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Abstract We consider a group of agents on a graph who repeatedly play the prisoner’s

dilemma game against their neighbors. The players adapt their actions to the past behavior of

their opponents by applying the win-stay lose-shift strategy. On a finite connected graph, it

is easy to see that the system learns to cooperate by converging to the all-cooperate state in a

finite time. We analyze the rate of convergence in terms of the size and structure of the graph.

Dyer et al. (2002) showed that the system converges rapidly on the cycle, but that it takes a

time exponential in the size of the graph to converge to cooperation on the complete graph.

We show that the emergence of cooperation is exponentially slow in some expander graphs.

More surprisingly, we show that it is also exponentially slow in bounded-degree trees, where

many other dynamics are known to converge rapidly.

Keywords Games on graphs . Learning . Prisoner’s dilemma game . Win-Stay Lose-Shift .

Oriented percolation . Emergence of cooperation

1 Introduction

We consider a group of agents arranged on the nodes of a graph who repeatedly play the

prisoner’s dilemma game against their immediate neighbors. The players adapt their actions

to the past behavior of their opponents by applying the so-called win-stay lose-shift strat-

egy (Nowak & Sigmund, 1993) which, as the name suggests, consists in changing strategy

whenever the payoff is deemed unsatisfactory. This model has been studied in the artifi-

cial intelligence literature (Kittock, 1995) as a simple example of “co-learning” (Shoham &
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Tennenholtz, 1993, 1997). On a finite connected graph, it turns out that the system con-

verges to the all-cooperate state—the globally optimal state—in finite time. In this re-

spect, this instance of the iterated prisoner’s dilemma (IPD) game on a graph provides an

interesting example of a system learning to behave optimally by a mechanism that involves

each agent applying independently a simple strategy—or rule of thumb—which takes into

account only the latest actions of its immediate neighbors. For related work, see (Fuden-

berg & Levine, 1998) and references therein. See also (Axelrod, 1984) for the evolutionary

perspective.

In order to understand how persistent this “emergence of cooperation” phenomenon is, it

is crucial to analyze the rate of convergence to the all-cooperate state. Where the convergence

is rapid, one would expect to observe the optimal, cooperation state in a practical system

based on similar dynamics. On the other hand, where the convergence is slow, one would

rather expect that such a system would stagnate in a suboptimal, metastable state where a

nonnegligible fraction of agents defect. Rates of convergence for IPD were studied in Kittock

(1995) and Dyer et al. (2002) where the structure of the graph was shown to be a determining

factor.

In this paper, we show that IPD exhibits an exponentially slow convergence to coopera-

tion on expander graphs and bounded-degree trees. Our result for bounded-degree trees is

somewhat surprising. In particular, it should be compared to the behavior of global reversible

dynamics on trees (Berger et al., 2005) where the convergence is always rapid. Note however

that this slow convergence on trees is not unprecedented. Notably, the contact process, a

common model of infection, is slow to converge on trees when the infection rate is large. See

e.g. (Liggett, 1999) and references therein. In fact, our proof suggests that IPD behaves very

much like the contact process. Nevertheless, the analysis of non-reversible particle systems

has been an open challenge in the last two decades and we hope that the results obtained here

can shed some more light on how such systems can be tackled.

The proof of slow convergence we give here combines several ideas. The main idea

is to look at the process at the right space-time scaling. This approach, commonly used

in probability (e.g. in the analysis of interacting particle systems (Liggett, 1985)), allows

us to analyze the rough behavior of IPD—defection survives for long periods of time in

zones that are densely populated by defectors. The main technical difficulty is to control

the dependencies between different regions and different times. Then the process is com-

pared to a directed percolation process (where the directed axis corresponds to the time axis

in the original process). Using contour arguments we show that the directed percolation

process survives for an exponential time. See (Durrett, 1984) for background on directed

percolation.

1.1 Definitions and previous work

Recall that the prisoner’s dilemma game (PD) is a bimatrix game with the following payoff

matrix for the row player (and similarly for the column player):

(
R S

T P

)

where T > R > P > S and 2R > T + S. The first row (column) corresponds to the coop-
erate action and the second row (column) corresponds to the defect action. The global—or

Pareto—optimum is for both agents to cooperate. However, for any given action of the col-
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umn player, it is always in the row player’s advantage to defect (and similarly for the column

player).

For an agent playing PD, a simple way to adapt to her opponent’s behavior is the so-called

Win-Stay Lose-Shift strategy (WSLS) (Nowak & Sigmund, 1993), also known as the Pavlov

strategy (Kittock, 1995; Shoham & Tennenholtz, 1997). This works as follows. Every time

the game is played, if the agent’s payoff is one of the two smaller payoffs, i.e. P or S, then

she switches her action in anticipation for the next round of play, otherwise she keeps the

same action.

