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Abstract The research presented in this paper focuses on global tempo transformations of

monophonic audio recordings of saxophone jazz performances. We are investigating the

problem of how a performance played at a particular tempo can be rendered automatically at

another tempo, while preserving naturally sounding expressivity. Or, differently stated, how

does expressiveness change with global tempo. Changing the tempo of a given melody is a

problem that cannot be reduced to just applying a uniform transformation to all the notes

of a musical piece. The expressive resources for emphasizing the musical structure of the

melody and the affective content differ depending on the performance tempo. We present a

case-based reasoning system called TempoExpress for addressing this problem, and describe

the experimental results obtained with our approach.

Keywords Music . Tempo transformation . Case based reasoning . Expressive performance

1. Introduction

It has been long established that when humans perform music from score, the result is

never a literal, mechanical rendering of the score (the so-called nominal performance). As

far as performance deviations are intentional (that is, they originate from cognitive and

affective sources as opposed to e.g. motor sources), they are commonly thought of as con-

veying musical expressivity, which forms an important aspect of music. Two main functions

of musical expressivity are generally recognized. Firstly, expressivity is used to clarify the

musical structure (in the broad sense of the word: this includes for example metrical structure

(Sloboda, 1983), but also the phrasing of a musical piece (Gabrielsson, 1987), and harmonic
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Fig. 1 The frequency of occurrence of several kinds of performance events as a function of global performance

tempo

structure (Palmer, 1996)). Secondly, expressivity is used as a way of communicating, or

accentuating affective content (Juslin, 2001; Lindström, 1992; Gabrielsson, 1995).

Given that expressivity is a vital part of performed music, an important issue is the effect

of tempo on expressivity. It has been argued that temporal aspects of performance scale

uniformly when tempo changes (Repp, 1994). That is, the durations of all performed notes

maintain their relative proportions. This hypothesis is called relational invariance (of timing

under tempo changes). Counter-evidence for this hypothesis has also been provided however

(Desain and Honing, 1994; Friberg and Sundström, 2002; Timmers et al., 2002), and a recent

study shows that listeners are able to determine above chance-level whether audio-recordings

of jazz and classical performances are uniformly time stretched or original recordings, based

solely on expressive aspects of the performances (Honing, 2006).

A brief look at the corpus of recorded performances we will use in this study (details

about the corpus are given in subsection 3.1) reveals indeed that the expressive content of

the performances varies with tempo. Figure 1 shows the frequency of occurrence of various

types of expressivity, such as ornamentation and consolidation, as a function of the nominal

tempo of the performances (the tempo that is notated in the score). In subsection 3.2.1 we will

introduce the various types of performance events as manifestations of musical expressivity

in detail. Note that this figure shows the occurrence of discrete events, rather than continuous

numerical aspects of expressivity such as timing, or dynamics deviations. The figure clearly

shows that the occurrence of certain types of expressivity (such as ornamentation) decreases

with increasing tempo, whereas the occurrence of others (consolidation most notably) in-

creases with increasing tempo. These observations amount to the belief that although in some

circumstances relational invariance may hold for some aspects of expressivity, in general it

cannot be assumed that all aspects of expressivity remain constant (or scale proportionally)

when the tempo of the performance is changed. In other words, tempo transformation of

musical performances involves more than uniform time stretching (UTS).
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Throughout this paper, we will use the term UTS to refer to the scaling of the temporal
aspects of a performance by a constant factor. For example, dynamics, and pitch will be left

unchanged, and also no notes will be inserted or removed. Only the duration, and onsets of

notes will be affected. Furthermore, we will use the term UTS in an abstract sense. Depending

on the data under consideration it involves different methods to realize it. For example, it

requires non-trivial signal-processing techniques to apply UTS to the audio recording of the

performance. In symbolic descriptions of the performance on the other hand, UTS consists in

a multiplication of all temporal values by a constant. Note that this holds if the descriptions

measure time in absolute units (e.g. seconds). When time is measured in score units (e.g.

beats) UTS makes no sense, since changing the tempo of the performance only changes the

translation of score time units to absolute units of time.

Nowadays high-quality audio time stretching algorithms exist (e.g. Röbel, 2003; Bonada,

2000), making temporal expansion and compression of audio possible without significant

loss in sound quality. The main aim of those algorithms is maintaining sound quality, rather

than the musical quality of the audio (in the case of recorded musical performances). But as

such, they can be used as tools to build higher level (i.e. content-based) audio transformation

applications. A recent example of this is an application that allows the user to change the

swing-ratio of recorded musical performances (Gouyon et al., 2003). Such audio applications

can be valuable especially in the context of audio and video post-production, where recorded

performances must commonly be tailored to fit specific requirements. For instance, for a

recorded musical performance to accompany video, it must usually meet tight constraints

imposed by the video with respect to timing or the duration of the recording.

In this paper we present a system for musical tempo transformations, called TempoEx-
press, that aims at maintaining the musical quality of recorded performances when their

tempo is changed. That is, ideally listeners should not be able to notice from the expres-

sivity of a performance that has been tempo transformed by TempoExpress that its tempo

has been scaled up or down from another tempo. The system deals with monophonic audio

recordings of expressive saxophone performances of jazz standards. For the audio analysis

and synthesis, TempoExpress relies on an external system for melodic content extraction

from audio, developed by Gómez et al. (2003c,b). This system performs pitch and onset

detection to generate a melodic description of the recorded audio performance, in a for-

mat that complies with an extension of the MPEG7 standard for multimedia content de-

scription (Gómez et al., 2003a). To realize a tempo transformation of an audio recording

of a performance, TempoExpress needs an XML file containing the melodic description

of the performance, a MIDI file specifying the score, and the target tempo to which the

performance should be transformed (the tempo is specified in terms of beats per minute,

or BPM). The result of the tempo transformation is an XML file containing the modified

melodic description, that is used as the basis for performing a resynthesis of the input

audio.

The evaluation of TempoExpress presented in this paper consists in a comparison of

tempo transformed performances to performances performed by a musician at the target

tempo, using a distance measure that is optimized to be in accordance with human similarity

judgments of performances. The evaluation is based on the modified melodic descriptions,

rather than on the resynthesized audio, for two reasons. Firstly, we are primarily interested

in testing the musical quality of the tempo transformed performance, whereas any kind of

evaluation of the resynthesized audio would probably be strongly influenced by the sound
quality. Secondly, the audio resynthesis is currently done in a semi-automatic way (that is,

timing and dynamics changes are translated to audio transformations automatically, but for

note insertions and similar extensive changes, manual intervention is still necessary). This
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limitation would prevent a large-scale evaluation, if the evaluation was to be done using

resynthesized audio rather than the transformed melodic descriptions.

TempoExpress solves tempo transformation problems by case-based reasoning. Problem

solving in case-based reasoning is achieved by identifying and retrieving the problem (or set

of problems) most similar to the problem that is to be solved from a case base of previously

solved problems (called cases), and adapting the corresponding solution to construct the

solution for the current problem. In the context of a music performance generation system,

an intuitive manner of applying case-based reasoning would be to view unperformed music

(e.g. a score) as a problem description (possibly together with requirements about how the

music should be performed) and to regard a performance of the music as a solution to

that problem. As has been shown by Widmer (1996), relating expressivity to the musical

score is easier when higher level structural aspects of the score are represented (e.g. using

concepts such as ‘step-wise ascending sequence’), than when only the surface of the score is

represented (i.e. a sequence of individual notes). Therefore, a structural musical analysis is

also included in the problem description. Moreover, because we are interested in changing

the tempo of a specific performance (we deal with the task of performance transformation,

rather than performance generation), the expressive resources used in that performance also

have to be modeled as part of the problem requirements.

