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Abstract This paper explores the incorporation of prior knowledge in support vector re-
gresion by the addition of constraints. Equality and inequality constraints are studied with
the corresponding types of prior knowledge that can be considered for the method. These
include particular points with known values, prior knowledge on any derivative of the func-
tion either provided by a prior model or available only at some specific points and bounds on
the function or any derivative in a given domain. Moreover, a new method for the simulta-
neous approximation of multiple outputs linked by some prior knowledge is proposed. This
method also allows consideration of different types of prior knowledge on single outputs
while training on multiple outputs. Synthetic examples show that incorporating a wide va-
riety of prior knowledge becomes easy, as it leads to linear programs, and helps to improve
the approximation in difficult cases. The benefits of the method are finally shown on a real-
life application, the estimation of in-cylinder residual gas fraction in spark ignition engines,
which is representative of numerous situations met in engineering.

Keywords Support Vector Regression - Kernel approximation - Prior knowledge -
Multi-outputs
1 Introduction

In non-linear function approximation, Support Vector Regression (SVR) has proved to be
able to give excellent performance in various applications (Miiller et al. 1997; Stitson et al.
1999; Mattera and Haykin 1999). Based on the statistical learning theory (Vapnik 1995),
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SVR originally leads to a quadratic programming (QP) problem (Cristianini and Shawe-
Taylor 2000; Smola and Scholkopf 2004). Other formulations of the SVR problem mini-
mizing the £;-norm of the parameters can be derived to yield linear programs (LP) (Weston
et al. 1999; Bennett 1999; Smola et al. 1999b; Mangasarian and Musicant 2002). Some ad-
vantages of this latter approach can be noticed compared to the QP formulation such as the
sparsity of support vectors (Weston et al. 1999; Bennett 1999; Smola et al. 1999b) or the
ability to use more general kernels (Mangasarian 2000).

Support Vector Regression aims at learning an unknown function based only on a train-
ing set of N input-output pairs (x;, y;) in a black box modeling approach. Nonetheless, in
real world applications, such as system identification, some information is usually known
beforehand. This prior knowledge can take many forms from the positiveness of a physical
variable to the shape of the function on a particular region. Incorporating this knowledge into
the learning scheme can improve the quality of the model in different ways. The function
can be approximated in regions of the input space where the data are sparse, specific proper-
ties of the function such as a maximum or a curvature at some point can be introduced in the
model, and so on. However, incorporating prior knowledge into support vector learning is
not trivial and is still a partially open issue. The methods developed for neural networks and
that use prior knowledge for the network initialization (Andrews and Geva 1999) or structure
selection (KBANN) (Towell and Shavlik 1994) cannot be directly transferred to SVMs since
these tasks are typically handled by support vector learning. The smoothness assumption is
also another simple form of prior knowledge implicitly included in support vector machines
(SVM) (Smola et al. 1998; Evgeniou et al. 2000). On the other hand, a certain amount of
work has been done in the past decade to build support vector machine classifiers or kernels,
whose outputs are invariant under a known transformation of the input (see Lauer and Bloch
2007 for a recent overview). However, such type of prior knowledge is rarely available in
the regression framework.

The present paper explores the addition of equality or inequality constraints of a general
form, linear in the parameters, to the LP-SVR problem and exposes the different types of
prior knowledge that can be included in the learning with this technique. Interesting issues
are considered such as: knowledge in a region of the input space without data, knowledge
on any derivative provided either by a prior model or only at particular points and prior
knowledge between multiple outputs.

The first part of the paper presents the related work and discusses the differences and ad-
vantages of the proposed method. The linear programming formulation of the SVR problem
is then recalled in Sect. 3 before exposing the proposed method. In particular, Sect. 4 is ded-
icated to the introduction of equality constraints to the optimization problem, while Sect. 5
considers prior knowledge in the form of inequalities. Practical examples on synthetic data
are given throughout the paper to show the interest and efficiency of the methods, while
Sect. 6 presents their application to real-life problems.

Notations: all vectors are column vectors written in boldface and lowercase letters
whereas matrices are boldface and uppercase, except for the ith column of a matrix A
that is denoted A;. The vectors 0 and 1 are vectors of appropriate dimensions with all
their components respectively equal to 0 and 1. For A € R¥*" and B € R¥*" containing
d-dimensional sample vectors, the “kernel” K (A, B) maps R¥*" x R?*" in R™" with
K(A,B);; = k(A;, B;), where k : R? x R? — R is the kernel function. In particular, if
x € R? is a column vector then K (x, B) is a row vector in R"**. The matrix X € RV*¢
contains all the training samples x;, i = 1,..., N, as rows. The vector y € RN gathers all
the target values y; for these samples. The kernel matrix K(X”, XT) will be written K for
short. Uppercase Z is a set containing |Z| vectors that constitute the rows of the matrix Z.
The function sinc is defined as sinc(x) = sin(wx) /(7w x), for all x # 0 and sinc(0) = 1.
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2 Related work

Classification A certain amount of work has been done in the past decade to build SVM
classifiers or kernels, whose outputs are invariant under a known transformation of the input.
Such invariances can be, for instance, incorporated by creating new samples to enlarge the
training set. This idea was first introduced in Poggio and Vetter (1992) as virtual samples.
It is based on a simple observation that the generalization ability of the obtained model de-
pends on the number of data at hand. The more relevant samples we have, the better we
learn. This method can be easily implemented in the context of pattern recognition. For in-
stance, in image recognition, invariance of the output to a translation or rotation of the input
image is often considered. In Scholkopf et al. (1996), the virtual sample approach was com-
bined with SVMs. The idea was to generate the virtual samples from support vectors only
since they contain all the information about the problem. The virtual sample method can
also directly be applied to regression, but, in this case, prior knowledge considering invari-
ance of the output is not easily available (except for a few special cases such as symmetric
or periodic functions). Nonetheless the idea of virtual samples can be modified to be used
for regression when prior knowledge on the function is given in terms of output values or
derivatives instead of invariance as in the proposed method of Sect. 4.1.

Another simple and straightforward way to incorporate prior knowledge is to weight the
samples. In practice, this amounts to weight the errors or to choose a different trade-off
parameter C for different samples in the criterion to minimize. Originally, for pattern recog-
nition, different misclassification costs C; were introduced in Joachims (2002) to deal with
unbalanced data, i.e. providing much more samples of a class compared to the other. An-
other approach for the weighting of SVM can be found in Wu and Srihari (2004) where a
confidence value is assigned to every sample based on some knowledge of the data acquisi-
tion or labeling procedure. The application to regression is straightforward. In Tay and Cao
(2002), the weighting of samples is applied to non-stationary time-series forecasting where
it was noticed that the distant past data were less significant than the recent past data. To
include this forgetting effect, the weights C; applied on the errors are given by an increasing
function of time.

Constrained regression The topic of linearly constrained least squares regression has a
long history and is involved in a variety of applications, both with equality constraints or
inequality constraints. Incorporating linear equality constraints is useful whenever one or
several coefficients must be expressed as a linear combination of the others. This is the case
for instance when the intercept is known to be zero, when the sum of the coefficients must
be equal to 1 or when the steady state gain is known in the dynamical system identification
framework (Soderstrom and Stoica 1988). Inequality constraints may arise from require-
ments such as positivity, monotonicity, and convexity (Lawson and Hanson 1995). Many
points presented here are close in spirit to these approaches, in the sense that prior knowl-
edge is also incorporated by the addition of constraints. However, even if the least squares
formulation can be extended to be applied to non-linear models by considering expansions
of basis functions (Johansen 1996), it does not handle non-quadratic error criteria nor select
the regressors or basis functions as done in the SVM framework.