We now consider a repeated graphical version of PD which we will refer to as IPD. Let

G = (V, E) be a finite graph with n = |V |. Each node, v, is an agent to which we associate

an action At (v) ∈ {C, D} at time t ∈ R+. Here C stands for cooperation while D stands for

defection. The initial state is A0(v) = D for all v ∈ V . The agents repeatedly play PD against

their immediate neighbors in the graph through the following mechanism. Each edge e ∈ E
has an exponential clock, i.e. we associate to each edge an independent Poisson process

{Ti (e)}i≥1 where all inter-arrival times Ti+1(e) − Ti (e) are independent Exp(1) (with the

convention T0 = 0). Every time a clock rings, say at edge e = (u, v), the endpoint agents

u and v play one round of PD using their respective actions At (u) and At (v), assuming

the clock rings at time t . Then the two agents update their state using WSLS. In other

words, if a clock rings on edge e = (u, v) at time t , we witness the following transition for

(At (u), At (v))

(C, C) → (C, C)

(C, D) → (D, D)

(D, C) → (D, D)

(D, D) → (C, C).

Equivalently, we could consider a discrete-time process where at each time step, one edge

is picked uniformly at random among all edges and is updated as above. The correspondence

between the two definitions is well-known (see e.g. (Aldous & Fill, 2006)). In particular,

note that in the continuous-time case, no two clocks can ring simultaneously because the

interarrival times have a continuous density. Moreover, by the memoryless property of the

exponential, any time a clock rings, the next clock to ring is uniform over all edges. The

discrete-time version is used in Dyer et al. (2002) and in Section 3 of the present paper. But,

as will become clear below, it is easier to consider the continuous-time version of IPD in

Section 2.

The update mechanism described above defines a stochastic process for the state of the

system At = (At (v))v∈V with initial state the all-defect state, A0 = D ≡ (D, . . . , D). It is

clear that, given the above allowed transitions, the system has a unique fixed point, the all-

cooperate state C ≡ (C, . . . , C). In particular, if G is a finite connected graph with n ≥ 2,

we have a.s. At → C as t → +∞. The question of interest is: how long does it take to

reach C on a given graph. It was shown by Dyer et al. (2002)—and previously conjectured

in Kittock (1995)—that the time to the emergence of cooperation depends crucially on the

structure of the graph. Let TC be the stopping time at which At reaches C for the first

time. Below, with high probability (w.h.p.) means with probability 1 − 1/poly(n) where

poly(n) increases polynomially with n. In Dyer et al. (2002), the following two results are

proved.

Theorem 1. (Dyer et al., 2002) Let G be a cycle on n vertices. Then w.h.p. TC = O(n log n).
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Theorem 2. (Dyer et al., 2002) Let G be the complete graph on n vertices. Then w.h.p.
TC = �((1.1)n).

1.2 Our results

Given the previous theorems, it is natural to conjecture that the time to the emergence of

cooperation is governed by the connectivity of the graph: a high connectivity, as in the

complete graph, leads to slow convergence, while a low connectivity, as in the cycle, leads

to fast convergence. Surprisingly, we refute this intuition with our main result.

Theorem 3. There is a constant d so that for all n there is a d-regular tree with n vertices
for which w.h.p. TC = �(ρn) for some ρ > 1 depending only on d.

To prove this result, we study IPD on “linear trees.” The main technical ingredient is a

coupling with oriented percolation. The proof of this theorem is given in Section 2.

Although the connectivity conjecture turns out to be wrong in general, the following

theorem, an extension of the complete graph result of Dyer et al. (2002), shows that the

intuition is partly correct in one direction. More precisely, Theorem 4 below guarantees that

IPD is slow to converge on any graph with high enough connectivity while Theorem 3 above

shows that IPD can be slow even if connectivity is very low. Let G be a graph with n vertices.

Let α, β be two increasing functions of n such that for all n, 0 < α(n) < β(n) < n. Define

the (α, β)-expansion constant ρα,β (G) of G as

ρα,β (G) = min

{ |E(U, U c)|
vol(U )

: U ⊆ V, α(n) ≤ |U | ≤ β(n)

}
,

where E(U, U c) is the set of edges between U and U c, vol(U ) is the sum of the degrees of

the nodes in U , and |X | is the cardinality of X .

Theorem 4. Let ε > 0. Let α, β be two increasing functions of n such that for all n, 0 <

α(n) < β(n) < n. Let G be a graph with n vertices such that ρα,β (G) > 1/2 + ε. Then there
is a constant a > 1 (depending only on ε) such that w.h.p. TC = �(aβ(n)−α(n)) (for n large
enough). In particular, if α, β are linear in n, the emergence of cooperation is exponentially
slow.

