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Abstract We consider the problem of on-line prediction competitive with a benchmark
class of continuous but highly irregular prediction rules. It is known that if the benchmark
class is a reproducing kernel Hilbert space, there exists a prediction algorithm whose average
loss over the first N examples does not exceed the average loss of any prediction rule in the
class plus a “regret term” of O(N−1/2). The elements of some natural benchmark classes,
however, are so irregular that these classes are not Hilbert spaces. In this paper we develop
Banach-space methods to construct a prediction algorithm with a regret term of O(N−1/p),
where p ∈ [2,∞) and p − 2 reflects the degree to which the benchmark class fails to be a
Hilbert space. Only the square loss function is considered.

Keywords Competitive on-line prediction · Square loss regression · Banach function space

1 Introduction

For simplicity, in this introductory section we only discuss the problem of predicting real-
valued labels yn of objects xn ∈ [0,1] (this will remain our main example throughout the
paper). In this paper we are mainly interested in extending the class of the prediction rules
our algorithms are competitive with; in other respects, our assumptions are rather restrictive.
For example, we always assume that the labels yn are bounded in absolute value by a known
positive constant Y and only consider the problem of square-loss regression (some ideas for
extension to a wider range of loss functions can be found in Vovk 2005).

Standard methods allow one to construct a “universally consistent” on-line prediction al-
gorithm, i.e., an on-line prediction algorithm whose average loss over the first N examples
does not exceed the average loss of any continuous prediction rule plus o(1). (Such methods
were developed in, e.g., Cesa-Bianchi et al. 1996; Kivinen and Warmuth 1997, and, espe-
cially, Auer et al. 2002, Sect. 3.2; for an explicit statement see Vovk 2006a.) More specifi-
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Fig. 1 Functions with Hölder
exponent h for three different
values of h

cally, for any reproducing kernel Hilbert space (RKHS) on [0,1] one can construct an on-
line prediction algorithm whose average loss does not exceed that of any prediction rule in
the RKHS plus O(N−1/2); choosing a universal RKHS (Steinwart 2001, Definition 4) gives
universal consistency. In this paper we are interested in extending the latter result, which is
much more specific than the o(1) provided by universal consistency, to wider benchmark
classes of prediction rules. First we discuss limitations of RKHS as benchmark classes.

The regularity of a prediction rule D can be measured by its “Hölder exponent” h, which
is informally defined by the condition that |D(x + dx) − D(x)| scale as |dx|h for small
|dx|. The most regular continuous functions are those of classical analysis: say, piecewise
differentiable with bounded derivatives. For such functions the Hölder exponent is 1. Fa-
miliar examples are x �→ sinx and x �→ |x − 1/2|. Functions much less regular than those
of classical analysis are ubiquitous in probability theory: for example, typical trajectories of
the Brownian motion (more generally, of non-degenerate diffusion processes) have Hölder
exponent 1/2. Functions with other Hölder exponents h ∈ (0,1) can be obtained as typical
trajectories of the fractional Brownian motion. Three examples with different values of h

are shown in Fig. 1.
Fix a threshold s ∈ (0,1). The simplest and most intuitive formalization of the functions

with Hölder exponent h ≥ s is provided by the function class Cs([0,1]) consisting of the
functions f satisfying |f (x)−f (y)| = O(|x−y|s ). The classes Cs([0,1]) are called Hölder
spaces and the elements of Cs([0,1]) are called Hölder continuous functions of order s. The
Hölder spaces are nested, Cs([0,1]) ⊂ Cs′

([0,1]) when s ′ < s; they are very different from
each other, as can be seen from the fact that typical trajectories of the fractional Brownian
motion B(h) are in Cs([0,1]) for s < h and outside Cs([0,1]) for s > h. As we will see
in a moment, the standard Hilbert-space methods only work for Cs([0,1]) with s > 1/2 as
benchmark classes; our goal is to develop methods that would work for smaller s as well.

It might be argued that the spaces Cs([0,1]) poorly reflect the intuitive notion of Hölder
exponent: they are defined in terms of supx,y |f (x) − f (y)|/|x − y|s , and f ’s behavior in
the neighborhood of a single point might too easily disqualify it from being a member of
Cs([0,1]). Replacing sup with a mean (in the sense of Lp) gives the Slobodetsky spaces
Bs

p([0,1]) for p ∈ [1,∞] (see, e.g., Triebel 1992, 1.2.4, for the formal definition; in the next
section we will be discussing much more general spaces). When p = ∞, the Slobodetsky
spaces reduce to the Hölder spaces, Cs([0,1]) = Bs∞([0,1]). Results for the case p < ∞
immediately carry over to p = ∞ since, as we will see in the next section, Cs([0,1]) ⊆
Bs′

p ([0,1]) whenever s ′ < s; s ′ can be arbitrarily close to s.
All Slobodetsky spaces (including the Hölder spaces) are Banach spaces, but Bs

2([0,1])
are also Hilbert spaces and, for s > 1/2, even RKHS. Therefore, they are amenable to the
standard methods (see the papers mentioned above; the exposition of Vovk (2006a) is espe-
cially close to that of this paper).

The condition s > 1/p appears indispensable in the development of the theory (cf. the
reference to the Sobolev embedding theorem in the next section). Since this paper concen-
trates on the irregular end of the Hölder spectrum, s < 1/2, instead of Hilbert spaces, such
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as Bs
2([0,1]), we now have to deal with Banach spaces, such as Bs

p([0,1]) for p ∈ (2,∞),
which are not Hilbert spaces. The necessary tools are developed in Sects. 3 and 4.

The methods used in Vovk (2006a) relied on the perfect shape of the unit ball in a Hilbert
space. If p is not very far from 2, the unit ball in Bs

p([0,1]) is not longer perfectly round
but still convex enough to allow us to obtain similar results by similar methods. In princi-
ple, the condition s > 1/p is not longer an obstacle to coping with any s > 0: by taking a
large enough p we can reach arbitrarily small s. However, the quality of prediction (at least
as judged by our bound) will deteriorate: as we will see (Theorem 1 in the next section),
the average loss of our prediction algorithm does not exceed that of any prediction rule in
Bs

p([0,1]) plus O(N−1/p). (This gives a regret term of O(N−s+ε) for the prediction rules in
Cs([0,1]), where s ≤ 1/2 and ε > 0.)