The corpus of musical data we use contains fourteen phrases from four jazz standards,

each phrase being performed at about twelve different tempos, amounting to 4256 performed

notes. Jazz standards, as notated in The Real Book (2004) typically consist of two to five

phrases (monophonic melodies annotated with chord symbols). Phrases usually have a length

of five to eight bars, typically containing 15 to 25 notes.

A preliminary version of TempoExpress was described in Grachten et al. (2004b). In this

paper we present the completed system, and report the experimental results of our system over

more than six thousand tempo transformation problems. The tempo transformation problems

were defined by segmenting the fourteen phrases into segments (having a typical length of

about five notes), and using the performances at different tempos as problem descriptions

and solutions respectively. Although the system is designed to deal with complete phrases,

we decided to evaluate on phrase segments rather than entire phrases for the sake of statistical

reliability, since this increases both the number of possible tempo transformation problems

to solve, and the amount of training data available, given the musical corpus.

The paper is organized as follows: Section 2 situates the work presented here in the

context of related work. In section 3 we will present the overall architecture of TempoEx-
press. In section 4 we report the experimentation in which we evaluated the performance of

TempoExpress. Conclusions and future work are presented in section 5.

2. Related work

The field of expressive music research comprises a rich and heterogeneous number of studies.

Some studies are aimed at verbalizing knowledge of musical experts on expressive music

performance. For example, Friberg et al. have developed Director Musices (DM), a system

that allows for automatic expressive rendering of MIDI scores (Friberg et al., 2000). DM

uses a set of expressive performance rules that have been formulated with the help of a

musical expert using an analysis-by-synthesis approach (Sundberg et al., 1991a; Friberg,

1991; Sundberg et al., 1991b).

Widmer (2000) has used machine learning techniques like Bayesian classifiers, decision

trees, and nearest neighbor methods, to induce expressive performance rules from a large set
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of classical piano recordings. In another study by Widmer (2002), the focus was on discovery

of simple and robust performance principles rather than obtaining a model for performance

generation.

Hazan et al. (2006) have proposed an evolutionary generative regression tree model for

expressive rendering of melodies. The model is learned by an evolutionary process over a

population of candidate models.

In the work of Desain and Honing and co-workers, the focus is on the cognitive validation

of computational models for music perception and musical expressivity. They have pointed

out that expressivity has an intrinsically perceptual aspect, in the sense that one can only

talk about expressivity when the performance itself defines the standard (e.g. a rhythm) from

which the listener is able to perceive the expressive deviations (Honing, 2002). In more

recent work, Honing showed that listeners were able to identify the original version from

a performance and a uniformly time stretched version of the performance, based on timing

aspects of the music (Honing, 2006).

Timmers et al. have proposed a model for the timing of grace notes, that predicts how the

duration of certain types of grace notes behaves under tempo change, and how their durations

relate to the duration of the surrounding notes (Timmers et al., 2002).

A precedent of the use of a case-based reasoning system for generating expressive music

performances is the SaxEx system (Arcos et al., 1998; López de Mántaras and Arcos, 2002).

The goal of the SaxEx system is to generate expressive melody performances from an inex-

pressive performance, allowing user control over the nature of the expressivity, in terms of

expressive labels like ‘tender’, ‘aggressive’, ‘sad’, and ‘joyful’.

Another case-based reasoning system is Kagurame (Suzuki, 2003). This system renders

expressive performances of MIDI scores, given performance conditions that specify the de-

sired characteristics of the performance. Although the task of Kagurame is performance

generation, rather than performance transformation (as in the work presented here), it has

some sub-tasks in common with our approach, such as performance to score matching, seg-

mentation of the score, and melody comparison for retrieval. Kagurame also employs the

edit-distance for performance-score alignment, but it discards deletions/insertions and retains

just the matched elements, in order to build a list of timing/dynamics deviations that repre-

sent the performance. Furthermore, its score segmentation approach is a hierarchical binary

division of the piece into equal parts. The obtained segments thus do not reflect melodic

structure. Another difference is that Kagurame operates on polyphonic MIDI, whereas

TempoExpress deals with monophonic audio recordings. Kagurame manipulates local tempo,

durations, dynamics, and chord-spread as expressive parameters.

Recently, Tobudic and Widmer (2004) have proposed a case-based approach to expressive

phrasing, that predicts local tempo and dynamics and showed it outperformed a straight-

forward k-NN approach.

To our knowledge, all of the performance rendering systems mentioned above deal with

predicting expressive values like timing and dynamics for the notes in the score. Contrastingly

TempoExpress not only predicts values for timing and dynamics, but also deals with note

insertions, deletions, consolidations, fragmentations, and ornamentations.

3. System architecture

In this section we will explain the structure of the TempoExpress system. We will first give a

short description of the tempo transformation process as a whole, and then devote subsections

to each of the steps involved, and to the formation of the case-base. A schematic view of the
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Fig. 2 Schematic view of the TempoExpress system

system as a whole is shown in figure 2. We will focus on the part inside the gray box, that is,

the steps involved in modifying the expressive parameters of the performance at the musical

level. For a more detailed account of the audio analysis/synthesis components, we point the

reader to Gómez et al. (2003b); Maestre and Gómez (2005).

Given a MIDI score of a phrase from a jazz standard, and given a monophonic audio

recording of a saxophone performance of that phrase at a particular tempo (the source tempo),

and given a number specifying the target tempo, the task of the system is to render the audio

recording at the target tempo, adjusting the expressive parameters of the performance to be

in accordance with that tempo. In the rest of this paper, we will use the term performance to

specifically refer to a symbolic description of the musician’s interpretation of the score, as a

sequence of performed notes.

In order to apply the CBR problem solving process, the first task is to build a phrase
problem specification from the given input data. This is a data structure that contains all

information necessary to define a tempo transformation task for a musical phrase, and possibly

additional information that may improve or facilitate the problem solving. A phrase problem

specification contains the following information:

1. a MIDI score, the score as a sequence of notes;

2. a musical analysis, an abstract description of the melody;

3. a source tempo, the tempo (in BPM) of the input performance;

4. a target tempo, the tempo (in BPM) at which the output performance should be rendered;

5. an input performance, the performance as a sequence of performed notes;

6. a performance annotation, a description of the expressivity in the performance;

7. a list of segment boundaries, that indicates how the score of the phrase is divided into

segments.

As figure 2 shows, only items (1) and (4) of this list are directly provided by the user. The

musical analysis (2) is derived from the MIDI score and contains information about various

kinds of structural aspects of the score, like metrical structure, an analysis of the melodic

surface, and note grouping. The phrase segmentation (7) is also derived from the MIDI score,

and is intended to capture the musical groupings inherent in the phrase.
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The performance annotation module takes the MIDI score and the melodic description of

the input audio recording as input, and provides the source tempo (3), the input performance

(5), and the performance annotation (6). The melodic description is an XML formatted file

containing both a frame-by-frame description of the audio (with descriptors like fundamental

frequency candidates, and energy), and a segment-by-segment description of the audio. The

audio segment descriptions (not to be confused with phrase segments) correspond to the indi-

vidual notes detected in the audio, and apart from their begin and end time (i.e. note onset and

offset) they include mean energy (dynamics), and estimated fundamental frequency (pitch)

as descriptors. The source tempo (3) is estimated by comparing the total duration of the audio

(time in the melodic description is specified in seconds) and the duration of the MIDI score

(which specifies time in musical beats). Although this way of estimating the global tempo is

simple, it works well for the data we used.1 The input performance (5) is a symbolic repre-

sentation of the performed notes, with MIDI pitch numbers (estimated from the fundamental

frequency), duration, onset, and dynamics information. This information is readily available

from the melodic description. To facilitate comparison between the performed notes and the

MIDI score notes, the duration and onset values of the performed notes are converted from

seconds to beats, using the computed source tempo. Finally, the performance annotation (6)

is computed by comparing the MIDI score and the input performance.