Spline models In function modeling by fitting separate models in different regions of the
input space, the introduction of constraints to take into account continuity knowledge at the
boundary points, denoted knots, is the basic idea in spline models (Hastie et al. 2001). More-
over, in smoothing splines, this idea is extended for avoiding to select the knots by using a
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maximal set of knots and controlling the resulting function smoothness by regularization.
Thus some of the ideas presented here have strong links with spline models. In particu-
lar, Sect. 4.4.2 focuses on building multi-models for continuous function approximation.
However, it presents in a general way the nature of the submodels and extends the fitting
criterion to the £;-norm. Beside this, a certain amount of work has been done to incorporate
more prior knowledge in the form of linear inequalities into spline models, see for instance
(Villalobos and Wahba 1987) and (Micchelli and Utreras 1988).

Semiparametric modeling In Smola et al. (1999a), prior knowledge is incorporated by
moving from nonparametric to semiparametric modeling. In this scheme, the bias term of
the kernel expansion is replaced by a parametric model whose parameters are determined by
the optimization procedure. Semiparametric modeling can be included either in the quadratic
or linear programming form of SVR.

Knowledge in a region of input space In (Fung et al. 2002), the authors use a different
approach and introduce prior knowledge on polyhedral regions in the context of linear pro-
gramming SVM for linear classification. It was then extended to the non-linear case in (Fung
et al. 2003) via a reformulation of the kernel. In Mangasarian et al. (2004), it was finally
adapted for regression and later on developed to apply non-linear bounds on the model in
any non-linear region (Mangasarian and Wild 2007). An advantage of this method is that
the problem remains in a linear programming (LP) form. However, whenever the non-linear
regions are not given as explicit sets of a finite number of points, these regions have to be
discretized before including the prior knowledge in the learning as a finite set of inequali-
ties. Though also requiring the knowledge to be in the form of a discrete set of constraints,
the method proposed here is more simple and involves fewer variables in the optimization
program. The increase of complexity for Mangasarian’s method is justified in the case of
polyhedral regions, for which a finite set of constraints ensures that the prior knowledge is
satisfied for all points in these regions. But when discretization occurs, as often required
for non-linear regions, this is no longer true since adding constraints for the points of dis-
cretization only cannot guarantee that the non-linear bound on the function holds in the
whole non-linear region. Thus, in this case, it is sufficient to consider simpler constraints
as will be described in this paper. The method proposed here is also more general in the
sense that it allows for the inclusion of knowledge on the derivatives of the model. Though
Mangasarian’s method could be extended to include prior knowledge on derivatives of the
function, it has not been done so far.

Knowledge on the derivatives In Léazaro et al. (2005b), prior knowledge on the derivatives
has been incorporated in the QP formulation of the SVR problem by considering a training
set containing at every point the target values, not only for the function but also for the
derivative. The optimization problem is extended to include the minimization of the error
on the derivative and thus simultaneously approximate the function and its derivative. As a
result, the derivative of the kernel function is involved in the approximation function, which
may slow down the estimations in the test phase. However, another formulation (Lazaro et
al. 2005a) has been proposed to circumvent this drawback. Whereas these methods consider
knowledge on the derivatives at the training points only, the method proposed here allows
to impose derivative values for any point. This is of particular interest when incorporating
prior knowledge in regions not covered by the training data.
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Support vector regression with multiple output ~ The issue of multiple output regression has
been previously studied for SVR in Sdnchez-Fernandez et al. (2004). In this approach, the
multiple e-insensitive loss functions are replaced by a £,-norm based loss function, result-
ing in a single scalar error value taking into account the errors on all the outputs. Though
providing a mean for the regression of multiple outputs with dependencies, the method does
not allow for the inclusion of prior knowledge on these dependencies. Another approach,
proposed in Weston et al. (2003), allows to incorporate prior knowledge between multiple
outputs. In this approach, the loss function is considered as a distance in an output feature
space and thus computed by a kernel function defined over the output space. Prior informa-
tion on the outputs such as specific loss functions or invariances can be embedded in this
output kernel. Being a very general framework, applying to regression as well as classifi-
cation, this method also requires more complex steps. These include the decomposition of
the outputs @,,,(y;) in the output feature space by Kernel Principal Component Analysis
(KPCA), learning multiple mappings from the input to the resulting principal components
and, finally, solving the pre-image problem for every new test sample, i.e. finding the pre-
image y, of the output @,,(y,) estimated in feature space. In particular, the pre-image
problem is still a partially open issue. The method proposed in Sect. 4.4 allows for a sim-
ple formulation of the dependencies between multiple outputs and their inclusion as a finite
set of constraints that leaves the nature of the learning problem unchanged. In Maclin et
al. (2005), the method of Mangasarian et al. (2004) for knowledge-based kernel approxi-
mation is extended to provide advice to a reinforcement learner. In this setting, the value
of each output determines if a specific action must be taken. Prior knowledge may indicate
that under a set of conditions, one action is preferable to another. This amounts to consider
the inequality: fi(x) > f>(x) + B, for x satisfying a set of conditions, where the output f;
represents the preferred action to the one represented by f, and B accounts for how much
preferable it is. The general framework proposed in Sect. 5.2 includes this form of prior
knowledge as a particular case.

Conclusion All the related approaches, that allow the use of prior knowledge for SVR,
focus on particular types of prior knowledge. The strength of the proposed method thus lies
in its generality, but also in its simplicity as it amounts to the addition of linear constraints
to the problem. Incorporating prior knowledge by the addition of constraints has been ex-
tensively studied in other areas such as smoothing splines or least squares regression. The
present paper proposes to transfer these techniques to the LP-SVR framework and explores
all the consequences of this transfer, from the inclusion of basic forms of prior knowledge
to the handling of constrained multi-output regression.

3 Kernel approximation of functions

In kernel regression, the function of input x € R? is approximated by a kernel expansion

f)=) aik(x,x;)+b=K(x X a+b, 1)

i=1

where the «;, contained in the vector «, and b are the parameters of the model and k(., .)
is the kernel function. Typical kernel functions are the linear, Gaussian RBF, polynomial
and sigmoidal kernels. In all the numerical examples of this paper, a Gaussian RBF kernel
k(x,x;) =exp(—|x — x;||*/20?) is used, except when mentioned otherwise.
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3.1 Linear programming (LP)

In kernel regression via linear programming (LP), the £;-norm of the parameters a of the
kernel expansion is minimized together with the £,-norm of the errors by

N
min flefl +C 3 1f () = il )
’ i=1

where a hyperparameter C is introduced to tune the trade-off between the error minimization
and the flatness maximization. This problem can be implemented as the linear program
min 17a+C17¢
(a.b.&.a)
s.t. —&E<Ka+bl-y<& (3)

—a=0=a,

where & and a are vectors of N positive variables. Instead of the £;-norm of the errors, the
e-insensitive loss function defined as

|S|s==0 if |§] <e,

|€] — e otherwise,

“

can also be used. A possible formulation of the corresponding problem involves 4N + 1
variables (Smola et al. 1999b). In this paper, we will follow the approach of (Mangasarian
and Musicant 2002) that involves only 3N + 1 variables. In this scheme, the optimization
problem becomes in matrix form
min 17a+C17¢
(a.b.§.a)
s.t. —£<Ka+bl-y<§,

Q)]
0<1es <&,

—a<a=<a.

