
Mach Learn (2007) 69: 169–192
DOI 10.1007/s10994-007-5016-8

Logarithmic regret algorithms for online convex
optimization

Elad Hazan · Amit Agarwal · Satyen Kale

Received: 3 October 2006 / Revised: 8 May 2007 /
Accepted: 25 May 2007 / Published online: 8 August 2007
Springer Science+Business Media, LLC 2007

Abstract In an online convex optimization problem a decision-maker makes a sequence
of decisions, i.e., chooses a sequence of points in Euclidean space, from a fixed feasible
set. After each point is chosen, it encounters a sequence of (possibly unrelated) convex
cost functions. Zinkevich (ICML 2003) introduced this framework, which models many
natural repeated decision-making problems and generalizes many existing problems such as
Prediction from Expert Advice and Cover’s Universal Portfolios. Zinkevich showed that a
simple online gradient descent algorithm achieves additive regret O(

√
T), for an arbitrary

sequence of T convex cost functions (of bounded gradients), with respect to the best single
decision in hindsight.

In this paper, we give algorithms that achieve regret O(log(T)) for an arbitrary sequence
of strictly convex functions (with bounded first and second derivatives). This mirrors what
has been done for the special cases of prediction from expert advice by Kivinen and War-
muth (EuroCOLT 1999), and Universal Portfolios by Cover (Math. Finance 1:1–19, 1991).
We propose several algorithms achieving logarithmic regret, which besides being more gen-
eral are also much more efficient to implement.

The main new ideas give rise to an efficient algorithm based on the Newton method for
optimization, a new tool in the field. Our analysis shows a surprising connection between
the natural follow-the-leader approach and the Newton method. We also analyze other algo-
rithms, which tie together several different previous approaches including follow-the-leader,
exponential weighting, Cover’s algorithm and gradient descent.

Editors: Hans Ulrich Simon, Gabor Lugosi, Avrim Blum.

E. Hazan and S. Kale supported by Sanjeev Arora’s NSF grants MSPA-MCS 0528414, CCF
0514993, ITR 0205594.

E. Hazan (�)
IBM Almaden Research Center, 650 Harry Road, San Jose, 95120, USA
e-mail: ehazan@cs.princeton.edu

A. Agarwal · S. Kale
Department of Computer Science, Princeton University, Princeton, NJ, USA

170 Mach Learn (2007) 69: 169–192

Keywords Online learning · Online optimization · Regret minimization · Portfolio
management

1 Introduction

In online convex optimization, an online player chooses a point in a convex set. After the
point is chosen, a concave payoff function is revealed, and the online player receives payoff
which is the concave function applied to the point she chose. This scenario is repeated for
many iterations.

The online convex optimization framework generalizes many previous online optimiza-
tion problems. For example, in the problem of online portfolio management an online in-
vestor wants to distribute her wealth on a set of n available financial instruments without
knowing the market outcome in advance. The wealth distribution of the online investor can
be thought of as a point in the set of all distributions over n items (the financial instruments),
which is a convex set. The payoff to the online player is the change in wealth, which is a
concave function of her distribution. Other examples which fit into this online framework
include the problems of prediction from expert advice and online zero-sum game playing.

To measure the performance of the online player we consider two standard metrics. The
first is called regret. Regret measures the difference in payoff between the online player
and the best fixed point in hindsight. The second metric by which we measure performance
is computational complexity, i.e. the amount of computer resources required to compute
the online player’s point for the upcoming iteration given the history of payoff functions
encountered thus far.

Previous approaches for online convex optimization are based on first-order optimiza-
tion, i.e. optimization using the first derivatives of the payoff functions. The regret achieved
by these algorithms is proportional to a polynomial (square root) in the number of iterations.
Besides the general framework, there are specialized algorithms, e.g. for portfolio manage-
ment, which attain regret proportional to the logarithm of the number of iterations. However,
these algorithms do not apply to the general online convex optimization framework and are
less efficient in terms of computational complexity.

We introduce a new algorithm, ONLINE NEWTON STEP, which uses second-order infor-
mation of the payoff functions and is based on the well known Newton–Raphson method for
offline optimization. The ONLINE NEWTON STEP algorithm attains regret which is propor-
tional to the logarithm of the number of iterations when the payoff functions are concave,
and is computationally efficient.

In addition to the ONLINE NEWTON STEP algorithm, we also show two other approaches
which can be used to achieve logarithmic regret in the case of some higher-order derivative
assumptions on the functions.

1.1 Follow the leader

Perhaps the most intuitive algorithm for online convex optimization can be described as
follows: at iteration t , choose the best point so far, i.e. the point in the underlying convex set
that minimizes the sum of all cost functions encountered thus far.

Given the natural appeal of this algorithm, it was considered in the game theory literature
for over 50 years. It is not difficult to show that for linear cost functions, the FOLLOW THE

LEADER (FTL) algorithm does not attain any non-trivial regret guarantee (in the worst case
it can be Ω(T) if the cost functions are chosen adversarially). However, Hannan (1957)

Mach Learn (2007) 69: 169–192 171

proposed a randomized variant of FTL, called perturbed-follow-the-leader, which attained
O(

√
T) regret in the online game playing setting for linear functions over the simplex.1

As we show later, this regret bound is optimal. Merhav and Feder (1992) extend the
FTL approach to strictly convex cost functions over the simplex, and prove that for such
functions FTL attains regret which is logarithmic in the number of iterations. Similar results
were obtained by Cesa-Bianchi and Lugosi (2006), and Gaivoronski and Stella (2000).

A natural question, asked explicitly by Cover and Ordentlich, Kalai and Vempala, and
others, is whether FOLLOW THE LEADER provides any non-trivial guarantee for curved
(but not necessarily strictly convex) cost functions. One application which is not covered by
previous results is the problem of portfolio management.

In this paper (Sect. 3.3) we answer this question in the affirmative, and prove that in fact
FOLLOW THE LEADER attains optimal regret for curved functions.

2 Preliminaries

2.1 Online convex optimization

In online convex optimization, an online player iteratively chooses a point from a set in
Euclidean space denoted P ⊆ R

n. Following Zinkevich (2003), we assume that the set P is
non-empty, bounded and closed. For reasons that will be apparent in Sects. 4 and 3.3.2, we
also assume the set P to be convex.

We denote the number of iterations by T (which is unknown to the online player). At
iteration t , the online player chooses xt ∈ P . After committing to this choice, a convex cost
function ft : P �→ R is revealed. The cost incurred to the online player is the value of the
cost function at the point she committed to, i.e. ft (xt).

Consider an online player using a (possibly randomized) algorithm for online game play-
ing A. At iteration t , the algorithm A takes as input the history of cost functions f1, . . . , ft−1

and produces a feasible point A({f1, . . . , ft−1}) in the domain P . When there is no ambigu-
ity concerning the algorithm used, we simply denote xt = A({f1, . . . , ft−1}). The regret of
the online player using algorithm A at time T , is defined to be the total cost minus the cost
of the best single decision, where the best is chosen with the benefit of hindsight. Formally

Regret(A, {f1, . . . , fT }) = E

[
T∑

t=1

ft (xt)

]
− min

x∈P

T∑
t=1

ft (x).

Regret measures the difference in performance between the online player and a “sta-
tic” player with the benefit of hindsight—i.e. a player that is constrained to choose a fixed
point over all iterations. It is tempting to compare the online player to an adversary which
has the benefit of hindsight but is otherwise unconstrained (i.e. can dynamically change
her point every iteration). However, this allows the adversary to choose the optimum point
x∗

t � minx∈P ft (x) each iteration, and the comparison becomes trivial in many interesting
applications.

We are usually interested in an upper bound on the worst case guaranteed regret, denoted

RegretT (A) = sup
{f1,...,ft }

{Regret(A, {f1, . . . , ft })}.

1This algorithm was rediscovered in (Kalai and Vempala 2005), who provide a much simpler analysis and
many applications.

