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Abstract The approach of learning multiple “related” tasks simultaneously has proven
quite successful in practice; however, theoretical justification for this success has remained
elusive. The starting point for previous work on multiple task learning has been that the tasks
to be learned jointly are somehow “algorithmically related”, in the sense that the results of
applying a specific learning algorithm to these tasks are assumed to be similar. We offer
an alternative approach, defining relatedness of tasks on the basis of similarity between the
example generating distributions that underlie these tasks.

We provide a formal framework for this notion of task relatedness, which captures a
sub-domain of the wide scope of issues in which one may apply a multiple task learning
approach. Our notion of task similarity is relevant to a variety of real life multitask learning
scenarios and allows the formal derivation of generalization bounds that are strictly stronger
than the previously known bounds for both the learning-to-learn and the multitask learning
scenarios. We give precise conditions under which our bounds guarantee generalization on
the basis of smaller sample sizes than the standard single-task approach.

Keywords Learning theory - Multi-task learning - Classification prediction - Inductive
transfer - VC-dimension - Generalization bounds - Task relatedness
1 Introduction

Most of the work in machine learning focuses on learning tasks that are encountered sepa-
rately, one task at a time. While great success has been achieved in this type of framework,
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it is clear that it neglects certain fundamental aspects of human and animal learning. Human
beings face each new learning task equipped with knowledge gained from previous sim-
ilar learning tasks. Furthermore, human learning frequently involves approaching several
learning tasks simultaneously; in particular, humans take advantage of the opportunity to
compare and contrast similar categories in learning to classify entities into those categories.

It is natural to attempt to apply these observations to machine learning—what kind
of advantage is there in setting a learner to work on several tasks sequentially or simul-
taneously? Intuitively, there should certainly be some advantage, especially if the tasks
are closely related in some way. And, indeed, much experimental work (Baxter 1995;
Intrator and Edelman 1996; Thrun 1996; Heskes 1998; Caruana 1997) has validated this
intuition. However, thus far, there has been relatively little progress on theoretical justifica-
tion for these results.

Relatedness of tasks is key to the multitask learning (MTL) approach. Obviously, one
cannot expect that information gathered through the learning of a set of tasks will be relevant
to the learning of another task that has nothing in common with the already learned tasks.

Previous work on MTL, or Learning to Learn, treated the notion of relatedness using a
“functional’ approach. For example, consider one of the more systematic theoretical analysis
of a simultaneous learning model to date, Baxter’s Learning To Learn work, e.g., (Baxter
2000). In Baxter’s work the similarity between jointly learned tasks is manifested solely
through a model selection criterion. Namely, the advantage of learning tasks together relies
on the assumption that the tasks share a common optimal inductive bias, reflected by a
common optimal (or near-optimal) hypothesis class.

We try to determine under what circumstances one can expect different tasks to be re-
lated in a ‘learning useful’ way. We focus on the sample generating distributions underlying
the learning tasks, and define task relatedness as an explicit relationship between these dis-
tributions. Our notion seems to capture a sub-domain of the realm of applications to which
multi-task learning may be relevant.

Not surprisingly, by limiting the discussion to problems that can be modeled by our data
generating mechanism we leave many potential MTL scenarios outside the scope of our
discussion. However, there are several interesting problems that can be treated within our
framework. For these problems we can reap the benefits of having a mathematical notion of
relatedness and prove sample size upper bounds for MTL learning that are better than any
previous proven bounds.

The rest of the paper is organized as follows: Sect. 2 formally introduces multiple task
learning and describes our notion of task relatedness. We state and prove our generaliza-
tion error bound for this framework in Sect. 3. In Sect. 6, we analyze the generalized VC-
dimension parameter on which this bound depends, and we compare this bound for multiple
task learning to the analogous bounds for the single task approach. That is, we examine
when can the error bounds for learning a given task improve by allowing the learner to
access samples generated by different but related tasks.

1.1 Previous work

The only theoretical analysis of multitask learning that we are aware of is the work of Baxter
(2000), and the recent work of Ben-David et al. (2002).