This paper is the journal version of Vovk (2006b). The main difference from the confer-
ence version is that Theorem 1 is now applied to a much wider range of standard function
spaces, including very smooth spaces (although for such spaces methods based on metric
entropy may give better results—cf. Vovk 2006c). Section 3 of the conference version has
been removed (to a large degree, it was an aside; besides, extending its results to smoother
function spaces would lead to awkward statements).

2 Main result

We consider the following perfect-information prediction protocol:

FOR n = 1,2, . . .:
Reality announces xn ∈ X.
Predictor announces μn ∈ R.
Reality announces yn ∈ [−Y,Y ].

END FOR.

At the beginning of each round n Predictor is given an object xn whose label is to be
predicted. The set of a priori possible objects, the object space, is denoted X; we always
assume X �= ∅. After Predictor announces his prediction μn for the object’s label he is shown
the actual label yn ∈ [−Y,Y ]. We consider the problem of regression, yn ∈ R, assuming an
upper bound Y > 0 on |yn|. The pairs (xn, yn) are called examples.

Predictor’s loss on round n is measured by (yn − μn)
2, and so his average loss after N

rounds of the game is 1
N

∑N

n=1(yn − μn)
2. His goal is to have

1

N

N∑

n=1

(yn − μn)
2 � 1

N

N∑

n=1

(yn − D(xn))
2

(� meaning “is less than or approximately equal to”) for each prediction rule D : X → R

that is not “too wild”.

2.1 Main theorem

Our main theorem will be fairly general and applicable to a wide range of Banach function
spaces. Its implications for some of the standard function spaces will be explained after its
statement.
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Let U be a Banach space and SU := {u ∈ U | ‖u‖U = 1} be the unit sphere in U . Our
methods are applicable only to Banach spaces whose unit spheres do not have very flat
areas; a convenient measure of rotundity of SU is Clarkson’s (1936) modulus of convexity

δU (ε) := inf
u,v∈SU‖u−v‖U =ε

(

1 −
∥
∥
∥
∥
u + v

2

∥
∥
∥
∥

U

)

, ε ∈ (0,2] (1)

(we will be mostly interested in the small values of ε).
Let us say that a Banach space F of real-valued functions f on X (with the standard

pointwise operations of addition and of multiplication by scalar) is a proper Banach func-
tional space (PBFS) on X if, for each x ∈ X, the evaluation functional kx : f ∈ F �→ f (x)

is continuous. We will assume that

cF := sup
x∈X

‖kx‖F∗ < ∞, (2)

where F∗ is the dual Banach space (see, e.g., Rudin 1991, Chap. 4).
The following theorem will be proved in Sects. 3 and 4.

Theorem 1 Let F be a proper Banach functional space such that

∀ε ∈ (0,2] : δF (ε) ≥ (ε/2)p/p (3)

for some p ∈ [2,∞). There exists a prediction algorithm producing μn ∈ [−Y,Y ] that are
guaranteed to satisfy

1

N

N∑

n=1

(yn − μn)
2 ≤ 1

N

N∑

n=1

(yn − D(xn))
2 + 40Y

√

c2
F + 1(‖D‖F + Y )N−1/p (4)

for all N = 1,2, . . . and all D ∈ F .

Conditions (2) and (3) are satisfied for the Slobodetsky spaces Bs
p(X), which we will

now introduce.

2.2 Besov and Triebel–Lizorkin spaces

Suppose X is a bounded Lipschitz domain in R
m (for a definition see, e.g., Triebel 2005,

Definition 3). Two standard scales of function spaces are the Besov spaces Bs
p,q(X) and

the Triebel–Lizorkin spaces F s
p,q(X); in this paper we do not define them (see, e.g., Triebel

1992, especially Chap. I, for the definition) but describe all their properties that we need. In
principle, the allowed values of the parameters are s ∈ R and p,q ∈ (0,∞] (with p = ∞
sometimes excluded from the Triebel–Lizorkin scale); however, they are Banach spaces only
when p,q ∈ [1,∞] (otherwise they are only guaranteed to be quasi-Banach spaces). We will
be interested in the case s ≥ 0 and p,q ∈ [1,∞].

These are some of the important special cases of the two scales (for other special cases,
see, e.g., Triebel 1992, Chap. 1, and Edmunds and Triebel 1996, 2.2.2):

– the Slobodetsky spaces Bs
p(X) := Bs

p,p(X) = F s
p,p(X) (for the equality Bs

p,p(X) =
F s

p,p(X) see, e.g., Adams and Fournier 2003, 7.67);
– the Hölder–Zygmund spaces Cs(X) := Bs∞(X) (also called Hölder spaces when s is not

an integer number);
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– the Bessel potential spaces Hs
p(X) := F s

p,2(X) (also called Liouville or fractional Sobolev
spaces).

In the conference version (Vovk 2006b) of this paper, it was the spaces Bs
p(X) rather than

Hs
p(X) that were denoted Ws,p(X) and called Sobolev spaces (in the spirit of older literature,

such as Nikolsky 1961 or Triebel 1983).
It should be said that in the theory of function spaces one usually does not distinguish

between equivalent norms of a given Banach space; in this paper we also adopt this a little
sloppy convention (as Hans Triebel describes it in Triebel 1992, 1.2.5).

Let C(X) be the Banach space of continuous functions f : X → R with finite norm
‖f ‖C(X) := supx∈X |f (x)| that can be continuously extended to the closure X of X. The
Sobolev embedding theorem shows that for s > m/p the function spaces Bs

p,q(X) and

F s
p,q(X) are continuously embedded in the space C(X) (the relevant part of the Sobolev

embedding theorem is stated in, e.g., Triebel 2005, Proposition 7(ii); there are other parts
of the Sobolev embedding theorem, dealing with the case where the condition s > m/p is
not satisfied). In essence, this means that for s > m/p the elements of Bs

p,q(X) and F s
p,q(X)

are continuous functions that can be extended to X and that the identity mapping from those
spaces to C(X) is bounded; the latter can be equivalently expressed by the formulas

cBs
p,q (X) < ∞, cFs

p,q (X) < ∞
as cF is just the norm of the embedding F ↪→ C(X) for any PBFS F on X.

