(X ) ← integer(X ) ∧ integer(Y ) ∧ multiply(X, Y, Y )

Note that the count1/2 predicate is not stored in a concept frame of its own. Rather,

such invented predicates are stored centrally, as they may be used by multiple definitions.� Hypothesis frames. The first slot in a hypothesis frame contains one or more association

rules in the form as described above. The other slots contain information about the hypothe-

sis. In particular, there is a slot describing the status of each association rule as either proved,

disproved, or open. Sets of association rules are stored together, rather than in individual

frames, because the whole can usually be interpreted as more than the sum of the parts. For

instance, the two association rules in Fig. 2 are stored in the first slot of a single hypothesis

frame. This is because they were derived from a non-existence hypothesis stating that it is

not possible to have an integer which is both square and prime. This information is also

recorded in the hypothesis slot, and hence the hypothesis can be presented as the following

negative clause, which is easier to understand:

← integer(X ), integer(Y ), multiply(X, Y, Y ), count1(X, 2)

2.3. Theory formation steps

HR constructs theories by performing successive theory formation steps. An individual step

may add nothing to the theory, or it may add a new concept frame, a new hypothesis frame, a

new constant frame, or some combination of these. At the end of the session, various routines

are used to extract and present information from the frames. An outline of an individual step

is given in Table 1. After checking whether the termination conditions have been satisfied,

each step starts by generating a new definition. How to build a new definition from previous

ones is prescribed by an agenda which is ordered according to a search strategy, as described

in Section 5. The generation of new definitions is achieved using a production rule to derive a

new definition from one (or two) old definitions. This process is described in detail in Section

3, but for our current purposes, we can see the kinds of definitions HR produces in Fig. 2.

The new definition is checked for inconsistencies, e.g., containing a literal and its negation

in the body of a clause. For example, a definition may be produced of the form:

conceptC (X, Y ) ← integer(X ) ∧ integer(Y ) ∧ leq(X, Y ) ∧ ¬leq(X, Y )

so that conceptC is trivially unsatisfiable. If, like this one, the definition is not self-consistent,

the step is aborted and a new one started.

After the self-consistency check, the success set of the new definition is cal-

culated. For instance, the success set for definition concept6/1 above would be:

Springer



Mach Learn (2006) 64:25–64 33

Table 1 Outline of a theory formation step

Inputs: Typed examples E

Background predicates B

Axioms A

Classification of examples C

Termination conditions T

Outputs: New examples N (in constant frames)

Classification rules R (in concept frames)

Association rules S (in hypothesis frames)

(1) Check T and stop if satisfied

(2) Choose old definition(s) and production rule from the top of the agenda

(3) Generate new definition D from old definition(s), using production rule

(4) Check the consistency of D and if not consistent, then start new step

(5) Calculate the success set of D

(6) If the success set is empty, then

(6.1) derive a non-existence hypothesis

(6.2) extract association rules and add to S

(6.3) attempt to prove/disprove association rules using A

(6.4) if disproved, then add counterexample to N, update success sets and

in go to (7), else start a new step

(7) If the success set is a repeat, then

(7.1) derive an equivalence hypothesis

(7.2) extract association rules and add to S

(7.3) attempt to prove/disprove association rules using A

(7.4) if disproved, then add counterexample to N, update success sets and

go to (8), else start new step

(8) Induce rules from implications

(8.1) extract association rules and add to S

(8.2) attempt to prove/disprove association rules using A

(9) Induce rules from near-equivalences and near-implications

(9.1) extract association rules and add to S

(10) Measure the interestingness of D (possibly using C)

(11) Perform more calculations on D and add it to R

(12) Update and order the agenda

{concept6(1), concept6(4), concept6(9)}, because, of the numbers 1 to 10, only 1, 4 and

9 are square numbers. If the success set is empty, then this provides evidence for a non-

existence hypothesis. That is, HR induces the hypothesis that the definition is inconsistent

with the axioms of the domain, and generates some association rules to put into the slot of a

new hypothesis frame. The extraction of association rules is done by negating a single body

literal (which doesn’t type the variables) and moving it to the head of the rule. In our running

example, HR invented the following definition at the start of a theory formation step:

concept9(X ) ← integer(X ) ∧ integer(Y ) ∧ multiply(X, Y, Y ) ∧ count 1(X, 2)

The success set of this definition was empty, so a non-existence hypothesis was induced and

a hypothesis frame was added to the theory. In the first slot were put the two association rules
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which could be extracted, which were:

¬ multiply(X, Y, Y ) ← integer(X ) ∧ integer(Y ) ∧ count1(X, 2)

¬ count1(X, 2) ← integer(X, 2) ∧ integer(Y ) ∧ multiply(X, Y, Y )

For each rule extracted, an attempt to prove that it is entailed by the axioms is undertaken, by

passing Otter the axioms and the statement of the rule. If the attempt fails, then HR tries to

find a counterexample to disprove the rule. In algebraic domains, this is done using MACE,

but in number theory, HR generates integers up to a limit to try as counterexamples. If a

counterexample is found, a new constant frame is constructed for it and added to the theory.

The success set for every definition is then re-calculated in light of the new constant. This can

be done if the user has supplied information about calculations for background predicates

(e.g., by supplying Maple code). If no extracted rule is disproved, then the step ends and a

new one starts.

If the new success set is not empty, then it is compared to those for every other definition

in the theory, and if an exact repeat is found (up to renaming of the head predicate), then an

equivalence hypothesis is made. A new hypothesis frame is constructed, and association rules

based on the equivalence are added to the first slot. These are derived by making the body

of the old definition imply a single (non-typing) literal from the body of the new definition,

and vice versa. For example, if these two definitions were hypothesised to be equivalent:

conceptold (X, Y ) ← p(X ) ∧ q(Y ) ∧ r (X, Y )

conceptnew(X, Y ) ← p(X ) ∧ q(Y ) ∧ s(X, X, Y )

then these association rules would be extracted:

r (X, Y ) ← p(X ) ∧ q(Y ) ∧ s(X, X, Y )

s(X, X, Y ) ← p(X ) ∧ q(Y ) ∧ r (X, Y )

In terms of proving and disproving,these association rules are dealt with in the same way as

those from non-existence hypotheses. HR also extracts prime implicates by systematically

generating larger subsets of the body literals and attempting to use Otter to prove that the

subset implies the goal. HR stops when it finds such a subset, as this is guaranteed to be a

prime implicate. For more details of this process, see (Colton, 2002c). More sophisticated

techniques for extracting prime implicates are available (Jackson, 1992), but we have not yet

implemented them.

If the success set is not empty, and not a repeat, then the new definition will be added to

the theory inside a concept frame. Before this happens, attempts to derive some association

rules from the new definition are made. In particular, the success set of each definition in

the theory is checked, and if it is a proper subset or proper superset of the success set for

the new definition (up to renaming of the head predicate), then an appropriate implication

hypothesis is made. A set of association rules are extracted from any implication found and

attempts to prove/disprove them are made as before. As described in Section 4, at this stage,

HR also attempts to make conjectures which are nearly true, i.e., they have a small set of

counterexamples.

A new concept frame is added to the theory, with the new definition in the first slot.

Theory formation steps end with various calculations being performed using the definition,
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its success set and details of the construction process, with the results put into the slots of

the new concept frame. The calculations are largely undertaken to give an assessment of the

‘interestingness’ of the definition, as prescribed by the user with a weighted sum of measures,

as described in Section 5. At the end of the step, all possible ways of developing the new

definition are added to the agenda. The agenda is then ordered in terms of the interestingness

of the definitions, and the prescription for the next step is taken from the top and carried

out. The agenda is ordered according to the search strategy being employed, as described in

Section 5.

3. Searching for definitions

To recap, in the ATF algorithm, a clausal theory is formed when frames which embed classifi-

cation and association rules are added to the theory via theory formation steps. The inductive

mechanism is fairly straightforward: the success set of each newly generated definition is

checked to see whether (a) it is empty, or (b) it is a repeat. In either case, a hypothesis is made,

and association rules are extracted. If neither (a) nor (b) is true, the new definition is added

to the theory and interpreted as a classification rule, and association rules are sought, again

using the success set of the definition. Clearly, the nature of the definitions produced by HR

dictates the contents of both the classification rules and the association rules produced.

Exactly how HR forms a definition at the start of each step is determined by a triple:

〈Production Rule, Definitions, Parameterisation〉

where Production Rule is the name of a general technique for constructing new definitions

from old ones, Definitions is a set containing the identification numbers of one or two old

definitions from which the new one will be built, and Parameterisation specifies fine details

about how Production Rule will make a new definition from Definitions. When HR updates the

agenda by adding ways to develop a new definition, it generates all possible parameterisations

for each of the production rules with respect to the new definition, and puts appropriate triples

onto the agenda. How parameterisations are generated, and how the production rules actually

operate, is carefully controlled so that HR searches for definitions within a well defined, fairly

constrained, space. We describe below how each definition is interpreted as a classification

rule and we provide a partial characterisation of HR’s search space. Following this, we

describe the production rules which HR uses to search within this space.

HR currently has 16 production rules, which are either nullary, unary or binary. Unary

rules take a single old definition and produce a new one, whereas binary rules take two

old definitions and produce a new one from them. HR’s single nullary rule produces new

definitions without reference to any old definition. The production rules are not meant to be

an exhaustive set, and the addition of a new production rule will lead to an improvement

of the ATF algorithm underlying HR. We describe them in a rationalised way, namely as

ways of taking one (or two) clausal definitions and producing a new clausal definition.

This way of describing them enables comparison with other ILP systems and is a more

formal approach than we have previously used. The implementation of HR differs from this

rationalised description somewhat. In particular, in many cases, the definitions produced by

HR are written and stored in full first order logic, whereas in the description below, we reduce

them to logic programs using standard rewriting rules. Also, HR produces the success set

for these definitions independently from the definitions. That is, the examples satisfying a

definition are generated using only the examples of the old concepts, i.e., with no reference to
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the new definition. This has potential for mismatches between the definition and the examples

of a concept. We believe there are no such inconsistencies in HR as they are easy to detect

because they result in many incorrect conjectures being formed. HR generates the success

sets independently, because it has no underlying Prolog interpreter—a situation we hope to

change, as discussed in Section 9.

For brevity, in the description of the production rules, we assume that each old definition

that HR builds new ones from contains a single clause. Note, however, that the procedures

scale up to full definitions in obvious ways. For more details about the production rules, see

(Colton et al., 2000a) or chapter 6 of Colton (2002b).