The main question that we are interested in is when does multitask learning provide an
advantage over the single task approach. In order to achieve this, we introduce a concrete
notion of what it means for tasks to be “related,” and evaluate multi- versus single-task
learning for tasks related in this manner. Our notion of relatedness between tasks is inspired
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by (Ben-David et al. 2002) which deals with the problem of integrating disparate databases.
We extend the main generalization error result from (Ben-David et al. 2002) to the multitask
learning setting, strengthen it, and analyze the extent to which it offers an improvement over
single task learning.

The main technical tool that we use is the generalized VC-dimension of Baxter (2000).
Baxter applies his version of VC-dimension to bound the average error of a set of predictors
over a class of tasks in terms of the average empirical error of these predictors. In contrast
with Baxter’s analysis, we view multitask learning as having one ‘focus of interest’ task that
one wishes to learn and view the extra related tasks as just an aid towards learning the main
task. In this context, bounds on the average error over all tasks are not good enough. We
show that when one is dealing with tasks that are related in the sense that we define, the
Baxter generalization bound can be strengthened to hold for the error of each single task.

We should point out the distinction between the problem considered herein and the co-
training approach of (Blum and Mitchell 1998). Co-training makes use of extra “tasks” to
compensate for having only a small amount of labeled data. However, in co-training, the
extra tasks are assumed to be different “views” of the same sample, whereas our extra tasks
are independent samples from different distributions. Thus, despite its relevance to multitask
learning, previous work on co-training cannot be directly applied to the problem at hand.

2 A data generation model for related tasks

Formally, the typical (single-task) classification learning problem is modeled as follows:
Given a domain & and a random sample S drawn from some unknown distribution P on
X x {0, 1}, find a hypothesis / : X — {0, 1} such that for randomly drawn (x, b), with high
probability /2 (x) = b. This problem is some times referred to as “statistical regression”.

The multiple task learning problem is the analogous problem for multiple distributions.
However, the focus is on the potential advantage to each learning task from the data available
for the other tasks. Given domain X’ and unknown distributions Py, ..., P, over X x {0, 1},
a learner is presented with a sequence of random samples So, ..., S, drawn from these P;’s
respectively, and has to come up with a hypothesis 4 : X — {0, 1} such that, for (x, b) drawn
randomly from Py, h(x) = b with high probability. What we focus on is the extent to which
the samples S;, for i # 0 be utilized to help find a good hypothesis for predicting the labels
of Po.

As we have mentioned previously, it is intuitive that the benefit of having access to sam-
ples from multiple tasks depends on the “relatedness” between the different tasks. While
there has been empirical success with sets of tasks related in various ways, thus far, no
formal definition of “relatedness” has yielded any theoretical results to that effect.

2.1 Our notion of relatedness between learning tasks

We define a data generation mechanism which serves to determine our notion of related
tasks.

The basic ingredient in our definition is a set F of transformations f : X — X. We say
that tasks are F-related if, for some fixed probability distribution over X’ x {0, 1}, the data
in each of these tasks is generated by applying some f € F to that distribution. The next
definition formalizes this notion.

Definition 1 For a measure space (X, .A), where X denotes a domain set, and A is a o -
algebra of its subsets, we discuss probability distributions, P over X x {0, 1}, for which the
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P-measurable sets are the o-algebra generated by the sets of the form A x B, for A € A and
B < {0,1}.

e For a function, f : X — X, let f[A] be {A € X : f~'(A) € A}, and let f[P] be the
probability distribution over X x {0, 1} defined by having the probability distribution
f[P] assigntoaset T € X x {0, 1}, the probability f[P](T) = P{(f(x),b) | (x,b) €
).

Let F be a set of transformations f : X — X, and let P;, P, be probability distributions
over X x {0, 1}.

e We say that Py, P, are F-related if there exists some f € F such that P, = f[P;] or
P, = f[P].
e We say that two samples are F-related if they are samples from F-related distributions.

In our learning scenario, we assume the data (both the training samples and the test ex-
amples) are generated by some probability distributions, { P; : i < n} that are (pairwise) F-
related. We assume that the learner knows the set of indices of the distributions, {1, ..., n}
and the family of functions F but does not know the data-generating distributions nor which
specific function f relates any given pair of distributions. As input, the learner gets sam-
ples, {S; : i <n}, each S; drawn i.i.d. from P;. Consequently, the advantage that a learner
can derive for a specific task from access to a sample drawn from some other F-related
task depends of the richness of the family of transformations F. The larger this set gets, the
looser the notion of F- relatedness is.