We are only interested in the case s > m/p, and so in view of the Sobolev embedding
theorem we sometimes write the argument of Bs

p,q , F s
p,q , and their subclasses as X rather

than X (as we did in Sect. 1).
We can now deduce the following corollary from Theorem 1. It is shown by Cobos and

Edmunds (1988, Theorem 3) that (3) is satisfied for the Besov and Triebel–Lizorkin spaces
Bs

p,q(X), F s
p,q(X) provided p ∈ [2,∞) and q ∈ [p′,p], where p′ is the conjugate index,

defined by the condition 1/p + 1/p′ = 1. In particular, the Slobodetsky spaces Bs
p(X) sat-

isfy (3) for p ≥ 2. So let p ∈ [2,∞) and s ∈ (m/p,∞). There exists a constant Cs,p > 0
and a prediction algorithm producing μn ∈ [−Y,Y ] that are guaranteed to satisfy

1

N

N∑

n=1

(yn − μn)
2 ≤ 1

N

N∑

n=1

(yn − D(xn))
2 + YCs,p(‖D‖Bs

p(X) + Y )N−1/p (5)

for all N = 1,2, . . . and all D ∈ Bs
p(X).

Remark In fact, Cobos and Edmunds (1988) do not state their results in terms of Clark-
son’s modulus of convexity; however, it is very easy to deduce (3) for F := As

p,q(X), with
A ∈ {B,F } and suitable p and q , from their Theorem 3. One of the inequalities in that
theorem (combined with the remark following it) is

(
1

2
‖f − g‖p

As
p,q (X)

+ 1

2
‖f + g‖p

As
p,q (X)

)1/p

≤ (‖f ‖p′
As

p,q (X)
+ ‖g‖p′

As
p,q (X)

)1/p′

where f,g ∈ As
p,q(X) for A ∈ {B,F }, p ∈ [2,∞), and q ∈ [p′,p]. Taking f and g on the

unit sphere at a distance of ε from each other and setting h := (f + g)/2, we obtain

(
1

2
εp + 1

2
‖2h‖p

As
p,q (X)

)1/p

≤ 21/p′
,
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which is equivalent to

1 − ‖h‖As
p,q (X) ≥ 1 − (1 − (ε/2)p)1/p ≥ (ε/2)p/p (6)

(the last inequality is a special case of (1 − t)1/p ≤ 1 − t/p valid for t ∈ [0,1] and p ≥ 1;
to check it, notice that the left-hand side is a concave function of t , and the values and
derivatives of the two sides match when t = 0). In the case of the spaces Lp this result was
obtained by Clarkson (1936, Sect. 3), and Clarkson’s bound (before applying the final in-
equality in (6), of course) was shown to be optimal by Hanner (1956). Cobos and Edmunds’s
result was further generalized by Takahashi and Kato (1997).

In informal discussions below we will continue to call terms such as the second addend
on the right-hand side of (5) the “regret term”, and say that the corresponding prediction
algorithm is “R-competitive”, where R is the regret term.

According to (4), we can take

Cs,p = 40
√

c2
Bs

p(X)
+ 1

in (5), but in fact

Cs,p = 4 × 8.681−1/p
√

c2
Bs

p(X)
+ 1 (7)

will suffice (see (41) below). In the special case p = 2 one can use Hilbert-space methods
to improve (7), which now becomes, approximately,

11.78
√

c2
Bs

2(X)
+ 1, (8)

to

2
√

c2
Bs

2(X)
+ 1 (9)

(Vovk 2006a, Theorem 1); using Banach-space methods we have lost a factor of 5.89.

2.3 Application to the Hölder–Zygmund functions

Let us apply (5) to the Hölder–Zygmund classes Cs(X) := Bs∞(X). In the case X = [0,1]
and s ∈ (0,1), the norm in Cs(X) is equivalent to

‖f ‖Cs (X) = max

(

sup
x∈X

|f (x)|, sup
x,y∈X:x �=y

∣
∣
∣
∣
f (x) − f (y)

|x − y|s
∣
∣
∣
∣

)

(and the space Cs(X) consists of the functions f with finite norm); for a general definition
see, e.g., Triebel (1992), 1.2.2.

More generally, let us again assume that X ⊆ R
m is a bounded Lipschitz domain. The

Sobolev embedding theorem (see Edmunds and Triebel 1996, 2.5.1) implies that there is a
continuous embedding

Cs(X) ↪→ Bs′
p (X) (10)

for any s ′ < s and any p.
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Suppose s ≤ m/2 and fix an arbitrarily small ε > 0. Applying (5) to Bs′
p (X) with p > m/s

sufficiently close to m/s ≥ 2 and to s ′ ∈ (m/p, s), we can see from (10) that there exists a
constant Cs,ε > 0 such that

1

N

N∑

n=1

(yn − μn)
2 ≤ 1

N

N∑

n=1

(yn − D(xn))
2 + YCs,ε(‖D‖Cs (X) + Y )N−s/m+ε (11)

holds for all N = 1,2, . . . and all D ∈ Cs(X).

3 More geometry of Banach spaces

In the proof of Theorem 1 we will need not only Clarkson’s modulus of convexity (1) but a
whole range of different moduli of convexity and smoothness. In our description we will of-
ten follow Lindenstrauss and Tzafriri (1979); for information about other moduli and further
references, see Fuster (2006). We will only consider Banach spaces of dimension at least 2.

3.1 Moduli of convexity and smoothness

A natural modification of Clarkson’s modulus of convexity was proposed by Gurary (1967):

δ
†
U(ε) := inf

u,v∈SU‖u−v‖U =ε

(
1 − inf

t∈[0,1]
‖tu + (1 − t)v‖U

)
. (12)

It is clear that

δU (ε) ≤ δ
†
U(ε) ≤ 2δU (ε)

(cf. the proof of Lemma 2 below), and it was shown recently (Bárcenas et al. 2004) that this
relation cannot be improved.

The standard modulus of smoothness was proposed by Lindenstrauss (1963):

ρU(τ) := sup
u,v∈SU

(‖u + τv‖U + ‖u − τv‖U

2
− 1

)

, τ > 0. (13)

Lindenstrauss also established a simple but very useful relation of conjugacy (cf. Rockafellar
1970, Sect. 12, although δ is not always convex, as shown by Liokumovich 1973) between
δ and ρ:

ρU∗(τ ) = sup
ε∈(0,2]

(
ετ

2
− δU (ε)

)

; (14)

we can see that 2ρU∗ is the Fenchel transform of 2δU .
The following inequality will be the basis of the proof of Theorem 1 in the next section.