The parameter ¢ can be introduced as a variable in the cost function to be tuned automat-
ically by the algorithm

1 C
—1"a+ =1t -C
N a+N & ne

(a.IbI.lEi,Itll,S)

s.t. —&E<Ka+bl—y<E, 6)
0<le<§,
—a<a<a.

It can be shown (Mangasarian and Musicant 2002) that this formulation is equivalent to the
v-LPR given in Smola et al. (1999b).

In the LP formulation, only symmetry of the kernel is required (Mangasarian and Mu-
sicant 2002). It is not necessary for the kernel to satisfy Mercer’s conditions (or positive
semidefiniteness) as in the original QP form of the SVR problem where a norm induced by
the kernel in the feature space is used over the weights. Here the norm of the parameters to
be minimized is simply the £;-norm in R¥.
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3.2 Linearity of the derivatives of a kernel expansion

Noticing that the kernel expansion (1) is linear in the parameters o« allows to write the
derivative of the model output with respect to the jth component x/ of x € R? as

=r1(x)Toz, (7)

af (x) _ Zai ok(x, x;)

ax/ ox/

where r(x) = [0k(x,x)/0x/ ... dk(x,x;)/dx/ ... dk(x,xy)/dx/]T. The derivative (7)
is also linear in «. In fact, the form of the kernel expansion implies that all the derivatives
are linear in « such as, for instance, the Laplacian

d

2
Vi =3 2L ®)

axJ?

j=1

This derivative of the second order is a measure of the roughness of the function on which
prior knowledge might be considered. The linearity in & allows to write any scalar derivative
£® of order k as

fP@ =rix) )

where r(x) contains the coefficients for the kth order derivative that only depend on the
kernel and the training set. r;(x) and r,(x) are given for a RBF kernel in Appendix.

Setting up r(x) accordingly, 7(x)T & can be any component or linear combination of
components of any derivative of f. This general remark allows the incorporation of con-
straints on any derivative of a kernel expansion f into a linear program such as (5).

4 Adding equality constraints

In this section, prior knowledge on the function is considered via ngc sets of equality con-
straints of the type

gr(x) =hi(x), VxeZ, (10)

where the set Z; = {x1,...,Xp,...,X|z,} contains the points of interest for the kth set
of constraints. The points of Z; can be chosen in the training set but are not restricted to
these data. As will be seen in the following, the equalities (10) can be, for many interesting
prior knowledge forms, reformulated as equality constraints that are linear in the parameters
0 = [« b]” and of the general form

' (Z1)0 = B(Zy). (11)
The matrix I';(Z;) is built from rows p, (x)7 as

)’k(xl)T
ryzoy=| rexp)" |, (12)

Yexiz)"
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where each row corresponds to a point of interest in Z;. The constraints (11) can easily
be introduced into (5) that becomes the following linear programming SVR with equality
constraints (LPSVR-EC)

min 17a+C17¢

(@,b.§,a)

S.t. —&<Ka+bl-y<§,
0<le<§, (13)
—a<a<a,

I"k(Zk)0=ﬂk(Zk), k=1,...,l’lsc.
The optimization problem to solve involves 3N + 1 variables, > ;% | Z;| equality constraints
and 5N inequality constraints.

Though adding equality constraints does not change the linear programming nature of the
optimization problem, this can lead to an infeasible problem. To deal with the case where
all the constraints cannot be satisfied simultaneously, the equalities can also be enforced by
soft constraints. Introducing a set of ngc vectors z; = [z’l‘ . z’[‘, ... zf‘zk‘]T of positive slack
variables and a set of trade-off parameters A, leads to the linear programming SVR with soft
equality constraints (LPSVR-SEC)

nsc
min 1"a+C17&+ a1z
(a,b,&,a,z;) E k2=1: k k
s.t. —é<Ka+bl—y<§,
14
0<1s<§, (14)

—a<a=a,

—2k < T (Z)0 — B (Zy) <z, k=1,...,n5c,

that involves 3N + 1 + > ;%9 | Z,| variables and 5N + 2> ;%G | Z;| inequality constraints.
This problem formulation also offers the possibility to weight the effect of the prior knowl-
edge on the solution. Large values of A, increase the fit to the prior knowledge, whereas
small values imply a fit closer to the data.

The problem (14) includes the minimization of the ¢;-norm of the errors for the soft
equality constraints. Using the e-insensitive loss function on these errors (with a different &
than the one used for the training set) is also possible and straightforward. It can be used to
include almost exact knowledge in an interval by authorizing violations of the equality con-
straints that are less than ¢,,;,,. However, this type of prior knowledge can be equivalently
considered with inequality constraints as studied in Sect. 5.

The following presents typical applications of constrained optimization for the introduc-
tion of prior knowledge with the corresponding settings of I'y(Z;) and B,(Z;) for (11).
Synthetic examples are provided in Sects. 4 and 5. Since the purpose of these examples is
mainly to show the application of the method on simple and easy to visualize problems, the
hyperparameters are chosen arbitrarily without fine tuning. The mean square error (MSE) is
computed with respect to the true function being approximated and on the same set of points
in the x variable than the one used for training.

4.1 Prior knowledge on particular points

Prior knowledge on the function to approximate can sometimes take the form of |Zy| par-
ticular points (x,,y,) € Zo for which the values are certain (intercept, maximal values,
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equilibrium points. . .). For these points, we would like the model to give an exact value and
not just an approximation based on noisy data or a dataset that lacks samples around these
points. One way to tackle this problem is to apply, for these points, hard constraints of the

type

fx) =K, XDa+b=y,, (15)
while soft constraints are applied to the training set. Defining the matrix Zo =[x ... x ...
x)7)1” and the vector y ={[y; ... y, ... yjz,17, the following setting

Io(Zo) =[K(Z;,X") 1], Bo(Zo) =y (16)

is used for the problems (13) or (14) to incorporate the prior knowledge.

The points (x,, y,) can also be considered as virtual samples with high (or infinite)
confidence and thus can be added to the training set as potential SVs. In this case, the linear
program with hard constraints on the virtual samples can be formulated as

min 17a+ C17¢
(ee,b.&,a)
s.t. —E<KX",[X" Z{Da+b1-y <§,

0<1le<§, (7
—a<uoa<a,

KZ! (X" Z ) + b1 = y©,
The corresponding output function is given by
fx)=Kx,[X" Ziha +b, (18)

where the vector a contains N + |Z,| parameters, a certain amount of which will be zero
due to the sparsity of LP-SVR.

Example: adding information about one point In this example, 61 training points are gen-
erated in the interval —3 < x < 3 for the approximation of sinc(x). A Gaussian noise of
standard deviation 0.2 and mean O is added to the training data. To show the efficiency of
the method, one virtual sample (0, 1) is added to the training set. Since this point is known
for certain, it is assigned to a hard constraint implemented by equality as in (17). Figure 1
shows the improvement over a simple LP-SVR trained on the training set with the virtual
sample considered as a standard sample.

4.2 Prior knowledge on the derivatives

Typically, knowledge on the derivatives may include the general shape of the function, local
maxima or minima, saddle-points, high peaks. .. This type of knowledge is often available
but, to our knowledge, there is no general method for its incorporation into SVR.