We will refer to the phrase problem specification that was built from the input data as

the phrase input problem; this is the problem specification for which a solution should be

found. The solution of a tempo transformation will consist in a performance annotation. The

performance annotation can be interpreted as a sequence of changes that must be applied

to the MIDI-score in order to render the score expressively. The result of applying these

transformations is a sequence of performed notes, the output performance, which can be

directly translated to a melodic description at the target tempo, suitable to be used as a

directive to synthesize audio for the transformed performance.

In a typical CBR setup, the input problem is used to query the case base, where the

cases contain problem specifications similar in form to the input problem, together with a

solution. The solution of the most similar case is then used to generate a solution for the input

problem as a whole. In the current setting of music performance transformation however,

this approach does not seem the most suitable. Firstly, the solution is not a single numeric

or nominal value, as in e.g. classification, or numeric prediction tasks, but it rather takes the

form of a performance annotation, which is a composite structure. Secondly, melodies are

usually composed of parts that form wholes in themselves (a phrase is typically composed of

various motifs). The first observation implies that solving a problem as a whole would require

a huge case base, since the space of possible solutions is so vast. The second observation on

the other hand suggests that a solution may be regarded as a concatenation of separate (not

necessarily independent)2 partial solutions, which somewhat alleviates the need for a very

large case base, since the partial solutions are less complex than complete solutions.

This has led us to the design of the problem solving process that is illustrated in figure 3.

The phrase input problem is broken down into phrase segment problems (called segment
input problems, or simply input problems henceforward), which are then solved individually.

The solutions found for the individual segments are concatenated to obtain the solution for

1 Tempo estimates computed for 170 performances have a mean error of 0.2 BPM and a standard deviation

of 1.1 BPM.

2 For example, the way of performing one motif in a phrase may affect the (in)appropriateness of particular

ways of playing other (adjacent, or repeated) motifs. Although such constraints are currently not defined in

TempoExpress, we will explain in section 3.4 how the reuse infrastructure can easily accommodate this.
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the phrase input problem. Furthermore, a preliminary retrieval action is performed using the

problem at the phrase level. The goal of this preliminary retrieval is to set up the case base

for the segment-level problem solving, from what we will call proto cases. Proto cases are

information units that contain phrase related information like the MIDI score, the musical

analysis, the segmentation boundaries, and all performances (with varying global tempos)

available for that phrase. The case base is formed by pooling the segments of the selected

proto cases, hence the number of cases M it will contain depends on the selectivity of the

preliminary retrieval, and the number of segments per phrase: If C is the subset of proto

cases that were selected during preliminary retrieval, and si the number of segments in the

i th proto case from C , then the case base size is:

M =
|C |∑
i=1

si

The case base obtained in this way contains cases, consisting of a segment problem spec-

ification and a solution at the segment level. The cases contain the same type of information

as the input problem specifications and solutions at the phrase level, but they span a smaller

number of notes. Solving the phrase input problem is achieved by searching the space of

partially solved phrase input problems. A partially solved phrase input problem corresponds

to a state where zero or more segment input problems have a solution. A complete solution

is a state where all segment input problems have a solution. Solutions for the segment input

problems are generated by adapting retrieved (segment) cases. This technique for case reuse

is called constructive adaptation (Plaza and Arcos, 2002).

The expansion of a state is realized by generating a solution for a segment input problem.

To achieve this, the retrieve step ranks the cases according to similarity between the MIDI

scores of the segment input problem and the cases. The reuse step consists of mapping the

score notes of the retrieved case to the score notes of the input problem, and using this

mapping to ‘transfer’ the performance annotation of the case solution to the input problem.

In the following subsections, we will address the issues involved in more detail. Sub-

section 3.1 specifies the musical data that makes up the corpus we have used in this study.

Subsection 3.2 elaborates on the steps involved in automatic case acquisition, and explains

the construction of cases from proto cases. The retrieval step is explained in subsection 3.3.

Finally, subsection 3.4 deals with the reuse step.
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Table 1 Songs used to populate the case base

Title Composer Song Structure Tempo Range

Body and Soul J. Green A1 A2 B1 B2 A1 35–100 BPM

Like Someone in Love Van Heusen/Burke A B1 B2 65–260 BPM

Once I Loved A.C. Jobim A B C D 55–220 BPM

Up Jumped Spring F. Hubbard A1 A2 B 90–270 BPM

3.1. Musical corpus

Four different songs were recorded using professional recording equipment. The performing

artist was a professional jazz saxophone player. Every song was performed and recorded at

various tempos. One of these tempos was the nominal tempo. That is, the tempo at which the

song is intended to be played. This is usually notated in the score. If the nominal tempo was

not notated, the musician would determine the nominal tempo as the one that appeared most

natural to him. The other tempos were chosen to be around the nominal tempo, increasing and

decreasing in steps of 5 (in slow tempo ranges) or 10 BPM (in faster tempo ranges). About

12 tempos per song were recorded. The musician performed on his own, accompanied by a

metronome indicating the global tempo of the piece. In total 170 interpretations of phrases

were recorded, amounting to 4256 performed notes. Table 1 shows the top level phrase

structure of the songs (determined manually from the score) and the tempo range per song.

The musician was instructed to perform the music in a way that seemed natural to him,

and appropriate for the tempo at which he was performing. Note that the word natural does

not imply the instruction to play in-expressively, or to achieve ‘dead-pan’ interpretations of

the score (that is, to imitate machine renderings of the score). Rather, the musician was asked

not to strongly color his interpretation by a particular mood of playing.

3.2. Automated case acquisition/problem description

An important issue for a successful problem solving system is the availability of example

data. We have therefore put effort in automatizing the process of constructing cases from non-

annotated data (that is, the audio files and MIDI scores). Note that since cases contain problem

specifications, the problem description step (see figure 2) is a part that case acquisition from

available data has in common with the normal system execution cycle when applying a tempo

transformation as outlined in figure 2. Case acquisition differs from the normal execution

cycle however, in the sense that the melodic description that describes the performance at

the target tempo (the output of the reuse-step) is not inferred through the problem solving

process, but is rather given as the correct solution for the problem.

Problem description involves two main steps: annotation of the performance, and a mu-

sical analysis of the score. Performance annotation consists in matching the notes of the

performance to the notes in the score. This matching leads to the annotation of the perfor-

mance: a sequence of performance events. The annotation can be regarded as a description

of the musical behavior of the player while he interpreted the score, and as such conveys the

musical expressivity of the performance. The second step in the case acquisition is an analysis

of the musical score that was interpreted by the player. The principal goal of this analysis is

to provide conceptualizations of the score at an intermediate level. That is, below the phrase

level (the musical unit which the system handles as input and output), but above the note level.
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One aspect is the segmentation of the score into motif level structures, and another one is the

categorization of groups of notes that serves as a melodic context description for the notes.

3.2.1. Performance annotation

It is common to define musical expressivity as the discrepancy between the musical piece as it

is performed and as it is notated. This implies that a precise description of the notes that were

performed is not very useful in itself. Rather, the relation between score and performance is

crucial. The majority of research concerning musical expressivity is focused on the temporal,

or dynamic variations of the notes of the musical score as they are performed, e.g. (Canazza

et al., 1997; Desain and Honing, 1994; Repp, 1995; Widmer, 2000). In this context, the

spontaneous insertions or deletions of notes by the performer are often discarded as artifacts,

or performance errors. This may be due to the fact that most of this research is focused on the

performance practice of classical music, where the interpretation of notated music is usually

strict. Contrastingly, in jazz music performers often favor a more liberal interpretation of

the score, in which expressive variation is not limited to variations in timing of score notes,

but also comes in the form of e.g. deliberately inserted and deleted notes. We believe that

research concerning expressivity in jazz music should pay heed to these phenomena.