Suppose a PBFS F satisfies the condition (3) of Theorem 1. By (14) we obtain for the dual
space F∗ to F , assuming τ ∈ (0,1]:

ρF∗(τ ) ≤ sup
ε∈(0,2]

(
ετ

2
− (ε/2)p/p

)

= τ q/q, (15)
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where q := p′ = p/(p − 1) is the conjugate index (the supremum in (15) is attained at
ε = 2τ 1/(p−1)).

The Banach space U is called uniformly convex if δU (ε) > 0 for all ε ∈ (0,2], and it is
called uniformly smooth if ρU(τ)/τ → 0 as τ → 0. All uniformly convex and all uniformly
smooth Banach spaces U are reflexive (i.e., U ∗∗ = U ; see, e.g., Lindenstrauss and Tzafriri
1979, Proposition 1.e.3 on p. 61).

If V is a Hilbert space, the “parallelogram identity”

‖u + v‖2
V + ‖u − v‖2

V = 2‖u‖2
V + 2‖v‖2

V (16)

immediately gives

δV (ε) = 1 −
√

1 − (ε/2)2 ≥ ε2/8

and

ρV (τ) =
√

1 + τ 2 − 1 ≤ τ 2/2. (17)

Nördlander (1960) proved that the unit balls in Hilbert spaces are most convex and smooth:
if U is a Banach space and V is a Hilbert space,

δU (ε) ≤ δV (ε) = 1 − √
1 − (ε/2)2,

ρU (τ ) ≥ ρV (τ) = √
1 + τ 2 − 1.

(18)

The original definitions (1) and (13) of the moduli of convexity and smoothness look
very different, and Banaś (1986) proposed a definition of modulus of smoothness similar
to (1):

ρ
†
U(τ) := sup

u,v∈SU‖u−v‖U =τ

(

1 −
∥
∥
∥
∥
u + v

2

∥
∥
∥
∥

U

)

, τ ∈ (0,2). (19)

The difference ρ
†
U(ε)− δU (ε) measures the degree to which (the unit ball in) U is deformed

(Banaś and Fra̧czek 1993; it is always zero for Hilbert spaces). What we will need in this
paper is the modification of (19) in the direction of (12):

ρ
‡
U(τ) := sup

u,v∈SU‖u−v‖U =τ

sup
t∈[0,1]

(1 − ‖tu + (1 − t)v‖U ), τ ∈ (0,2). (20)

Since the standard results about moduli of convexity and smoothness are about the defi-
nitions (1) and (13), we first need to establish connections between (13) and (20). The first
of these results appears in Banaś 1986 (but we still prove it since Banaś (1986) is less easily
accessible than most other papers in our bibliography).

Lemma 1 (Banaś 1986) For all τ ∈ (0,2),

ρ
†
U(τ)

1 − ρ
†
U(τ)

≤ ρU

(
τ

2(1 − ρ
†
U(τ))

)

. (21)
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Fig. 2 Relation between ρ

and ρ†

Proof Let c < ρ
†
U(τ) be such that, for some u,v ∈ SU satisfying ‖u − v‖U = τ ,

∥
∥
∥
∥
u + v

2

∥
∥
∥
∥

U

= 1 − c

(it is clear that c can be chosen as close to ρ
†
U(τ) as we wish). Set

u′ := 1

1 − c

u + v

2
, v′ := v − u

‖u − v‖U

, τ ′ := 1

1 − c

τ

2

(cf. Fig. 2, where
−→
OA = u,

−→
OB = v,

−→
OE = (u + v)/2,

−→
OF = u′, and

−→
FD = τ ′v′). Since

u′, v′ ∈ SU , we have

ρU(τ ′) ≥ ‖u′ + τ ′v′‖U + ‖u′ − τ ′v′‖U

2
− 1 = 1

1 − c
− 1,

which can be rewritten as

ρU

(
τ

2(1 − c)

)

≥ c

1 − c
.

Letting c → ρ
†
U(τ) completes the proof (the modulus of smoothness is continuous by, e.g.,

Lindenstrauss and Tzafriri 1979, Proposition 1.e.5 on p. 64). �

Corollary 1 For all τ ∈ (0,1],
ρ

†
U(τ) ≤ ρU(τ). (22)

Proof Let τ ∈ (0,1]. Following Banaś (1986), proof of Lemma 1, we obtain

ρ
†
U(τ) = sup

u,v∈SU‖u−v‖U =τ

2‖u‖U − ‖u + v‖U

2

≤ sup
u,v∈SU‖u−v‖U =τ

‖u + v‖U + ‖u − v‖U − ‖u + v‖U

2
= τ

2
≤ 1

2

(the first inequality following from the triangle inequality). We can now easily deduce (22)
from (21) and the fact that ρU is a non-decreasing function (Lindenstrauss and Tzafriri 1979,
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Proposition 1.e.5):

ρ
†
U(τ) ≤ ρ

†
U(τ)

1 − ρ
†
U(τ)

≤ ρU

(
τ

2(1 − ρ
†
U(τ))

)

≤ ρU(τ). �

Lemma 2 For all τ ∈ (0,2),

ρ
‡
U(τ) ≤ 2ρ

†
U(τ).

Proof Suppose ρ
‡
U(τ) > c. Let u,v ∈ SU and t ∈ [0,1] be such that ‖u − v‖U = τ and

‖tu + (1 − t)v‖U < 1 − c.

Without loss of generality we assume t ≤ 1/2. Since

∥
∥
∥
∥
u + v

2

∥
∥
∥
∥

U

=
∥
∥
∥
∥

1 − 2t

2 − 2t
u + 1

2 − 2t
(tu + (1 − t)v)

∥
∥
∥
∥

U

≤ 1 − 2t

2 − 2t
‖u‖U + 1

2 − 2t
‖tu + (1 − t)v‖U <

1 − 2t

2 − 2t
+ 1

2 − 2t
(1 − c)

= 2 − 2t − c

2 − 2t
≤ 2 − c

2
= 1 − c

2
,

we have ρ
†
U(τ) > c/2. �

3.2 Direct sums of uniformly smooth spaces

If U1 and U2 are two Banach spaces, their weighted direct sum U1 ⊕ U2 is defined to be
the Cartesian product U1 × U2 with the operations of addition and multiplication by scalar
defined by

(u1, u2) + (u′
1, u

′
2) := (u1 + u′

1, u2 + u′
2), c(u1, u2) := (cu1, cu2);

we will equip it with the norm

‖(u1, u2)‖U1⊕U2 :=
√

a1‖u1‖2
U1

+ a2‖u2‖2
U2

, (23)

where a1 and a2 are positive constants (to simplify formulas, we do not mention them ex-
plicitly in our notation for U1 ⊕U2). The operation of weighted direct sum provides a means
of merging different Banach spaces, which plays an important role in our proof technique
(cf. Vovk 2006a, Corollary 4). The “Euclidean” definition (23) of the norm in the direct sum
suggests that the sum will be as smooth as the components; this intuition is formalized in
the following lemma (essentially a special case of Proposition 17 in Figiel 1976, p. 132).