3.1. A partial characterisation of HR’s search space

Definition 1. fully typed program clauses
Suppose we have been given typing information about every constant in a theory, for instance

the unary predicate nteger(4) in the input file of Fig. 1. We call these predicates the typing

predicates, and we assume that each constant has only one type. A program clause C with

variables X1, . . . , Xm (either in the body or the head) is called fully typed if each Xi appears

in a single non-negated typing predicate in the body of C . We say that the type of a variable is

this single predicate. A definition is fully typed if each clause is fully typed and corresponding

head variables in each clause are of the same type. Given a fully typed definition, D, with head

predicate p(Y1, . . . , Ym) then we call the set of constants which satisfy the typing predicate

for Y1 the objects of interest for D.

Definition 2. 1-connectedness
Suppose C is a program clause of the form:

p(X1, . . . , Xm) ← q1(Y11, . . . , Y1n1
), . . . , ql (Yl1, . . . , Ylnl )

where each Xi is a variable and each Yi j may be a variable or a ground term. Then, a variable

V which appears in a literal in the body of C is said to be 1-connected if it satisfies the

following recursive definition:� V = X1 or� ∃ i, j, k such that j �= k, Yi j = V and Yik = X1 or� ∃ i, j, k such that j �= k, Yi j = V and Yik is a 1-connected variable.

In English, this says that V is 1-connected if V is X1, or V appears in a body literal with X1,

or V appears in a body literal with a variable which appears in a body literal with X1, etc.

Hence there is a chain of variables which connect V to X1 where the links in the chain are

made by two variables being found in the same body literal.

If every variable in either the body or head of C is 1-connected, we say that C is

1-connected. Definitions which contain only 1-connected clauses are similarly called 1-

connected. As with fully typed definitions, 1-connected definitions are a specialisation of

range-restricted definitions. The notion of 1-connectedness clearly generalises to the notion

of n-connectedness, and clauses can be both 1-connected and 2-connected at the same time,

etc. Our main interest is in 1-connected clauses, but we occasionally use the general notion

of n-connectedness when describing how HR forms concepts.
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Example 1. Consider this definition, where p and q are typing predicates:

conceptC (X, Y ) ← p(X ) ∧ q(Y ) ∧ p(Z ), r (X, Y ) ∧ s(Y, Z )

This is clearly fully typed, because p(X ), q(Y ) and p(Z ) provide typing information. It is

also 1-connected, because Y is in a body literal with X (variable number 1 in the head), hence

Y is 1-connected and Z is in a body literal with Y , which is 1-connected.

Definition 3. classifying function
Suppose we have a fully typed definition, D, of arity n, with head predicate p and success

set S. Then, given a constant, o, from the objects of interest for D, the following specifies

the classifying function for D:

f (o) =

⎧⎪⎨⎪⎩
∅ if n = 1 & p(o) /∈ S;

{∅} if n = 1 & p(o) ∈ S;

{(t1, . . . , tn−1) : p(o, t1, . . . , tn−1) ∈ S} if n > 1.

We build the classification afforded by D by taking each pair of objects of interest, o1 and

o2 and putting them in the same class if f (o1) = f (o2).

Example 2. As an example classification, we look at concept7 in Fig. 2, which is a definition

with head predicate of arity 2. It represents the number theory function τ , which counts the

number of divisors of an integer. The success set for this is:

{(1, 1), (2, 2), (3, 2), (4, 3), (5, 2), (6, 4), (7, 2), (8, 4), (9, 3), (10, 4)}

hence f (1) = {(1)}, and for the numbers 2, 3, 5 and 7, f outputs {(2)}, for the numbers 4 and

9, f outputs {(3)}, and for the numbers 6, 8 and 10, f outputs {(4)}. Hence the classification

afforded by concept7 is: [1][2,3,5,7][4,9][6,8,10], as shown in Fig. 2.

Theorem 1. Suppose we are given a fully typed definition, D, with a non-empty success
set, and where each head variable appears in at least two distinct body literals. If D is not
1-connected, then there is a literal L in the body of some clause C of D such that L can be
removed from C without altering the classification afforded by D.

Proof: Note that the restriction to definitions where all head variables appear in at least two

distinct body variables means that removing a literal cannot remove all reference to a head

variable in the body (which would make calculating the success set impossible). Given that

D is not 1-connected, then there must be a clause C ′ with a body literal L ′ containing only

constants or variables which are not 1-connected. This is because, if one of the terms in L ′

was 1-connected, then by definition they would all be. As there is no connection between the

first variable in the head of C ′ and any variable in L ′, the values that those variables take in the

success set for C ′ will be completely independent of the value taken by the first head variable.

This means that the classifying function for D will be independent of these variables, and

hence we can take C and L in the theorem statement to be C ′ and L ′ respectively. �

HR is designed to search a space of function free, fully typed, 1-connected definitions

where each head variable appears in at least two distinct body literals. The variable typing
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is important for HR’s efficiency: given an old definition to build from, for each production

rule, HR can tell from the typing predicates alone which parameterisations will produce a

definition where a variable is assigned two types (and hence not satisfiable, because each

constant is of a single type). Such parameterisations are not put on the agenda. Also, when

checking for repeat success sets, HR uses variable typing information to rule out repeats

quickly. More importantly, in light of Theorem 1, the set of 1-connected definitions is a

minimal set with respect to the classifications afforded by them. That is, with this language

bias, assuming that the user supplies appropriate background definitions, HR avoids building

definitions which are guaranteed to have a literal which is redundant in the generation of the

classification. As the main reason HR forms definitions is to interpret them as classification

rules, it is important to know that it searches within this minimal set (although we do not

claim that it searches all of this space).

3.2. Nullary production rules

3.2.1. The entity-disjunct production rule

This production rule is parameterised by a list of constants from the domain, and produces

definitions with a clause for each constant. Each clause has a head predicate of arity one,

and a single body literal that states that the variable in the head is equal to the constant. For

instance, if the parameterisation was {dog, cat}, the definition produced would be:

conceptnew(X ) ← equals(X, dog)

conceptnew(X ) ← equals(X, cat)

This rule was implemented in order for HR to be able to undertake non-theorem correcting

methods as described in Section 4, and is not used during normal theory formation. It is em-

ployed only on occasions when the correction methods require definitions such as conceptnew

above.

3.3. Unary production rules

There are nine unary production rules, which take a single old definition and produce a

new one from it. Six of these, namely the Exists, Match, Size, Split, LinearConstraint and

Equals rules apply to generic domains. The Embed-algebra, Embed-graph, and Record rules,

however, are more specific to domains of mathematics: algebra, graph theory and number

theory respectively.

3.3.1. The exists production rule

Each parameterisation for this production rule is a list of integers [k1, . . . , kn]. The rule takes

a copy of the old clause for the new one and then removes variables from the head predicate

in each position ki . The variables are not removed from body literals. For example if it used

the parameterisation [2, 3], then HR would turn conceptold into conceptnew as follows:

conceptold (X, Y, Z ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ s(X, Y, Z )

conceptnew(X ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ s(X, Y, Z )
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HR generates parameterisations so that the first variable in the head predicate is never re-

moved. This ensures 1-connectedness of conceptnew, given 1-connectedness of conceptold .

3.3.2. The match and equals production rules

The Match rule takes an old definition and alters variable naming in the head predicate so

that some of the variables become the same. The same change is applied where the variables

appear in the body. Given an old definition of arity n, then the parameters are a list of n
integers, with the i-th integer specifying which variable number the i-th variable should be

changed to. For example, suppose we started again with conceptold above. If this was passed

through the match production rule with parameterisation [1, 2, 2], then the first variable would

be replaced by the first variable (hence no change). The second variable would be replaced by

the second variable, and the third variable would be replaced by the second variable. Hence

this would produce the following definition:

conceptnew(X, Y, Y ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ s(X, Y, Y )

However, there is redundancy in having two Y variables in the head, so the second one is

removed, giving us the final definition:

conceptnew(X, Y ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ s(X, Y, Y )

When repeated variables are removed like this, the latter one is always taken, thus the first

variable endures, ensuring that the definition produced has the 1-connectedness property.

The Equals production rule is very similar to the Match rule. It takes the same parame-

terisations as Match, but rather than homogenising variables to force their equality, it simply

adds on appropriate equality predicates to the end of the old definition. Hence, given the old

concept and parameterisation above, the definition that Equals would produce is:

conceptnew(X, Y, Z ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ s(X, Y, Z ), equals(Y, Z )

Clearly, such constructions do not alter the 1-connectedness of the definition.

3.3.3. The split production rule

This takes a single old definition and instantiates variables to constants in the new definition,

removing literals which end up with no variables in them and removing constants from the

head literal. The parameterisations are pairs of lists, with the first list corresponding to variable

positions in the head, and the second list containing the constants to which the variables will

be instantiated. For instance, if HR started with conceptold as above, and parameterisation

[[2, 3], [dog, cat]], the new definition generated would be:

conceptnew(X ) ← p(X ) ∧ s(X, dog, cat),

because q(dog) and r (cat) would be removed, as they contain no variables. Parameterisations

are generated so that the first head variable is never instantiated, to ensure 1-connectedness.

Also, HR does not generate parameterisations which would instantiate variables of one type

to constants of a different type.
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3.3.4. The size production rule

This takes a single old definition and a parameterisation which consists of a list of integers

[i1, . . . , in] representing argument positions in the head predicate. This production rule re-

moves the variables from the head in the positions specified by the parameters and adds in

a new variable of type integer at the end of the head predicate. Furthermore, if it has not

already been invented, HR invents a new predicate of the form countid , where id is a unique

identification number. This counts the number of distinct tuples of constants in the success

set of the old definition. The tuples are constructed by taking the i1-st, i2-nd etc. variable

from each ground formula in the success set of the old definition. We use the standard Prolog

findall/2 and length/2 predicates to represent the invented predicate. For example, suppose

HR started with conceptold above, and the parameterisation [2, 3]. It would first invent this

predicate:

countC (X, N ) ← findall((Y, Z ), (q(Y ) ∧ r (Z ), s(X, Y, Z )), A) ∧ length(A, N )

Note that every literal in the body of the old definition which contains a 2 or 3-connected

variable appears in the findall predicate (due to the [2,3] parameterisation). The new definition

would then be generated as:

conceptnew(X, N ) ← p(X ) ∧ integer(N ) ∧ countC (X, N )

Parameterisations are never generated which include the first variable, so it is not removed.