Clearly there are many examples of potential applications of simultaneous learning that
do not fit into this model of relatedness. However, there are various interesting examples
where this notion seems to provide a satisfactory mathematical model of the similarity be-
tween the tasks in a set of related learning problems.

Our framework applies to scenarios in which the learner’s prior knowledge includes
knowledge of some family F of transformations, such that all the tasks for which this MTL
learning approach will be applied are mutually F-related. One domain in which such F-
relatedness prior knowledge may be applied is in situations where many different sensors
collect data for the same classification problem. For example, consider a set of cameras
located in the lobby of some high security building. Assume that they are all used to au-
tomatically detect unauthorized visitors, based on the images they record. Clearly, each of
these cameras has its own bias, due to a different height, light conditions, angle, etc. While
it may be difficult to determine the exact bias of each camera, it may be feasible to define
mathematically a set of image transformations F such that the data distributions of images
collected by of all these recorders are F-related. Another area in which such a notion of
similarity is applicable is that of database integration. Suppose there are several databases
available, each of which obtains its information from the same data pool, yet represents its
information with a different database schema. For the purpose of classification prediction,
our results in the next section eliminate the need for the difficult undertaking of database
integration, treating each database as one task in a multiple task learning problem.

3 Learning F-related tasks

In this section, we analyze multiple task learning for F-related tasks. Our main idea is to
separate the information contained in the training data into information that is invariant
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under transformations from F and data that is F-sensitive. We utilize the training samples
from the extra tasks to learn the F-invariant aspects of the predictor. For example, if our
domain is the two dimensional Euclidean space, and F is a family of isometries of the
plane, then geometric shapes are F-invariant and can be deduced from translated images of
the original data distributions, while their location in the plane is F-sensitive. We formalize
this basic idea in a way that allows precise quantification of the potential benefits to be drawn
from such multi-task training data. We derive sample complexity bounds that demonstrate
the merits of this algorithmic approach.

We formalize our notion of F-relevant information through an appropriate partitioning of
the learner’s set of potential label predictors. Given hypothesis space, H, we create a family,
'H, of hypothesis spaces consisting of sets of hypotheses in H which are equivalent up to
transformations in F. We assume that F forms a group under function composition and that
H is closed under the action of F. As is standard, we will write [A]~ ., or simply [%], to
denote the equivalence class of 4 under ~ .

Fo

Definition 2 Let F be a set of transformations over a domain set X', and let H be a hypoth-
esis space over that domain.

e We say that F acts as a group over H, if

1. H is closed under transformations from F. Namely, for every f € F and every h € H,
ho f eH, and

2. F forms a group under function composition. Namely, F is closed under transforma-
tion composition and inverses (for every f, g € F, the inverse transformation, f~!,
and the composition, f o g are also members of F).

e When F acts as a group over Hl, we define equivalence relation ~  on H by:

hy ~x h, iff there exists f € F such that h, = hj o f.

We shall consider the family of hypothesis spaces, H = {[] : h € H}—the family of all
equivalence classes of H under ~ £, (equivalently, H = H/ ~x).

Our learning paradigm consists of two stages. In the first stage, the learner considers all
of the sample sets and uses them to learn the aspects of the task that are invariant under F.
In our setting, this means finding a ~# equivalence class, [1], that is best suited for our
prediction. In the second stage, the learner considers only the training sample that comes
from the distribution of the target task (say, P;), to figure out which specific predictor 4’ €
[A] to choose as its final hypothesis. The benefit from the extra tasks examples is therefore
realized through the reduction of the hypotheses search space, from the original H to the
subset [#]. The smaller F is, the smaller each [/#] will be (since [h] ={ho f: f € F}), and
so the larger is the benefit of multitasking.