A consequence of this broader interpretation of expressivity is that the expressivity of

a performance cannot be represented as a straight-forward list of expressive attributes for

each note in the score. A more suitable representation of expressivity describes the musical

behavior of the performer as performance events. The performance events form a sequence

that maps the performance to the score. For example, the occurrence of a note that is present

in the score, but has no counterpart in the performance, will be represented by a deletion event
(since this note was effectively deleted in the process of performing the score). Obviously,

deletion events are exceptions, and the majority of score notes are actually performed, be it

with alterations in timing/dynamics. This gives rise to correspondence events, which establish

a correspondence relation between the score note and its performed counterpart. Once a

correspondence is established between a score and a performance note, other expressive

deviations like onset, duration, and dynamics changes, can be derived by calculating the

differences of these attributes on a note-to-note basis.

Analyzing the corpus of monophonic saxophone recordings of jazz standards described

in subsection 3.1, we encountered the following types of performance events:

Insertion The occurrence of a performed note that is not in the score

Deletion The non-occurrence of a score note in the performance

Consolidation The agglomeration of multiple score notes into a single performed note

Fragmentation The performance of a single score note as multiple notes

Transformation The change of nominal note features like onset time, duration, pitch, and

dynamics

Ornamentation The insertion of one or several short notes to anticipate another performed

note

These performance events tend to occur persistently throughout different performances

of the same phrase. Moreover, performances including such events sound perfectly natural,

so much that it is sometimes hard to recognize them as deviating from the notated score.

This supports our claim that even the more extensive deviations that the performance events

describe, are actually a common aspect of (jazz) performance.

A key aspect of performance events is that they refer to particular notes in either the notated

score, the performance, or both. Based on this characteristic a taxonomy can be formulated,
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Fig. 4 A taxonomy of performance events

as shown in figure 4. The concrete events types, listed above, are depicted as solid boxes.

The dotted boxes represent abstract types of events, that clarify the relationships between

different types of events. In actual performance annotations, the abstract events will always

be instantiated by a concrete subtype. The most prominent attributes of the various event

types are added in italic. For example, the “number of notes” attribute specifies the value

of n in a n-to-1 (consolidation), 1-to-n (fragmentation), or 0-to-n (ornamentation) mapping

between score and performance.

In order to obtain a sequence of performance events that represent the expressive behavior

of the performer, the notes in the performance (the sequence of performed notes extracted

from the melodic description of the audio) are matched to the notes in the score using the

edit-distance. The edit-distance is defined as the minimal cost of a sequence of editions

needed to transform a source sequence into a target sequence, given a predefined set of edit-

operations (classically deletion, insertion, and replacement of notes). The cost of a particular

edit-operation is defined through a cost function w for that operation, that computes the cost

of applying that operation to the notes of the source and target sequences that were given as

parameters to w. We write wK ,L to denote that w operates on a subsequence of length K of

the source sequence, and a subsequence of length L of the target sequence. For example, a

deletion operation would have a cost function w1,0. For a given set of edit-operations, let W
be the set of corresponding cost functions, and let Vi, j = {wK ,L | K ≤ i ∧ L ≤ j} ⊆ W be

the subset of cost functions that operates on source and target subsequences with maximal

lengths of i and j , respectively. Furthermore, let s1:i = 〈s1, · · · , si 〉 and t1: j = 〈t1, · · · , t j 〉 be

the source and target sequences respectively. Then the edit-distance di, j between s1:i and t1: j

is defined recursively as3:

di, j = min
wK ,L ∈Vi, j

(di−K , j−L + wK ,L (si−K+1:i , t j−L+1: j ) ) (1)

where the initial condition is: d0,0 = 0. The minimal cost di, j has a corresponding optimal
alignment, the sequence of edit-operations that constitutes the minimal-cost transformation

of s into t. When we equate the (concrete) performance events shown above to edit-operations,

we can interpret the optimal alignment between the score and a performance as an annotation

3 We adopt the convention that si : j denotes the sequence 〈si 〉 whenever i = j , and denotes the empty sequence

∅ whenever i > j .
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Fig. 5 Graphical representations of performance annotations of excerpts from a) Like Someone in Love, A,

and b) Once I Loved, A1

of the performance. To do this, we have defined cost functions for every type of performance

event, that can subsequently be used to solve equation (1). Details of the cost functions

are described in Arcos et al. (2003). Two example performance annotations are shown in

figure 5. The bars below the staff represent performed notes (the vertical positions indicate

the pitches of the notes). The letters in between the staff and the performed notes represent

the performance events that were identified (‘T’ for transformation, ‘O’ for ornamentation,

and ‘C’ for consolidation).

This method allows for automatically deriving a description of the expressivity in terms

of performance events. With non-optimized edit-operation costs, the average amount of an-

notation errors is about 13% compared to manually corrected annotations (evaluating on the

complete set of performances in the corpus). Typical errors are mistaking consolidations for

a duration transformation event followed by note deletions, or recognizing a single orna-

mentation event, containing two or three short notes, as a sequence of note insertions (which

they are, formally, but it is more informative to represent these as an ornamentation). In

previous work (Grachten et al., 2004a), we have shown that by evolutionary optimization

of edit-operation costs using manually corrected annotations as training data, the amount of

errors could be reduced to about 3%, using a cross-validation setup on the performances in

the musical corpus.

3.2.2. Musical score analysis

The second step in the case acquisition is an analysis of the musical score. This step actually

consists of several types of analysis, used in different phases of the case based reasoning

process.

Firstly, a metrical accents template is applied to the score, to obtain the level of metrical

importance for each note. For example, the template for a 4/4 time signature specifies that

every first beat of the measure has highest metrical strength, followed by the third beat,

followed by the second and fourth beat. The notes that do not fall on any of these beats, have

lowest metrical strength. This information is used in the Implication-Realization analysis,

described below, and during melody comparison in the retrieval/adaptation step of the CBR

process (see subsection 3.4).

Secondly, the musical score is segmented into groups of notes, using the Melisma

Grouper (Temperley, 2001), an algorithm for grouping melodies into phrases or smaller

units, like motifs. The algorithm uses rules regarding inter-onset intervals, and metrical

strength of the notes, resembling Lerdahl and Jackendoff’s preference rules (Lerdahl and

Jackendoff, 1993). The algorithm takes a preferred group size as a parameter, and segments

the melody into groups whose size is as close as possible to the preferred size. Figure 6

shows the segmentation of phrase A1 of Up Jumped Spring as an example. In TempoExpress,

the segmentation of melodic phrases into smaller units is done as part of the retrieval and

reuse steps, in order to allow for retrieval and reuse of smaller units than complete phrases.
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4
3

Fig. 6 An example phrase segmentation (Up Jumped Spring, A1)

Fig. 7 Eight basic Implication-Realization structures

Fig. 8 I-R analysis of an excerpt

from All of Me (Marks & Simons)

We used a preferred group size of 5 notes (because this value tended to make the segments

coincide with musical motifs), yielding on average 4.6 segments per phrase.