Lemma 3 If U1 and U2 are Banach spaces and f : (0,1] → R,

(∀τ ∈ (0,1] : ρU1(τ ) ≤ f (τ) & ρU2(τ ) ≤ f (τ))

�⇒ (∀τ ∈ (0,1] : ρU1⊕U2(τ ) ≤ 4.34f (τ)).
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Proof We will follow the proof of Proposition 17 in Figiel (1976), which is based on the
following weak form of the parallelogram identity (16), valid for all Banach spaces:

‖u + v‖2
U + ‖u − v‖2

U − 2‖u‖2
U − 2‖v‖2

U

≤ 2‖u‖U(‖u + v‖U + ‖u − v‖U − 2‖u‖U) (24)

(see Figiel 1976, Lemma 16 on p. 132); it is clear that (24) implies

‖u + v‖2
U + ‖u − v‖2

U − 2‖u‖2
U − 2‖v‖2

U ≤ 4‖u‖2
UρU(‖v‖U/‖u‖U). (25)

Let u† = (u1, u2) and v† = (v1, v2) be arbitrary norm one vectors in U1 ⊕ U2. Applying
(25) to (u, v) := (u1, τv1) and (u, v) := (u2, τv2), we obtain

‖u1 + τv1‖2
U1

+ ‖u1 − τv1‖2
U1

− 2‖u1‖2
U1

− 2τ 2‖v1‖2
U1

≤ 4‖u1‖2
U1

ρU1(τ‖v1‖U1/‖u1‖U1) (26)

and

‖u2 + τv2‖2
U2

+ ‖u2 − τv2‖2
U2

− 2‖u2‖2
U2

− 2τ 2‖v2‖2
U2

≤ 4‖u2‖2
U2

ρU2(τ‖v2‖U2/‖u2‖U2). (27)

Multiplying (26) by a1 and (27) by a2 and summing the resulting inequalities now gives

‖u† + τv†‖2
U1⊕U2

+ ‖u† − τv†‖2
U1⊕U2

− 2 − 2τ 2

≤ 4
2∑

j=1

aj‖uj‖2
Uj

ρUj
(τ‖vj‖Uj

/‖uj‖Uj
). (28)

To estimate the sum over j = 1,2, notice that:

– when ‖vj‖Uj
≤ ‖uj‖Uj

,

ρUj
(τ‖vj‖Uj

/‖uj‖Uj
) ≤ ρUj

(τ )‖vj‖Uj
/‖uj‖Uj

(by the convexity of ρ, following from the convexity of the Fenchel transform, (14), and
the reflexivity of all uniformly convex and all uniformly smooth spaces);

– when ‖vj‖Uj
> ‖uj‖Uj

,

ρUj
(τ‖vj‖Uj

/‖uj‖Uj
) ≤ LρUj

(τ )(‖vj‖Uj
/‖uj‖Uj

)2

(where L < 3.18 is a constant satisfying ρ(σ)/σ 2 ≤ Lρ(τ)/τ 2 for all positive τ ≤ σ ; see
Figiel 1976, Proposition 10 on p. 128 and the remark after its proof).

Using the Cauchy–Schwarz inequality, the sum can be bounded above as follows:

2∑

j=1

aj‖uj‖2
Uj

ρUj
(τ‖vj‖Uj

/‖uj‖Uj
)

≤
2∑

j=1

aj‖vj‖Uj
ρUj

(τ )max(‖uj‖Uj
,L‖vj‖Uj

)
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≤
(

2∑

j=1

aj‖vj‖2
Uj

)1/2( 2∑

j=1

aj (ρUj
(τ ))2(‖uj‖2

Uj
+ L2‖vj‖2

Uj
)

)1/2

≤
(

2∑

j=1

f 2(τ )aj (‖uj‖2
Uj

+ L2‖vj‖2
Uj

)

)1/2

=
√

L2 + 1f (τ) (29)

(the last line assuming τ ∈ (0,1]). Now we have all we need to deduce the conclusion of the
lemma (some steps will be explained after the equation): when τ ∈ (0,1],

1

2
(‖u† + τv†‖U1⊕U2 + ‖u† − τv†‖U1⊕U2)

≤
(

1

2
(‖u† + τv†‖2

U1⊕U2
+ ‖u† − τv†‖2

U1⊕U2
)

)1/2

≤ (1 + τ 2 + 2
√

L2 + 1f (τ))1/2 ≤ (1 + τ 2)1/2 +
√

L2 + 1f (τ)

≤ 1 + f (τ) +
√

L2 + 1f (τ) = 1 + (1 +
√

L2 + 1)f (τ )

(the first inequality follows from the convexity of the function t �→ t2, the second from (28)
and (29), the third from the mean-value theorem, and the fourth from Nördlander’s bound
(18)). It remains to compare the resulting inequality with the definition of the modulus of
convexity and remember that L < 3.18. �

4 Proof of Theorem 1

In this section we partly follow the proof of Theorem 1 in Vovk (2006a) (Sect. 6).

4.1 The BBK29 algorithm

Let U be a Banach space. We say that a function Φ : [−Y,Y ] × X → U is forecast-
continuous if Φ(μ,x) is continuous in μ ∈ [−Y,Y ] for every fixed x ∈ X. For such a Φ

the function

fn(y,μ) :=
∥
∥
∥
∥
∥

n−1∑

i=1

(yi − μi)Φ
(
μi, xi

) + (y − μ)Φ
(
μ,xn

)
∥
∥
∥
∥
∥

U

−
∥
∥
∥
∥
∥

n−1∑

i=1

(yi − μi)Φ
(
μi, xi

)
∥
∥
∥
∥
∥

U

(30)

is continuous in μ ∈ [−Y,Y ].
BANACH-SPACE BALANCED K29 ALGORITHM (BBK29)
Parameter: forecast-continuous Φ : [−Y,Y ] × X → U , with U a Banach space

FOR n = 1,2, . . .:
Read xn ∈ X.
Define fn : [−Y,Y ]2 → R by (30).
Output any root μ ∈ [−Y,Y ] of fn(−Y,μ) = fn(Y,μ) as μn;

if there are no such roots, output μn ∈ {−Y,Y }
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such that supy∈[−Y,Y ] fn(y,μn) ≤ 0.
Read yn ∈ [−Y,Y ].