To make this outline more concrete, let us consider again the two dimensional Euclidean
space as our domain, X, and let F be a family of isometries of the plane. Let H be the class
of all axis-aligned rectangles. In this case, by viewing examples generated by distributions
P; that are F-related to some target P, one can learn about the length and width of the best
rectangle predictor, but not about its location in the plane. More formally, in this case, for
every rectangle, A, its ~ z-equivalence class is the set of all rectangles that are isomorphic
to A. It is not hard to see that the VC-dimension of such a class is 3, which is lower than the
VC-dimension of the class of all axis aligned rectangles in the plain (which is 4). In Sect. 5
analyze the VC-dimension of such classes in arbitrary Euclidean dimensions and observe a
similar reduction (from 2d to L%J ). This reduction in the complexity of the hypothesis class
is where we gain from having samples from extra tasks (i.e., extra F-related distributions).
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4 Generalization error bounds

Following standard notation, we denote the true error, and empirical error, respectively, of
a hypothesis as follows. For distribution P,

Erf(h) = P({(x,b) € X x {0, 1} : h(x) # b}).
And for a sample, S, of points in X’ x {0, 1},

{(x.b) € §: h(x) # b}

A S
Er (h) = 5

Lemmal Let f: X — X and let P, and P, be probability distributions over X.
For any hypothesis, h : X — {0, 1}, a probability distribution, P, over X x {0, 1} and
f:X— X,

Er''f(ho £y = Erf (h). @.1)

This is an immediate consequence of the definition of the image, f[P] of a distribution P
and of the error, Erf ().

Using this fact, we can deduce that the equivalence classes of H perform equally well on
the different tasks in the following sense.

Definition 3 For any hypothesis space, H, define
Erf (H) = inf Erf (h).
heH

Thus, we judge the performance of a hypothesis space on a given task by the performance
of the best hypothesis in the space on that task.

Lemma 2 Let Py, P, be F-related distributions and F be a group under function composi-
tion. If H is closed under the action of F then Er?' (H) = Er™2(H).

Proof We need to show that
inf Erf(h) = inf Erf2(h).
heH heH

It suffices to show that for every i € H there exist &', h” € H such that Er”2(h') < ErP1 (h)
and Erf1 (h") < Erf2(h).

Since P;, P, be F-related, and F is a group (so each f € F has its inverse there) there
exist f, f' € F such that Py = f[P,] and P, = f'[P]. Since H is closed under the action
of F,both " =ho f,and h’" = h' o f’ are members of H. Applying Lemma 1, we get
ErP2(0'y = ErP1 (h) and Er' (h") = Erf2(h), so we are done. O

Before we continue, we require some background.
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4.1 Background from Baxter (2000)

Baxter (2000) discusses the following problem. Given a set of tasks and a set of hypothesis
spaces, choose the hypothesis space which performs best on the set of the tasks. He provides
a bound for the generalization error for this problem in terms of a generalized VC-dimension
parameter. In particular, he bounds the rate of convergence of the average (over all the tasks)
of the empirical errors to the true error.

Baxter’s generalization error bound depends on the following notion of generalized VC-
dimension for families of hypothesis spaces.

Notation: For function g : Y — Z and y = (y1,...,y,) € Y", g(y) will denote
8O-, 80m)) € Z".

Definition 4

1. Given a matrix of m x n domain points, for every hypothesis class H € H we consider
the collection of all the {0, 1} matrices that can be generated by applying n hypotheses
from H to the n rows of the matrix (respectively). Formally, denoting for each i < n,

-x_[: (-xi,lv-xi,27 .. 's-xi,m)a

hy(x10), hi(x12), -0 (X m)
Hn,m(fla-nvfn): :h],...,hnGH
hn(xn.l)s hn (-xn,Z)’ ey hn (xn,m)

2. For family H of hypothesis spaces, we take the union, over all classes H € H, of these
sets of {0, 1} matrices, and count how many matrices are in that union. Finally, we take
the maximum of that number over all possible choices of the underlying matrix of m x n
domain points. Namely,

IT;y(n,m) = max

X1, XpeX™

U Hom @1 %)

HeH

Definition 5 dH(n) = max{m : H’H(I’l, m) — znm}.
The following statements follow directly from the above definitions:

Proposition 1 For every family of classes, H, and for every n,

1. sup{VC-dim(H): H € H} < dy(n) < VC-dim(|J{H : H € H}).