Lastly, the surface structure of the melodies is described in terms of the Implication-

Realization (I-R) model (Narmour, 1990). This model characterizes consecutive melodic

intervals by the expectation they generate with respect to the continuation of the melody, and

whether or not this expectation is fulfilled. The model states a number of data driven principles

that govern the expectations. We have used the two main principles (registral direction, and

intervallic difference, see Schellenberg (1997)) to implement an I-R parser for monophonic

melodies. Additionally, the parser applies the I-R principle of closure, that predicts the

inhibition of the listener’s expectations as a function of rhythmic and metrical aspects of the

melody. The output of the I-R parser is a sequence of labeled melodic patterns, so called

I-R structures. An I-R structure usually represents two intervals (three notes), although in

some situations shorter or longer fragments may be spanned, depending on contextual factors

like rhythm and meter (i.e. closure). Eighteen basic I-R structures are defined using labels

that signify the implicative/realizing nature of the melodic fragment described by they I-R

structure. The I-R structures are stored with their label and additional attributes, such as the

melodic direction of the pattern, the amount of overlap between consecutive I-R structures,

and the number of notes spanned. Eight basic I-R structures are shown in figure 7. The

letters above the staff are the names of the I-R structures the melodic patterns exemplify.

Note that only the relative properties of registral direction between the two intervals matter

for identifying the structure. That is, the melodic patterns obtained by mirroring the shown

patterns along the horizontal axis exemplify the same I-R structure. This can be seen in the

example I-R analysis shown in figure 8, where downward P structures occur.

The I-R analysis can be regarded as a moderately abstract representation of the score,

that conveys information about the rough pitch interval contour, and through the boundary

locations of the I-R structures, includes metrical and durational information of the melody as

well. As such, this representation is appropriate for comparison of melodies. As a preliminary

retrieval step, we use it to compare the score from the input problem of the system to the

scores in the case base, to weed out melodies that are very dissimilar.

3.2.3. Proto case representation

The data gathered for each phrase in the problem description steps described above are stored

together in a proto case. This includes the MIDI score, the I-R analysis, the segmentation
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boundaries, and for every audio recording of the phrase, it includes the estimated tempo, the

performance (i.e. the sequence of performed notes), and the performance annotation. At this

point, the MIDI score segment boundaries are used to partition the available performances and

their performance annotations. This is largely a straight-forward step, since the performance

annotations form a link between score notes and performed notes. Only when non-score-

reference events (such as ornamentations or insertions) occur at the boundary of two segments,

it is unclear whether these events should belong to the former or the latter segment. In most

cases however, it is a good choice to group these events with the latter segment (since for

example ornamentation events always precede the ornamented note).

Note that any of the available performances is potentially part of a problem description, or

a solution, as long as the source and target tempos have not been specified. For this reason, a

proto case holds the information for more than just one tempo transformation. More precisely,

when the proto case contains performances at n different tempos, any of them may occur as an

input performance paired with any other as output performance. If we exclude identity tempo

transformations (where the same performance serves both as input and output performance),

this yields n(n − 1) possible tempo transformations.

3.3. Proto case retrieval

The goal of the proto case retrieval step (see figure 3) is to form a pool of relevant cases that

can possibly be used in the reuse step. This is done in the following three steps: Firstly, proto

cases whose performances are all at tempos very different from the source tempo and target

tempo are filtered out. Secondly, the proto cases with phrases that are I-R-similar to the input

phrase are retrieved from the proto case base. Lastly, cases are constructed from the retrieved

proto cases. The three steps are described below.

3.3.1. Case filtering by tempo

In the first step, the proto case base is searched for cases that have performances both at source

tempo and the target tempo. The matching of tempos need not be exact, since we assume

that there are no drastic changes in performance due to tempo within small tempo ranges.

We have defined the tempo tolerance window to be 10 BPM in both upward and downward

directions. For example, a tempo transformation from 80 BPM to 140 BPM may serve as

a precedent for tempo transformation from 70 BPM to 150 BPM. This particular tolerance

range (which we feel may be too nonrestrictive), is mainly pragmatically motivated: In our

corpus, different performances of the same phrase are often at 10 BPM apart from each

other. Therefore, a <10 BPM tempo tolerance will severely reduce the number of available

precedents, compared to a ≥10 BPM tempo tolerance.

3.3.2. I-R based melody retrieval

In the second step, the proto cases that were preserved after tempo filtering are assessed for

melodic similarity to the score specified in the problem description. In this step, the primary

goal is to rule out the proto cases that belong to different styles of music. For example, if

the score in the problem description is a ballad, we want to avoid using a bebop theme as an

example case.

We use the I-R analyses stored in the proto cases to compare melodies. The similarity

computation between I-R analyses is based on the edit-distance. Figure 9 illustrates how
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Fig. 9 Comparison of melodies

using an I-R based edit-distance

melodies are compared using their I-R analyses, for two fictional score fragments. The I-R

analyses are represented as sequences of I-R structure objects, having attributes like their I-R

label, the number of notes they span, and their registral direction. The edit-distance employs

a replacement operation whose cost increases with increasing difference between the I-R

structures to be replaced. When the cost of replacement is too high, a deletion and insertion

are preferred over a replacement. The parameters in the cost functions were optimized using

ground truth data for melodic similarity (Typke et al., 2005), analogous to the edit-distance

tuning approach explained later in this paper (section 4.1.2). More details can be found

in Grachten et al. (2005). The optimized I-R edit-distance performed best in the MIREX

2005 contest for symbolic melodic similarity (Downie et al., 2005), which shows it can well

compete with other state-of-the-art melody retrieval systems.

With this distance measure we rank the phrases available in the proto case base, and keep

only those phrases with distances to the problem phrase below a threshold value. The proto

cases containing the accepted phrases will be used as the precedent material for constructing

the solution.

3.3.3. Case construction from proto cases

From the selected proto cases, the actual cases are constructed. First, the input performance

and the output performance and their corresponding performance annotations are identified.

The input performance is the performance in the proto case with the tempo closest to the

source tempo, and the output performance is the performance closest to the target tempo.

Then, the data for each segment in the proto case is stored in a new case, where the input

performance and its performance annotation are stored in the problem description of that

case, and the output performance and its performance annotation are stored as the solution.

The problem description of the case additionally contains the MIDI score segment, that will

be used to assess case similarity in the constructive adaptation step.

3.4. Constructive adaptation

In this step a performance of the input score is generated at the target tempo, based on the

input performance and the set of matching cases. Constructive adaptation (CA) (Plaza and

Arcos, 2002) is a technique for case reuse that constructs a solution by a search process

through the space of partial solutions. In TempoExpress the partial solution to a phrase input

problem is defined as a state where zero or more of the (segment) input problems have a
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Fig. 10 Example of case reuse for a melodic phrase segment; T s and T t refer to source and target tempo,

respectively; The letters T, O, C, and F in the performance annotations (gray bars), respectively represent

transformation, ornamentation, consolidation, and fragmentation events

corresponding solution (see figure 3). In the initial state, none of the input problems have a

solution. This state is expanded into successor states by generating solutions for one of the

input problems. Typically, more than one solution can be generated for an input problem, by

reusing the solutions from different retrieved cases. When a state is reached that satisfies the

goal state criteria, the solutions are concatenated to form the solution for the phrase problem

specification. Otherwise, the state expansion is repeated, by solving one of the remaining

unsolved input problems.

The goal state criteria require that a state has a solution for every input problem, and that

the overall estimated solution quality of the solutions is maximal. The quality of a solution

is estimated as the proportion of notes in the problem score segment for which performance

events could be inferred based on the retrieved case. This proportion depends on the matching

quality between problem score and retrieved score segment, and the availability of a matching

adaptation rule, given the performance annotations in the problem and the case.

Independence is assumed between the solution qualities of the input problems, and thus

the solution quality of the solution to a phrase input problem is defined as the average quality

of the segment solutions, weighted by the segment length. Therefore, a best first search that

expands states in the order of their solution quality is guaranteed to find the solution with

maximal quality.