END FOR.

The validity of this description depends on the existence of μ ∈ {−Y,Y } satisfying
supy∈[−Y,Y ] fn(y,μ) ≤ 0 when the equation fn(−Y,μ) = fn(Y,μ) does not have roots
μ ∈ [−Y,Y ]. The existence of such a μ is easy to check: if fn(−Y,μ) < fn(Y,μ) for all
μ ∈ [−Y,Y ], take μ := Y to obtain

fn(−Y,μ) < fn(Y,μ) = 0

and, hence, supy∈[−Y,Y ] fn(y,μ) ≤ 0 by the convexity of (30) in y; if fn(−Y,μ) > fn(Y,μ)

for all μ ∈ [−Y,Y ], setting μ := −Y leads to

fn(Y,μ) < fn(−Y,μ) = 0

and, hence, supy∈[−Y,Y ] fn(y,μ) ≤ 0. The parameter Φ of the BBK29 algorithm will some-
times be called the feature mapping.

Theorem 2 Let Φ be a forecast-continuous mapping from [−Y,Y ]×X to a Banach space U

and set cΦ := supμ∈[−Y,Y ],x∈X ‖Φ(μ,x)‖U . Suppose ρU(τ) ≤ aτq , ∀τ ∈ (0,1], for some con-
stants q ≥ 1 and a ≥ 1/q . The BBK29 algorithm with parameter Φ outputs μn ∈ [−Y,Y ]
such that

∥
∥
∥
∥
∥

N∑

n=1

(yn − μn)Φ(μn, xn)

∥
∥
∥
∥
∥

U

≤ 2Y cΦ(2aqN)1/q (31)

always holds for all N = 1,2, . . . .

Proof Set

SN :=
∥
∥
∥
∥
∥

N∑

n=1

(yn − μn)Φ(μn, xn)

∥
∥
∥
∥
∥

U

;

our goal is to prove

SN ≤ 2Y cΦ(2aqN)1/q .

For N = 1, this follows from

2Y cΦ ≤ 2Y cΦ(2aqN)1/q,

which in turn follows from 2aq ≥ 1, which in turn follows from the condition a ≥ 1/q . It
remains to prove that

SN−1 ≤ 2Y cΦ(2aq(N − 1))1/q

implies

SN ≤ 2Y cΦ(2aqN)1/q (32)

for N ≥ 2. Without loss of generality we assume that fN(−Y,μN) = fN(Y,μN) and replace
SN in (32) by FN := SN−1 + fN(Y,μN) (using the convexity of fN(y,μN) in y).
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Fix N ≥ 2. We will assume that

SN−1 ≤ 2Y cΦ(2aq(N − 1))1/q & FN > 2Y cΦ(2aqN)1/q (33)

and arrive at a contradiction. Using FN > 2Y‖Φ(μN,xN)‖ (which follows from (33)),
Corollary 1, Lemma 2, and the definition of ρ‡, we obtain:

2a

(
2Y‖Φ(μN,xN)‖

FN

)q

≥ 2ρU

(
2Y‖Φ(μN,xN)‖

FN

)

≥ 2ρ
†
U

(
2Y‖Φ(μN,xN)‖

FN

)

≥ ρ
‡
U

(
2Y‖Φ(μN,xN)‖

FN

)

≥ 1 −
∥
∥
∥
∥t

∑N−1
n=1 (yn − μn)Φ(μn, xn) + (−Y − μN)Φ(μN,xN)

FN

+ (1 − t)

∑N−1
n=1 (yn − μn)Φ(μn, xn) + (Y − μN)Φ(μN,xN)

FN

∥
∥
∥
∥

= 1 − SN−1

FN

, (34)

where the moduli of smoothness are understood to be zero at τ = 0, and t ∈ [0,1] is chosen
such that

t (−Y − μN) + (1 − t)(Y − μN) = 0

(i.e., t := 1
2 − μN

2Y
). The inequality between the extreme terms of (34) can be rewritten as

SN−1 ≥ FN

(

1 − 2a

(
2Y‖Φ(μN,xN)‖

FN

)q)

.

As the right-hand side is a monotonically increasing function of FN (which can be checked
by differentiation), in combination with (33) the last inequality gives

2Y cΦ(2aq(N − 1))1/q > 2Y cΦ(2aqN)1/q(1 − 2a((2aqN)−1/q)q),

i.e.,

(N − 1)1/q > N1/q

(

1 − 1

qN

)

.

It remains to rewrite the last inequality as

N1/q − (N − 1)1/q <
1

q
N1/q−1 (35)

and notice that, by the mean-value theorem, the left-hand side of (35) equals

1

q
(N − θ)1/q−1

for some θ ∈ (0,1): as 1/q − 1 ≤ 0, we have the required contradiction. �
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4.2 The feature mapping for the proof of Theorem 1

In the proof of Theorem 1 we need two feature mappings from [−Y,Y ] × X to different
Banach spaces: first, Φ1(μ,x) := μ (mapping to the Banach space R), and second, Φ2 :
[−Y,Y ] × X → F∗ such that Φ2(μ,x) is the evaluation functional kx : f �→ f (x), f ∈ F .
We combine them into one feature mapping

Φ(μ,x) := (
Φ1(μ,x),Φ2(μ,x)

)
(36)

to the weighted direct sum U := R ⊕ F∗, with the weights a1 and a2 to be chosen later. By
Lemma 3, (15), and (17), ρU(τ) ≤ aτq , where a := 4.34/q . With the help of Theorem 2, we
obtain for the BBK29 algorithm with parameter Φ:

∣
∣
∣
∣
∣

N∑

n=1

(yn − μn)μn

∣
∣
∣
∣
∣
=

∥
∥
∥
∥
∥

N∑

n=1

(yn − μn)Φ1(μn, xn)