As the first variable will also appear in the counting predicate, 1-connectedness is guaranteed.

3.3.5. The linear-constraint production rule

This production rule works only with definitions where two variables in the head are typed

as integers. The parameterisations dictate which two integer variables to look at and how

to relate them. The relations it is allowed to impose are linear constraints, namely equality

(which makes the Equals production rule redundant, so that the Linear-Constraint rule can be

seen as a generalisation of Equals), less than, greater than, less-than-or-equal-to or greater-

than-or-equal-to. For instance, given the parameterisation of {(2, 3), less-than}, and the old

definition above, the new definition would be:

conceptnew(X, Y, Z ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ s(X, Y, Z ), less than(Y, Z )

It is possible to get the same functionality by supplying background predicates represent-

ing such relationships and waiting for HR to compose these concepts with the relevant ones

in the theory. However, imposing such constraints is a core functionality of theory forma-

tion in most scientific domains, mathematics in particular. Hence we chose to gain more

control over the introduction of such constraints by implementing the Linear-Constraint

rule, rather than relying on the user to add certain predicates to the background knowl-

edge. This situation is true of a number of production rules, and each rule has been care-

fully chosen for implementation given the benefits of having certain functionalities always

available.
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3.3.6. The embed-algebra and embed graph production rules

The Embed-Algebra rule was implemented specifically for an application in algebraic do-

mains, where we wanted HR to invent sub-algebra concepts. It takes a particular element type

(for instance, central elements which commute with all others), and produces a definition

which discriminates between algebras where the set of elements satisfy particular axioms

sets supplied by the user. For instance, in group theory, this rule can be used to invent the

concept of groups for which the central elements themselves form a (sub)group. HR would

notice that this is true of all groups and re-discover the theorem that the centre of a group

forms a subgroup. Such sub-algebra concepts are difficult to describe in a first order manner,

so we omit discussion of that here.

The Embed-Graph production rule imposes a graphical structure on the variables of a

definition such that constants become the nodes of the graph and any two related by the

definition are joined by an edge in the graph. This can be used in any domain, but was

specifically designed for use in graph theory. Inspired by the work described in Steel (1999),

we used it to produce cross domain theories, where graphs are found embedded in concepts

from number theory or algebraic domains such as group theory. For instance, we have used

HR to invent concepts such as ‘divisor graphs’, where each integer is represented as a graph,

with the nodes of the graph being its divisors. Nodes are joined if one divides the other. For

some theorems about the planar nature of such graphs, see the appendix of Colton (2002b).

As with Embed-Graph, such concepts are not easily represented in a first-order fashion, so

we omit details here.

3.3.7. The record production rule

This production rule was implemented in order to enhance HR’s ability in the application

to generating integer sequences as described in Section 6.1. A particularly common form of

sequence construction is to take a numerical function and record which integers produce a

larger output integer for the function than all smaller numbers. For instance, a set of numbers

known as highly composite integers are such that they have more divisors than any smaller

number. Note that this concept was discovered by Ramanujan, and re-invented by the AM

program (Lenat, 1982). Given definitions which describe a function taking an integer to

another integer, the Record production rule is able to produce a new definition which can be

used to construct such record sequences. Again, details of representing this in a first order

fashion are omitted.

3.4. Binary production rules

There are six binary production rules, which take a pair of old definitions and produce

a new definition. The Compose, Disjunct, Forall and Negate rules are generic, whereas

the Arithmetic and NumRelation rules are more specific to domains requiring the use of

arithmetic and inequalities.

3.4.1. The compose production rule

This production rule takes two definitions, and for each pair of clauses C1 and C2—one from

each definition—it produces the body of a new clause by changing the variable names in

the body of C2, conjoining all the altered literals in C2 to the literals in the body of C1 and

removing any duplicate literals. A head is then constructed which is used to turn each body
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into a clause, with the disjunction of these new clauses forming the new definition. How the

head is constructed and the variable names are altered is specified by the parameterisation,

which is a list containing integers or a dash sign. If the number of variables in the head of

C1 is f and if a number, n, appears in the parameterisation at position p < f , then the n-th

variable in the head of C2 will be set to the variable name of the p-th variable in the head

of C1 wherever it appears in C2. If a number, n, appears in the parameterisation at position

p >= f , then the variable name of the n-th variable in the head of C2 will be set to a unique

variable name Un which is not found anywhere in C1. A dash in the parameterisation at

position q indicates that the head variable at position q in C1 will not occur in any of the

literals imported from the body of C2. The variables in the head of the new clause are taken to

be the variables from the head of C1 followed by the unique new variable names Ui described

above.

As an example, suppose we start with two definitions containing only a single clause each:

conceptold1(X, Y, Z ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ s(X, Y, Z )

conceptold2(A, B, C) ← r (A) ∧ q(B) ∧ p(C) ∧ t(A, B, C)

Suppose further that the Compose production rule was told to use parameterisation

[−, 1, 0, 2], then the variables in the body of conceptold2 would first be altered. In particular,

the number 1 appears in position number 1 (counting from zero), in the parameterisation.

Hence variable number 1 in the head of conceptold2, namely B, will be set to variable number

1 in the head of conceptold1, namely Y . Similarly, A will be set to Z . Variable C is set to a

new variable name not appearing anywhere in conceptold1, for instance, V . This means the

altered version of conceptold2 becomes:

conceptold2′ (Z , Y, V ) ← r (Z ) ∧ q(Y ) ∧ p(V ) ∧ t(Z , Y, V )

The head of the new clause takes the variables from conceptold1 and the new variable, V , and

the body is taken as the conjunction of the literals from conceptold1 and conceptold2′ thus:

conceptnew(X, Y, Z , V )

← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ s(X, Y, Z ) ∧ r (Z ) ∧ q(Y ) ∧ p(V ) ∧ t(Z , Y, V )

Repeat literals are discarded, leaving the final clause as:

conceptnew(X, Y, Z , V )

← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ s(X, Y, Z ) ∧ p(V ) ∧ t(Z , Y, V )

Note that the parameterisations are generated so that the new definition does not have typ-

ing conflicts, i.e., once repeated literals have been removed, each variable is still typed by a sin-

gle predicate. The generated definitions are 1-connected as the originals were 1-connected.

3.4.2. The disjunct production rule

In this case, both definitions must be of the same arity and the variables in the head predicates

of each definition must be of the same type. Then the production rule simply adds the clauses
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of the first definition to the clauses of the second definition. The combined definition expresses

two ways in which the definition can be satisfied, hence it represents a disjunction.

3.4.3. The negate production rule

The negate rule takes the same kind of parameterisations as for the compose rule, with the

restriction that the arity of C2 is less than or equal to the arity for C1. This means that the

head of the new definition will be the same as the head for C1. We use full first order logic

to express an intermediate definition produced by the production rule, then derive a logic

program representation of the definition. The Negate production rule re-names variables in

C2 like the compose production rule, then it removes any re-named literals from C2 which

appear in the body of C1. It then conjoins the negation of the entire conjunction of the literals

remaining in the body of C2 to those of C1. From this, it extracts definite clauses using

standard re-write rules.

For example, suppose we start with these old definitions:

conceptold1(X, Y, Z ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ s(X, Y, Z ) ∧ t(X, Y )

conceptold2(A, B, C) ← r (A) ∧ q(B) ∧ p(C) ∧ u(A, B, C), v(A, B)

Suppose also that we are using the parameterisation [2,1,0]. Then the negate rule would first

alter conceptold2 as for the compose rule:

conceptold2′ (Z , Y, X ) ← r (Z ) ∧ q(Y ) ∧ p(X ) ∧ u(Z , Y, X ) ∧ v(Z , Y )

and remove any literals appearing also in the body of conceptold1, namely p(X ), q(Y ) and

r (Z ). It would then negate what is left of the body conjunction, and add this to the body of

C1. Using the head from C1, it would construct this (first order) intermediate definition:

conceptnew(X, Y, Z ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ s(X, Y, Z )

∧t(X, Y ) ∧ ¬(u(Z , Y, X ) ∧ v(Z , Y ))

This is re-written to the final new definition with two clauses:

conceptnew(X, Y, Z ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ s(X, Y, Z ) ∧ t(X, Y ) ∧ ¬u(Z , Y, X )

conceptnew(X, Y, Z ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ s(X, Y, Z ) ∧ t(X, Y ) ∧ ¬v(Z , Y )

3.4.4. The forall production rule

With the same restrictions on the parameterisations for the negate rule, the forall production

rule goes through the same routine of renaming variables and removing repeated literals

as the negate rule, to produce a conjunction of literals, L . It then constructs an implication

statement by taking the non-typing literals from the body of C1 and making these imply the

conjunction L . This conjunction is then conjoined to the conjunction of the typing literals

from C1 to produce the body of an intermediate definition. For example, using the same old

definitions as for the negate rule, the intermediate (first order) definition produced would be:

conceptnew(X, Y, Z ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ ((s(X, Y, Z ) ∧ t(X, Y ))

→ (u(Z , Y, X ) ∧ v(Z , Y )))
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Through re-writing, this can be expressed as the following clausal definition:

conceptnew(X, Y, Z ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ u(Z , Y, X ) ∧ v(Z , Y )

conceptnew(X, Y, Z ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ ¬s(X, Y, Z )

conceptnew(X, Y, Z ) ← p(X ) ∧ q(Y ) ∧ r (Z ) ∧ ¬t(X, Y )

3.4.5. The arithmetic and NumRelation production rules

These production rules enable HR to work more competently with integers, and as such are

useful not only to mathematical domains, but scientific domains in general. The Arithmetic

rule takes two function definitions, both of which output an integer given a generic constant

in the domain. The new definition it produces performs arithmetic with the output from the

two functions, such as adding/multiplying them, subtracting one from the other, etc. It also

has more number-theoretic ways of combining two functions, such as taking the Dirichlet

convolution. The parameters tell it exactly how to combine the output from the two functions.

For instance, given these two old definitions which output integers,

conceptold1(X, Y ) ← p(X, Y ).

conceptold2(X, Y ) ← q(X, Y ).

and the parameterisation {plus}, the Arithmetic rule would produce this new definition:

conceptnew(X, Y ) ← p(X, A), q(X, B), Y is A + B.

(Note the use of Sicstus-Prolog style arithmetic).