Although as of now no constraints have been defined for regulating interdependence of

segment solutions, note that such constraints can easily be incorporated through CA. A

constraint can take the form of a rule that prescribes a decrease or increase of the overall

solution quality, based on some (probably high level) description of two or more segment

solutions. Of course this may introduce local maxima in the search space, and the search

strategy employed will become more crucial.

3.4.1. Case adaptation at the segment level

In this subsection we will explain in detail how a solution is obtained for a segment input

problem. This is the process that constitutes the state expansion mentioned before. Figure 10

shows an example of the reuse of a retrieved case for a particular input segment. We will

briefly explain the numbered steps of this process one by one:
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The first step is to find the case from the case base that is most similar to the input problem.

The similarity is assessed by calculating the edit-distance between the score segments (the

edit-distance now operates on notes rather than on I-R structures, to have a finer grained

similarity assessment).

In the second step, a mapping between the input segment and the best matching retrieved

segment is made, using the optimal alignment found through the calculation of the edit-

distance.

In the third step, the performance annotations corresponding to the relevant tempos are

extracted from the retrieved segment case and the input problem specification (both the source

tempo T s and the target tempo T t for the retrieved segment case, and only T s from the input

problem specification).

The fourth step consists in linking the performance events of the retrieved segment at Ts

and Tt to the performance events of the input segment at Ts. The mapping between the input

segment and the retrieved segment is used to determine which performance events from the

retrieved case belong to which performance event from the input problem, as shown in box

4 from the figure. For every subsequence of one or more notes from the input segment n that

was mapped to a subsequence of one or more notes r of the retrieved segment, this yields

an annotation triple 〈PT s (n), PT s (r), PT t (r)〉, where the notation PT (s) is used to refer to the

sequence of performance events corresponding to a sequence of notes s at tempo T . In the

example, there are three one-note subsequences of the input segment.

In case the mapping is not perfect and a note of the input segment is not matched to any

note of the retrieved segment, that note has no corresponding annotation triple. Such gaps

are filled up by resorting to UTS. That is, PT t (n) is constructed from PT s (n) by scaling the

duration (in seconds) of the events in PT s (n) by the proportion Ts

Tt , leaving all other expressive

features unchanged.

An annotation triple 〈PT s (n), PT s (r), PT t (r)〉 can be read intuitively as saying: a score

fragment (usually just a single note) r was played as PT s (r) at tempo Ts, and played as PT t (r)

at tempo Tt, while a melodically similar score fragment n was played as PT s (n) at tempo Ts.

In order to infer from this how to play n at tempo Tt, i.e. PT t (n), two potential difficulties must

be overcome. Firstly, it is possible that although r and n were similar enough to be matched,

the number of notes in r and n differs (as occurs in the example in figure 10). Secondly, even

when r and n are identical, it still may occur that PT s (r) and PT s (n) are very different. For

example, in one performance a note may be prolonged, and preceded by an ornamentation,

whereas it is deleted in the other. This suggests that although the input problem and case are

similar with respect to their score, their performances are very different.

To deal with these situations, we have defined a set of adaptation rules (applied in the fifth
step), that given an annotation triple 〈PT s (n), PT s (r), PT t (r)〉, determine PT t (n). The rules

are intended to capture the perceptual similarity of the performances. We will illustrate this

using the example adaptation rules that are shown in figure 10.

The lower rule infers the fragmentation event (F). This rule states that if you have an

annotation triplet 〈T, C, T T 〉, you may infer F . The motivation for this is that from a percep-

tual point of view (ignoring the score), changing a performance from a consolidation event

(C) to two transformation events (T ) amounts to changing from one performed note to two

performed notes. To obtain this effect when the initial performance is a single performed

note (T ), a fragmentation event (F) is needed, so that two notes occur in the performance.

The upper rule infers OT , based on the annotation triple 〈T, T T, OT T 〉. The annotation

triple indicates that in the retrieved case two notes were performed as two transformation

events at tempo Ts and similarly at tempo Tt, but with an ornamentation preceding the first

transformation event. The net result is thus the introduction of a ornamentation in front. Since
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the performance of the input problem at tempo Ts is T , the inferred performance at tempo

Tt is therefore OT .

The examples provided above are actually instantiations of abstract rules. The abstract rule

system is defined as follows: First, a symmetric and reflexive perceptually-similar-relation

P S on performance event sequences is defined on the alphabet of correspondence events

A = {T, C, F}. We defined P S = {{T, C}, {T T, F}} ∪ {{X, X} | X ∈ A}. This relation is

then used to specify three abstract adaptation rules that infer an output performance from an

annotation triple:

〈X, Y, OY〉 → OX ⇔ {X, Y} ∈ P S (2)

〈X, Y, I Y〉 → I X ⇔ {X, Y} ∈ P S (3)

〈X, Y, Z〉 → V ⇔ {X, Y} ∈ P S ∧ {Z, V} ∈ P S (4)

The first rule governs the introduction of ornamentation events, the second rule governs
the introduction of insertion events, and the last rule allows the introduction of any corre-

spondence event that is perceptually similar to the performance event of the retrieved case

at tempo Tt, whenever the performance events of the input problem and the retrieved case

at tempo Ts are perceptually similar. Since the rules are based on a general and theoretic

conception of perceptual similarity, we believe them to be general, that is, not specific to the

domain of jazz music we currently deal with.

When an annotation triple matches none of the adaptation rules, this implies that the

performances of the retrieved case is too different from the performance of the input problem

to be reused. In this case, UTS will be applied as a default transformation.

The quality of the solution found in this way, is defined as the proportion of notes in the

input segment for which a matching adaptation rule was found.

4. Experimental results

In this section we describe experiments we have done in order to evaluate the TempoEx-
press system that was outlined above in comparison to default tempo transformation, that is,

uniform time stretching (see section 1). We have chosen to define the quality of the tempo

transformation as the distance of the transformed performance to a target performance. The

target performance is a performance played at the target tempo by a human player. This

approach has the disadvantage that it may be overly restrictive, in the sense that measuring

the distance to just one human performance discards different performances that may sound

equally natural in terms of expressiveness. In another sense it may be not restrictive enough,

depending on the choice of the distance metric that is used to compare performances. It is

conceivable that certain small quantitative differences between performances are perceptu-

ally very significant, whereas other, larger, quantitative differences are hardly noticeable by

the human ear.

To overcome this problem, we have chosen to model the distance measure used for com-

paring performances after human similarity judgments. A web based survey was set up,

to gather information about human judgments of performance similarity. In the rest of this

section we will explain how the performance distance measure was derived from the survey

results, and we will give an overview of the comparison between TempoExpress and uniform

time stretching.

Springer



Mach Learn (2006) 65:411–437 429

4.1. Obtaining the evaluation metric

The distance measure for comparing expressive performances was modeled after human

performance similarity judgments, in order to prevent the risk mentioned above, of measuring

difference between performances that are not perceptually relevant (or conversely, failing to

measure differences that are perceptually relevant).

4.1.1. Obtaining ground truth: a web survey on perceived
performance similarity

The human judgments were gathered using a web based survey.4 Subjects were presented

a target performance A (the nominal performance, without expressive deviations) of a short

musical fragment, and two different performances B and C of the same score fragment. The

task was to indicate which of the two alternative performances was perceived as most similar

to the target performance. Thus, subjects were asked questions of the form:

A is most similar to
B
C

The underlined items could be clicked to play the corresponding performance, and listeners

were asked to mark their answer by selecting either B or C, through radio-buttons.