172 Mach Learn (2007) 69: 169–192

Intuitively, an algorithm attains non-trivial performance if its regret is sublinear as a
function of T , i.e. RegretT (A) = o(T), since this implies that “on the average” the algorithm
performs as good as the best fixed strategy in hindsight.

Remark For some problems it is more natural to talk of “payoff” given to the online player
rather than cost she incurs. In such cases, the online player receives payoff ft (xt), where ft

is a concave utility function. Regret is then defined to be

Regret(A, {f1, . . . , fT }) = max
x∈P

T∑
t=1

ft (x) − E

[
T∑

t=1

ft (xt)

]
.

The running time of an algorithm for online game playing is defined to be the worst-
case expected time to produce xt , for an iteration t ∈ [T]2 in a T iteration repeated game.
Typically, the running time will depend on n,T and parameters of the cost functions and
underlying convex set.

2.2 Notation and definitions

Recall that in online convex optimization, the online player iteratively chooses points from
a closed, bounded and non-empty convex set P ⊆ R

n and encounters convex cost functions
{ft : P �→ R}.

Denote by D the diameter of the underlying convex set P , i.e.

D = max
x,y∈P ‖x − y‖2.

Unless stated otherwise, we assume that the cost functions {ft } are twice differentiable and
convex. These assumptions are satisfied by all applications described previously.

Recall that the gradient for a f : R
n �→ R at point x ∈ R

n is the vector ∇f (x) whose
components are the partial derivatives of the function at x. Its direction is the one in which
the function has the largest rate of increase, and its magnitude is the actual rate of increase.
We say that the cost functions have gradients upper bounded by a number G if the following
holds:

sup
x∈P,t∈[T]

‖∇ft (x)‖2 ≤ G.

In some cases we are concerned with the �∞ norm of the gradient rather than the Euclidean
norm, in which case we denote the upper bound by G∞.

We also consider the analogue of second derivatives for multivariate functions. The
Hessian of a function f at point x is a matrix ∇2f (x), such that ∇2f (x)[i, j] = ∂2

∂xi ,xj
f (x).

Analogous to the one-dimensional case, a function f is convex at point x if and only if its
Hessian is positive semidefinite, denoted by ∇2f (x) � 0. We say that the Hessian of all cost
functions is lower bounded by a number H > 0 if the following holds:

∀x ∈ P, t ∈ [T]: ∇2ft (x) � H In.

Here, In is the n-dimensional identity matrix and we denote A � B if the matrix A − B
is positive semidefinite, i.e. all its eigenvalues are nonnegative. Thus, H is a lower bound
on the eigenvalues of all the Hessians of the constraints at all points in the domain. Such
functions will be called H -strong convex.

2Here and henceforth we denote by [n] the set of integers {1, . . . , n}.

Mach Learn (2007) 69: 169–192 173

In the following chapters we will consider two different classes of cost functions. One
class of cost functions are those which have bounded gradient and are H -strong convex for
some H > 0. The second class of cost functions are those that satisfy the α-exp-concavity
property: there is an α > 0 such that exp(−αft (x)) is a concave function of x ∈ P , for all t ,
i.e.

∀x ∈ P, t ∈ [T]: ∇2[exp(−αft (x))] � 0.

The second class is more general than the first, since the α-exp-concavity condition is
weaker than a bounded gradient and strict convexity. It is easy to show that functions that
have gradients upper bounded by G and Hessian lower bounded by H > 0, are α-exp-
concave for any α ≤ H/G2. One can easily verify this for one-dimensional functions ft :
R → R by taking two derivatives,

h′′
t (x) = ((αf ′

t (x))2 − αf ′′
t (x)) exp(−αft (x)) ≤ 0 ⇐⇒ α ≤ f ′′

t (x)

(f ′
t (x))2

.

We note that there are many interesting loss functions which are exp-concave but not
strictly convex. A prominent example is the log-loss function, i.e. f (x) = − log(x�a) for a
vector of constants a. This loss function arises in the problem of universal portfolio man-
agement (Cover 1991). Henceforth we denote the natural logarithm by log.

When it is more natural to talk of maximization of payoff rather than minimization of
cost (e.g. for portfolio management), we require the payoff functions to be concave instead
of convex. The parameter H is then defined to be

∀x ∈ P, t ∈ [T] ∇2ft (x) � −H In,

and the payoff functions will be assumed to be (−α)-exp-concave:

∀x ∈ P, t ∈ [T]: ∇2[exp(αft (x))] � 0.

2.3 Summary of our results

A standard goal in machine learning and game theory is to achieve algorithms with guar-
anteed low regret. Zinkevich (2003) showed that one can guarantee O(

√
T) regret for an

arbitrary sequence of differentiable convex functions of bounded gradient, which is tight
up to constant factors. In fact, Ω(

√
T) regret is unavoidable even when the functions come

from a fixed distribution rather than being chosen adversarially.3

In this paper we describe three algorithms with regret which is bounded by a logarithm
in the number of iterations T , as summarized in Table 1. In the running time column, Tproj

stands for the time it takes to compute a projection onto the underlying convex set (see
Sect. 4). Similarly, T

g

proj stands for the time to compute a generalized projection. All algo-
rithms assume an oracle that given a point in the convex set returns the value of the cost
function on that point and/or the gradient of the function. The O notation for the regret
bounds hides constant factors. For the running time bounds the Õ notation hides constant
factors as well as polylogarithmic factors in n,T ,G,H,D,α.

3This can be seen by a simple randomized example. Consider K = [−1,1] and linear functions ft (x) = rt x,
where rt = ±1 are chosen in advance, independently with equal probability. Ert [ft (xt)] = 0 for any t and

xt chosen online, by independence of xt and rt . However, Er1,...,rT [minx∈K

∑T
1 ft (x)] = E[−|∑T

1 rt |] =
−Ω(

√
T).

174 Mach Learn (2007) 69: 169–192

Table 1 Results from this paper. Zinkevich achieves O(GD
√

T) regret,
even for H = α = 0

Algorithm Regret bound Running time

OGD O(G2

H
logT) Õ(n) + Tproj

ONS O((1
α + GD)n logT) Õ(n2) + T

g
proj

FTAL O((1
α + GD)n logT) Õ(n2) + T

g
proj

EWOO O(n
α logT) poly(T ,n)

ONLINE GRADIENT DESCENT.
Inputs: convex set P ⊂ R

n, step sizes η1, η2, . . . ≥ 0, initial x1 ∈ P .

• In iteration 1, use point x1 ∈ P .
• In iteration t > 1: use point

xt = ΠP(xt−1 − ηt∇ft−1(xt−1))

Here, ΠP denotes the projection onto nearest point in P , ΠP(y) = arg minx∈P ‖x − y‖2.

Fig. 1 The ONLINE GRADIENT DESCENT Algorithm (Zinkevich’s online version of Stochastic Gradient
Descent)

Since the exp-concavity assumption on the convex cost functions is a weaker assumption
than the bounds on the gradients and Hessians (see previous subsection), we can compare
the three regret bounds of Fig. 1. In these terms, ONLINE GRADIENT DESCENT (OGD)
requires the strongest assumptions, whereas EXPONENTIALLY WEIGHTED ONLINE OPTI-
MIZATION (EWOO) requires only exp-concavity (and not even a bound on the gradient).
Perhaps most interesting are ONLINE NEWTON STEP (ONS) and its close cousin, FOLLOW

THE APPROXIMATE LEADER (FTAL) which require relatively weak assumptions and yet,
as we shall see, are very efficient to implement (and whose analysis is the most technical).

Perhaps the most interesting applications of these logarithmic regret algorithms is the
problem of portfolio management (Cover 1991). The portfolio management is a special
case of online convex optimization, in which the payoff functions are logarithmic. These
payoff functions are exp-concave (indeed, the exponent of the logarithm function is a linear
function, which is of course concave), but not strongly concave!