The NumRelation production rule performs similarly, but rather than using arithmetic on

the function outputs, it imposes a constraint such as one being less than the other. For instance,

given the two old concepts above, and the parameterisation {less than}, the NumRelation rule

would produce this definition:

conceptnew(X ) ← p(X, A), q(X, B), A < B.

Note that the arity of the new definition is 1. These production rules have been used to good

effect in the graph theory application described in Section 6.2.

4. Handling noisy and incomplete data

In most scientific domains, a hypothesis which is 99% supported by the data is 100% inter-

esting. In mathematical domains, however, such a hypothesis would be 100% false. For this

reason, and the fact that mathematical data rarely contains errors or omissions, historically

the ATF algorithm has had no capacity to deal with noisy data. That is, HR would only make

conjectures if there were no counterexamples in the data it had available. However, we have

recently added some functionality to enable HR to empirically produce association rules

which are not fully supported by the data. We implemented this in order to enable ATF to be

applied to data from domains of science other than mathematics. Another motivation came
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from the PhD project of Alison Pease—discussed more in Section 7.2—which addresses

the question of how to fix faulty hypotheses using methods inspired by the philosophy of

mathematics described in Lakatos (1976).

At part (9) in the theory formation step portrayed in Section 2.3, after it has checked for

implications between the definitions in the theory and the new definition, HR looks at each

old definition and determines whether it is ‘nearly equivalent’ to the new definition. Two

definitions are nearly equivalent if the success set of one differs in only a few places with

the success set of the other. This is done by taking each object of interest, O , in the domain,

finding the entries in the success set of the old concept where O is the first argument and

comparing these against a similar collection from the success set of the new concept. If the

sets differ, then the definitions differ for O , and the user specifies a low percentage of objects

which are allowed to differ before the definitions are no longer counted as nearly equivalent.

In practice, unfortunately, this simple calculation for near-equivalence often doesn’t suffice.

This is because many of the objects of interest have empty sets, i.e., they are not present in

any of the success set entries. This means that the majority of objects of interest are nearly

equivalent with respect to the definitions, but it may be that the objects with non-empty

sets extracted from the success sets differ greatly. As these are usually the more interesting

cases, we allow the user to specify that the calculation of the percentage for near-equivalence

matching is made with respect only to the non-empty objects. Near implications, where the

success of the old concept is a subset/superset of the new concept with a few exceptions, are

similarly sought at part (9) of the ATF algorithm. For any near conjectures found, associa-

tion rules are extracted in the same way as for normal conjectures. However, HR uses the

implication and equivalence frames to store the fact that these association rules have known

counterexamples.

Even though they have counterexamples (and hence no attempts to prove or disprove

them are made), these near conjectures may still be of interest. In our running example, for

instance, HR might next invent the concept of odd numbers, using the divisor predicate:

concept9(X ) ← integer(X ) ∧ ¬divisor(X, 2)

On the invention of this definition, HR would make the near-implication hypothesis that

all prime numbers are odd. The number 2 is a counterexample to this, but the association

rule may still be of interest to the user. Moreover, if so instructed, HR can ‘fix’ such faulty

hypotheses by excluding the counterexamples from the definition. This is done using the

EntityDisjunct and Negate production rules to construct a concept with the definition stating

that the object of interest is not equal to one of the counterexamples, then composing this

concept with the concept on the left hand side of the implication. For instance, HR might

invent the concept of integers which are not equal to 2 using the EntityDisjunct and Negate

rules, then compose this with the concept of prime numbers to produce the concept of prime

numbers which are not the number two. The implication generation mechanism then makes

the ‘full’ implication that primes except two are odd.

Such fixing of conjectures is part of a project to use abductive methods prescribed in

Lakatos (1976) to enhance the ATF algorithm. For instance, one such method is to attempt to

find a definition already in the theory which covers the counterexamples (and possibly some

more constants), then exclude this definition from the hypothesis statement. This is similar to

the techniques described as strategic withdrawal by Lakatos. Details of the Lakatos project

are given in Colton & Pease (2003) and Colton & Pease (2004).
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5. Search strategies

Theory formation is driven by theory formation steps which attempt to define a new concept

using production rules. Similar to many AI systems, HR suffers from a combinatorial ex-

plosion. To enable HR to effectively search the space of definitions, we have implemented

numerous search strategies. HR maintains an agenda of triples portraying which production

rule will be used with which parameterisation to turn which old definitions into new ones.

For instance, referring back to the output from an illustrative session in Fig. 2, the agenda

would have been:

〈[concept4], match, [1, 2, 2]〉
〈[concept5], exists, [2]〉
〈[concept3], si ze, [2]〉
〈[concept7], spli t, [[2], [2]]〉

and these steps would have produced concepts 5, 6, 7 and 8 respectively. For instance, if

carrying out the first step, HR would apply the match production rule to concept 4 (multipli-

cation) with parameterisation [1, 2, 2], producing concept 5 (perfect squares and their square

roots). See Section 3.3.2 for details of how this construction would occur.

How the agenda is sorted dictates the search strategy that HR employs. After a new concept

frame has been added to the theory at stage 9.0 of the ATF algorithm, HR must decide

how to develop the concept in future, if at all. Every possible agenda item involving the

concept is determined, involving each production rule, and every possible parameterisation

of that rule, and—in the case of production rules which make new definitions from two old

ones—every possible partner concept. HR has a number of search strategies which enable

it order the agenda. These are either simple, reactive or best-first, as described below. The

user also specifies a depth limit on the search, which has a substantial effect on the search

that HR carries out. In particular, given a limit, L , HR will not put steps onto the agenda

if the resulting definition would have been generated by more than L theory formation

steps.

5.1. Simple search strategies

HR can perform an exhaustive breadth-first search, where new definitions are put on the

bottom of the agenda and are not used in theory formation steps until all previous definitions

have been used. Similarly, it can employ a depth-first search where new definitions are put on

the top of the agenda. In this case, the depth limit is important to stop HR pursuing a single

path and producing highly specialised definitions. HR can also employ a random search

where an entry in the agenda is chosen randomly and carried out. Finally, HR can employ a

tiered search strategy where the user specifies a tier number for each production rule. Theory

formation steps involving production rules on the lowest tier are carried out greedily before

any steps on higher tiers are carried out. This strategy is often used to ensure that unary rules

are applied before binary rules, which tend to dominate the search otherwise (as there are

more possibilities for employing them). This strategy has proved highly effective in many

applications.
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5.2. Reactive search strategies

HR has a Java interpreter implemented which can execute scripts containing cut-down Java

code. At various points during each theory formation step, HR checks each ‘reaction script’

which the user has supplied. Each script includes preconditions that must match with what

has just happened in the theory formation step. If the preconditions are met, then the Java

script is carried out. This can be used to flag occurrences of a particular type of definition

or association rule, or more importantly, to add theory formation steps to the agenda so that

the search can react to a bespoke situation. For instance, such a reactive search accounts

for how HR fixes faulty theorems as described in Section 4 above: when HR produces a

near-conjecture, a reaction script catches this and puts appropriate steps on the top of the

agenda which, when carried out, causes the theory formation to produce the fixed conjecture.

In addition to being able to customise the way in which HR reacts to events such as the

invention of concepts of a particular nature, HR has a few such reactions built in. In particular,

when being asked to solve a predictive learning task4 with a binary classification, HR has the

ability to look at each newly defined concept and determine whether there is a fast-track way

to solve the problem. This forward look-ahead mechanism can efficiently determine whether

a solution lies 2 and in some cases, 3 steps away in the search space. This is particularly

useful if there is such a solution which can be constructed with a small number of steps, as

the solution is quickly found. However, if the solutions require more than around 6 theory

formation steps, this method can reduce efficiency. We employed the forward look-ahead

mechanism when using HR to learn the definitions of some common integer sequences. We

found that HR’s efficiency was dramatically improved when using this strategy, as reported

in Colton et al. (2000a).

5.3. Best-first search strategies

HR has much functionality for performing a best-first search. After each theory formation

step, every concept is assessed and an ordering on them imposed so that the best concept

comes first in the ordering. The agenda is then re-sorted according to this ordering. The

value of a concept is assessed using a set of measures of interestingness, some of which

are described below. In one mode, the user can specify a weighted sum for the evaluation

function. In another mode, the user can specify that HR takes the best of a set of measures

to evaluate the concept, and similarly they can specify that HR takes the worst of a set of

measures.

HR currently has 27 measures of interestingness. Some of these are generic measures

which can be employed for general descriptive induction tasks. However, nearly half are

application specific, and were developed in order for HR to more effectively search for def-

initions/association rules of a particular type—usually of the type that solves a particular

problem. We describe below fifteen of the most important and useful measures of interest-

ingness, categorised into (a) measures which evaluate intrinsic properties of concepts (b)

measures which look at how the theory has been developing (c) measures which evaluate

a concept relative to the others in the theory (d) measures which use the conjectures that a

concept is involved in, and (e) measures related to learning tasks. For more details of some

the initial measures we implemented in HR, see chapters 9 and 10 of Colton (2002b). For

4 How HR is applied in this manner is described in Colton et al. (2000a).
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a discussion of the general notion of interestingness in automated mathematics, see (Colton

et al., 2000c).

5.3.1. Intrinsic measures� Applicability

The applicability of a definition is calculated as the proportion of objects of interest (con-

stants true of the typing predicate for the first head variable in at least one definition)

which are found in the success set of the definition. Applicability can give an impression

of generality: too high and the definition may be overly-general, and too low might mean

the definition is over-specialised.� Comprehensibility

The comprehensibility of a concept is calculated as the reciprocal of the number of pro-

duction rule steps which went into building the concept. This gives a rough estimation of

how comprehensible the definition will be. Other measures based on the clausal definition

would perhaps be more precise. Ordinarily, the user would be interested in more compre-

hensible definitions, but there have been applications where this measure has been given

a negative weight in the weighted sum, to encourage more complicated concepts to be

further developed (Colton & Sutcliffe, 2002).� Parsimony

Similar to the applicability, the parsimony of a definition is calculated as the reciprocal of

the number of elements in the success set multiplied by the arity of the definition. When

describing concepts in terms of the tuples which satisfy their definition, more parsimonious

concepts have more succinct descriptions.� Variety

This measure looks at the classification of the objects of interest afforded by the definition,

as described in Section 3.1. It simply records the number of different classes in the classifi-

cation, with definitions having more classes scoring higher. We have found that weighting

this measure positively in the weighted sum can lead to larger areas of the search space

being explored, as it avoids developing concepts which categorise most of the constants in

the same class.