∥
∥
∥
∥
∥

R

≤ 1√
a1

∥
∥
∥
∥
∥

N∑

n=1

(yn − μn)Φ(μn, xn)

∥
∥
∥
∥
∥

U

≤ 1√
a1

2Y cΦ(2aqN)1/q (37)

and
∣
∣
∣
∣
∣

N∑

n=1

(yn − μn)D(xn)

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

N∑

n=1

(yn − μn)kxn (D)

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

(
N∑

n=1

(yn − μn)kxn

)

(D)

∣
∣
∣
∣
∣
≤

∥
∥
∥
∥
∥

N∑

n=1

(yn − μn)kxn

∥
∥
∥
∥
∥
F∗

‖D‖F

=
∥
∥
∥
∥
∥

N∑

n=1

(yn − μn)Φ2(μn, xn)

∥
∥
∥
∥
∥
F∗

‖D‖F

≤ 1√
a2

∥
∥
∥
∥
∥

N∑

n=1

(yn − μn)Φ(μn, xn)

∥
∥
∥
∥
∥

U

‖D‖F ≤ 1√
a2

2Y cΦ(2aqN)1/q‖D‖F (38)

for each function D ∈ F .

4.3 Proof proper

The proof is based on the inequality

N∑

n=1

(yn − μn)
2 =

N∑

n=1

(yn − D(xn))
2 + 2

N∑

n=1

(D(xn) − μn)(yn − μn) −
N∑

n=1

(D(xn) − μn)
2

≤
N∑

n=1

(yn − D(xn))
2 + 2

N∑

n=1

(D(xn) − μn)(yn − μn). (39)
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Using this inequality and (37–38) with a1 := Y −2 and a2 := 1, we obtain for the μn ∈
[−Y,Y ] output by the BBK29 algorithm with Φ as parameter:

N∑

n=1

(yn − μn)
2 ≤

N∑

n=1

(yn − D(xn))
2 + 2

∣
∣
∣
∣
∣

N∑

n=1

μn(yn − μn)

∣
∣
∣
∣
∣
+ 2

∣
∣
∣
∣
∣

N∑

n=1

D(xn)(yn − μn)

∣
∣
∣
∣
∣

≤
N∑

n=1

(yn − D(xn))
2 + 4Y cΦ(2aqN)1/q(‖D‖F + Y ). (40)

Since

cΦ ≤
√

a1Y 2 + a2c2
F =

√
c2
F + 1,

we can see that (4) holds with

4(2aq)1/q = 4 × 8.681/p′
(41)

in place of 40.

5 Banach kernels

An RKHS can be defined as a PBFS in which the norm is expressed via an inner product
as ‖f ‖ = √〈f,f 〉. It is well known that all information about an RKHS F on a set Z is
contained in its “reproducing kernel”, which is a symmetric positive definite function on Z2

(Aronszajn 1950, Sects. I.1–I.2). The reproducing kernel can be regarded as the constructive
representation of its RKHS, and it is the reproducing kernel rather than the RKHS itself
that serves as a parameter of various machine-learning algorithms. In this section we will
introduce a similar constructive representation for PBFS.

A Banach kernel B on a set Z is a function that maps each finite non-empty sequence
z1, . . . , zn of distinct elements of Z to a seminorm (t1, . . . , tn) �→ ‖(t1, . . . , tn)‖B(z1,...,zn) on
R

n and satisfies the following conditions (familiar from Kolmogorov’s existence theorem,
Kolmogorov 1933, Sect. III.4):

– for each n = 1,2, . . . , each sequence z1, . . . , zn of distinct elements of Z, each sequence

(t1, . . . , tn) ∈ R
n, and each permutation

(
1 2 ... n

i1 i2 ... in

)
,

‖(ti1 , . . . , tin )‖B(zi1 ,...,zin ) = ‖(t1, . . . , tn)‖B(z1,...,zn)

(in words, the seminorm of (t1, . . . , tn) ∈ R
n corresponding to (z1, . . . , zn) ∈ Zn does not

change if (t1, . . . , tn) and (z1, . . . , zn) are permuted in the same way);
– for each n = 1,2, . . . , each k = 1, . . . , n, each sequence z1, . . . , zn of distinct elements of

Z, and each sequence (t1, . . . , tk) ∈ R
k ,

‖(t1, . . . , tk)‖B(z1,...,zk) = ‖(t1, . . . , tk,0, . . . ,0)‖B(z1,...,zn)

(in words, the seminorm of (t1, . . . , tk) ∈ R
k corresponding to (z1, . . . , zk) ∈ Zk does not

change if (t1, . . . , tk) is extended by 0s and (z1, . . . , zk) is extended arbitrarily).
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The Banach kernel of a mapping Φ : Z → U to a Banach space U is the Banach kernel
B defined by

‖(t1, . . . , tn)‖B(z1,...,zn) := ‖t1Φ(z1) + · · · + tnΦ(zn)‖U .

Proposition 1 For each Banach kernel B on Z there exists a Banach space U and a map-
ping Φ : Z → U such that B is the Banach kernel of Φ .

Proposition 1 is a special case of the following Proposition 2, but we still need to prove it as
the proof of Proposition 2 depends on it.

Proof of Proposition 1 Let U1 be the set of all formal linear combinations t1z1 + · · · + tnzn,
where n ∈ {0,1,2, . . .}, (t1, . . . , tn) ∈ (R \ {0})n, and z1, . . . , zn are distinct elements of Z.
(There is only one linear combination, denoted 0, corresponding to n = 0.) We do not distin-
guish linear combinations if they have the same addends (perhaps listed in different orders).
The set U1 is a linear space with the obvious operations of addition and multiplication by
scalar: in the sum the addends that are multiples of the same z ∈ Z should be grouped to-
gether (and removed if the resulting coefficient is zero) and multiplication by 0 gives 0.

For each linear combination t1z1 + · · · + tnzn ∈ U1, n > 0, its seminorm is defined to be
‖(t1, . . . , tn)‖B(z1,...,zn), and the seminorm of 0 ∈ U1 is defined to be 0; it is easy to check that
this is indeed a seminorm (it is well defined because of the first condition in the definition
of Banach kernel, and the triangle inequality follows from the second condition). Two linear
combinations are said to be equivalent if their difference has zero seminorm (this is indeed
an equivalence relation because of the second condition). Let U2 be the set of all equivalence
classes.