Another application in which the payoff/loss functions are exp-concave but not strictly
convex is linear regression (see Kivinen and Warmuth 1998 and referenced papers). In the
basic setting of this application, the predictor is given a vector at ∈ R

n and needs to pre-
dict xt ∈ R

n, the loss is ft (x) = (a�
t x − bt)

2 for some bt ∈ R. The Hessian of such loss
function has rank of one, and thus not strictly convex. Nevertheless, under some reasonable
assumptions over the domains of x, at , bt , the functions are exp-concave.

3 The algorithms

3.1 ONLINE GRADIENT DESCENT

The first algorithm that achieves regret logarithmic in the number of iterations is a twist on
Zinkevich’s ONLINE GRADIENT DESCENT algorithm, as defined in Fig. 1.

Mach Learn (2007) 69: 169–192 175

The ONLINE GRADIENT DESCENT algorithm is straightforward to implement, and the
running time is O(n) per iteration given the gradient. However, there is a projection step
which may take longer. We discuss the computational complexity of computing projections
in Sect. 4.

The following theorem establishes logarithmic bounds on the regret if the cost functions
are strictly convex.

Theorem 1 ONLINE GRADIENT DESCENT with step sizes ηt = 1
Ht

achieves the following
guarantee, for all T ≥ 1

RegretT (OGD) ≤ G2

2H
(1 + logT).

Proof Let x∗ ∈ arg minx∈P
∑T

t=1 ft (x). Recall the definition of regret (see Sect. 2)

RegretT (OGD) =
T∑

t=1

ft (xt) −
T∑

t=1

ft (x∗).

Define ∇t � ∇ft (xt). By using the Taylor series approximation, we have, for some point
ζt on the line segment joining xt to x∗,

ft (x∗) = ft (xt) + ∇�
t (x∗ − xt) + 1

2
(x∗ − xt)

�∇2ft (ζt)(x∗ − xt)

≥ ft (xt) + ∇�
t (x∗ − xt) + H

2
‖x∗ − xt‖2.

The inequality follows from H -strong convexity. Thus, we have

2(ft (xt) − ft (x∗)) ≤ 2∇�
t (xt − x∗) − H‖x∗ − xt‖2. (1)

Following Zinkevich’s analysis, we upper-bound ∇�
t (xt −x∗). Using the update rule for xt+1

and the properties of projections (see Lemma 8), we get

‖xt+1 − x∗‖2 = ‖Π(xt − ηt+1∇t) − x∗‖2 ≤ ‖xt − ηt+1∇t − x∗‖2.

Hence,

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + η2
t+1‖∇t‖2 − 2ηt+1∇�

t (xt − x∗),

5∇�
t (xt − x∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt+1
+ ηt+1G

2.
(2)

Sum up (2) from t = 1 to T . Set ηt+1 = 1/(Ht), and using (1), we have:

2
T∑

t=1

ft (xt) − ft (x∗) ≤
T∑

t=1

‖xt − x∗‖2

(
1

ηt+1
− 1

ηt

− H

)
+ G2

T∑
t=1

ηt+1

= 0 + G2
T∑

t=1

1

Ht
≤ G2

H
(1 + logT). �

176 Mach Learn (2007) 69: 169–192

3.2 ONLINE NEWTON STEP

If the ONLINE GRADIENT DESCENT algorithm is the analogue of the Gradient Descent
optimization method for the online setting, then ONLINE NEWTON STEP is the online ana-
logue of the Newton–Raphson method. The ONLINE NEWTON STEP algorithm detailed in
Fig. 2. The point chosen by the algorithm for a given iteration is a simple modification of
the point chosen in the previous iteration: a vector is added to it. Whereas for the ONLINE

GRADIENT DESCENT algorithm this added vector is the gradient of the previous cost func-
tion, for ONLINE NEWTON STEP this vector is different: it is reminiscent to the direction
in which the Newton–Raphson method would proceed if it were an offline optimization
problem for the previous cost function. The Newton–Raphson algorithm would move in the
direction of the vector which is the inverse Hessian multiplied by the gradient. In our case
this direction is A−1

t ∇t , and the matrix At is related to the Hessian as will be shown in the
analysis.

Since just adding a multiple of the Newton vector to the current point may result in a
point outside the convex set, we project back into the set to obtain xt . This projection is
somewhat different than the standard projection used by ONLINE GRADIENT DESCENT in
the previous section. It is the projection according to the norm defined by the matrix At ,
rather than the Euclidean norm. The reason for using this projection is technical, and will be
pointed out in the analysis.

The following theorem bounds the regret of ONLINE NEWTON STEP. The intuition
which led to this theorem appears in the next section on follow-the-leader and its surprising
connection to the Newton method.

Theorem 2 Assume that for all t , the loss function ft : P → R
n is α-exp-concave and has

the property that ∀x ∈ P , ‖∇f (x)‖ ≤ G. Then the algorithm ONLINE NEWTON STEP has
the following regret bound:

RegretT (ONS) ≤ 5

(
1

α
+ GD

)
n logT .

We begin with a lemma which shows how to approximate the cost functions up
to the second order. Using the Taylor series we have f (x) = f (y) + ∇f (y)(x − y) +
1
2 (x − y)�∇2f (ζ)(x − y) for some ζ on the line between x and y. Instead of using this

ONS

• In iteration 1, use an arbitrary point x1 ∈ P .
• Let β = 1

2 min{ 1
4GD

,α}. In iteration t > 1, use point:vadjust

xt = Π
At−1
P

(
xt−1 − 1

β
A−1

t−1∇t−1

)

where ∇τ = ∇fτ (xτ), At = ∑t

i=1 ∇i∇�
i + εIn, ε = 1

β2D2 , and Π
At−1
P is the projection in

the norm induced by At−1, viz.,

Π
At−1
P (y) = arg min

x∈P
(y − x)�At−1(y − x)

Fig. 2 The ONLINE NEWTON STEP algorithm

Mach Learn (2007) 69: 169–192 177

approximation, we use a somewhat stronger approximation in which the Hessian of the cost
function is not used, but rather only the gradient. Such an approximation is possible because
we assume that the cost functions are α-exp-concave.

Lemma 3 For a function f : P → R, where P has diameter D, such that ∀x ∈ P,

‖∇f (x)‖ ≤ G and exp(−αf (x)) is concave, the following holds for β ≤ 1
2 min{ 1

4GD
,α}:

∀x, y ∈ P: f (x) ≥ f (y) + ∇f (y)�(x − y) + β

2
(x − y)�∇f (y)∇f (y)�(x − y).

Proof Since exp(−αf (x)) is concave and 2β ≤ α, the function h(x) � exp(−2βf (x)) is
also concave. Then by the concavity of h(x),

h(x) ≤ h(y) + ∇h(y)�(x − y).

Plugging in ∇h(y) = −2β exp(−2βf (y))∇f (y) gives,

exp(−2βf (x)) ≤ exp(−2βf (y))[1 − 2β∇f (y)�(x − y)].
Simplifying

f (x) ≥ f (y) − 1

2β
log[1 − 2β∇f (y)�(x − y)].

Next, note that |2β∇f (y)�(x − y)| ≤ 2βGD ≤ 1
4 and that for |z| ≤ 1

4 , − log(1 − z) ≥
z + 1

4 z2. Applying the inequality for z = 2β∇f (y)�(x − y) implies the lemma. �

We can now prove Theorem 2. The proof technique is reminiscent of Theorem 1, however
the direction of curvature of the second derivative is taken into account. This gives rise to a
potential function in terms of the metric At (which represents the sum of all Hessians up to
iteration t), instead of the corresponding term in the analysis of Theorem 1 which included
only the norms of the gradients.