5.3.2. Developmental measures� Development Steps

The Development Steps measure records how many production rule steps a definition has

been involved in, which gives an indication of how much it has been developed. Giving this

a negative weight in the weighted sum enables search strategies where every concept—new

or old—is given the same amount of attention. This is different to a simple breadth first or

depth first search, where certain concepts may remain neglected for long periods of time.

We have found that using this measure encourages the formation of complex definitions

from across the search space, rather than complex definitions from a single part of the space,

which is the result of a depth first search. Such complex definitions lead to complicated

theorems, which was the desired result of the application described in Section 7.1.� Productivity

This measures the proportion of theory formation steps the concept has been used in which

have successfully produced a new concept. Concepts which have been involved in many

fruitless steps score badly for this measure. In applications such as the one described
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in Section 6.1, where it is desirable to produce high quantities of definitions rather than

association rules, this measure can be used to good effect.� Highlighting

The user can specify before a theory formation session that a subset of the background

concepts are to be highlighted. These concepts score 1 for the highlighting measure and

all the others, including any concepts generated during theory formation, score 0. This

ensures that the highlighted concepts receive as much attention as possible as they will

be developed greedily at the start of the session and they will always be the first to be

combined with any new concept produced.

5.3.3. Relative measures� Novelty

The novelty of a definition is based on the classification afforded by it. Novelty is calcu-

lated by evaluating the proportion of other concepts in the theory which achieve the same

classification, and taking it away from 1. In our experience, when there is no particular

application of theory formation, the more interesting concepts in a domain will be those

scoring high for novelty, because they produce clusterings of constants which are seemingly

more difficult to achieve.� Parents and children

The parents measure is the average value of the parents of the concept being evaluated.

Similarly, the children measure is the average value of the children of the concept under

consideration. If a concept is producing high quality children, then this could be a reason to

develop it further. Also, the parents measure can be used in conjunction with the highlighting

measure to ensure that any descendants of the background concepts of interest to the user

are developed earlier than non-descendants.

5.3.4. Theorem-based measures� Proof Difficulty

A particular definition may be found in various induced conjectures, and this set can be

used to evaluate the concept. In particular, the average difficulty of the proved theorems

(as assessed by Otter) can provide such a measure which can be used negatively (so the

user encourages the proving of easier theorems) or positively (if the user wants to find

conjectures which the prover might not be able to prove).� Surprisingness

The surprisingness of an equivalence or implication conjecture is calculated as the pro-

portion of concepts which appear in one, but not both of the construction paths for the

two concepts conjectured to be related. This gives some indication of how unlikely the

conjectured relationship between them is. Concepts can be measured by determining the

average surprisingness of the conjectures they appear in.

5.3.5. Learning-based measures� Invariance and Discrimination

The user is able to specify a labelling of the objects in the domain which indicates a

classification of them, and HR can be used in a predictive induction way to find a concept

which achieves the desired classification. The invariance measure calculates the proportion

of all pairs of objects which should be classified as the same by the definition that are
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classified together. Similarly, the discrimination measure calculates the proportion of all

pairs of objects which should be classified as different which are classified as different.

Weighting these measures positively in the weighted sum can lead HR to find good solutions

to predictive learning problems more efficiently. However, we have found that often the

measures don’t improve the situation, because the concepts which need to be defined along

the way don’t score well for the measures themselves.� Coverage

As stated above, the user can supply a classification of the objects in the domain. The

aim, however, may not be to find a concept achieving that classification, but rather a

concept which has a definition that is true of at least one member of each class in the

given classification. How well concepts do with respect to this is measured by the coverage

measure: it evaluates the proportion of classes in the given classification for which at least

one object appears in the success set of the concept being measured. For instance, in group

theory, if the classification of a set of given groups is by size, then the concept of being

Abelian would score the maximum for coverage, as there is an Abelian group of every

size. Concepts with such good coverage were sought in the application to reformulating

constraint satisfaction problems, as discussed in Section 7.3 below.

6. Applications of automated theory formation to mathematics

HR has shown some promise for discovery tasks in domains of science other than mathe-

matics. For instance, in Colton (2002a) we show how HR rediscovers the structural predictor

for mutagenesis originally found by Progol (Srinivasan et al., 1996). However, it has mainly

been applied to fairly ad-hoc tasks in domains of pure mathematics, and has made some

interesting discoveries in each case. We look here at three applications to central domains of

mathematics, namely number theory, graph theory and finite algebras.

6.1. Applications to number theory

The Encyclopedia of Integer sequences (Sloane, 2000) is a repository of more than 100,000

sequences such as the prime numbers, square numbers, the Fibonacci sequence, etc. There

is online access to the database, and various ways of searching the sequences. It is one of

the most popular mathematics sites on the Internet. We set ourselves the goal of getting HR

to invent integer sequences which were not already found in the Encyclopedia and for HR

to give us reasons to believe that the sequences were interesting enough to be submitted to

this Encyclopedia. We specified this problem for HR as follows: to terminate after finding a

certain number (usually 50–100) of integer sequences (i.e., boolean classification rules over

the set of integers) which were not in the Encyclopedia. Moreover, we used HR to present any

association rules involving sequence definitions which could not be proved by Otter (those

proved by Otter were usually trivially true).

HR had to be extended to interact with the Encyclopedia, in order for it to tell whether a

sequence was novel. In addition, as described in Colton et al. (2000b), we enabled HR to mine

the Encyclopedia to make relationships between the sequences it invented and those already

in the Encyclopedia. This application turned out to be very fruitful: there are now more than

20 sequences in the Encyclopedia which HR invented and supplied interesting conjectures

for (which we proved). As an example, using only the background knowledge given in Fig. 1

for the integers 1 to 50, HR invented the concept of refactorable numbers, which are such that

the number of divisors is itself a divisor (so, 9 is refactorable, because this has 3 divisors, and
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3 divides 9). In addition, HR specialised this to define odd refactorable numbers, then made

the implication hypothesis that all odd refactorable numbers are perfect squares—a fact we

proved, along with others, for a journal paper about refactorable numbers (Colton, 1999). As

an epilogue, we were informed later that, while they were missing from the Encyclopedia,

refactorable numbers had already been invented, although none of HR’s conjectures about

them had been made. We have received no such notification about the other sequences HR

invented.

The application to number theory has been so successful that it has spawned two spin-off

projects. Firstly, the NumbersWithNames program (Colton & Dennis, 2002) is available

online at (www.doc.ic.ac.uk/~sgc/hr/NumbersWithNames). This performs data-

mining over a subset of around 1000 sequences from the Encyclopedia—namely those

number types which are important enough to have names such as primes, squares, etc. It

is able to make equivalence, implication and non-existence conjectures about a chosen se-

quence of interest and others from the database. Secondly, the HOMER program provides

a simple interface for mathematicians to employ HR without knowing about the internal

mechanisms. They are allowed to submit a Maple computer algebra file containing number

theory functions, and HR forms a theory about the functions. It presents any conjectures

which cannot be proven from some simple axioms to the user, who can interact with the

system at runtime to prove/disprove results. More details about HOMER are available in

Colton & Huczynska (2003).

6.2. Applications to graph theory

The Graffiti program (Fajtlowicz, 1988), written by Siemion Fajtlowicz and developed by

Ermalinda Delavina has been highly successful in generating graph theory conjectures of

real interest to mathematicians—more than 60 publications have been written proving or

disproving the conjectures it has produced. The format of the conjectures it proves is fairly

simple: that one summation of graph invariants is less than or equal to another summation.

These kinds of conjectures are (a) easy to understand (b) often difficult to prove and (c)

of utilitarian value as they help to determine bounds on invariants which can improve the

efficiency of algorithms to calculate them. Any new conjectures that Graffiti produces which

pass an initial check from Fajtlowicz are added to a document called ‘Written on the Wall’,

which is distributed to graph theorists.

In Mohamadali (2003), we showed that HR can make similar conjectures. We supplied

code for the Maple computer algebra package which was able to calculate the invariants

involved in the first 20 conjectures mentioned in Written on the Wall. HR integrated with

Maple to use the output from these functions. It further used the Arithmetic production rule

to add together sets of invariants, and used the NumRelation production rule to construct

definitions describing graphs where one set of invariants summed to less than another. In

this way, HR successfully re-discovered the first 20 conjectures made by Graffiti. Moreover,

we implemented some further invariants and enabled HR to use multiplication as well as

addition. This produced a large number of new conjectures. Working in collaboration with

Pierre Hansen and Gilles Caporossi, we have used their AutoGraphix program (Caporossi

& Hansen, 1999) to prove many of these conjectures. It seems likely that AutoGraphix

will be used in a similar way to Otter in number theory, i.e., as a filter for uninteresting or

obvious conjectures. We are optimistic that using HR and AutoGraphix will lead to novel

and interesting graph theory conjectures, and the system will have as big an impact as

Graffiti.
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6.3. Applications to algebraic classification

As witnessed by the completion of the classification of finite simple groups—described in

Humphreys (1996) as one of the biggest intellectual achievements of the twentieth century—

the classification of mathematical objects, in particular finite algebraic structures, is of key

importance in mathematics. The first task in algebraic classification is to count the number

of isomorphism classes of a given algebra for a given size, e.g., to show that there are exactly

5 distinct isomorphism classes for groups of size 8. In the process of automatically counting

isomorphism classes as described in Meier et al. (2002), a bottleneck arose when the system

attempted to show that two algebras were non-isomorphic. In such cases, a more efficient

method than exhaustively looking for isomorphisms is to induce a property that one algebra

has which the other does not share, then show that this is a discriminant, i.e., prove that, in

general, two algebras of the given size could not be isomorphic if they differed with respect

to the property. In work with Volker Sorge and Andreas Meier, we used HR to determine such

discriminating properties, with an automated theorem prover employed to prove the fact that

they were discriminating.

This application is discussed in more detail in Section 8.1, as this is a predictive induction

task, and hence we were able to use Progol for the same tests. A further application grew out of

the residues project, when we used the discriminating concepts that HR produced to produce

qualitative rather than quantitative classification theorems. As described in Colton et al.