This follows from a martingale argument similar to that used in Dyer et al. (2002) which is

detailed in Section 3. Note that in Theorem 4, in order to obtain slow convergence, it suffices

to have large expansion for relatively small sets. In particular, the theorem applies to expander

graphs such as random regular graphs (Kahale, 1995; Friedman, Kahn, & Szemeredi, 1989).

2 Win-stay lose-shift on trees

In this section, we analyze IPD on caterpillar trees of degree d . We define an (n,d)-caterpillar,

denoted Sn
d , to be a tree with the following property: the subtree induced by the internal nodes

is a path containing n nodes all of which have degree d . See Fig. 1. Our main result, Theorem 3,

is that cooperation is slow to emerge on caterpillars. The proof of Theorem 3 follows from

a series of stochastic domination arguments. We now briefly outline the main steps of the

proof.
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Fig. 1 Caterpillar of degree 7

1. Star Dynamics via Biased Random Walk. The first step is to analyze the behavior of a

single star. The main point here is that it takes the star with d leaves an exponential number

of steps (in d) to move from the all-defect state to the all-cooperate state. This is proved

by comparing the process to a biased random walk. This comparison also shows that a star

can go from a few defectors to linearly many in poly(d) time with constant probability,

and that a small linear fraction of defectors grows with high probability within poly(d)

steps. Moreover, these claims can be established even if one allows two of the nodes of

the stars to have arbitrary values.

2. Space-Time Scaling. We think of a star as defecting if at least d/4 of its leaves defect.

Then, we consider triplets of adjacent stars and say that a triplet is defecting if at least

one of its extremal stars is defecting. (We actually work with triplets of stars rather than

pairs to help control dependencies.) We scale time by looking at the process every poly(d)

steps. The random walk argument of the previous point allows to show that defecting

stars have a high probability—at least (1 − exp(−�(d)))—of remaining defectors after the

poly(d) time window. Moreover, a defecting star has a 1/poly(d) probability of “infecting”

neighboring stars during that time. By iterating these observations poly(d) times—yet

another time scaling—we show that a defecting triplet has a probability 1 − exp(−�(d))

of “infecting” a neighboring triplet. (Neighboring triplets are actually intersecting.)

3. Percolation. We may now look at the space-time diagram of defecting triplets and show

that it dominates a directed percolation with probability 1 − exp(�(−d)) for edges to be

open. The time axis of the original process corresponds to the direction of propagation in

the percolation process. Finally, a contour argument allows to conclude that this percolation

survives for a time which is exponential in n, thus proving that the convergence time of

IPD on the caterpillar is itself exponential in n.

2.1 Star

Let G = Sn
d . This graph is made of n copies of S1

d (i.e. stars of degree d). Let G ′ be any star in

G. Denote the root 0 and the leaves 1, 2, . . . , d . A crucial property of stars is that cooperation

is slow to emerge on them. This follows from our next result. We single out nodes 1 and 2,

which are defined to be the two nodes that G ′ shares with its neighboring stars. (In the case

of extremal stars, we just pick an arbitrary node in addition to the node shared with the next

star.) We call 1 and 2 the external vertices. We use the following notation: a ∧ b = min{a, b}.

Lemma 1 (Dynamics on Stars). Consider the IPD chain {At }t≥0 on G = Sn
d with d > 15.

Let G ′ be an arbitrary star in G with nodes denoted 0, . . . , d (0 being the root, and 1 and 2

being the external vertices). Let M ′ be a positive integer and g0, g1, g2 be three increasing
functions of d with g2(d) = d/3 − 2 and g0, g1 satisfying 1 < g0(d) < g1(d) < g2(d) for all
d. Let the initial configuration be as follows. On G ′, nodes 3 through d − g1 are C and nodes
d − g1 + 1 through d are D. On all other nodes, including the root and external vertices of
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G ′, the initial state is arbitrary. Define

ND = |{i ∈ {3, . . . , d} : A(i) = D}|.

Let Tg be the first time ND = g. Let �2 = g2 − g1, �1 = g1 − g0, ρ = √
9/8, and μ = g0 M ′.

Then, we have

P[Tg2
≥ (Tg0

∧ M ′)] ≤ 2−�1 + ρ−√
μ/2(

√
2)�2 + 2−μ/2. (1)

Moreover, this bound applies simultaneously on all stars independently from each other
(possibly with different choices of g’s).