Consider that prior knowledge on the kth order derivative f® of the function f is avail-
able as

fP@)=y0, vx,ez. (19)
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1.2
+ virtual sample (0,1)
1k — = sinc(x)
approximation with
a hard constraint on
the virtual sample
0.8
0.6
04
+
02 + +
+ L .
-7 approximation with
L7 a soft constraint on
0 the virtual sample s
+
+
-0.2] +
++ +
+ - + ¢
-0.4 I T L L ! J
-3 -2 -1 0 1 2 3

Fig. 1 Approximation of the sinc function with an added virtual sample (0, 1). The values for the different
parameters are: C = 10, 0 = 0.5, ¢ = 0.1. Applying a hard constraint on the virtual sample (known for
certain) improves the accuracy around this point

This prior knowledge can be enforced in the training by using (9) and setting

re(x)” 0 Y1(k)
[zo=| )’ 0. Bzo=| 0 |, (20)
ri(xz)" 0 Yo

in one of the problems (13) or (14). This method allows to incorporate prior knowledge on
any derivative of order k for any set of points possibly different for each k, while keeping
the model in the form of (1). In comparison, the methods described in (Lazaro et al. 2005a,
2005b) require the prior derivative values on all the training points and these points only.

Example: knowledge on the derivatives at particular points Here, we show the improve-
ment in the quality of the approximation when only partial information about the shape
is known at particular points via a mixture of derivatives (first and second order). Con-
sider the problem of approximating the sinc function from noise-free data but without data
around zero, that is for x in the interval —1 < x < +1. In this setting, the central peak
of the sinc function cannot be approximated without prior knowledge. To show the effec-
tiveness of the method, we consider only sparse and grossly approximate prior knowledge:
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\ <+— sinc(x)
08r
061
with prior
04 knowledge

0.2

approximation
without prior knowledge

I [
‘ [
-0.2F+ | |
> |
i zone without data |
0.4 | ! | | | J
-3 -2 -1 0 1 2 3

Fig. 2 Approximation of the sinc function without data for x in the interval —1 < x < +1 and with prior
knowledge on the derivatives at 2 particular points (y(1(0) =0, y(D(=0.5) = 1, y®(0) = —2). The values
for the different parameters are: A = 50, C =10, 0 = 0.5, ¢ = 0.001. Knowledge on very few points helps to
recover the shape of the overall function

y(0) =0, yV(=0.5) =1, y?@(0) = —2. This corresponds to a function with a maximum
at x = 0, increasing around x = —0.5 and with a peak around x = 0. Figure 2 shows that
incorporating this simple prior knowledge in (14) by (20) allows to recover the shape of the
sinc function. Moreover, it must be noticed that the function is approximated without any
training samples around O and thus without support vectors around 0. However, the number
of SVs increases from 8§ to 12.

4.3 Prior knowledge from a prior model

In some applications, one may wish to retain certain properties of a previous model such as
the shape or the roughness at some specific points x, in Z;. This problem corresponds to
the learning of a new model while constraining certain of its derivatives to equal those of
the prior model at these particular points.

Assume now that the prior model is a kernel expansion on N”" samples, then 7" (x) =
Zi[\:{ a{’ri"rk(x,x[) + bPrior Using the remark of Sect. 3.2, its derivatives can also be
expressed in a linear form (9) with respect to the parameters o' as [/ ® (x,) =
r (x,)Ta” " Thus, in order to retain the kth order derivative from a prior model in kernel
expansion form, the new model is trained by solving (13) or (14) with the corresponding
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setting for (11) that is

rk(xl)T 0 r[l{”(xl)Taprior
T(Zy)=| ritx)" 0], Bi(Z)=| r{ (x,)Tari |. 21
ri(xiz)" 0 i (xjz,) e

Notice that r;(x,) depends only on the kernel and the training set, with one component
for each training sample. Thus, if the training set X of the new model includes the N”"
points on which the prior model has been trained and if the same kernel is used for both
models, then N?" components of r;(x,) are equal to the components of r,’:r (xp). These
components can so be computed only once to speed up the process.

Example: knowledge on the derivative from a prior model helps recovering empty regions
This example shows the enhancement of the approximation when the general shape of the
function is known via a prior model and incorporated in the learning by the previously
described method. The shape is enforced by maximizing the similarity of the first order
derivatives of the approximation to the derivatives of the prior model.

Consider the problem of approximating the sinc function based on a set of training points
X without noise and a prior model approximating s (x) = sinc(x) + §. Only the shape of the
function s(x) is retained as prior knowledge, the added constant § is considered unknown.
The prior model is a standard LP-SVR, trained on 31 points of s(x) (with § = 1) in the
interval —3 < x < 3, yielding the parameters a”"**". On the other hand, the approximation f
is trained on 34 points on the intervals —3 < x < —1.4 and 1.4 < x < 3. Figure 3 shows the
output of the prior model, the true sinc function and two approximations: one that includes
the prior shape in the learning (14) by (21) and the other that does not (5). It is clear that
the incorporation of prior knowledge on the shape of the function improves considerably the
accuracy of the approximation with a small increase of the number of SVs from 8 to 12.

Example: knowledge on the derivative from a prior model helps against the noise The
next example shows how prior knowledge on the shape can reduce the effect of noise. Con-
sider the problem of approximating the sinc function from noisy data. A set of 31 training
samples is now generated with additive Gaussian noise of mean O and standard deviation
Onoises TOT X; in the interval —3 < x; < 3. Figure 4 shows the results for a large noise level
Onoise = 1 (considering the amplitude of sinc(x) ~ 1.2). It is clear that a standard LP-SVR
applied to these data cannot approximate correctly the function. But taking the prior shape
into account in the learning (14) by (21) filters the noise and yields a respectable approx-
imation of the sinc though the prior shape is only given by an approximative prior model
issued from a LPSVR training (5) on 31 points of the prior shape s(x) = sinc(x) + 8, with
6 = 1. The number of SVs increases slightly from 7 to 11. These results were obtained with
a “handpicked” trade-off parameter A = 5 without any tuning. This trade-off parameter ap-
pearing in the problems (13) and (14) is used to weight the effect of the prior knowledge on
the solution. Based on prior knowledge of the noise level, and so, of the relative relevance
of the data, the approximation can still be enhanced by increasing A. A large X increases the
fit to the prior shape as opposed to the fit to the data implied by a small X.

This problem is close to the setting of (Lazaro et al. 2005a, 2005b) as prior knowledge
on the derivatives is given at every training point. However, here, the derivatives values are
not directly available and are estimated by a prior model trained on another set of sam-
ples.
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Fig. 3 Approximation of the sinc function with prior knowledge on the shape from a prior model fPior.
The values for the different parameters are: A =10, C =13, 0 = 0.5, ¢ = 0.001

4.4 Prior knowledge between outputs

Simultaneous approximation of multiple functions is easily performed by neural networks
by simply considering a multidimensional output layer. On the other hand, SVMs are single-
output machines. The common approach for multi-output problems is thus to train as many
independent SVMs as needed, one for each function to approximate. However, in some
cases, these functions may be interdependent and the inclusion of these dependencies in the
learning cannot be directly handled.

This section presents a multi-output SVR approach to approximate multiple functions of
the same inputs when some prior knowledge on the dependencies between these functions
is available. Section 4.4.1 will show how the proposed method can be mixed with the results
on prior knowledge on the derivatives of Sect. 4.2 for the simultaneous approximation of a
function and its derivative.