The norm of u ∈ U2 can be defined as the seminorm of any element of the equivalence
class u. It remains to take the completion of U2 as U and to define Φ : Z → U so that Φ(z)

is the equivalence class containing 1z ∈ U1. �

The Banach kernel of a PBFS F on Z is the Banach kernel B defined by

‖(t1, . . . , tn)‖B(z1,...,zn) := ‖t1kz1 + · · · + tnkzn‖F∗ ,

where kz : F → R, z ∈ Z, is the evaluation functional f ∈ F �→ f (z).

Proposition 2 For each Banach kernel B on Z there exists a proper Banach functional
space F on Z such that B is the Banach kernel of F .

Proof Let Φ : Z → U be a mapping to a Banach space U such that B is the Banach kernel
of Φ (such a Φ exists by Proposition 1). Without loss of generality we will assume that
Φ(Z) spans U . Define F to be the set of all functions f : Z → R of the form

f (z) := φ(Φ(z)), (42)

where φ is a continuous linear functional on U , φ ∈ U ∗. The norm of the function (42) is
‖f ‖F := ‖φ‖U∗ . We will prove that F is a PBFS and that B is the Banach kernel of F .

It is obvious that F is a linear space (under the usual pointwise operations of addition
and multiplication by scalar) and that ‖f ‖F is well-defined (i.e., does not depend on the
choice of φ satisfying (42): there is only one such φ). All defining properties of a norm are
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clearly satisfied for ‖ · ‖F ; in particular, ‖f ‖F = 0 implies f = 0. The completeness of F
follows from the completeness of U ∗. The boundedness of the evaluation functionals for F
means that, for each fixed z ∈ Z,

sup
φ:‖φ‖U∗ ≤1

|φ(Φ(z))| < ∞;

this immediately follows from the definition of ‖ · ‖U∗ . This completes the proof that F is a
PBFS.

It remains to check that B is the Banach kernel of F , i.e., that

‖(t1, . . . , tn)‖B(z1,...,zn) = ‖φ �→ t1φ(Φ(z1)) + · · · + tnφ(Φ(zn))‖U∗∗ (43)

for all n = 1,2, . . ., all (t1, . . . , tn) ∈ (R \ {0})n, and all distinct z1, . . . , zn ∈ Z. We can
rewrite (43) as

‖(t1, . . . , tn)‖B(z1,...,zn) = ‖φ �→ φ(t1Φ(z1) + · · · + tnΦ(zn))‖U∗∗ ;
since B is the Banach kernel of Φ , this is equivalent to

‖t1Φ(z1) + · · · + tnΦ(zn)‖U = ‖φ �→ φ(t1Φ(z1) + · · · + tnΦ(zn))‖U∗∗ .

The last equality follows from the fact that the canonical embedding of U into U ∗∗ is an
isometry (Rudin 1991, Sect. 4.5). �

Remark A Banach kernel B on a set Z can be visualized as a family b(z1, . . . , zn) ⊆ R
n, n

ranging over {1,2, . . .} and z1, . . . , zn over sequences of distinct elements of Z, of balanced
convex sets containing a neighborhood of zero. Such a family can be obtained from B by
replacing each seminorm ‖ · ‖B(z1,...,zn) with the unit ball in that seminorm; it is well known
that the seminorm and the corresponding unit ball carry the same information (see, e.g.,
Rudin 1991, Theorems 1.34 and 1.35). Of course, the sets b(z1, . . . , zn) should satisfy the
two conditions of consistency analogous to those in the definition of a Banach kernel; e.g.,
the second condition becomes: for all n = 1,2, . . ., all k = 1, . . . , n, and all (z1, . . . , zn) ∈ Zn

whose elements are all different, the set b(z1, . . . , zk) is the intersection of b(z1, . . . , zn) and
the subspace zk+1 = · · · = zn = 0.

Now we can state more explicitly the prediction algorithm described above and guaran-
teeing (4). Let B be the Banach kernel of the benchmark class F in (4). Following (30) (with
Φ defined by (36)), define

fn(y,μ) :=
(

1

Y 2

(
n−1∑

i=1

(yi − μi)μi + (y − μ)μ

)2

+ ‖(y1 − μ1, . . . , yn−1 − μn−1, y − μ)‖2
B(x1,...,xn−1,xn)

)1/2

−
(

1

Y 2

(
n−1∑

i=1

(yi − μi)μi

)2

+ ‖(y1 − μ1, . . . , yn−1 − μn−1)‖2
B(x1,...,xn−1)

)1/2

. (44)
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This allows us to give the kernel representation of BBK29 with Φ defined by (36); its para-
meter is a Banach kernel on the object space X.

ALGORITHM GUARANTEEING (4)
Parameter: Banach kernel B of F

FOR n = 1,2, . . .:
Read xn ∈ X.
Define fn : [−Y,Y ]2 → R by (44).
Output any root μ ∈ [−Y,Y ] of fn(−Y,μ) = fn(Y,μ) as μn;

if there are no such roots, output μn ∈ {−Y,Y }
such that supy∈[−Y,Y ] fn(y,μn) ≤ 0.

Read yn ∈ [−Y,Y ].
END FOR.

This, of course, assumes that the function

(n ∈ {1,2, . . .}, (t1, . . . , tn) ∈ R
n, (x1, . . . , xn) ∈ Xn)

�→ ‖(t1, . . . , tn)‖B(x1,...,xn)

is efficiently computable. Perhaps the easiest way to implement the step “Output any
root. . . ” of the algorithm is to use the bisection method (see, e.g., Press et al. 1992, Sect. 9.1).
To see how it can be applied, set

g(μ) := fn(Y,μ) − fn(−Y,μ)

and remember the argument for the validity of the BBK29 algorithm given after the algo-
rithm’s description. If g(μ) is positive for μ = −Y and negative for μ = Y , we can use the
bisection method to find a root of g(μ) = 0, as required. If this condition is not satisfied, we
have one (or both) of the following cases:

– fn(Y,−Y ) ≤ fn(−Y,−Y ) = 0, which implies supy∈[−Y,Y ] fn(y,−Y ) ≤ 0 (by the convex-
ity of fn(y,μ) in y) and enables us to set μn := −Y ;

– fn(−Y,Y ) ≤ fn(Y,Y ) = 0, which implies supy∈[−Y,Y ] fn(y,Y ) ≤ 0 and enables us to set
μn := Y .
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