Proof of Theorem 2 Let x∗ ∈ arg minx∈P
∑T

t=1 ft (x) be the best decision in hindsight. By
Lemma 3, we have

ft (xt) − ft (x∗) ≤ Rt � ∇�
t (xt − x∗) − β

2
(x∗ − xt)

�∇t∇�
t (x∗ − xt) (3)

for β = 1
2 min{ 1

4GD
,α}. For convenience, define yt+1 = xt − 1

β
A−1

t ∇t so that according to

the update rule of the algorithm xt+1 = Π
At

Sn
(yt+1). Now, by the definition of yt+1:

yt+1 − x∗ = xt − x∗ − 1

β
A−1

t ∇t , (4)

At (yt+1 − x∗) = At (xt − x∗) − 1

β
∇t . (5)

Multiplying the transpose of (4) by (5) we get

(yt+1 − x∗)�At (yt+1 − x∗)

= (xt − x∗)�At (xt − x∗) − 2

β
∇�

t (xt − x∗) + 1

β2
∇�

t A−1
t ∇t . (6)

178 Mach Learn (2007) 69: 169–192

Since xt+1 is the projection of yt+1 in the norm induced by At , it is a well known fact that
(see Sect. 4 Lemma 8)

(yt+1 − x∗)�At (yt+1 − x∗) ≥ (xt+1 − x∗)�At (xt+1 − x∗).

This inequality is the reason for using generalized projections as opposed to standard pro-
jections, which were used in the analysis of ONLINE GRADIENT DESCENT (see previous
subsection). This fact together with (6) gives

∇�
t (xt − x∗) ≤ 1

2β
∇�

t A−1
t ∇t + β

2
(xt − x∗)�At (xt − x∗)

− β

2
(xt+1 − x∗)�At (xt+1 − x∗).

Now, summing up over t = 1 to T we get that

T∑
t=1

∇�
t (xt − x∗) ≤ 1

2β

T∑
t=1

∇�
t A−1

t ∇t + β

2
(x1 − x∗)�A1(x1 − x∗)

+ β

2

T∑
t=2

(xt − x∗)�(At − At−1)(xt − x∗)

− β

2
(xT +1 − x∗)�AT (xT +1 − x∗)

≤ 1

2β

T∑
t=1

∇�
t A−1

t ∇t + β

2

T∑
t=1

(xt − x∗)�∇t∇�
t (xt − x∗)

+ β

2
(x1 − x∗)�(A1 − ∇1∇�

1)(x1 − x∗).

In the last inequality we use the fact that At −At−1 = ∇t∇�
t . By transferring the β

2

∑T

t=1(xt −
x∗)�(At −At−1)(xt −x∗) term to the LHS, we get the expression for

∑T

t=1 Rt . Thus, we have

T∑
t=1

Rt ≤ 1

2β

T∑
t=1

∇�
t A−1

t ∇t + β

2
(x1 − x∗)�(A1 − ∇1∇�

1)(x1 − x∗).

Using the facts that A1 − ∇1∇�
1 = εIn and ‖x1 − x∗‖2 ≤ D2, and the choice of ε = 1

β2D2

we get

RegretT (ONS) ≤
T∑

t=1

Rt ≤ 1

2β

T∑
t=1

∇�
t A−1

t ∇t + ε

2
D2β

≤ 1

2β

T∑
t=1

∇�
t A−1

t ∇t + 1

2β
.

At this point we bound the first term above, which is our potential function. The linear
algebraic facts required to bound this potential appear in Lemma 11 (see Appendix 2), which
we apply with Vt = At , ut = ∇t , and r = G to get the bound n

2β
log(G2T/ε + 1). Now since

Mach Learn (2007) 69: 169–192 179

ε = 1
β2D2 and β = 1

2 min{ 1
4GD

,α}, we get

1

2β

T∑
t=1

∇�
t A−1

t ∇t ≤ n

2β
log(G2T/ε + 1)

≤ n

2β
log(T G2β2D2 + 1)

≤ n

2β
log(T).

Since β = 1
2 min{ 1

4GD
,α}, we have 1

β
≤ 8(GD + 1

α
). This gives the stated regret

bound. �

3.2.1 Implementation and running time

The ONLINE NEWTON STEP algorithm requires O(n2) space to store the matrix At . Every
iteration requires the computation of the matrix A−1

t , the current gradient, a matrix-vector
product and possibly a projection onto the underlying convex set P .

A naive implementation would require computing the inverse of the matrix At every
iteration. However, in case At is invertible, the matrix inversion lemma (Brookes 2005)
states that for invertible matrix A and vector x

(A + xx�)−1 = A−1 − A−1xx�A−1

1 + x�A−1x
.

Thus, given A−1
t−1 and ∇t one can compute A−1

t in time O(n2) using only matrix-vector and
vector-vector products.

The ONLINE NEWTON STEP algorithm also needs to make projections onto P , but of
a slightly different nature than ONLINE GRADIENT DESCENT and other online convex op-
timization algorithms. The required projection, denoted by Π

At
P , is in the vector norm in-

duced by the matrix At , viz. ‖x‖At = √
x�Atx. It is equivalent to finding the point x ∈ P

which minimizes (x − y)�At (x − y) where y is the point we are projecting. This is a con-
vex program which can be solved up to any degree of accuracy in polynomial time, see
Sect. 4.

Modulo the computation of generalized projections, the ONLINE NEWTON STEP algo-
rithm can be implemented in time and space O(n2). In addition, the only information re-
quired is the gradient at each step (and the exp-concavity constant of the payoff functions).

3.3 FOLLOW THE APPROXIMATE LEADER

The intuition behind most of our algorithms stem from new observations regarding the well
studied FOLLOW THE LEADER (FTL) method (see Hannan 1957; Kalai and Vempala 2005).

The basic FTL method, which by itself fails to provide sub-linear regret let alone log-
arithmic regret, simply chooses on period t the single fixed decision that would have
been the best to use on the previous t − 1 periods. This corresponds to choosing xt =
arg minx∈P

∑t−1
τ=1 fτ (x).

Below we prove that a simple modification of FTL, called FOLLOW THE APPROXI-
MATE LEADER (FTAL), guarantees logarithmic regret. The FOLLOW THE APPROXIMATE

LEADER algorithm is given in two equivalent forms in Fig. 3. The first version is the FTL

180 Mach Learn (2007) 69: 169–192

FOLLOW THE APPROXIMATE LEADER (version 1)
Inputs: convex set P ⊂ R

n, and the parameter β .

• On period 1, play an arbitrary x1 ∈ P .
• On period t , play the leader xt defined as

xt � arg min
x∈P

t−1∑
τ=1

f̃τ (x)

Where for τ = 1, . . . , t − 1, define ∇τ = ∇fτ (xτ) and

f̃τ (x) � fτ (xτ) + ∇�
τ (x − xτ) + β

2
(x − xτ)

�∇τ∇�
τ (x − xτ)

FOLLOW THE APPROXIMATE LEADER (version 2)
Inputs: convex set P ⊂ R

n, and the parameter β .

• On period 1, play an arbitrary x1 ∈ P .
• On period t > 1: play the point xt given by the following equations:

∇t−1 = ∇ft−1(xt−1)

At−1 =
t−1∑
τ=1

∇τ∇�
τ

bt−1 =
t−1∑
τ=1

∇τ∇�
τ xτ − 1

β
∇τ

xt = Π
At−1
P

(
A−1

t−1bt−1

)
Here, Π

At−1
P is the projection in the norm induced by At−1:

Π
At−1
P (y) = arg min

x∈P
(x − y)�At−1(x − y)

A−1
t−1 denotes the Moore–Penrose pseudoinverse of At−1.

Fig. 3 Two versions of the FOLLOW THE APPROXIMATE LEADER algorithm

variant, whereas the second version resembles the Newton method and the ONLINE NEW-
TON STEP algorithm. Lemma 4 below proves both versions to be equivalent, hence demon-
strates the connection between the Newton method and FTL.

Lemma 4 Both versions of the FOLLOW THE APPROXIMATE LEADER algorithm are
equivalent.

Proof In the first version of the FOLLOW THE APPROXIMATE LEADER algorithm, one
needs to perform the following optimization at period t :

xt � arg min
x∈P

t−1∑
τ=1

f̃τ (x).