Proof: For this argument, we restrict ourselves to what happens on G ′ and do not refer to

any event involving the rest of G. We call a leaf edge with leaf state D a D-edge, and similarly

for C. The behavior of ND depends on the state at the root of G ′. When A(0) = C, nothing

happens until a D-edge is picked at which time A(0) becomes D itself. On the other hand,

when A(0) = D, either a C-edge is chosen in which case ND may go up by 1 (or stay the

same if 1 or 2 is picked), or a D-edge is chosen in which case ND may go down by 1 (or stay

the same if 1 or 2 is picked) and A(0) becomes C. Ignore the updates where nothing changes,

i.e. when an edge (C, C) is chosen. In any configuration satisfying ND ≥ g0, there are at

least g0 edges whose updates change the configuration. Let Q the number of such updates

in time M ′. Then it follows that Q is larger than a Poisson with mean μ = g0 M ′. From the

moment generating function of the Poisson distribution (see e.g. (Durrett, 1996)), we have

the following

P[Q ≤ √
μ] = P[eμ−Q ≥ eμ−√

μ] ≤ E[eμ−Q]

eμ−√
μ

≤ eμeμ(e−1−1)

eμ−√
μ

≤ 2−μ/2,

for μ large enough. Assume the event {Q ≥ √
μ} holds. Also, note that at most one out of

2 steps have A(0) = C. (Remember that we ignore (C, C) updates.) Ignore the times with

A(0) = C as well, what remains is an asymmetric random walk (or rather a birth-and-death

chain) which does at least
√

μ/2 steps before time M ′. To bound the probability that ND goes

up or down, we use the fact that the chain starts with g1 D’s and is stopped when it reaches

either g0 or g2 D’s. By assumption, the probability that ND goes up when A(0) = D is at

least (d − 2 − g2)/d . Consider the walk {Sk}k≥0 on N started at S0 = g1 which goes up with

probability p = (d − 2 − g2)/d = 2/3 and goes down with probability 1 − p = 1/3. Let T ′
g

be the time at which Sk reaches g. For convenience, we assume that the process {Sk}k≥0 is

defined on all of Z (even though outside the interval [g0, g2] the bounds used are not valid).

Then,

P[Tg2
≥ (Tg0

∧ M ′) | Q ≥ √
μ] ≤ P[T ′

g2
≥ (T ′

g0
∧ √

μ/2)]

≤ P[T ′
g2

≥ T ′
g0

] + P[T ′
g2

≥ √
μ/2].

By standard martingale results (see e.g. (Durrett, 1996, Example 4.7.1)), we have

P[T ′
g2

≥ T ′
g0

] = φ(�2) − φ(0)

φ(�2) − φ(−�1)
,
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where

φ(s) =
(

1 − p

p

)s

= 2−s .

So,

P[T ′
g2

≥ T ′
g0

] = 1 − 2−�2

2�1 − 2−�2
≤ 2−�1 .

We also have

E
[
ρ

T ′
g2

] =
(

1 −
√

1 − 4p(1 − p)ρ2

2(1 − p)ρ

)�2

.

The choice ρ = √
9/8 gives

E[ρT ′
g2 ] = (

√
2)�2 .

By Markov’s inequality,

P[T ′
g2

≥ √
μ/2] = P

[
ρ

T ′
g2 ≥ ρ

√
μ/2

] ≤ ρ−√
μ/2

(√
2
)�2

.

Finally, putting everything together, we get (1).

The independence of the bound at each star in G comes from the fact that we use only

events involving leaf edges of G ′. �

The following corollary corresponds to the case where a star has initially only a few D’s.

The result below implies that after M ′ = poly(d) steps the star has O(d) D’s with positive

probability.

Corollary 1 (Defection Spreads on Stars). In the setup of Lemma 1, let g0(d) = 2, g1(d) = 3

and g2(d) = d/3 − 2. Then, for M ′ = ω(d2) and d (constant) large enough, we have

P[Tg2
≥ (Tg0

∧ M ′)] ≤ 2

3
.

The following corollary implies that a star with O(d) D’s still has O(d) D’s after poly(d)

steps, with high probability.

Corollary 2 (Defection Survives on Stars). In the setup of Lemma 1, let M ′ → +∞,
g2(d) = d/3 − 2, g1(d) = d/3 − 3, and g0(d) = d/4 − 3. Then,

P[Tg2
≥ Tg0

] ≤ 2−d/12.
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HB

p10

p1
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s00 s10
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G

Time 0
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Fig. 2 Reduction to percolation. The analysis of IPD on G ′ (left) uses a percolation model on HB (right).
The states s00, s10, s01, s11 are in {0, 1}, and the values p0, p1, p10, p01 indicate the probability that the
corresponding edge is open. Each of the top states is 1 if it is the endpoint of an open edge with bottom state
1, and is 0 otherwise

The following corollary implies that a star with d/4 D’s reaches d/3 D’s after poly(d)

steps, with high probability.

Corollary 3 (Defection Boosting on Stars). Let τ be a positive integer, not depending on d.
In the setup of Lemma 1, let g2(d) = d/3 − 2, g1(d) = d/4 − 2 − τ , and g0(d) = d/5 − 2 −
τ . Then, for M ′ = ω(d2) and d large enough, we have

P[Tg2
≥ (Tg0

∧ M ′)] ≤ 3 2−d/20 ≤ 2−d/21.