The two alternative performances were systematically varied in the expressive dimen-

sions: fragmentation, consolidation, ornamentation, note onset, note duration, and note loud-

ness. One category of questions tested the proportionality of the effect quantity to perceived

performance distance. In this category, versions B and C contained variations in the same

expressive dimension, but to a different degree. In the case of numerical parameters like du-

ration and dynamics, this means that in version C the same notes were lengthened/shortened,

loudened/softened as in version B, but to a lesser degree. In the case of discrete parameters

such as ornamentation or consolidation, version C would have a smaller number of those

events than version B. Another category measured the relative influence of the type of effect

on the perceived performance distance. In this category version B contained deviations in a

different dimension than version C (e.g. dynamics changes vs. ornamentation, or fragmen-

tation vs. consolidation).5

Ten different score fragments were used for constructing the questions (i.e. triples of

performances). The fragments were manually selected motifs (varying in length from six to

nine notes) from eight different jazz standards (All of Me, Body and Soul, Black Orpheus,

Like Someone in Love, Once I Loved, How High the Moon, Sophisticated Lady, and Au-
tumn Leaves). More than one score fragment were used, because in initial tests, subjects

reported losing their attention after answering several questions that employed the same

score fragment. Therefore, care was taken to prevent the use of the same score fragment in

two subsequent questions. The three performance variants A, B, and C were rendered into

audio using a sampled saxophone, based on manually generated specifications of the expres-

sive deviations from the score. The deviations were defined so as to comply to the question

categories mention above.

A total of 92 subjects responded to the survey, answering on average 8.12 questions

(listeners were asked to answer at least 12 questions, but were allowed to interrupt the survey).

4 The survey is available on line at: http://musje.iiia.csic.es/survey/introduction.html.

5 In both types of questions, the performances of the labels B and C were interchanged occasionally, to prevent

familiarization.
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From the total set of questions (66), those questions were selected that were answered by

at least ten subjects. This selection was again filtered to maintain only those questions for

which there was significant agreement between the answers from different subjects (at least

70% of the answers should coincide). This yielded a set of 20 questions with answers, that

is, triples of performances, together with dichotomous judgments, conveying which of the

two alternative performances is closest to the target performance. The correct answer to a

question was defined as the mode of all answers for that question (the filtering implies that

this is the answer on which at least 70% of the subjects were in agreement). This data formed

the ground truth for modeling a performance distance measure.

4.1.2. Modeling a performance distance measure after the ground truth

An edit-distance metric was chosen as the basis for modeling the ground truth, because the

edit-distance is flexible enough to accommodate for comparison of sequences of different

lengths (in case of e.g. consolidation/fragmentation) and it allows for easy customization to

a particular use by adjusting parameter values of the edit-operation cost functions. In this

subsection we will explain how the distance was fit to the human performance similarity

judgments by optimizing parameter values.

The distance is intended to assess the similarity between different performances of the

same score. Notice that this time, we are not interested in the optimal alignment, as in the

performance annotation process, where a score and a performance were matched. Moreover,

since one performance is not an interpretation or variation of the other (as in the case of

performance vs. score), it is conceptually inappropriate to speak of the differences between

the performances in terms of e.g. ornamentation, or consolidation. To avoid confusion, we

will call the edit operations in this context by their edit range, e.g. 1-0 or 1-N. To compute

the distance, using equation (1), we defined the following cost functions for 1-0, 0-1, 1-1,

N-1, and 1-N edit-operations, respectively:

w(si , ∅) = α1 (δD(si ) + εE(si )) + β1 (5)

w(∅, t j ) = α1

(
δD(t j ) + εE(t j )

) + β1 (6)

w(si , t j ) = α2

⎛⎜⎜⎜⎜⎜⎝
π |P(si ) − P(t j ) | +
δ |D(si ) − D(t j ) | +
o |O(si ) − O(t j ) | +
ε |E(si ) − E(t j ) |

⎞⎟⎟⎟⎟⎟⎠ + β2 (7)

w(si−K :i , t j ) = α3

⎛⎜⎜⎜⎜⎜⎝
π

∑K
k=0 |P(si−k) − P(t j ) | +

δ |D(t j ) − ∑K
k=0 D(si−k) | +

o |O(si−K ) − O(t j ) | +
ε
∑K

k=0 |E(si−k) − E(t j ) |

⎞⎟⎟⎟⎟⎟⎠ + β3 (8)

w(si , t j−L: j ) = α3

⎛⎜⎜⎜⎜⎜⎝
π

∑L
l=0 |P(si ) − P(t j−l ) | +

δ |D(si ) − ∑L
l=0 D(t j−l ) | +

o |O(si ) − O(t j−L ) | +
ε
∑L

l=0 |E(si ) − E(t j−l ) |

⎞⎟⎟⎟⎟⎟⎠ + β3 (9)
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Table 2 Optimized values of edit-operation cost parameters

α1 α2 α3 β1 β2 β3 π δ o ε

0.031 0.875 0.243 0.040 0.330 0.380 0.452 1.000 0.120 0.545

Where si = 〈si 〉, and P(si ), D(si ), O(si ), and E(si ) respectively represent the pitch, duration,

onset, and dynamics attributes of a note si . Each attribute has a corresponding parameter (π ,

δ, o, and ε, respectively), that controls the impact of that attribute on operation costs. The β

parameters control the absolute cost of the operations. The α parameters control the partial

cost of the operation due to (differences in) attribute values of the notes. Note that the same

α and β parameters occur in the 1-0 and 0-1 cost functions, and also in the 1-N and N-1 cost

functions. This ensures that the distance will be symmetric.

Fitting the edit-distance to the ground truth is a typical optimization problem, and an

evolutionary optimization was used as a local search method to find good values for the ten

parameters in equations (5)–(9).

The fitness function for evaluating parameter settings was defined to be the proportion of

questions for which the correct answer was predicted by the edit-distance, using the parameter

settings in question. A correct answer is predicted when the computed distance between the

target performance and the most similar of the two alternative performances (according to

the ground truth) is lower than the computed distance between the target and the remaining

alternative performance. More precisely, let Q = {q1, · · · , qn} be the questions for which the

ground truth is known, where qi is a triple 〈ti , si , ri 〉 containing the target performance ti of

question qi , the alternative performance si that was selected by the subjects as being most

similar to ti , and the remaining (less similar) alternative performance ri for that question.

The fitness of a distance d is then defined as:

fitness(d) = |{ qi ∈ Q | d(ti , si ) < d(ti , ri ) }|
n

(10)

Using this fitness function a randomly initialized population of parameter settings was

evolved using an elitist method for selection. That is, the fittest portion of the population

survives into the next population unaltered and is also used to breed the remaining part of

the next population by crossover and mutation (Goldberg, 1989). A fixed population size of

40 members was used. Several runs were performed and the fitness tended to stabilize after

300 to 400 generations. Typically the percentages of correctly predicted questions by the

best parameter setting found were between 70% and 85%. The best parameter setting found

(shown in table 2) was employed in the edit-distance that was subsequently used to evaluate

the tempo transformed performances generated by TempoExpress.

4.2. Comparison of TempoExpress and uniform time stretching

In this subsection we report the evaluation results of the TempoExpress system on the task

of tempo transformation, and compare them to the results of uniformly time stretching the

performance. As said before, the evaluation criterion for the tempo transformations was

the computed distance of the transformed performance to an original performance at the

target tempo, using the edit-distance optimized to mimic human similarity judgments on

performances.