(2004), we employed a complicated setup to produce fully verified classification theorems

given only the axioms of the algebra and the size of interest. For instance, given the axioms of

group theory and the size 6, the system produced and verified the theorem that there are only

two isomorphism classes, one of which has the Abelian property (∀ a, b (a ∗ b = b ∗ a)),

and one which has not.

For the smaller cases—where there were only a small number of isomorphism classes—

HR was used in a single session to produce the entire classification theorem. To do this,

we gave HR single example algebras from each isomorphism class, and asked it to form

a theory until it contained at least one definition which was true of each example alone.

These definitions are then conjectured to be classifying concepts and the Spass theorem

prover (Weidenbach, 1999) was employed to prove this. As an interesting example, given the

background concepts in group theory of multiplication, identity, inverse and the commutative

product of two elements x and y being x ∗ y ∗ x−1 ∗ y−1, HR was able to produce the

following classification theorem for groups of size eight: Groups of order 8 can be classified

by their self-inverse elements (elements x such that x−1 = x). They will either have:

(i) all self inverse elements;

(ii) an element which squares to give a non-self inverse element;

(iii) no self-inverse elements which aren’t also commutators;

(iv) a self inverse element which can be expressed as the product of two non-commutative

elements; or

(v) none of these properties.

For cases where there were more than a few isomorphism classes, HR was not able to

complete the entire classification task in a single run, as it wasn’t able to find a definition

which applied to each single example alone. We experimented with using C4.5 (Quinlan,

1993) to produce decision trees, given sets of properties from HR. However, for reasons

given in Colton et al. (2004), this approach was often sub-optimal. Instead, we implemented

a mechanism for building a decision tree for classifying the algebras. At each stage, the routine

takes a pair of non-isomorphic algebras A1 and A2 and uses HR to determine a discriminating
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property P in a similar fashion to the application mentioned above. Following this, the system

looks at A1 and asks the MACE model generator to produce another algebra B1 which is

not isomorphic to A1 but which is the same as A1 with respect to property P . HR is then

used to find a discriminating property for A1 and B1, and the cycle continues. When MACE

fails to find new algebras, this indicates a leaf of the decision tree, and the conjunction of

properties on each branch of the tree is taken as a classifying concept in the classification

theorem. Using this method, we have produced classification theorems for many algebras of

different sizes, including large theorems such as for the 109 isomorphism classes of size 6

loops and the 1441 isomorphism classes for quasigroups of size 5. For further details, see

(Colton et al., 2004).

7. Applications of automated theory formation to artificial intelligence

In addition to using HR for mathematical discovery tasks, we have addressed the question

of whether Automated Theory Formation can be used to enhance other AI techniques. HR

is a machine learning system, but it has been used in two applications to automated theorem

proving, as described in Sections 7.1 and 7.2, and an application to constraint solving, as

described in Section 7.3. Each of these applications have a mathematical bias, hence they are

suitable for inclusion here.

7.1. Differentiating automated theorem provers

Working with Geoff Sutcliffe, we used HR to generate first order theorems for the TPTP li-

brary (Sutcliffe & Suttner, 1998). This library is used to compare automated theorem provers:

given a certain amount of time for each theorem, how many theorems each prover can prove

is assessed. The task was to generate theorems which differentiate the theorem provers, i.e.,

find association rules which can be proved by some, but not all, of a set of provers. This was

a descriptive induction task, and we ran HR as an any-time algorithm, until it had produced

a certain number of theorems. As described in Zimmer et al. (2002), we linked HR to three

provers (Bliksem, E, and Spass) via the MathWeb software bus (Franke & Kohlhase, 1999)

and ran HR until it had produced 12,000 equivalence theorems and each prover had attempted

to prove them. In general, the provers found the theorems easy to prove, with each proving

roughly all but 70 theorems. However, it was an important result that, for each prover, HR

found at least one theorem which that prover could not prove, but the others could. In other

experiments, we didn’t use the provers, and the time saving enabled us to produce more

than 40,000 syntactically distinct conjectures in 10 minutes. 184 of these were judged by

Geoff Sutcliffe to be of sufficient calibre to be added to the TPTP library. The following is

an example group theory theorem which was added:

∀ x, y ((∃ z (z−1 = x ∧ z ∗ y = x) ∧ ∃ u, v (x ∗ u = y ∧ v ∗ x = u ∧ v−1 = x))

↔ (∃ a, b (inv(a) = x ∧ a ∗ y = x) ∧ b ∗ y = x ∧ inv(b) = y))

As with the Encyclopedia of Integer Sequences, HR remains the only computer program to

add to this mathematical database.

7.2. Modification of non-theorems

Working with Alison Pease, we used HR as part of the TM system (Colton & Pease, 2004),

which takes specifications of non-theorems and produces modifications, which are similar
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to the original, but which have been proven to be true. To do this, TM uses MACE to find

examples which support the given faulty conjecture and similarly to find examples which

falsify the conjecture. These are given, along with background predicates extracted from the

conjecture statement, to HR, which forms a theory. TM then extracts from HR’s theory any

concept for which the positive examples are a non-empty subset of the supporting examples

that MACE produced. Each definition of this nature is used to produce a modification, by

adding it as an axiom and using Otter to try to prove that the conjecture is true given the

additional axiom. For any cases where Otter succeeds, TM has a final check to see whether

the modification makes the conjecture trivially true and discards these. Any which pass this

test are output to the user as modified theorems.

For example, in the ring theory section of the TPTP library, the following non-theorem is

presented:

The following property, P , holds for all rings:

∀ w, x ((((w ∗ w) ∗ x) ∗ (w ∗ w)) = id)

where id is the additive identity element.

MACE found 7 supporting examples for this, and 6 falsifying examples. HR produced a

single specialisation concept which was true of 3 supporting examples:

� b, c (b ∗ b = c ∧ b + b �= c)

Otter then proved that P holds in rings for which HR’s invented property also holds. Hence,

while TM couldn’t prove the original (faulty) theorem, it did prove that, in rings for which

∀ x (x ∗ x = x + x), property P holds. The specialisation here has an appealing symmetry.

Using 9 non-theorems from the TPTP library, and 89 artificially generated non-theorems, we

report in Colton & Pease (2004) that HR managed to find valid modifications for 81 of the

98 non-theorems it was given.

HR’s functionality in this application could be replaced by a predictive induction system,

as it is asked to differentiate between supporting and falsifying examples. We intend to

experiment with the Progol system to test whether it can be as effective as HR for problems

of this nature. We similarly intend to exchange MACE for a constraint solver.

7.3. Reformulation of constraint satisfaction problems

Working with Ian Miguel and Toby Walsh, we used HR to help reformulate constraint

satisfaction problems (CSPs) for finding quasigroups. CSPs solvers are powerful, general

purpose programs for finding assignments of values to variables without breaking certain

constraints. Specifying a CSP for efficient search is a highly skilled art, so there has been much

research into automatically reformulating CSPs. One possibility is to add more constraints.

If a new constraint can be shown to be entailed by the original constraints, it can be added

with no loss of generality and is called an implied constraint. If no proof is found, we say the

constraint is an induced constraint.

We set ourselves the task of finding both implied and induced constraints for a series

of quasigroup existence problems. Quasigroups are algebraic objects which have the latin

square property that every element appears in every row and column of the multiplication

table. There are many open problems concerning the existence of examples of particular

sizes for particular specialisations of the quasigroup axioms. Many such questions have been
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solved using constraint solving and quasigroup completion has become a benchmark set of

tests for constraint solvers.

We saw generating implied constraints as a descriptive induction task, and ran HR as

an any-time algorithm to produce proved association rules which related concepts in the

specification of the CSP. We gave the original specifications to Otter as axioms, so that it

could prove the induced rules. For a special type of quasigroup, known as QG3-quasigroups,

we used a CSP solver to generate some examples of small quasigroups. This, along with

definitions extracted from the CSP specification, provided the initial data for theory formation

sessions. As an example of one of many interesting theorems HR found (and Otter proved),

we discovered that QG3-quasigroups are anti-Abelian. That is:

∀ x, y (x ∗ y = y ∗ x → x = y)

Hence, if two elements commute, they must be the same. This became a powerful implied

constraint in the reformulated CSPs.

We approached the problem of generating induced constraints as a subgroup discovery

problem (in the machine learning, rather than the mathematical, sense). We gave HR a

labelling of the solutions found by the solver, with solutions of the same size labelled the same.

Then, using a heuristic search involving the coverage and applicability measures discussed is

Section 5, we made HR prefer definitions which had at least one positive in every size category

(but was not true of all the quasigroups). We reasoned that, when looking for specialisations,

it is a good idea to look for ones with good coverage over the size categories. At the end of

the session, we ordered the definitions with respect to the weighted sum of applicability and

coverage, and took the best as induced constraints which specialised the CSP. This enabled

us to find quasigroups of larger sizes. As an example, HR invented a property we called left-

identity symmetry: ∀ a, b (a ∗ b = b → b ∗ a = a). This also became a powerful constraint

in the reformulated CSPs. As discussed in Colton & Miguel (2001), for each of the five

types of quasigroup we looked at, we found a reformulation using HR’s discoveries which

improved efficiency. By combining induced and implied constraints, we often achieved a ten

times increase in solver efficiency. This meant that we could find quasigroups with 2 and 3

more elements than we could with the naive formulation of the CSP. Note that the data for

this application is available here:

www.doc.ic.ac.uk/~sgc/hr/applications/constraint reformulation

8. Comparisons with other ILP techniques

Although it has been used for predictive tasks, HR has been designed to undertake descriptive

induction tasks. In this respect, therefore, it is most similar to the CLAUDIEN (De Raedt

& Dehaspe, 1997) and WARMR (Dehaspe & Toivonen, 1999) programs. These systems

specify a language bias (DLAB and WARMODE respectively) and search for clauses in this

language. This means that fairly arbitrary sets of predicates can be conjoined in clauses, and

similarly arbitrary clauses can be disjoined in definitions (as long as they specify association

rules passing some criteria of interestingness). In contrast, while we have characterised the

space of definitions HR searches within, each production rule has been derived from looking

at how mathematical concepts could be formed, as described in chapter 6 of Colton (2002b).

Hence, Automated Theory Formation is driven by an underlying goal of developing the most

interesting definitions using possibly interesting techniques. In terms of search, therefore,

Springer



56 Mach Learn (2006) 64:25–64

HR more closely resembles predictive ILP algorithms. For instance, a specific to general ILP

system such as Progol (Muggleton, 1995) chooses a clause to generalise because that clause

covers more positive examples than the other clauses (and no negative examples). So, while

there are still language biases, the emphasis is on building a new clause from a previous one,

in much the same way that HR builds a new definition from a previous one. Note that an

application-based comparison of HR and Progol is given in Colton (2000).