2.2 Star triplets

The next step in the proof of Theorem 3 is to make the connection between IPD and oriented

percolation. Here we show how a triplet of stars dominates the building block of a percolation

lattice. We use the following oriented percolation. Consider four adjacent vertices of the

regular lattice Z2, say v00 = (0, 0), v01 = (0, 1), v10 = (1, 0) and v11 = (1, 1). Assume the

nodes are connected by four directed edges: e0 = (v00, v01), e1 = (v10, v11), e01 = (v00, v11),

and e10 = (v10, v01). See Fig. 2. Each edge is open with respective probability p0, p1, p01,

and p10. The vertices have a state, denoted respectively s00, s01, s10, s11, which takes its value

in {0, 1}. The state 1 “travels”along the open edges, i.e. if e = (u, v) is an open edge and the

state at u is 1 then the state at v is also 1. A vertex is in state 1 if and only if it is the terminal

vertex of an open edge with initial vertex in state 1. We denote this four-node graph HB .

Now consider any triplet of adjacent stars inside G = Sn
d . Denote the stars Sj , j = 1, 2, 3,

with corresponding edges {e( j)
i }d

j=1 and vertices {v( j)
i }d

i=0, with the label 0 corresponding to

the root. We have the correspondence e(1)
2 = e(2)

1 and e(2)
2 = e(3)

1 . We denote this subgraph—

which is a copy of S3
d—G ′. We are interested in the number of D’s on each star, excluding

nodes 0, 1, and 2 of each star, which we denote Nt = (N (1)
t , N (2)

t , N (3)
t ).

The detailed behavior of Nt is rather intricate. We simplify the process by projecting it to

a smaller space. Let

σd [N ] =
{

1, if N > d/4 − 2,

0, if otherwise.
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Consider the random vector

s̃ = (s̃00, s̃01, s̃10, s̃11) = (
σd

[
N (1)

0

]
, σd

[
N (1)

M

]
, σd

[
N (3)

0

]
, σd

[
N (3)

M

])
,

for some M > 0. The following lemma shows that for an appropriate choice of M , p0, p1,

p01, and p10, the vector s̃ stochastically dominates

s = (s00, s01, s10, s11),

defined by the percolation above (with s00 = s̃00 and s10 = s̃10).

Lemma 2 (Connection to Percolation). Consider the IPD chain {At }t≥0 on G = Sn
d with d >

15. Let G ′ be an arbitrary triplet of adjacent stars in G. Let M = d6, p0 = p1 = 1 − 2−d/30,
and p01 = p10 = d−10. Then, for any initial configuration and s00, s10 such that s00 = s̃00

and s10 = s̃10, we have that (s̃01, s̃11) stochastically dominates (s01, s11) for d (constant) large
enough. Moreover, the domination holds for any number of (edge-)nonintersecting triplets
simultaneously independently from each other.

Proof: The argument ignores any event outside G ′. We consider three cases.

(1)Case s̃00 = s̃10 = 0. In that case, we have s01 = s11 = 0, which is of course dominated

by s̃01, s̃11.

(2)Case s̃00 = s̃10 = 1. We use Corollaries 2 and 3, which we apply to stars 1 and 3 inde-

pendently. Consider star 1. We first go through a “boosting” phase where we let N (1)

drift from d/4 − 2 to d/3 − 2. Then we compute the probability that N (1) stays above

d/4 − 2 for the remaining time.

Phase 1. For the boosting phase, we apply Corollary 3. The probability of remaining

below d/3 − 2 is at most 2−d/21.

Phase 2. The time remaining after boosting is of course at most M . In time M , there is a

Poisson number of steps, say Q′, with mean d M (including the steps where nothing hap-

pens). From the moment generating function of the Poisson distribution (see e.g. (Durrett,

1996)), we have the following

P[Q′ ≥ d2 M2] = P
[
eQ′ ≥ ed2 M2] ≤ E[eQ′

]

ed2 M2
≤ ed M(e−1)

ed2 M2
≤ 2−d2 M2/2.

Assuming d/3 − 2 was reached and that there remains at most d2 M2 discrete steps,

we get that there are at most d2 M2 crossings of the interval [d/4 − 3, d/3 − 2] by the

process N (1). By Corollary 2, every time N (1) = d/3 − 3, there is a probability of at least

1 − 2−d/12 of coming back to d/3 − 2 before hitting d/4 − 3. The probability that any of

d2 M2 attempts at crossing [d/4 − 3, d/3 − 2] succeeds is at most at most d2 M22−d/12

which implies

P[s̃10 = 0] ≤ d2 M22−d/12 + 2−d2 M2/2 + 2−d/21 ≤ 2−d/22,

for d large enough. Stochastic domination of the oriented percolation follows directly.