The multi-output SVR implements m functions f; of the same inputs that are learned
from the training set (X, y,...,y;,...,¥,). The approximated output vector f(x) =
[fix) ... fi(x) ... fu(x)]" is given by

fO =Kx,X")A+bd", 22)

where the matrix A =[a; ... «; ... «,] and the vectorb=[b; ... b; ... b,,]" collect the
parameters.
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Fig. 4 Approximation of the sinc function with noisy data and prior knowledge on the shape from a prior
model fP"°" . The values for the different parameters are: A =35, C =10, 0 = 0.5, ¢ = 1, 0jpj5¢ = 1. The
prior shape filters the noise

It is assumed that some prior knowledge on a linear combination of the m outputs with
coefficients y; is available in the form

Z/’Ljf.f(x)=h(x)7 Vx € Z, (23)
j=1
for an arbitrary function A. Defining the parameter vector 6= [« b ... al b,]" and
setting
h(xy)
B(Z)=| h(xp) |, 24)
h(xz)

the matrix I' (Z) is built as in (12) from the rows y (x ,,)T in order to rewrite the prior knowl-
edge (23) in the general form I'(Z)f = B(Z). For a single point x , of the set Z, this leads
to

X0 = f1(x,) A o fu (X)) (25)
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Writing the output f; as

fitxp) =[K(x,. X") 1] [ﬂ , (26)
J
allows to rewrite (25) as

yp 8=tk e, X7 (i[5 ]+ 5] @

in which the parameter vector 6 can be introduced by
yx) 0=[K(,, X" 1wl ... w116, (28)

where I stands for the identity matrix of size N + 1. This formulation gives y (x,)” and
thus yields, for the whole set Z, the matrix

rz)=1KZ" X" 1wl ... pall. (29)

The training of a multi-output SVR can thus be performed by solving a problem similar
to (14) but with multiple outputs as follows

min 17a+) C;1"¢,+ 1"z

0.;.4,2) =1
S.t. —EffKaj+bj1—yf§§j, j=1,...,m,
' ) ' (30)
0518_,»§§j, j=1,...,m,
—a<a<a,
—2<T(2)0 - B(2) <z,
wherea=[al ... al1", @ =[al ... «l]", ['(Z) and B(Z) are set respectively as in (29)

and (24), and where the subscript j indicates the jth output. Different hyperparameters C;
and ¢; are assigned to each output f;. This problem involves m (3N + 1) + | Z| variables and
SNm + | Z| constraints.

The prior knowledge between multiple outputs is thus easily incorporated in a linear
program by adding equality constraints (then relaxed by slack variables) in a general form
similar to the one used for the other types of prior knowledge. All these types of prior
knowledge can so be mixed together. The example in the following section will show how
to learn two functions simultaneously while considering that one is the derivative of the
other. Then Sect. 4.4.2 will show how the multi-output SVR can be used for a simple multi-
models problem.

4.4.1 Approximating a function and its derivative by multi-output SVR with prior
knowledge

Consider the problem of approximating two functions knowing that one is the derivative of
the other with respect to a particular component x'. Then, using the results of both Sects. 4.2
and 4.4, this prior knowledge can be used to enhance the training. In this case, the prior
knowledge for a point x is written

af1(x)

ax!

— ) =ri®) e — K@x, X a, — b, =0. (€19}
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The points on which this prior knowledge is considered are the points of the training set
(Z = X). The corresponding setting is thus

rix)” 0 —K@x, X" -1

rz)= rl()-ci)T 0 —K(x;,X") -1], (32)
rl(x.N)T 0 —K(xy, X" -1
and
B(Z)=0, (33)
for the problem (30).

Example: position and speed of a synthetic mechanical system Let two output variables y;
and y, be the position and speed of a mechanical system with one input variable (the time).
The particular example studied here uses y;(x) = sin(x) and y,(x) = cos(x). The training
data is composed of 31 samples in the interval 0 < x < 3 with an additive centered Gaussian
noise of standard deviation 0.2. Figure 5 shows the resulting approximations on both func-
tions y; and y, with and without prior knowledge between these outputs considered. The
prior knowledge f|(x) = f>(x) is included in (30) by (32) and (33) with a trade-off parame-
ter set at A = 5. The other hyperparameters are set at the same values for both methods and
for both outputs: C; = C, = 10,0 =0.3,&; =&, =0.1. The MSE decreases dramatically
when adding the prior knowledge above: from 0.016 to 0.0007 for y;, and from 0.0106 to
0.0069 for y,. Moreover the general shapes of the functions are recovered without being
much affected by the noise.

4.4.2 Multi-models for continuous function approximation

The following assumes that the function to approximate is composed of different subfunc-
tions in different known regions of the input space. Though the method can be applied to
multidimensional inputs, only the one-dimensional case is presented here for the sake of
clarity. In this case, the prior knowledge leads to consider the approximation function f (x)
computed from a multitude of submodels f;(x) as

fikx), ifl <x <u,

frx), iflh<x<u,,

fo=1. (34)

fu(x), ifl, <x <u,.

Moreover, if the function to approximate is continuous, then a coupling between the sub-
models can be expressed as

[ = fin(x), forx=u;=1, (35)

where f; is the submodel for the input region /; < x < u;, trained only on this region (train-
ing set X ;).
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Fig. 5 Simultaneous approximation of two functions y; = sin(x) (top) and y, = cos(x) (bottom) with prior
knowledge between outputs: fl’ (x) = fa(x). The values for the different parameters are: C1 = Cp = 10,
0=03,61=6=0.1,1=5
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The simultaneous training of the submodels with continuity prior enforced by hard con-
straints is, in this case, expressed as

min_17a+ Y C;17¢,
j=1

(@.b.§;.a)
s.t. —Engja,—-l-b.jl—ngi;‘j, j=1,...,m, 36)
0<le;<§;,, j=1,....m,
—a<ac<a,
r(2)6=p2),
where K; = K(X], X]),
Kui, X)) 1 —K@u;,X;) -1 0
rz) = 0 0 K@y,X;) 1 —K@uyX;) -1 0 ... (37
and
B(Z)=0. (38)

Depending on the partitioning of the training set, the parameter vectors &; may be of
different sizes. Thus, the formulation of the output (22) is not valid anymore. In this case,
the outputs are computed separately by

fi) =K, X)etj+b;. (39)

Example: piecewise affine (PWA) function approximation In this example, the continu-
ous function to approximate is composed of three affine parts: y = 0.5x, for 0 < x < 3;
y=2x —4.5,for3<x <6; y=-2x 4 19.5, for 6 < x < 10. The training data contains
101 points with additive Gaussian noise of standard deviation 1 and mean 0. Figure 6 shows
the training data, the function, its approximation with a single SVR using RBF kernels and
an approximation using the previously described method (36) with linear kernels and the
settings (37) and (38). The test error decreases when considering a multitude of linear sub-
models (MSE = 0.078) instead of using a single RBF model (MSE = 0.117), whereas the
number of SVs is equivalent and equals 3 for both methods. This number is highly correlated
to the number of affine pieces in the global function. Comparing to independent linear mod-
els using only the prior knowledge on the piecewise affine form of the function, the overall
MSE is also reduced thanks to the prior knowledge on the continuity. Moreover, the conti-
nuity ensured by the proposed method cannot be obtained by independent linear models.