Mach Learn (2007) 69: 169–192 181

By expanding out the expressions for f̃τ (x),

t−1∑
τ=1

f̃τ (x) =
t−1∑
τ=1

fτ (xτ) + ∇�
τ (x − xτ) + β

2
(x − xτ)

�∇τ∇�
τ (x − xτ)

=
t−1∑
τ=1

fτ (xτ) − (βx�
τ ∇τ∇�

τ − ∇�
τ)x + β

2
x�∇τ∇�

τ x

=
t−1∑
τ=1

fτ (xτ) − βb�
t−1x + β

2
x�At−1x.

Therefore,

arg min
x∈P

t−1∑
τ=1

f̃τ (x)

= arg min
x∈P

{
β

2
x�At−1x − βb�

t−1x
}

= arg min
x∈P

{x�At−1x − 2b�
t−1x}

= arg min
x∈P

{(x − A−1
t−1bt−1)

�At−1(x − A−1
t−1bt−1) − b�

t−1A−1
t−1bt−1}.

The solution of this minimization is exactly the projection Π
At−1
P (A−1

t−1bt−1) as specified
by the second version. �

3.3.1 Analysis of FOLLOW THE APPROXIMATE LEADER

In this subsection we prove a performance guarantee for FOLLOW THE APPROXIMATE

LEADER which is very similar to that for the ONLINE NEWTON STEP algorithm, albeit
using a very different analysis. The analysis in this section is based on previous analyses of
FOLLOW THE LEADER algorithms (Hannan 1957; Kalai and Vempala 2005). The standard
approach to analyze such algorithms proceeds by inductively showing (see Lemma 10 in
Appendix 1)

RegretT (FTL) =
T∑

t=1

ft (xt) − min
x∈P

T∑
t=1

ft (x) ≤
T∑

t=1

[ft (xt) − ft (xt+1)]. (7)

The standard analysis proceeds by showing that the leader doesn’t change too much, i.e.
xt ≈ xt+1, which in turn implies low regret. Our analysis does not follow this paradigm
directly, but rather shows average stability (i.e. that xt ≈ xt+1 on the “average”, rather than
always).

Another building block, due to Zinkevich (2003), is that if we have another set of func-
tions f̃t for which f̃t (xt) = ft (xt) and f̃t is a lower-bound on ft , so f̃t (x) ≤ ft (x) for all
x ∈ P , then it suffices to bound the regret with respect to f̃t , because,

RegretT =
T∑

t=1

ft (xt) − min
x∈P

T∑
t=1

ft (x) ≤
T∑

t=1

f̃t (xt) − min
x∈P

T∑
t=1

f̃t (x). (8)

182 Mach Learn (2007) 69: 169–192

We prove this fact in Lemma 9 in Appendix 1. Zinkevich uses this observation in conjunction
with the fact that a convex function is lower-bounded by its tangent hyperplanes, to argue
that it suffices to analyze online gradient descent for the case of linear functions.

We observe4 that online gradient descent can be viewed as running FOLLOW THE

LEADER on the sequence of functions f̃0(x) = ‖(x − x1)‖2/η and f̃t (x) = ft (xt) +
∇ft (xt)

�(x − xt). To do this, one need only calculate the minimum of
∑t−1

τ=0 f̃τ (x).
As explained before, any algorithm for the online convex optimization problem with

linear functions has Ω(
√

T) regret, and thus to achieve logarithmic regret one necessarily
needs to use the curvature of functions. When we consider H -strong convex functions for
some H > 0, we can lower bound the function ft by a paraboloid,

ft (x) ≥ ft (xt) + ∇ft (xt)
�(x − xt) + H

2
‖x − xt‖2,

rather than a linear function. The FOLLOW THE LEADER calculation, however, remains
similar. The only difference is that the step-size ηt = 1/(Ht) decreases linearly rather than
as O(1/

√
t).

For α-exp-concave functions, Lemma 3 shows that they can be lower-bounded by a
paraboloid f̃t (x) = a + (v�x − b)2 where v ∈ R

n is a multiple of ∇ft (xt) and a, b ∈ R.
The main technical step now is to show that FOLLOW THE LEADER, when run on a

specific class of cost functions, which includes the paraboloid functions given above, has
regret O(logT). This is the content of the following theorem, which is interesting in its own
right because it also applies to the portfolio management problem, and shows that the simple
FOLLOW THE LEADER strategy for the portfolio management problem achieves O(logT)

regret.

Theorem 5 Assume that for all t , the function ft : P → R
n can be written as ft (x) =

gt (v�
t x) for a univariate convex function gt : R → R and some vector vt ∈ R

n. Assume that
for some R,a, b > 0, we have ‖vt‖2 ≤ R, and for all x ∈ P , we have |g′

t (v
�
t x)| ≤ b and

g′′
t (v

�
t x) ≥ a. Then the FOLLOW THE LEADER algorithm on the functions ft satisfies the

following regret bound:

RegretT (FTL) ≤ 2nb2

a

[
log

(
DRaT

b

)
+ 1

]
.

Before proving this Theorem, we show how it implies our main result concerning the
FOLLOW THE APPROXIMATE LEADER algorithm.

Theorem 6 Assume that for all t , the function ft : P → R
n has the property that ∀x ∈ P ,

‖∇f (x)‖ ≤ G and exp(−αf (x)) is concave. Then the algorithm FOLLOW THE APPROXI-
MATE LEADER with β = 1

2 min{ 1
4GD

,α} has the following regret bound:

RegretT (FTAL) ≤ 64

(
1

α
+ GD

)
n(log(T) + 1).

Proof We note that FOLLOW THE APPROXIMATE LEADER is just doing FOLLOW THE

LEADER on the paraboloid functions f̃t . By Lemma 3, we have ft (xt) = f̃t (xt) and for all
x ∈ P , ft (x) ≥ f̃t (x). Thus, Lemma 9 (Appendix 1) implies that the regret assuming the

4Kakade has made a similar observation (Kakade 2005).

Mach Learn (2007) 69: 169–192 183

cost functions are f̃t rather than ft is only greater, so it suffices to bound the regret with cost
functions f̃t . The function f̃t can be written as

f̃t (x) = ft (xt) + ∇�
τ (x − xτ) + β

2
[∇�

τ (x − xτ)]2

and thus satisfies the conditions of Theorem 5 with gt : R → R defined as

gt (y) � ft (xt) + (y − ∇�
t xt) + β

2
(y − ∇�

t xt)
2 and vt = ∇t .

We only need to evaluate the constants R,a, b. Note that ‖vt‖ = ‖∇t‖ ≤ G, so we can take
R = G. Next, |g′

t (v
�
t x)| = |1 + β(∇�

t (x − xt))| ≤ 1 + βGD ≤ 2 since β ≤ 1
8GD

, so we can
take b = 2. Finally, g′′

t (y) = β , so we can take a = β . Plugging in the values, and using the
fact that DRa

b
= βGD

2 ≤ 1, we get that

RegretT (FTAL) ≤ 8n

β
(log(T) + 1).

Finally, the stated regret bound follows because by definition 1
β

≤ max{8GD, 2
α
} ≤

8(GD + 1
α
). �

Finally, we prove Theorem 5:

Proof of Theorem 5 Lemma 10 (Appendix 1) implies that the regret can be bounded as

T∑
t=1

ft (xt) − min
x∈P

T∑
t=1

ft (x) ≤
T∑

t=1

[ft (xt) − ft (xt+1)].