A leave-one-out setup was used to evaluate the CBR system where, in turn, each proto

case is removed from the case base, and all tempo transformations that can be derived from
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Fig. 11 Performance of TempoExpress vs. uniform time stretching as a function of tempo change (measured

as the ratio between target tempo and source tempo). The lower plot shows the probability of incorrectly

rejecting H0 (non-directional) for the Wilcoxon signed-rank tests

that proto case are performed using the reduced case base. The constraint that restricted

the generation of tempo transformation problems from the proto cases was that there must

be an original human performance available at the source tempo (the performance to be

transformed) and another performance of the same fragment at the target tempo of the

tempo transformation (this performance serves as the target performance to evaluate the

transformation result). Hence the set of tempo transformation problems for a given proto

case is the pairwise combination of all tempos for which a human performance was available.

Note that the pairs are ordered, since a transformation from say 100 BPM to 120 BPM is not

the same problem as the transformation from 120 BPM to 100 BPM. Furthermore the tempo

transformations were performed on a phrase segment basis, rather than on complete phrases,

since focusing on phrase level transformations is likely to involve more complex higher level

aspects of performance (e.g. interactions between the performances of repeated motifs), that

have not been addressed in this paper. Moreover, measuring the performance of the system

on segments will give a finer grained evaluation than measuring on the phrase level.

Defining the set of tempo transformations for segments yields a considerable amount

of data. Each of the 14 phrases in the case base consists of 3 to 6 motif-like segments,

identified using Temperley’s Melisma Grouper (Temperley, 2001), and has approximately 11

performances at different tempos (see subsection 3.1). In total there are 64 segments, and 6364

transformation problems were generated using all pairwise combinations of performances

for each segment. For each transformation problem, the performance at the source tempo was

transformed to a performance at the target tempo by TempoExpress, as well as by uniform

time stretching (UTS). Both of the resulting performances were compared to the human

performance at the target tempo by computing the edit-distances. This resulted in a pair

of distance values for every problem. Figure 11 shows the average distance to the target
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Table 3 Overall comparison

between TempoExpress and

uniform time stretching, for

upwards and downwards tempo

transformations, respectively

mean distance to target Wilcoxon signed-rank test

TempoExpress UTS p <> z d f

tempo ↑ 0.0791 0.0785 0.046 1.992 3181

tempo ↓ 0.0760 0.0786 0.000 9.628 3181

performance for both TempoExpress and UTS, as a function of the amount of tempo change

(measured as the ratio between target tempo and source tempo). Note that lower distance

values imply better results. The lower graph in the figure shows the probability of incorrectly

rejecting the null hypothesis (H0) that the mean of TempoExpress distance values is equal to

the mean of UTS distance values, for particular amounts of tempo change. The significance

was calculated using a non-directional Wilcoxon signed-rank test.

Firstly, observe that the plot in Figure 11 shows an increasing distance to the target

performance with increasing tempo change (both for slowing down and for speeding up), for

both types of transformations. This is evidence against the hypothesis of relational invariance,

which implies that the UTS curve should be horizontal, since under relational variance, tempo

transformations are supposed to be achieved through mere uniform time stretching.

Secondly, a remarkable effect can be observed in the behavior of TempoExpress with

respect to UTS, which is that TempoExpress improves the result of tempo transformation

specially when slowing performances down. When speeding up, the distance to the target

performance stays around the same level as with UTS. In the case of slowing down, the

improvement with respect to UTS is mostly significant, as can be observed from the lower

part of the plot.

Finally, note that the p-values are rather high for tempo change ratios close to 1, meaning

that for those tempo changes, the difference between TempoExpress and UTS is not signifi-

cant. This is in accordance with the common sense that slight tempo changes do not require

many changes, in other words, relational invariance approximately holds when the amount

of tempo change is very small.

Another way of visualizing the system performance is by looking at the results as a function

of absolute tempo change (that is, the difference between source and target tempo in beats

per minute), as shown in figure 12. The overall forms of the absolute curves and the relative

curves (figure 11) are quite similar. Both show that the improvements of TempoExpress are

mainly manifest on tempo decrease problems.

Table 3 summarizes the results for both tempo increase and decrease. Columns 2 and 3

show the average distance to the target performance for TempoExpress and UTS, averaged

over all tempo increase problems, and tempo decrease problems respectively. The remaining

columns show data from the Wilcoxon signed-rank test. The p-values are the probability

of incorrectly rejecting H0 (that there is no difference between the TempoExpress and UTS

results). This table also shows that for downward tempo transformations, the improvement of

TempoExpress over UTS is small, but extremely significant (p < .001), whereas for upward

tempo transformations UTS seems to be better, but the results are slightly less decisive

(p < .05).

How can the different results for tempo increase and tempo decrease be explained? A

practical reason can be found in the characteristics of the case base. Since the range of

tempos at which the performances were played varies per song, it can occur that only one

song is represented in some tempo range. For example, for Up Jumped Spring the tempos

range from 90 BPM to 270 BPM, whereas the highest tempo at which performances of other

songs are available is 220 BPM. That means that in the leave-one-out method, there are no
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Fig. 12 Performance of TempoExpress vs. UTS as a function of tempo change (measured in beats per minute).

The lower plot shows the probability of incorrectly rejecting H0 (non-directional) for the Wilcoxon signed-rank

tests

precedents for tempo transformations to tempos in the range from 220 BPM to 270 BPM.

This may explain the increasing gap in performance in favor of UTS, towards the end of the

spectrum of upward tempo transformations.

5. Conclusion and future work

In this paper we presented our research results on global tempo transformations of music

performances. We are interested in the problem of how a performance played at a particular

tempo can be rendered automatically at another tempo preserving some of the features of

the original tempo and at the same time sounding natural in the new tempo. We focused our

study in the context of standard jazz themes and, specifically on saxophone jazz recordings.

We proposed a case-based reasoning approach for dealing with tempo transformations

and presented the TempoExpress system. TempoExpress has a rich description of the musical

expressivity of the performances, that includes not only timing and dynamics deviations of

performed score notes, but also represents more extensive kinds of expressivity such as note

ornamentation, and note consolidation/fragmentation. We apply edit-distance techniques in

the retrieval step, as a means to assess similarities between the cases and the input problem.

In the reuse step we employ constructive adaptation. Constructive adaptation is a technique

able to generate a solution to a problem by searching the space of partial solutions for a

complete solution that satisfies the solution requirements of the problem.

Moreover, we described the results of our experimentation over a case-base of more

than six thousand transformation problems. TempoExpress clearly behaves better than a

Uniform Time Stretch (UTS) when the target problem is slower than the source tempo.

When the target tempo is higher than the source tempo the improvement is not significant.
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Nevertheless, TempoExpress behaves as UTS except in transformations to really fast tempos.

This result may be explained by the lack of cases with tempos higher than 220 BPM. Sum-

marizing the experimental results, for downward tempo transformations, the improvement of

TempoExpress over UTS is small, but extremely significant (p < .001), whereas for up-

ward tempo transformations UTS seems to be better, but the results are slightly less decisive

(p < .05).

Future work includes a more thorough investigation of how the quality of the tempo

transformations is affected by varying parameters of the system, such as the preferred segment

size, the tempo tolerance window, and the I-R-similarity threshold for proto case selection.

In this paper, we have shown that the CBR framework potentially allows for handling inter-

dependencies of phrase segment performances. In the future, we intend to take advantage of

this by introducing constraints that make such inter-dependencies explicit.

As for evaluation, we wish to extend the experiments to analyze the performance of

TempoExpress with respect to the complete phrases. Also, instead of evaluating the system

by measuring the distance to a target performance, it is preferable that human listeners judge

the musical quality of the tempo transformed performances directly.
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Grachten, M., Arcos, J. L., & López de Mántaras, R. (2004b). TempoExpress, a CBR approach to musical tempo

transformations. In Advances in Case-Based Reasoning. Proceedings of the 7th European Conference,
ECCBR 2004, Lecture Notes in Computer Science. Springer.
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