5 Adding inequality constraints

As seen in the previous section, equality constraints allow the inclusion of a large variety
of prior knowledge. However, some interesting types of knowledge cannot be written in
equalities and requires the use of inequalities such as, for instance, the monotonicity of the
function: fM(x) <0 or £ (x) > 0 for all x. This section proposes to include these types
of knowledge on the function by considering inequality constraints such as

8k(X) < hi(x), Vx€Z, (40)
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Fig. 6 Approximation of a piecewise affine function. The values for the different parameters of the
multi-output SVR are Cj =0.2, &= 1, Vj, and for the single SVR with RBF kernels: C=1,e=1,0 =2.
Continuity is enforced by the prior knowledge f(x) = f>(x) forx =3 and fo(x) = f3(x) forx =6

where the set Z; contains the |Z;| points of interest for the kth set of constraints. As for
equalities, these inequalities can be reformulated as inequality constraints that are linear in
the parameters @ = [ b]7, of the general form

' (Z)0 < Bi(Zi), (41)

that can be introduced into (5) without changing the linear programming nature of the op-
timization problem that becomes the following linear programming SVR with inequality
constraints (LPSVR-IC)

min 17a+C17¢
(e,b,,a)
s.t. —&<Ka+bl—y<E,
0<le<é, (42)
—a<a<a,
I (Z)0 < B (Z), k=1,...,n5c.
To deal with the case where all the constraints cannot be satisfied simultaneously, the

inequalities can also be enforced by soft constraints. Introducing a set of ngc vectors z; =
[z’l‘ . z’; ... zf‘zkl]T of positive slack variables and a set of trade-off parameters A leads to
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the linear program SVR with soft inequality constraints (LPSVR-SIC)

nsc
min _ 1"a+C1"6+) 31"z
(ot,b,8,a,2;>0) E k2=1: ’ ‘
st —E<Ka+bl—y<E§,
(43)
0<1e<§,
—a<ua=a,

Iy (Z)8 — Bi(Z) <zr, k=1,....nsc.
5.1 Prior on the function, the derivatives and from a prior model

All the forms of prior knowledge described in Sect. 4 can be considered with inequalities in-
stead of equalities by using (42) or (43) and setting I'; and B as depicted for the equalities.
This corresponds to the inclusion of bounds on the function or any derivative. For instance
the following prior knowledge on the derivative f® (x,) < yl(,k), for all x, in Z, can be
included in the learning by setting

rex)’ 0 y
Izy=| )™ 0|,  B2zZo=|»P |, (44)
re(xiz)" 0 Yo

for the linear program (42) or (43). A practical use of inequalities occurs for instance when
the function to estimate corresponds to a physical variable known to be positive. In this
absurd approximations that yield negative values can be avoided by forcing bounds on the
function as prior knowledge in the learning process.

Example: lower bound on the function This example is taken from (Mangasarian et al.
2004) and shows the benefit of including a lower bound on the function in a corrupted
region of input space. The data to be modeled are generated by the sinc function with an
additional Gaussian noise of mean 0 and standard deviation 0.5 for 32 points in the intervals
—3<x <-—1.43and 1.43 < x < 3. Three points at x = 0 with output values y = —1, 0 and
+1 are added to the training set in order to mislead the approximation. Three models are
trained on these data: the standard LP-SVR without prior knowledge (5), the Knowledge-
Based Kernel Approximation (KBKA) (Mangasarian et al. 2004) and the proposed LP-SVR
with prior knowledge (43). The knowledge originally used for KBKA is f(x) > sinc(0.25)
in the interval —0.25 < x < 0.25. In order to include this information in our method, three
points x = —0.25, 0 and 0.25 are considered with the output value y = sinc(0.25). The
settings for constraints (41) are thus given by (16) with Zy = [—0.25 0 0.25]" and y° =
[sinc(0.25) sinc(0.25) sinc(0.25)]7. The hyperparameters of the KBKA are chosen as in
Mangasarian et al. (2004): C =13, o0 = 0.7071, u; =5, pu, = 450. The other models use
the same values for C and o. A is arbitrarily set to 10. The resulting approximations for
the three models appear in Fig. 7. This example shows that even in the case of knowledge
defined over polyhedral sets, our method, though requiring discretization of these sets, can
yield comparable results to the ones obtained by Mangasarian’s method. The MSE computed
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Fig. 7 Approximation of the sinc function (dashed line) with additional wrong data at x = 0. The mode
without knowledge (dash-dotted line) cannot recover the true shape around x = 0. Prior knowledge stating
that f(x) > sinc(0.25) in the interval —0.25 < x < 0.25 is included either by the method of (Mangasarian
et al. 2004) (dotted line) or by the proposed method (solid line). The values for the different parameters are:
A=10,C=13,0=0.7071, e = 0.01

on 101 equally spaced points in the interval [—3, 3] is respectively 0.176, 0.104 and 0.032
for the LP-SVR without knowledge, the KBKA and the proposed method.

Example: knowledge on the derivatives at particular points by inequalities Taking the
example of Sect. 4.2 and using the same prior knowledge, inequality constraints might help
to approximate the infinite second order derivative at x = 0. In the setting of Sect. 4.2, an
equality constraint enforces f® (0) = —2, which penalizes notably the values less than —2.
At the contrary, the constraint f®(0) < —2 is less restrictive and can let the derivative go
to minus infinite. Figure 8 shows the approximations provided by (13) and (43) respectively
using equality and inequality constraints. The two methods gave very comparable results.
Actually, the inequality constraints bounding the magnitude of the derivatives from below
are active and thus become equalities. This is explained by the use of the RBF kernel and
the minimization of the parameters «; that lead to a smooth function. Thus the algorithm
looks for the smoothest function that satisfies the constraints, i.e. the function with minimum
derivatives in magnitude, which corresponds in this case to the equality constraints y (0) =
0, y(—~0.5) =1 and f@(0) = —2.
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Fig. 8 Approximation of the sinc function without data for x in the interval —1 < x < +1 and with prior
knowledge on the derivatives at 2 particular points (y(l)(O) <0.1, y(l)(—O.S) >1, y(z) (0) < —2) incorpo-
rated via inequality constraints (solid line) and equalities (dash line). The values for the different parameters
are: . =50, C =10,0 =0.5, ¢ =0.001

5.2 Prior knowledge between outputs

The multi-output SVR of Sect. 4.4 can also consider prior knowledge on a linear combina-
tion of the m outputs as inequalities

Zﬂjfj(x)fh(x), Vx € Z, (45)

j=1

for an arbitrary function 4. In this case, the training of a multi-output SVR is performed by
solving, as in (30), the following problem

i 17a c1Te. +217
@b5) dz=0) a+§ TR

s.t. —EJ-SKa_,»—l—bjl—ij‘g'j, j=1,...,m,

) (46)
0518,»5&1-, j=1,...,m,
—a<ac<a,

r2z2)0-p(z)<z,
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with the same setup (29) and (24) as for equalities. Of course, hard constraints can also be
considered here, leading to

min 17a + c17¢,
@b.£;.a) ; 18
s.t. —§; <Kaj+bjl—y; <&, j=1,....m,
. 47)
0<le;<§;,, j=1....m,
—a<ac<a,
I'(2)8 <B(2).

The prior knowledge as inequalities between multiple outputs is thus easily incorporated
in a linear program by adding inequalities in a general form similar to the one used for the
other types of prior knowledge.