We bound the RHS now.
For the sake of readability, we introduce some notation. Define the function Ft �∑t−1
τ=1 fτ . Let � be the forward difference operator, for example, �xt = (xt+1 − xt) and

�∇Ft(xt) = (∇Ft+1(xt+1) − ∇Ft(xt)).
Firstly, observe that for all τ , the gradient ∇fτ (x) = g′

τ (v
�
τ x)vτ . Define ∇t = ∇ft (xt) =

g′
t (v

�
t xt)vt . We use the gradient bound, which follows from the convexity of ft :

ft (xt) − ft (xt+1) ≤ −∇ft (xt)
�(xt+1 − xt) = −∇�

t �xt . (9)

Now, we have

∇Ft+1(xt+1) − ∇Ft+1(xt) =
t∑

τ=1

∇fτ (xt+1) − ∇fτ (xt) (10)

=
t∑

τ=1

[g′
τ (v

�
τ xt+1) − g′

τ (v
�
τ xt)]vτ

=
t∑

τ=1

[∇g′
τ (v

�
τ ζ t

τ)
�(xt+1 − xt)]vτ (11)

=
t∑

τ=1

g′′
τ (v

�
τ ζ t

τ)vτ v�
τ (xt+1 − xt). (12)

184 Mach Learn (2007) 69: 169–192

Equation (11) follows by applying the Taylor expansion of the (multi-variate) func-
tion g′

τ (v
�
τ x) at point xt , for some point ζ t

τ on the line segment joining xt and xt+1.
Equation (12) follows from the observation that ∇g′

τ (v
�
τ x) = g′′

τ (v
�
τ x)vτ . Define At =∑t

τ=1 g′′
τ (v

�
τ ζ t

τ)vτ v�
τ . Since g′′

τ (v
�
τ xτ) ≥ a for all t , At is positive semidefinite. The RHS

of (12) becomes At�xt . The LHS of (10) is

∇Ft+1(xt+1) − ∇Ft+1(xt) = �∇Ft(xt) − ∇t . (13)

Putting (12) and (13) together, and by adding ε�xt we get

(At + εIn)�xt = �∇Ft(xt) − ∇t + ε�xt . (14)

Pre-multiplying by −∇�
t (At + εIn)

−1, we get an expression for the gradient bound (9):

−∇�
t �xt = −∇�

t (At + εIn)
−1[�∇Ft(xt) − ∇t + ε�xt]

= −∇�
t (At + εIn)

−1[�∇Ft(xt) + ε�xt] + ∇�
t (At + εIn)

−1∇t . (15)

Thus, from (15) and (9) we have

T∑
t=1

[ft (xt) − ft (xt+1)]

≤
T∑

t=1

−∇�
t (At + εIn)

−1[�∇Ft(xt) + ε�xt] +
T∑

t=1

∇�
t (At + εIn)

−1∇t . (16)

�

Claim 1 The first term of (16) can be bounded as

T∑
t=1

−∇�
t (At + εIn)

−1[�∇Ft(xt) + ε�xt] ≤ εD2T .

Proof We bound each term in the sum by εD2. Since xτ minimizes Fτ over P , we have (see
(Boyd and Vandenberghe 2004))

∇Fτ (xτ)
�(x − xτ) ≥ 0 (17)

for any point x ∈ P . Using (17) for τ = t and τ = t + 1, we get

0 ≤ ∇Ft+1(xt+1)
�(xt − xt+1) + ∇Ft(xt)

�(xt+1 − xt) = −[�∇Ft(xt)]��xt .

Reversing the inequality and adding ε‖�xt‖2 = ε�x�
t �xt , we get

ε‖�xt‖2 ≥ [�∇Ft(xt) + ε�xt]��xt

= [�∇Ft(xt) + ε�xt]�(At + εIn)
−1[�∇Ft(xt) + ε�xt − ∇t]

(by solving for �xt in (14))

= [�∇Ft(xt) + ε�xt]�(At + εIn)
−1(�∇Ft(xt) + ε�xt)

− [�∇Ft(xt) + ε�xt]�(At + εIn)
−1∇t

Mach Learn (2007) 69: 169–192 185

≥ −[�∇Ft(xt) + ε�xt]�(At + εIn)
−1∇t

(since (At + εIn)
−1 is positive semidefinite).

Finally, since the diameter of P is D, we have ε‖�xt‖2 ≤ εD2. �

Claim 2 The second term of (16) can be bounded as

T∑
t=1

∇�
t (At + εIn)

−1∇t ≤ nb2

a
log(aR2T/ε + 1).

Proof Now we bound the second term of (16). Define Bt = ∑t

τ=1 avtv�
t . Since for all τ ,

g′′
τ (v

�
τ xτ) ≥ a, we have that At + εIn � Bt + εIn, which implies that (At + εIn)

−1 � (Bt +
εIn)

−1 and hence

∇�
t (At + εIn)

−1∇t ≤ ∇�
t (Bt + εIn)

−1∇t

= [g′
t (v

�
t xt)vt]�(Bt + εIn)

−1[g′
t (v

�
t xt)vt]

≤ b2

a
[√avt]�(Bt + εIn)

−1[√avt].

Sum up from t = 1 to T , and apply Lemma 11 (as used in the previous subsection, see
Appendix 2 for statement and proof) with Vt = Bt + εIn, ut = √

avt , and r = √
aR, to get

the stated bound.
Combining the two bounds from the claims above, and setting ε = b2

aD2T
we get

T∑
t=1

[ft (xt) − ft (xt+1)] ≤ nb2

a
log(aR2T/ε + 1) + εD2T

≤ 2nb2

a

[
log

(
DRaT

b

)
+ 1

]

as required. �

3.3.2 Implementation and running time

The implementation of FOLLOW THE APPROXIMATE LEADER is straightforward: the point
xt chosen at iteration t is the optimum of the following mathematical program:

xt = arg min
x∈P

t−1∑
τ=1

f̃τ (x).

Since the approximate cost functions f̃t as well as the underlying set P are convex, this
is a convex program which any general convex optimization algorithm applied to (here is
another justification for our assumption that the set P is convex, see Sect. 2). An efficient
implementation of the algorithm is FOLLOW THE APPROXIMATE LEADER (version 2). This
uses the fact that all f̃t are quadratic polynomials, and maintains the sum of the coefficients
of these polynomials. The algorithm requires Õ(n2) space to store the sum of all gradients
and matrices of the form ∇t∇�

t . The time needed to compute the point xt is O(n2) plus the
time to perform a single generalized projection. This is because a generalized matrix inver-
sion lemma (Riedel 1991) allows for iterative update of the pseudoinverse in O(n2) time.

186 Mach Learn (2007) 69: 169–192

EXPONENTIALLY WEIGHTED ONLINE OPTIMIZATION.
Inputs: convex set P ⊂ R

n, and the parameter α.

• Define weights wt(x) = exp(−α
∑t−1

τ=1fτ (x)).

• On period t play xt =
∫
P xwt (x)dx∫
P wt (x)dx .

(Remark: choosing xt at random with density proportional to wt(x) also gives our
bounds.)

Fig. 4 The EXPONENTIALLY WEIGHTED ONLINE OPTIMIZATION algorithm

The time and space complexity is thus independent from the number of iterations, in
contrast to other previous variants of FOLLOW THE LEADER.

We note that in practice, we have an excellent starting point to compute xt —the optimum
of the convex program of the previous iteration xt−1. As shown in the analysis, on the average
these two consecutive points are very close.

3.4 EXPONENTIALLY WEIGHTED ONLINE OPTIMIZATION

In this subsection we describe our EXPONENTIALLY WEIGHTED ONLINE OPTIMIZATION

(EWOO) algorithm which gives logarithmic regret for a very general setting of online con-
vex optimization. All that the algorithm requires is that the cost functions be α-exp-concave
(ONLINE NEWTON STEP and FOLLOW THE APPROXIMATE LEADER need additionally a
bound on the magnitude of the gradients). The algorithm does not seem to be directly related
to FOLLOW THE LEADER. Rather, it is related to Cover’s algorithm for universal portfolio
management.

The downside of this algorithm is its running time. A trivial implementation of EXPO-
NENTIALLY WEIGHTED ONLINE OPTIMIZATION would give exponential running time.
Kalai and Vempala (2003) give a randomized polynomial time (polynomial both in n and
in T) implementation of Cover’s algorithm, based on random sampling techniques. The
same techniques can be applied to the EXPONENTIALLY WEIGHTED ONLINE OPTIMIZA-
TION algorithm as well. However, the polynomial in the running time is quite large and the
overall implementation involved.

Remark In the implementation of EXPONENTIALLY WEIGHTED ONLINE OPTIMIZATION,
choosing xt at random with density proportional to wt(x), instead of computing the integral,
also guarantees our regret bounds on the expectation. This is the basis for the (Kalai and
Vempala 2003) polynomial time implementation.