(3)Case s̃00 = 1, s̃10 = 0. (The symmetric case is analyzed similarly.) We divide the time

window in two phases. For the first phase, we compute the probability that defection

“spreads” from star 1 to star 3. For the second phase, we compute the probability that

stars 1 and 3 remain in or reach state 1 respectively.
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Phase 1. It is easy to see that, in any initial configuration satisfying s̃00 = 1, s̃10 = 0,

six steps (or less) suffice to reach a configuration with N (3) ≥ 3. The probability that

the first six steps taken by IPD satisfy this property—call that event B—is at least 1/d6.

Let Q′′ be the number of steps until time M/2. Then,

P[Q′′ ≤ 5] ≤ 2−M/4,

by a calculation similar to that in Lemma 1.

Phase 2. We condition on {Q′′ ≥ 6}. Consider first star 1. Whether or not B is realized,

at the beginning of Phase 2, we have N (1) ≥ d/4 − 8. We are back in the situation of

Case 2), except that the time left is only at least M/2. By the same calculation, we

obtain that the probability that s̃10 is 0 is at most 2−d/22 for d large enough. Consider

now star 3. Let Q′′′ be the number of discrete steps left on star 3. The time remaining

is at least M/2. It follows from Corollary 1 that N (3) reaches d/3 − 2 before the end

of the time window with probability at least 1/3 for d large enough. Once d/3 − 2 is

reached, we are back to Phase 2 of Case 2). It follows that on {Q′′ ≥ 6} the probability

that s̃11 = 1 is at least d−6/4. Note that on {Q′′ ≥ 6}, the bounds on star 1 and 3 are in-

dependent. It is then easy to check that stochastic domination of the oriented percolation

holds.
�

We further simplify the chain by stacking up the construction in the previous lemma and

projecting once more to a smaller space. For this, we consider a different percolation model

on Z2. See Fig. 3. Let H ′
B be the directed graph made of three nodes v′

10 = (1, 0), v′
01 =

(0, 1), v′
21 = (2, 1) with two edges e′

1 = (v′
10, v

′
01), e′

2 = (v′
10, v

′
21). The edges are open with

G

Time 0

Time IM

p1 p2

s10

HBHI
B

s1,0

s0,I s1,I s01 s21

s0,0

Fig. 3 Further reduction. The analysis of IPD on G ′ (left) at multiple times of I M is further reduced to
a percolation on the simpler graph H ′

B (right). Firstly, the reduction depicted in Fig. 2 is stacked up into a

percolation on the tower H I
B (middle). Then, the intermediate levels in H I

B are combined to produce H ′
B

Springer



Mach Learn (2007) 67:7–22 17

probability p′
1, p′

2 respectively. The nodes have state s ′
10, s ′

01, s ′
21 respectively with value in

{0, 1}. The percolation works as before with state 1 “traveling” along open edges.

Consider again IPD on an arbitrary triplet of stars G ′ of G. Redefine the vector s̃ by taking

instead

s̃ = (s̃00, s̃01, s̃10, s̃11) =
(
σd

[
N (1)

0

]
, σd

[
N (1)

I M

]
, σd

[
N (3)

0

]
, σd

[
N (3)

I M

])
,

for some I ∈ N and M as in Lemma 2. We use the following notation: a ∨ b = max{a, b}.

Lemma 3 (Towers). Consider the IPD chain {At }t≥0 on G = Sn
d with d > 15. Let G ′ be an

arbitrary triplet of adjacent stars in G. Let M = d6, I = d100, and p′
1 = p′

2 = 1 − 2−d/100.
Then, for any initial configuration and s ′

10 such that s ′
10 = s̃00 ∨ s̃10, we have that (s̃01, s̃11)

stochastically dominates (s ′
01, s ′

21) for d (constant) large enough. Moreover, the domination
holds for any number of (edge-)nonintersecting triplets simultaneously independently from
each other.

Proof: The argument ignores any event outside G ′. The proof works by stacking up I copies

of HB and applying Lemma 2. Consider again Z2. We define a I-tower, denoted H I
B , to be

the graph on nodes {v0,i = (0, i), v1,i = (1, i)}I
i=0 where each set of four nodes of the form

{v0,i , v1,i , v0,i+1, v1,i+1} induces a copy of HB with the same values of p0, p1, p10, p01 as in

Lemma 2. The node states are denoted {s0,i = (0, i), s1,i = (1, i)}I
i=0. By applying repeat-

edly Lemma 2, we get that, if (s̃00, s̃10) = (s0,0, s1,0), then (s̃01, s̃11) stochastically dominates

(s0,I , s1,I ), so it suffices to show that the latter dominates (s ′
10, s ′

21).