Example: ordered functions Consider the problem of simultaneously approximating two
scalar functions while knowing that one is greater than the other. In this case, the prior
knowledge fi(x) < f>(x) may help to enhance the quality of the model. In this example,
the functions y; = sin(x) and y, = sin(x) 4+ 0.1 are approximated based on noisy data.
A Gaussian noise of mean zero and standard deviation 0.2 has been added to both functions
for 71 samples in the interval 0 < x < 7. Two outliers are added to the training set of y;:
(3.7,0) and (3.8, 0), as shown on Fig. 9. On this problem, training two independent models
by (11), with the parameters set to C = 10, e = 0.1 and o = 0.5, yields approximations that
are significantly in violation of the prior knowledge. At the contrary, using the proposed
method with hard constraints (47) allows to obtain better approximations that respect the
constraints, as shown on Fig. 9. Moreover, the effect of the outliers on y; is reduced thanks
to the relation imposed between f; and f, and the fact that the training data for y, do not
contain outliers. The MSE for y; is reduced from 0.0102 to 0.0034, and for y, from 0.0072
to 0.0035.

6 Numerical examples

This section provides three examples of practical use for the proposed method. The two first
examples deal with the identification of simulated nonlinear dynamical systems. The last
example shows the benefit of the method on a real-life application, namely, the estimation
of in-cylinder residual gas fraction in spark ignition engines.

6.1 Nonlinear dynamical system with known equilibrium points

Consider the discrete-time nonlinear dynamical system taken from Narendra and Parthasa-
rathy (1990) and described by

y(K)y(k = D[y(k) +2.5]
L+ y2(k) +y*(k = 1)

yk+1)= u(k), (48)

where y(k) and u(k) are respectively the output and the input of the system at step k. The
aim of this example is to find a Nonlinear AutoRegressive model with eXogenous input
(NARX) y(k + 1) = f(y(k), y(k — 1), u(k)) that minimizes the mean square error MSE =
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Fig. 9 Approximation of two sine functions y; = sin(x) and y, = sin(x) + 0.1 with the corresponding train-
ing sets. The approximation uses the prior knowledge f1(x) < f»(x). The values for the different parameters
are: C1=Cr=1,0=05,el =6, =0.1

Z,iv;l (y(k) — $(k))* over a trajectory of N, test points, for which the NARX model is used
as a simulation model y(k + 1) = f(9(k), y(k — 1), u(k)). In Narendra and Parthasarathy
(1990), the two equilibrium points in state space (y(k) =0, y(k — 1) =0) and (y(k) =
2, y(k — 1) = 2) of the unforced system (for u (k) = 0) are considered to be known. These
points are the solutions in y of the equation (48), with y(k + 1) = y(k) = y(k — 1) = y and
for u(k) =0.

A trajectory is generated from the initial condition (y(1) = 1, y(0) = 1) by 100 iterations
of the system (48) with additional Gaussian noise of mean 0 and standard deviation 0.1 for a
uniformly distributed random input sequence in the interval [—2, 2]. This trajectory is used
to build the training set as x; = [y(i) y(i — 1) u(i)]” and y; = y(i + 1), fori =1, ..., 100.
Two models are trained on these data: a standard LP-SVR without prior knowledge (5) and
a LP-SVR with hard constraints (13) on the equilibrium points such that £([0 0 0]7) =0
and f([2 2 0]7) = 0. For both algorithms RBF kernels are used and the hyperparameters
are arbitrarily chosen to be C =10, 0 = 1 and ¢ = 0.01. The MSE is evaluated on the test
set built from a different trajectory of 100 points generated by (48) from the initial condi-
tion (y(1) = 0.5, y(0) = 0.5) and a sinusoidal input u (k) = sin(2wk/25). Table 1 shows the
average and standard deviation of the test MSE computed over 100 runs. A gain in perfor-
mance is observed when prior knowledge on equilibrium points is used as the average MSE
decreases by 20.4%.
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Table 1 Average and standard deviation of the test MSE over 100 runs for the modeling of the nonlinear
dynamical system (48). The average MSE decreases when using prior knowledge on the equilibrium points
of the system

Model Error
with prior knowledge 0.354 +0.356
without prior knowledge 0.445 +0.457

Table 2 Average and standard deviation of the test MSE over 100 runs for the modeling of the nonlinear
dynamical system (49). The average MSE decreases when forcing the partial derivative of the model with
respect to the input to be even

Model Error
with prior knowledge 1.158 £0.755
without prior knowledge 1.560 £ 0.667

6.2 Nonlinear dynamical system with prior knowledge on the input function

Consider the discrete-time nonlinear dynamical system also taken from Narendra and
Parthasarathy (1990) and described by

y(k)

3
m +u (k), (49)

yk+1)=
where y(k) and u (k) are respectively the output and the input of the system at step k. In this
example, the predictions are based on two variables only as y(k + 1) = f(y(k), u(k)). The
prior knowledge extracted from the expression of the system is that the partial derivative of
f with respect to the input must be an even function.

As in the previous example, the training set is built from a trajectory that is generated
from the initial condition (y(1) = 0) by 100 iterations of the system (49) with additional
Gaussian noise of mean 0 and standard deviation 0.1 for a uniformly distributed random in-
put sequence in the interval [—2, 2]. Two models with RBF kernels are trained on these data:
a standard LP-SVR without prior knowledge (5) and a LP-SVR (14) with prior knowledge
on derivatives such that 3f (y(k), u(k))/0u = of (y(k), —u(k))/du. To include this informa-
tion, the partial derivative of f is computed by (55) at every point (y(k), u(k)) of the train-
ing set to build the matrix R = [r1(y(1),u(1)) ... ri(y(k), u(k)) ... ri(y(N),u(N)]"
and also at all N points (y(k), —u(k)) to build a similar matrix R. The prior knowledge
Ro = Ra is then included in the learning (14) by setting, as in (20), I' = [(R — R) 0]
and B = 0. The hyperparameters are arbitrarily chosen to be C = 10, 0 =1 and ¢ = 0.01.
The prior knowledge parameter A is set to 1. The MSE is evaluated on the test set built
from a different trajectory generated from the initial condition (y(0) = 0) and the input
u(k) =sin(2mwk/25)+sin(2wk/10), as in Narendra and Parthasarathy (1990). Table 2 shows
the average and standard deviation of the test MSE computed over 100 runs. A gain in perfor-
mance is observed when prior knowledge is used as the average MSE decreases by 25.7%.

6.3 Estimation of in-cylinder residual gas fraction

The application deals with the estimation of residual gases in the cylinders of Spark Ignition
(SI) engines with Variable Camshaft Timing (VCT). More precisely, we are interested in
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estimating the residual gas mass fraction as studied in Bloch et al. (2007). Knowing this
fraction allows to control torque as well as pollutant emissions. The residual gas mass frac-
tion x,.s can be expressed as a function of the engine speed N,, the ratio p,.u,/ Pexn, Where
DPman @and p,, are respectively the (intake) manifold pressure and the exhaust pressure, and
an overlapping factor OF, which is an image of the time during which the valves are opened
together.

The available data are provided, on one hand, from the modeling and simulation envi-
ronment Amesin (Imagine 2006), which uses a high frequency zero-dimensional thermody-
namic model and, on the other hand, from off line measurements, which are accurate, but
complex and costly to obtain, by direct in-cylinder sampling (Giansetti et al. 2007). The
problem is thus as follows. How to obtain a simple, embeddable, black box model with a
good accuracy and a large validity range for the real engine, from precise real measure-
ments as less numerous as possible and a representative, but possibly biased, prior simula-
tion model? The problem thus posed, although particular, is very representative of numerous
situations met in engine control, and more generally in engineering, where complex mod-
els, more or less accurate, exist and where the experimental data which can be used for
calibration are difficult or expensive to obtain.