Theorem 7 Assume that for all t , the function ft : P → R
n has the property that ∀x ∈ P ,

exp(−αf (x)) is concave. Then the algorithm EXPONENTIALLY WEIGHTED ONLINE OP-
TIMIZATION has the following regret bound:

RegretT (EWOO) ≤ 1

α
n(1 + log(T + 1)).

Proof Let x∗ ∈ arg minx∈P
∑T

t=1 ft (x). Recall the definition of regret (see Sect. 2)

RegretT (EWOO) =
T∑

t=1

ft (xt) −
T∑

t=1

ft (x∗).

Mach Learn (2007) 69: 169–192 187

Let ht (x) = e−αft (x). The algorithm can be viewed as taking a weighted average over
points x ∈ P . Hence, by concavity of ht ,

ht (xt) ≥
∫
P ht (x)

∏t−1
τ=1 hτ (x) dx∫

P
∏t−1

τ=1 hτ (x) dx
.

Hence, we have by telescoping product,

t∏
τ=1

hτ (xτ) ≥
∫
P

∏t

τ=1 hτ (x) dx∫
P 1 dx

=
∫
P

∏t

τ=1 hτ (x) dx

vol(P)
. (18)

By definition of x∗ we have x∗ ∈ arg maxx∈P
∏T

t=1 ht (x). Following (Blum and Kalai
1997), define nearby points S ⊂ P by,

S =
{

x ∈ S

∣∣∣ x = T

T + 1
x∗ + 1

T + 1
y, y ∈ P

}
.

By concavity of ht and the fact that ht is non-negative, we have that,

∀x ∈ S ht (x) ≥ T

T + 1
ht (x∗).

Hence,

∀x ∈ S:
T∏

τ=1

hτ (x) ≥
(

T

T + 1

)T T∏
τ=1

hτ (x∗) ≥ 1

e

T∏
τ=1

hτ (x∗).

Finally, since S = x∗ + 1
T +1P is simply a rescaling of P by a factor of 1/(T +1) (followed by

a translation), and we are in n dimensions, vol(S) = vol(P)/(T + 1)n. Putting this together
with (18), we have

T∏
τ=1

hτ (xτ) ≥ vol(S)

vol(P)

1

e

T∏
τ=1

hτ (x∗) ≥ 1

e(T + 1)n

T∏
τ=1

hτ (x∗).

The theorem is obtained by taking logarithms. �

3.4.1 Implementation and running time

The EXPONENTIALLY WEIGHTED ONLINE OPTIMIZATION algorithm can be approxi-
mated by sampling points according to the distribution with density proportional to wt and
then taking their mean. In fact, as far as an expected guarantee is concerned, our analysis
actually shows that the algorithm which chooses a single random point xt with density pro-
portional to wt(x) achieves the stated regret bound, in expectation. Using recent random
walk analyses of Lovász and Vempala (2003a, 2003b), m samples from such a distribution
can be computed in time Õ((n4 + mn3) log R

r
). A similar application of random walks was

used previously for an efficient implementation of Cover’s Universal Portfolio algorithm
(Kalai and Vempala 2003).

188 Mach Learn (2007) 69: 169–192

4 Computing projections

Some of the algorithms for online convex optimization described in this paper require com-
puting projections onto convex sets. This corresponds to the following computational prob-
lem: given a convex set P ⊆ R

n, and a point y ∈ R
n, find the point in the convex set which

is closest in Euclidean distance to the given vector, denoted

ΠP [y] � min
x∈P ‖x − y‖2.

The ONLINE NEWTON STEP algorithm computes generalized projections, which are projec-
tions with respect to a norm other than the Euclidean norm, given by a positive semidefinite
matrix. For a given positive semidefinite matrix A, a generalized projection of y ∈ R

n onto
the convex set P is defined as

ΠA
P [y] � min

x∈P (x − y)�A(x − y).

Thus, the Euclidean projection can be seen to be a generalized projection with A = In. These
projections satisfy the following well known fact:

Lemma 8 (folklore) Let P ⊆ R
n be a convex set, y ∈ R

n and z = ΠA
P [y] be the generalized

projection of y onto P according to positive semidefinite matrix A � 0. Then for any point
a ∈ P it holds that

(y − a)�A(y − a) ≥ (z − a)�A(z − a).

If A is the identity matrix, this lemma is standard and follows from the fact that for any
a ∈ P the angle �(y,ΠP [y],a) is obtuse. The latter is implied by the fact that for any point
outside a convex body there exists a hyperplane which separates it from all points on the
convex set.

For a general positive semidefinite matrix A, the lemma can be proved by reduction to
the simple case, as A generates a natural norm:5 ∀x ∈ R

n, ‖x‖A = x�Ax. We include a proof
for completeness.

Proof By the definition of generalized projections, the point z minimizes the function
f (x) = (x − y)�A(x − y) over the convex set. It is a well known fact in optimization (see
Boyd and Vandenberghe 2004) that for the optimum z the following holds

∀a ∈ P: ∇f (z)�(a − z) ≥ 0

which implies

2(z − y)�A(a − z) ≥ 0 ⇒ 2a�A(z − y) ≥ 2z�A(z − y).

Now by simple calculation:

(y − a)�A(y − a) − (z − a)�A(z − a) = y�Ay − z�Az + 2a�A(z − y)

≥ y�Ay − z�Az + 2z�A(z − y)

5Note that because A can be singular, the norm may not be definite.

Mach Learn (2007) 69: 169–192 189

= y�Ay − 2z�Ay + z�Az

= (y − z)�A(y − z) ≥ 0.

The final inequality follows because A � 0. �

These projections are essentially convex programs. For convex polytopes, a projection re-
duces to a convex quadratic program with linear constraints. These type of convex programs
can be solved more efficiently than general convex programs using interior point methods
(Lobo et al. 1998). Another option is to efficiently approximate these convex programs using
Lagrangian relaxation techniques (Hazan 2006).

Even more generally, P can be specified by a membership oracle χP , such that χP(x) = 1
if x ∈ P and 0 if x /∈ P , along with a point x0 ∈ P as well as radii R ≥ r > 0 such that the
balls of radii R and r around x0 contain and are contained in P , respectively. In this case
ΠA

P can be computed (to ε accuracy) in time Õ(n4 log(R
r
)) using Vaidya’s algorithm (Vaidya

1996).
However, for many simple convex bodies which arise in practical applications (e.g.

portfolio management), projections can be computed much more efficiently. For the n-
dimensional unit sphere, cube and the simplex these projections can be computed combi-
natorially in Õ(n) time, rendering the online algorithms much more efficient when applied
to these convex bodies (see Hazan 2006).

5 Conclusions

In this work, we presented efficient algorithms which guarantee logarithmic regret when
the loss functions satisfy a mildly restrictive convexity condition. Perhaps the most interest-
ing algorithm we describe is based on the Newton method from offline optimization. The
intuition leading to this algorithm stems from new observations regarding the very natural
follow-the-leader methodology, and answers open problems regarding this method.

Acknowledgements Many thanks to Adam Kalai for many critical contributions to this research. We would
also like to thank Sanjeev Arora, Rob Schapire and an anonymous referee for helpful comments.

Appendix 1 Reductions for FOLLOW THE LEADER

Lemma 9 Let ft , for t = 1, . . . , T , be a sequence of cost functions and let xt ∈ P be the
point used in the t th round. Let f̃t for t = 1, . . . , T be a sequence of cost functions such that
ft (xt) = f̃t (xt), and for all x ∈ P , ft (x) ≥ f̃t (x). Then

T∑
t=1

ft (xt) − min
x∈P

T∑
t=1

ft (x) ≤
T∑

t=1

f̃t (xt) − min
x∈P

T∑
t=1

f̃t (x).