The case s ′
10 = 0 is trivial. So assume s ′

10 = 1. Then, the subcase s̃00 ∧ s̃10 = 1 dominates

the subcase s̃00 ∧ s̃10 = 0 so it suffices to consider the latter. Without loss of generality, let

s̃00 = 1 and s̃10 = 0. The probability that at least one upwards edge in H I
B is closed is at most

2I
(
2−d/30

) ≤ 2−d/31,

for d large enough. The probability that no up-right edge is open is at most

(
1 − 1

d10

)I

≤ 2−d/31,

for d large enough. Therefore,

P[s0,I = s0,I = 1] ≥ 1 − 2−d/32,

for d large enough. But note that

P[s ′
01 = s ′

21 = 0] = (2−d/100)2 = 2−d/50 ≥ 2−d/32.

So we have domination. �
Springer
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Fig. 4 A section of the oriented
percolation lattice used in the
proof of Lemma 5

2.3 Oriented percolation

We conclude the proof of Theorem 3 by showing that the IPD chain at intervals of time I M
dominates a standard percolation model and that in turn the latter model percolates at an

exponential distance from its bottom nodes.

For convenience, assume n is of the form

n = 2n′ + 1,

for some positive integer n′. (The reason for this choice will be clear below. See also Fig. 5.)

Consider the following sublattice of Z2,

P = {(i, j) ∈ Z2 : 1 ≤ i ≤ n′, 0 ≤ j ≤ T, i + j is even},

where T is a positive integer that will be fixed below. Consider the directed graph GP =
(VP , EP ) with node set VP = {vi, j }(i, j)∈P and edge set

EP = {(vi, j , vi+1, j+1), (vi, j , vi−1, j+1)}(i, j)∈P .

See Fig. 4 for an illustration. Each edge has probability p′ of being open where p′ is set

below. We consider the percolation process on GP and denote the states s′
P = {s ′

i, j }(i, j)∈P .

Let {At }t≥0 be the IPD chain on Sn
d and denote N (i)

t the number of D’s on star i at time t ,
excluding the external nodes. We consider the following projection of {At }t≥0. Let

μ(i, j) = 4(i − 1) + 1{ j is odd},

and let s̃ = {s̃i, j }(i, j)∈P where

s̃i, j = σd

[
N (μ(i, j)−1)

j I M

]
∨ σd

[
N (μ(i, j)+1)

j I M

]
,

where I and M are as in Lemma 3. See Fig. 5. We show first that s̃ dominates s′.
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μ(1, 1) μ(3, 1) μ(5, 1)

μ(4, 2)μ(2, 2)

μ(2, 0) μ(4, 0)

Time 2IM

Time 0

Time IM

Fig. 5 Graph S11
d (stars not shown) at times 0, I M, 2I M . Here n′ = 5. Circled triplets correspond to nodes

of the percolation lattice of Fig. 4

Lemma 4 (Domination of Oriented Percolation). Consider the IPD chain {At }t≥0 on G =
Sn

d with d > 15. Let M = d6, I = d100, and p′ = 1 − 2−d/100. Let A0 = D (the all-D state)
and let s ′

i,0 = 1 for all even i’s. Then, we have that s̃ stochastically dominates s′ for d
(constant) large enough.

Proof: This actually follows immediately from Lemma 3. �

Finally, the next lemma concludes the proof of Theorem 3.

Lemma 5 (Crossing). Let s′ be defined as above with p′ = 1 − 2−d/100 and let s ′
i,0 = 1 for

all even i’s. Let T = 2(d/2000)n. Assume that n = 2n′ + 1 and that T is even. Then

P[s ′
i,T = 0, ∀i ∈ {2, 4, . . . , n′ − 1}] ≤ 2−(d/1000)n,

for d (constant) large enough.

Proof: We use a standard duality argument. For more details, see (Durrett, 1984). First we

modify the percolation lattice GP , which we now call the primal lattice and still denote GP .

To each edge, we add another edge, reversed, with associated probability of being open 0.

We now define the dual lattice. Let

D = {(i, j) ∈ Z2 : 1 ≤ i ≤ n′, 0 ≤ j ≤ T, i + j is odd}.

Consider the directed graph GD = (VD, ED) with node set VD = {vi, j }(i, j)∈D and edge set

ED = {(vi, j , vi+1, j+1), (vi, j , vi−1, j+1), (vi, j , vi−1, j−1), (vi, j , vi+1, j−1)}(i, j)∈D.