Due to work by Steel (1999), HR was extended from a tool for a single relation database to

a relational data mining tool, so that multiple input files such as those in Fig. 1, with definitions

relating predicates across files, can be given to HR. However, the data that HR deals with often

differs to that given to other ILP systems. In particular, HR can be given very small amounts

of data, in some cases just two or three lines describing the axioms of the domain. Also, due

to the precise mathematical definitions which generate data, we have not worried particularly

about dealing with noisy data. In fact, HR’s abilities to make ‘near-conjectures’ grew from

applications to non-mathematical data. There are also no concerns about compression of

information as there are in systems such as Progol. This is partly because HR often starts

with very few constants (e.g., there are only 12 groups up to size 8), and also because HR is

supplied with axioms, hence it can prove the correctness of association rules, without having

to worry about overfitting, etc.

The final way in which ATF differs from other ILP algorithms is in the interplay between

induction and deduction. Systems such as Progol, which use inverse entailment techniques,

think of induction as the inverse of deduction. Hence, every inductive step is taken in such a

way that the resulting hypothesis, along with the background knowledge, deductively entails

the examples. In contrast, HR induces hypotheses which are supported by the data, but are in

no way guaranteed to be entailed by the background predicates and/or the axioms. For this

reason, HR interacts with automated reasoning systems, and is, to the best of our knowledge,

the only ILP system to do so. The fact that HR makes faulty hypotheses actually adds to

the richness of the theories generated, because model generators can be employed to find

counterexamples, which are added to the theory.

8.1. An application of progol to algebraic discrimination

As described above, we worked with Volker Sorge and Andreas Meier to integrate HR with

their system in an application to classifying residue classes. These are algebraic structures

which were generated in abundance by their system. The task was to put them into isomorphic

classes—a common problem in pure mathematics—which can be achieved by checking

whether pairs of residue classes were isomorphic. Note that two algebras are in the same

isomorphism class if a re-labelling of the elements of one gives the elements of the other

and preserves the multiplicative structure. When they are isomorphic, it is often not too time

consuming to find the isomorphic map. Unfortunately, when they aren’t isomorphic, all such

maps have to be exhausted, and this can take a long time. In such cases, it is often more

efficient to find a property which is true of only one example and then prove—using an

automated theorem prover—in general terms that two algebraic structures differing in this

way cannot be isomorphic. The task of finding discriminants was approached inductively

using HR. Each pair of algebras presented HR with a predictive induction task with two

examples and the goal of finding a property true of only one. Hence we set HR to stop if such

a boolean definition was found, or if 1000 theory formation steps had been carried out.

HR’s Match, Exists, Forall, and Compose production rules were used. In classifica-

tion tasks described in Colton (2002b), we have also used the Size and Split production

rules to good effect. However, these were not used for the residue class application, as they
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Fig. 3 The multiplication tables
of two non-isomorphic algebraic
structures

produce concepts of a numerical nature which are not easily expressible in first order logic.

First order representations were necessary because the system within which HR worked took

its results and proved—using a first order prover—that the properties HR produced were

actually discriminants.

As described in Meier et al. (2002), HR was used to discriminate between 818 pairs of

non-isomorphic algebras with 5, 6 and 10 elements, and was successful for 789 pairs (96%).

As an example, consider the two algebraic structures in Fig. 3. HR found this property:

∃ x (x ∗ x = x ∧ ∀ y (y ∗ y = x ⇒ y ∗ y = y))

to be true of the second example, but not the first. This states that there exists an element, x ,

which is idempotent (i.e., x ∗ x = x) such that any other element which squares to give x is

itself idempotent. This means that there must be an idempotent element which appears only

once on the diagonal. This is element 2 in the second multiplication table in Fig. 3. No such

element exists for the first multiplication table.

Finding discriminating properties is essentially a predictive learning task, hence we de-

cided to test whether a standard machine learning system could similarly learn discriminating

properties. As the discriminating ability of the property is to be proved by a first order theorem

prover to follow from the axioms of the domain for the given size, it is essential that the prop-

erties produced are expressible in first order logic. For this reason, using an Inductive Logic

Programming system was an obvious choice, and we chose the Progol system (Muggleton,

1995). We experimented using the same test set as for HR in Meier et al. (2002), consisting

of 818 problems. These were for pairs of algebras of size 5, 6 or 10, that were either magmas

(also known as groupoids) , quasigroups or semigroups, which have the following axioms:� Magma: No axioms� Quasigroup: magmas with the quasigroup axiom:

∀x, y ∃ p, q s.t. x ∗ p = y and q ∗ x = y.� Semigroup: magmas with the associativity axiom:

∀x, y, z ((x ∗ y) ∗ z = x ∗ (y ∗ z)).

Note that Abelian and non-Abelian cases were also distinguished. In total, the experiments

could be grouped into one of 13 classes, dependent on the size and axioms of the algebra.

To describe the discrimination problems to Progol, we employed 3 background predicates,

as follows:� algebra/1: specifying that a symbol stands for an algebra.� element/2: specifying that a symbol stands for an element of an algebra.
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58 Mach Learn (2006) 64:25–64� mult/4: specifying that a triple of elements b, c and d in algebra a are such that b ∗ c = d
in the multiplication table for a.

For each test, two algebras were given, with one chosen arbitrarily as the positive example,

and we described the multiplication table completely using the mult/4 predicate. The mode

declarations for each test were as follows:

:- modeh(1,positive(+algebra))?
:- modeb(*,mult(+algebra,-element,-element,-element))?
:- modeb(*,not(mult(+algebra,+element,+element,+element)))?

These enable Progol to use negation in the definitions it produces, which is essential—

indeed, as we see later, all but one of the discriminating concepts produced by Progol involved

negation. In order to determine the extra-logical settings for Progol, we experimented until

it could solve the problem of discriminating between two groups of size 6, one of which is

Abelian and one of which is not (note that this is not one of the 818 discrimination problems

in the main experiments). The settings determined in this manner were as follows:

:- set(nodes,2000)?
:- set(inflate,800)?
:- set(c,2)?
:- set(h,100000)?
:- set(r,100000)?

The results from these experiments are given in Table 2. For an initial application, the

results are very promising: Progol solved 558 of the 818 discrimination problems (68%)

compared to HR which achieved 96%. Unfortunately, for all the 41 tests with algebras of size

10, and five of size 6, Progol failed to complete its search and either continued indefinitely (we

stopped the program after an hour, and in many cases it ended prematurely after exhausting a

Table 2 Progol and HR results for 818 algebraic discrimination problems

HR Progol Progol Progol

Size Axioms Number solved solved failed timeout

5 Abelian Magmas 15 14 (93%) 8 (53%) 7 (47%) 0 (0%)

5 Non-abelian Magmas 630 606 (96%) 438 (70%) 192 (30%) 0 (0%)

5 Abelian Quasigroups 3 3 (100%) 3 (100%) 0 (0%) 0 (0%)

5 Non-abelian Quasigroups 91 90 (99%) 85 (93%) 6 (7%) 0 (0%)

5 Non-abelian Semigroups 3 3 (100%) 3 (100%) 0 (0%) 0 (0%)

5 Total 742 716 (96%) 537 (72%) 205 (28%) 0 (0%)

6 Non-abelian Quasigroups 1 1 (100%) 1 (100%) 0 (0%) 0 (0%)

6 Abelian Semigroups 6 6 (100%) 2 (33%) 4 (67%) 0 (0%)

6 Non-abelian Semigroups 28 25 (89%) 18 (64%) 5 (18%) 5 (18%)

6 Total 35 32 (91%) 21 (60%) 9 (26%) 5 (14%)

10 Abelian Magmas 15 15 (100%) 0 (0%) 0 (0%) 15 (100%)

10 Non-abelian Magmas 3 3 (100%) 0 (0%) 0 (0%) 3 (100%)

10 Non-abelian Quasigroups 21 21 (100%) 0 (0%) 0 (0%) 21 (100%)

10 Abelian Semigroups 1 1 (100%) 0 (0%) 0 (0%) 1 (100%)

10 Non-abelian Semigroups 1 1 (100%) 0 (0%) 0 (0%) 1 (100%)

10 Total 41 41 (100%) 0 (0%) 0 (0%) 41 (100%)

All Total 818 789 (96%) 558 (68%) 214 (26%) 46 (6%)
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memory resource). Hence it is likely that Progol will score better if we can determine better

settings for its usage with larger algebras (note that HR is barely affected by the transition

from small to larger algebras, and indeed it solved all 41 cases for size 10).

Progol used only 32 distinct concepts in solving the 558 discrimination cases for which it

succeeded. These are given in the appendix, along with a mathematical description of their

meaning and the number of cases which they solved. As mentioned above, it is surprising

that all but one of the definitions use negation, with the exception being:

positive(A) :- mult(A,B,B,B).

which states that there is an idempotent element (which squares to give itself) in the positive

example. We also see that each definition in the appendix can be interpreted as an existence

concept, and that the notions of idempotency and left and right local identities (when left or

right multiplication by an element acts as the identity transformation) are particularly useful

for the discrimination tasks. For instance, the following concept accounted for 49 successful

discriminations:

positive(A) :- mult(A, B, B, C), not(mult(A, C, C, C)).

This is interpreted as the property of an algebra having an element which squares to give a

non-idempotent element. Also, the following two concepts accounted for more than a quarter

of the successful discriminations:

positive(A) :- mult(A,B,C,B), not(mult(A,C,B,C)).

positive(A) :- mult(A,B,C,C), not(mult(A,C,B,B)).

The first of these is interpreted as the property of an algebra having elements B and C such

that C is a right identity for B but not vice-versa. The second is the same with left identity

replacing right identity.

Although HR performed significantly better on these tests on average, Progol found so-

lutions to three problems which HR failed to solve. In particular, of the 91 non-abelian

quasigroups of size 5, HR failed to solve the discrimination problem for only one pair, given

in Fig. 4. Progol solved this problem with the following concept:

positive(A) :- mult(A,B,C,D), not(mult(A,D,C,B)).