Proof Let x∗ ∈ arg minx∈P
∑T

t=1 ft (x). We have

T∑
t=1

ft (xt) −
T∑

t=1

ft (x∗) ≤
T∑

t=1

f̃t (xt) −
T∑

t=1

f̃t (x∗)

≤
T∑

t=1

f̃t (xt) − min
x∈P

T∑
t=1

f̃t (x). (19)

�

190 Mach Learn (2007) 69: 169–192

Lemma 10 Let ft , for t = 1, . . . , T , be a sequence of cost functions and let xt =
arg minx∈P

∑t

τ=1 fτ (x). Then

T∑
t=1

ft (xt) − min
x∈P

T∑
t=1

ft (x) ≤
T∑

t=1

ft (xt) −
T∑

t=1

ft (xt+1).

Proof We prove inductively that

T∑
t=1

ft (xt+1) ≤ min
x∈P

T∑
t=1

ft (x).

For T = 1 the two are equal by definition. Assume correctness for T − 1, and

T∑
t=1

ft (xt+1) ≤ min
x∈P

T −1∑
t=1

ft (x) + fT (xT +1) by induction hypothesis

≤
T −1∑
t=1

ft (xT +1) + fT (xT +1)

= min
x∈P

T∑
t=1

ft (x) by definition.

Thus, the induction is complete. �

Appendix 2 Bounds on the potential function

The following two technical lemmas, which concern general facts from linear algebra, were
used to bound the potential function used in the analysis of the ONLINE NEWTON STEP

algorithm (as well as in the analysis of FOLLOW THE LEADER).

Lemma 11 Let ut ∈ R
n, for t = 1, . . . , T , be a sequence of vectors such that for some r > 0,

‖ut‖ ≤ r . Define Vt = ∑t

τ=1 utu�
t + εIn. Then

T∑
t=1

u�
t V−1

t ut ≤ n log(r2T/ε + 1).

Proof For real numbers a > b > 0, the inequality 1 + x ≤ ex implies that 1
a

· (a − b) ≤
log a

b
(taking x = b

a
− 1). An analogous fact holds for positive definite matrices. Define,

for matrices A,B ∈ R
n×n the product A • B = ∑n

i,j=1 Aij Bij (this is just the standard inner

product when thinking of the matrices as vectors in R
n2

). Then, for matrices A � B � 0,
A−1 • (A − B) ≤ log |A|

|B| , where |A| is the determinant of A.6 This is proved in Lemma 12.

6Recall our notation that A � B if the matrix A − B � 0 is positive semi-definite.

Mach Learn (2007) 69: 169–192 191

Using this fact we have (for convenience, let V0 = εIn)

T∑
t=1

u�
t V−1

t ut =
T∑

t=1

V−1
t • utu�

t

=
T∑

t=1

V−1
t • (Vt − Vt−1)

≤
T∑

t=1

log
|Vt |

|Vt−1| = log
|VT |
|V0| .

Since VT = ∑T

t=1 utu�
t + εI and ‖ut‖ ≤ r , the largest eigenvalue of VT is at most

r2T + ε. Hence the determinant of VT can be bounded by |VT | ≤ (r2T + ε)n. The stated
bound in the lemma follows. �

Lemma 12 Let A � B � 0 be positive definite matrices. Then

A−1 • (A − B) ≤ log
|A|
|B|

where |A| denotes the determinant of matrix A.

Proof For any positive definite matrix C, denote by λ1(C), λ2(C), . . . , λn(C) its (positive)
eigenvalues. Denote by Tr(C) the trace of the matrix, which is equal to the sum of the
diagonal entries of C, and also to the sum of its eigenvalues.

Note that for the matrix product A • B = ∑n

i,j=1 Aij Bij defined earlier, we have A • B =
Tr(AB) (where AB is the standard matrix multiplication), since the trace is equal to the sum
of the diagonal entries. Therefore,

A−1 • (A − B) = Tr(A−1(A − B))

= Tr(A−1/2(A − B)A−1/2)

= Tr(I − A−1/2BA−1/2)

=
n∑

i=1

[1 − λi(A−1/2BA−1/2)] ∵ Tr(C) =
n∑

i=1

λi(C)

≤ −
n∑

i=1

log[λi(A−1/2BA−1/2)] ∵ 1 − x ≤ − log(x)

= − log

[
n∏

i=1

λi(A−1/2BA−1/2)

]

= − log |A−1/2BA−1/2| = log
|A|
|B| . ∵ |C| =

n∏
i=1

λi(C).

In the last equality we use the following facts about the determinant of matrices: |AB| =
|A||B| and |A−1| = 1

|A| . �

192 Mach Learn (2007) 69: 169–192

References

Blum, A., & Kalai, A. (1997). Universal portfolios with and without transaction costs. In COLT ’97: pro-
ceedings of the tenth annual conference on computational learning theory (pp. 309–313). New York:
ACM.

Brookes, M. (2005). The matrix reference manual. http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html.
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge University Press.
Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge: Cambridge University

Press.
Cover, T. (1991). Universal portfolios. Mathematical Finance, 1, 1–19.
Gaivoronski, A. A., & Stella, F. (2000). Stochastic nonstationary optimization for finding universal portfolios.

Annals of Operations Research, 100, 165–188.
Hannan, J. (1957). Approximation to bayes risk in repeated play. In M. Dresher, A.W. Tucker, & P. Wolfe

(Eds.), Contributions to the theory of games (Vol. III, pp. 97–139).
Hazan, E. (2006). Efficient algorithms for online convex optimization and their applications. PhD thesis,

Princeton University.
Kakade, S. (2005). Personal communication.
Kalai, A., & Vempala, S. (2003). Efficient algorithms for universal portfolios. Journal of Machine Learning

Research, 3, 423–440.
Kalai, A., & Vempala, S. (2005). Efficient algorithms for on-line optimization. Journal of Computer and

System Sciences, 71(3), 291–307.
Kivinen, J., & Warmuth, M. K. (1998). Relative loss bounds for multidimensional regression problems. In

M. I. Jordan, M. J. Kearns, & S.A. Solla (Eds.), Advances in neural information processing systems
(Vol. 10). Cambridge: MIT.

Kivinen, J., & Warmuth, M. K. (1999). Averaging expert predictions. In Computational learning theory: 4th
European conference (EuroCOLT ’99) (pp. 153–167). Berlin: Springer.

Lovász, L., & Vempala, S. (2003a). The geometry of logconcave functions and an o∗(n3) sampling algorithm.
Technical Report MSR-TR-2003-04, Microsoft Research.

Lovász, L., & Vempala, S. (2003b). Simulated annealing in convex bodies and an 0∗(n4) volume algorithm.
In Proceedings of the 44th symposium on foundations of computer science (FOCS) (pp. 650–659).

Lobo, M. S., Vandenberghe, L., Boyd, S., & Lebret, H. (1998). Applications of second-order cone program-
ming.

Merhav, N., & Feder, M. (1992). Universal sequential learning and decision from individual data sequences.
In COLT ’92: Proceedings of the fifth annual workshop on computational learning theory (pp. 413–427).
New York: ACM.

Riedel, K. (1991). A Sherman–Morrison–Woodbury identity for rank augmenting matrices with application
to centering. SIAM Journal on Mathematical Analysis, 12(1), 80–95.

Vaidya, P. M. (1996). A new algorithm for minimizing convex functions over convex sets. Mathematical
Programming, 73(3), 291–341.

Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In Proceed-
ings of the twentieth international conference on machine learning (ICML) (pp. 928–936).

	Logarithmic regret algorithms for online convex optimization
	Abstract
	Introduction
	Follow the leader

	Preliminaries
	Online convex optimization
	Notation and definitions
	Summary of our results

	The algorithms
	Online Gradient Descent
	Online Newton Step
	Implementation and running time

	Follow The Approximate Leader
	Analysis of Follow The Approximate Leader
	Implementation and running time

	Exponentially Weighted Online Optimization
	Implementation and running time

	Computing projections
	Conclusions
	Acknowledgements

	Appendix 1: Reductions for Follow The Leader
	Appendix 2: Bounds on the potential function
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