Superimpose GP on top of GD and notice that to each edge of GD corresponds an edge of

GP which is rotated 90o clockwise. See Fig. 6. We couple the two lattices so that an edge in

GD is closed if and only if the corresponding edge in GP is open. It is not hard to see that
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0 0

pp

Fig. 6 Portion of the original
and dual lattices used in the proof
of Lemma 5. To each original
edge (solid) corresponds a dual
edge (dashed) at a 90◦ angle
counterclockwise

there is an open path from level 0 to level T in GP if and only if there is no open path from

the right boundary to the left boundary in GD. So it remains to compute an upper bound on

the latter probability. Fix any two boundary nodes in GD, say vl = v1,η and vr = vn′,ζ for

some η, ζ . The number of paths of length L between vr and vl is at most 3L . Each such path

makes n′ − 1 more moves to the left than to the right. In particular, the number of moves to

the left is at least L/2. Moreover, each edge going to the left has a probability 1 − p′ of being

open. So the probability that there is a path between vr and vl (which we denote vr → vl ) is

at most

P[vr → vl ] ≤
+∞∑

L=n′−1

3L (1 − p′)L/2 ≤ (3 2−d/200)
n−1

2

1 − 3 2−d/200
,

for d large enough. There are at most T 2 pairs of boundary nodes so by the union bound

P[s ′
i,T = 0, ∀i ∈ {2, 4, . . . , n′ − 1}] ≤ T 2 (3 2−d/200)

n−1
2

1 − 3 2−d/200
≤ 2−(d/1000)n,

for d large enough. �

3 Win-stay lose-shift on graphs with large expansion

For this section, we consider the discrete-time version of the chain. That is, at every time

step, we pick one edge uniformly at random and update the actions at the endpoints of that

edge. Equivalently, we look at the discrete-time chain embedded in {At }t≥0 by stopping the

chain every time a clock rings. Also, since we are looking for a lower bound on TC, we can

speed up the chain by picking only those edges with at least one D endpoint. Denote the

discrete-time sped-up chain {Bk}k∈N.

The proof of Theorem 4 is based on the following geometric observation. Let Uk be the

set of nodes defecting at time k and denote Nk = |Uk |. At the next update, Nk goes down by

2 if we pick an edge “inside” Uk and it goes up by 1 if we pick an edge on the “boundary” of

Uk . Therefore, if the boundary of Uk is more than twice as big as the inside of Uk , on average

the chain moves away from the fixed point C.
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Proof of Theorem 4: Let U ⊆ V with α(n) ≤ |U | ≤ β(n). Note first that ρα,β (G) > 1/2 + ε

implies

|E(U, U c)| ≥
(

1

2
+ ε

)
vol(U ).

Let ε′ > 0 such that 2 − ε′ = (1/2 + ε)−1. Then

|E(U, U c)| + 2|E(U, U )| = vol(U ) ≤ (2 − ε′)|E(U, U c)|,

which implies

2|E(U, U )| ≤ (1 − ε′)|E(U, U c)|.

Therefore there is an ε′′ > 0 such that if α(n) ≤ Nk ≤ β(n), then

Nk+1 =
{

Nk + 1, with probability at least 2
3

+ ε′′,

Nk − 2, with probability at most 1
3

− ε′′.

Let

a =
[

1

2

(
2

3
+ ε′′

)(
1

3
− ε′′

)−1]1/3

> 1.

It is easy to check that (
2

3
+ ε′′

)
a−1 +

(
1

3
− ε′′

)
a2 < 1.

Therefore,

W (Nk) = an−Nk ,

is a bounded nonnegative supermartingale on {α(n) ≤ Nk ≤ β(n)}. Using the optional sam-

pling theorem as in Dyer et al. (2002), it follows that the probability of Nk crossing the interval

[α(n), β(n)] is less than a−(β(n)−α(n)) for n large enough. The theorem immediately follows.

�

4 Concluding remarks

The setup analyzed here may seem rather stylized. Although, as we mentioned in the Intro-

duction, the study of nonreversible Markov chains such as IPD is very challenging and, in

general, requires a case-by-case analysis. In particular, our results reinforce the general view

that the convergence of nonreversible local dynamics is not determined by simple geometric

properties of the underlying graph, such as expansion or treewidth. Therefore, it would be

ill-advised to try and generalize our results to other similar local learning dynamics on the

Springer



22 Mach Learn (2007) 67:7–22

basis of the analysis presented here. However, one could venture the following conjectures

concerning the WSLS dynamics on bounded-degree graphs:� Conjecture 1: There is a constant d such that for all n large enough and for all trees of

minimum degree d with n nodes, the emergence of cooperation is exponentially slow in n.� Conjecture 2: A stronger version of the previous conjecture is the following. There is a

constant d such that for all n large enough and for all bounded-degree graphs of minimum

degree d with n nodes, the emergence of cooperation is exponentially slow in n.� Conjecture 3: For all d, there is a constant l = l(d) such that for all n large enough and for

all bounded-degree graphs of maximum degree d with n nodes, replacing all edges with

paths of length at least l makes the emergence of cooperation polynomially fast (in the size

of the resulting graph).
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