Three datasets are built from the available data composed of 26 experimental samples
plus 26 simulation samples:

— the training set (X, y) composed of a limited amount of real data (N samples),

— the test set composed of independent real data (26 — N samples),

— the simulation set (Z, y,) composed of data provided by the simulator (N*" = 26 sam-
ples).

The test samples are assumed to be unknown during the training and are retained for testing
only. It must be noted that the inputs of the simulation data do not exactly coincide with the
inputs of the experimental data.

The simulator being biased but approximating rather well the overall shape of the func-
tion, the prior knowledge will be incorporated on the derivatives. In order to be able to
evaluate the prior derivatives a prior model, fP" (x) =Y "N p; o "k (e, x7) + BPTOT s
first trained on the simulation data only. This prior model is then used to provide the values
vy, =11 (x,) @’ of the derivative with respect to the input pan/ pexn, at the points x,,
of the simulation set. The proposed model is then trained by a variant of algorithm (14) with
derivative constraints (21), where the points x, are added as potential SVs. Defining the
matrix R(Z",[X" Z"]) =[ri(x1) ... ri(xp) ... ri(xyer)]", where ri(x) corresponds
to the derivative of f(x) = K(x, [XT ZT])a + b with respect to the input pan/Pexi, this
algorithm reads

B et U s
s.t. —E<KX",[XTZ")a+b1—y <&,
0<1e<§, (50)
—a<a<a,
—2<RZ".[X" Z")a -y, <z
The hyperparameters have also been changed to C/N and A/N*" to maintain the same or-

der of magnitude between the regularization, error and prior knowledge terms in the cost
function. This allows to ease the choice of their value based on the application goals and
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Table 3 Errors on the residual gas mass fraction for a training set sizes N = 6 and N = 3. ‘-’ appears when
the result is irrelevant (model mostly constant)

N Model RMSE total RMSE test MAE total
6 1 (experimental model) 6.00 6.84 15.83

2 (prior model) 4.93 4.86 9.74

3 (mixed model) 4.88 4.85 9.75

4 (proposed-model) 215 2.44 5.94
3 1 (experimental model) - - -

2 (prior model) 4.93 4.93 9.74

3 (mixed model) 4.86 4.89 9.75

4 (proposed model) 2.79 2.97 5.78

confidence on the prior knowledge. Hence, the hyperparameters become problem-size inde-
pendent. The inclusion of the points of Z as potential SVs supports the model in the regions
of input space not covered by the training data but where prior knowledge is given.

As the points of interest x, are different of the inputs x found in the training set, the
methods of Lazaro et al. (2005a, 2005b) or cannot be used.

In this experiment, the proposed model is compared to an experimental model trained
by (5) on the training set only and a mixed model trained by (5) on the training set simply
extended with the simulation data. The training of this latter model is close in spirit to the
virtual sample approach, where additional data are added to the training set. These models
are evaluated on the basis of three indicators: the root mean square error (RMSE) on all
experimental data (RMSE total), the RMSE on the test set (RMSE test) and the maximum
absolute error on all experimental data (MAE total).

Before training, the variables are normalized with respect to their mean and standard
deviation. When both experimental and simulation data are available, the simulation data
are preferred since they are supposed to cover a wider region of the input space. Thus, the
mean and standard deviation are determined on the simulation data for all the models except
for the experimental model, in which case the training set must be used to determine the
normalization parameters. The different hyperparameters are set according to the following
heuristics. One goal of the application is to obtain a model that is accurate on both the
training and test samples (the training points are part of the performance index RMSE total).
Thus C is set to a large value (C = 100) in order to ensure a good approximation of the
training points. Accordingly, ¢ is set to 0.001 in order to approximate the real data well. The
trade-off parameter XA of the proposed method is set to 100, which gives as much weight to
both the training data and the prior knowledge. Since all standard deviations of the inputs
equal 1 after normalization, the RBF kernel width o is set to 1.

Two sets of experiments are performed for very low numbers of training samples N = 6
and N = 3. The results in Table 3 show that both the experimental and the mixed models
cannot yield a better approximation than the prior model with so few training data. More-
over, for N = 3, the experimental model yields a quasi-constant function due to the fact that
the model has not enough free parameters (only 3 plus a bias term) and thus cannot model
the data. In this case, the RMSE is irrelevant. On the contrary, the proposed model do not
suffer from this problem and yields good results from very few training samples. Moreover,
the performance decreases only slightly when reducing the training set size from 6 to 3.
Thus, the proposed method seems to be a promising alternative to obtain a simple black
box model with a good accuracy from a limited number of experimental data and a prior
simulation model.
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7 Conclusion

This paper reviewed the possibilities of incorporating prior knowledge in LPSVR learning
by the addition of constraints. Equality and inequality constraints were studied with the
corresponding applications illustrated by examples. Many types of prior knowledge can be
taken into account by the proposed method such as particular points with known values,
prior knowledge on any derivative either provided by a prior model or available only at
some points, bounds on the function or a derivative, etc. This extends and regroups the pre-
vious works of Mangasarian and Wild (2007) and Lézaro et al. (2005b), which considered
particular forms of prior knowledge. Moreover, a new method for the simultaneous approxi-
mation of multiple outputs linked by some prior knowledge has been proposed. This method
uses the general framework for the incorporation of prior knowledge by the addition of con-
straints and thus allows consideration of different types of prior knowledge on single outputs
while training on multiple outputs. The methods were applied to nonlinear system identifi-
cation problems and promising results were obtained on real-life data for the estimation of
in-cylinder residual gas fraction in spark ignition engines. On this application, the addition
of virtual samples with derivative values, not handled in Léazaro et al. (2005b), efficiently
improved the model.

Appendix: Derivatives of f with the RBF kernel

Considering the RBF kernel k(x, x;) = exp(—||x — x;||?/20?%), gives the following deriva-
tive of f with respect to x/, the jth component of x,

Fx 1< i
= —ZZaik(x,xi)(xl- —x7)
ox/ o=
! T T
= 5 (X = Iwx) Dy xry e =r1(x) e, (51)

where Dy, yr, = diag(K (x, XT)) and X ; represents the jth column of X.
Looking at the second order derivatives

N

azf(;c) 12 |:k(x x,)(x —xi)? —k(x,xi)]
dx/ o
:%i . x)<("1072’”)2 1), (52
gives
Vi = iéaiux,m(“l’j;# - 1), (53)

which becomes in matrix form
1< d
Vi) =~ Z (X = yx D)) Dy yry o] = — ke, X )ee
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d

1 . d

== XI:[((Xj —Iyx)) Dy xr)] — Fk(x, XD |a
iz

=rx) a, (54)

where (X ; — 1yx/ )2 is a vector with all components equals to the squares of the components
of (X; — 1yx/).

To summarize the results, the following parameters can be used to constrain the first order
derivative with respect to x/ and the Laplacian

1 .
1@’ = X, = ) Dy, (55)
T—ld X, —1yxH)H'D dk xT 56
ra(x) —;Z[« § = WD) Dy xr)] = e, X7, (56)
Jj=1
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