We see, for example, that elements 0, 1 and 4 in the first algebra of Fig. 4 are such that

0 ∗ 1 = 4 but 4 ∗ 1 �= 0, thus satisfying the concept definition. Indeed, there are 20 triples of

Fig. 4 A discrimination problem
solved by progol, but not by HR
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elements which satisfy the property in the first algebra, but none in the second algebra (this

was checked using Sicstus Prolog and the first order representation of these algebras as given

to Progol). Note that, as portrayed in the appendix, this concept solves 5 other discrimination

problems in the test set. This concept is certainly in HR’s search space, if it is allowed to use

the negate production rule. However, for the experiments described in Meier et al. (2002),

we opted not to use this rule, but rather to use the forall rule. Using both together can lead

to much duplication of effort, with the same concept being generated once using forall and

again using a negate-exists-negate series of steps. Note that for the later experiments towards

constructing qualitative classifications as described in Section 6.3, we used negate instead of

forall.

Note that the data set for these discrimination tests is available from the following site:

www.doc.ic.ac.uk/~sgc/hr/applications/residues

9. Conclusions and further work

We have presented pure mathematics as an interesting challenge domain for machine learn-

ing systems in general and a potential area to drive the development of Inductive Logic

Programming systems. In particular,� we highlighted the fact that inductive processes play an important part of mathematical

research, alongside deductive processes;� we presented a novel ILP algorithm—called Automated Theory Formation—and its im-

plementation in the HR system. A rationalisation of this algorithm was presented fully for

the first time in terms of the manipulation of clausal definitions;� we described three successful applications of HR to mathematical discovery tasks, which

have led to HR adding to previously human-only databases and the production of journal

publications in the mathematics literature;� we described applications of Automated Theory Formation to the improvement of auto-

mated theorem proving and constraint solving techniques;� we emphasised that mathematical discovery is not limited either to Automated Theory

Formation as in HR or to descriptive induction. To do this, we used the Progol system

to perform predictive induction in order to discriminate between pairs of non-isomorphic

algebras. To our knowledge, this is the first application of an ILP system other than HR to

algebraic domains of pure mathematics;

The Automated Theory Formation (ATF) algorithm builds clausal theories consisting

of classification rules and association rules. This employs concept formation methods to

generate definitions from which classification rules are derived. The success sets of the

definitions are used to induce non-existence, equivalence and implication hypotheses, from

which association rules are extracted. In addition to these inductive methods, ATF also relies

upon deductive methods to prove/disprove that the association rules are entailed by a set of

user supplied axioms. We discussed the implementation of this algorithm in the HR system,

and characterised the space of definitions that HR searches. HR differs from other descriptive

ILP systems in the way that it searches for definitions and the way in which it interacts with

third party automated reasoning software.

The production rules that HR uses to form new definitions have been presented for the first

time fully in terms of the manipulation of logic programs. Given this formal way of looking
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at HR’s functionality, it is our intention to write a HR-LITE program, which implements

a less ad-hoc implementation of Automated Theory Formation. This will work only at the

definitional level and interact with Prolog to generate the success sets of the definitions it

produces. Given this expression of ATF in entirely logic programming terms, we then intend

to compare HR-LITE with the WARMR and CLAUDIEN descriptive induction programs,

both at a qualitative and a quantitative level.

This paper represents the first major description of the Automated Theory Formation

routine and it’s implementation in the HR system since (Colton, 2002b). In particular, in

Colton (2002b), we present a much simpler version of HR, and we make no attempt to

describe the ATF routine in terms of an ILP approach as we do here. Moreover, the majority

of HR’s extra-logical functionality discussed in this paper has not been described elsewhere.

In addition, all the applications summarised here were undertaken after (Colton, 2002b) was

written, with the exception of some of the number theory experiments. We believe that the

application of Progol to algebraic discrimination is also the first application of a predictive

ILP system to a discovery task in such an algebraic domain.

We aim to continue to improve our model of Automated Theory Formation. In particular,

we are currently equipping HR with abductive techniques prescribed in Lakatos (1976), and

modelling advantages of theory formation within a social setting via a multi-agent version of

the system (Colton & Pease, 2003). We are continuing the application of HR to mathematical

discovery, but we are also applying HR to other scientific and non-scientific domains, most

notably bioinformatics, vision and music. We are also continuing to study how descriptive

ILP techniques like ATF can be used to enhance other systems such as theorem provers,

constraint solvers and predictive ILP programs. In particular, we are studying how descriptive

techniques may be used for preprocessing knowledge.

ATF uses invention, induction, deduction and abduction, and HR interacts with automated

theorem provers, model generators, constraint solvers, computer algebra systems and math-

ematics databases to do so. For systems such as HR to behave creatively, we believe that the

search it undertakes must be in terms of which reasoning technique to employ next, rather

than search at the object level. We envisage machine learning, theorem proving, constraint

solving and planning systems being routinely integrated in ways tailored individually for

solving particular problems. We believe that such integration of reasoning systems will pro-

vide future AI discovery programs with more power, flexibility and robustness than current

implementations.

We further believe that domains of pure mathematics are highly suitable for the de-

velopment of such integrated systems, because (i) the lack of noise in such domains will

be an advantage in the initial stages of developing integrated systems (ii) deductive tech-

niques have been used with much success for many years in mathematical domains and

(iii) inductive reasoning can have an impact on computer mathematics, as witnessed by

the success of the HR and Graffiti programs. Inductive Logic Programming systems out-

put first order hypotheses about the data it is given. The majority of automated theorem

provers (ATP) are designed to prove such first order hypotheses. Therefore it is surpris-

ing that there has been little work on combining ILP and ATP into more powerful sys-

tems. In showing that Progol can be used for mathematical discovery tasks in the same

way as HR, we hope to encourage the use of ILP systems in mathematics and to promote

the interaction of deduction systems and machine learning systems towards more powerful

AI techniques.
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Appendix: Discriminating concepts found by progol

Num First order and English Language Descriptions

1 positive(A) :- mult(A,B,B,B), mult(A,C,C,D),
not(mult(A,B,D,D)).
Has an idempotent element which is not a left identity for any element on the diagonal.

1 positive(A) :- mult(A,B,C,B), not(mult(A,C,B,B)).
Has an element with a right identity for it which is not a left identity for it.

1 positive(A) :- mult(A,B,C,C), not(mult(A,C,C,B)).
Has an element which has a right identity for it which is not its square root.

2 positive(A) :- mult(A,B,B,C), not(mult(A,B,B,B)).
Has a non-idempotent element.

2 positive(A) :- mult(A,B,B,C), not(mult(A,C,B,B)).
Has an element for which its square is not a left identity for it.

2 positive(A) :- mult(A,B,C,B), not(mult(A,C,C,C)).
Has an element with a non-idempotent right identity.

2 positive(A) :- mult(A,B,C,C), not(mult(A,B,B,B)).
Has an element with a non-idempotent left identity.

2 positive(A) :- mult(A,B,C,C), not(mult(A,C,C,C)).
Has an element which is a left identity for a non-idempotent element.

2 positive(A) :- mult(A,B,C,D), not(mult(A,B,B,B)).
Has a non-idempotent element.

2 positive(A) :- mult(A,B,C,D), not(mult(A,C,C,C)).
Has a non-idempotent element.

2 positive(A) :- mult(A,B,C,D), not(mult(A,D,D,D)).
Has a non-idempotent element appearing in the body of the multiplication table.

3 positive(A) :- mult(A,B,C,C), mult(A,B,D,D),
not(mult(A,C,B,D)).
Has elements B, C and D such that B is a left identity for C and D, but C ∗ B �= D.

3 positive(A) :- mult(A,B,C,D), mult(A,B,E,B),
not(mult(A,D,E,D)).
Has elements B, E, D: D is in B’s row, E is a right identity for B, but not D.

3 positive(A) :- mult(A,B,C,D), not(mult(A,D,C,D)).
Has elements C and D such that D is in C’s column, but is not a left identity for it.

5 positive(A) :- mult(A,B,C,D), not(mult(A,B,D,C)).
Has elements B, C and D such that B ∗ C = D but B ∗ D �= C .

5 positive(A) :- mult(A,B,C,D), not(mult(A,C,C,D)).
Has elements C, D such that D is in C’s column but is not the square of it.

6 positive(A) :- mult(A,B,C,D), not(mult(A,B,B,D)).
Has elements B and D such that D is in B’s column but is not the square of it.

6 positive(A) :- mult(A,B,C,D), not(mult(A,D,C,B)).
Has elements B, C and D such that B ∗ C = D but D ∗ C �= B.

7 positive(A) :- mult(A,B,C,B), not(mult(A,B,B,C)).
Has an element which is a right identity to an element which is not its square root.

7 positive(A) :- mult(A,B,C,C), not(mult(A,C,B,C)).
Has an element with a left identity which is not its right identity.

7 positive(A) :- mult(A,B,C,D), not(mult(A,D,D,C)).
Has elements C and D such that D is in C’s column but is not its square root.

(Coninued on next page)
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(continued)

Num First order and English Language Descriptions

12 positive(A) :- mult(A,B,B,B).
Has an idempotent element.

16 positive(A) :- mult(A,B,B,C), not(mult(A,B,C,B)).
Has an element for which its square is not an identify for itself.

21 positive(A) :- mult(A,B,C,C), not(mult(A,B,B,C)).
Has elements B and C such that B is a left identity for C but C is not B2.

25 positive(A) :- mult(A,B,B,C), not(mult(A,C,B,C)).
Has an element whose square is not a left identity for it.

38 positive(A) :- mult(A,B,C,D), not(mult(A,B,D,D)).
Has elements B, D: D is in B’s row but B is not a left identity for D.

47 positive(A) :- mult(A,B,C,B), not(mult(A,B,B,B)).
Has an element which is a right identity for a non-idempotent element.

49 positive(A) :- mult(A,B,B,C), not(mult(A,C,C,C)).
Has an element which squares to a non-idempotent element.

54 positive(A) :- mult(A,B,B,C), not(mult(A,C,C,B)).
Has elements B and C such that B2 = C but C2 �= B.

63 positive(A) :- mult(A,B,C,B), not(mult(A,C,B,C)).
Has elements B and C such that C is a right identity for B but not vice-versa.

66 positive(A) :- mult(A,B,B,C), not(mult(A,B,C,C)).
Has an element which is not a left identity for its square.

95 positive(A) :- mult(A,B,C,C), not(mult(A,C,B,B)).
Has elements B and C such that B is a left identity for C but not vice-versa.
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