2. In particular, if H consists of just one class, H = {H}, then, for every n, dy(n) =
VC-dim(H).

3. du(n+1) <dyn).

We can now state the relevant result from (Baxter 2000) on multitask learning, which
appears as corollary 13 in (Baxter 2000).!

Note that although (Baxter 2000) only states that % > Erfi(h;) < % hay B (h;) +¢, it is clear from
the proofs in (Baxter 2000) that this stronger form holds.
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Theorem 1 Let H be any permissible boolean hypothesis space family,” and let S, ..., S,
be a sequence of random samples from distributions P\, ..., P, (respectively) on X x {0, 1}.
If the number of examples, in each sample S; satisfies

88 22 1 4
1Si] = =5 | 2dr () log == + ~ log < |,
€ € n 1)

then with probability at least 1 — § (over the choice of S, ..., Sy), for any H € H, and
h],...,hn e H,

<e€.

1 <& 1 < s
=Y Erfithy)y— =) Er'(h;
‘n; P (hy) n; r (hi)

Note that this theorem only bounds the average generalization error over the different
tasks.

4.2 Bounding the generalization error for each task

We are now ready to state and prove one of our main results, which gives an upper bound
on the sample complexity of finding a ~ £-equivalence class which is near-optimal for each
of the tasks. This is significant, since the goal of multitask learning is to use extra tasks to
improve performance on one particular task.

Theorem 2 Let F be a family of domain transformations of some domain set X and let H be
a family of binary valued function on that domain so that F acts as a group over H. For any
h € H, let [h] denote the equivalence class of h under the relation ~ x (or, equivalently, the
trajectory of h under the transformations of F) and let H = {[h]: h ¢ H}. Let P, ... P, be
a set of F-related probability distributions over X x {0, 1} and let Sy, ..., S, be a sequence
of random samples, each generated i.i.d. from the corresponding distribution P;.

Then, if the number of examples, in each sample S; satisfies

38 22 1 4
1Sil > — |:2dH(n) log — + —log —:|, 4.2)
€ € n 1)
then with probability at least 1 — &, for every h € H,

<e€.

Proof Observe that Lemma 2 implies that forany s e Hand any 1 < j <n,

1 n
P; — - _ Pich.
Erfi([h]-») _h],N.,f},Illef[h]N}_ - ;Er (hi).

The result now follows from Theorem 1. O

zPermissibility, introduced by Ben-David (1989) is a “weak measure-theoretic condition satisfied by almost
all ‘real-world’ hypothesis space families” that is required for the VC type uniform convergence bounds to
hold. Throughout this paper we shall assume that all our classes are permissible.
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By combining standard generalization error result for single task learning with Theo-
rem 2, we now have an sample complexity bound for our full, two-stage, learning paradigm.

Definition 6 (MT-ERM paradigm) Given classes F and H as above, and a sequence of
labeled sample sets, Sy, ..., S,, the MT-ERM (Multi-Task Empirical Risk Minimization)
paradigm for F and H works in two steps as follows:

1. Pick i* € H that minimizes infy, e S, Er" (h;) over all [h] € H/ ~ .
2. Pick h° € [h*] that minimizes Er’' (k') over all i’ € [h*], and output 4° as the learner’s
hypothesis.

Theorem 3 Let (Py,..., P,), (S1,...,8,), F and H be as in the previous theorem. Let
diax = maxyem VC-dim([h]~ ). Let h® be the output of an (F, H)- MT-ERM algorithm.
Then, for every €1, €, 8 > 0, if

111> (64/€])[2d ax log(12/€)) +10g(8/5)]

and, forall i > 1

88 22 1 8
1Si| = — | 2dy(n)log — + —log —
€ € n 1)
then, with probability greater than (1 — §)
Erf1(h®) < gnﬂg Erfi(h) +2(e; + &).
€

Proof Let h” be the best P, label predictor in H. That is, 2% = arg min,,cy Er™ (h). Let [h*]
be the equivalence class picked in the first stage of the MT-ERM paradigm. Le., [#*] is a

minimizer of infy,, 5, erm) Z?:l Ersi (h;) over all [h] e H/ ~ £.
By the choice of i*,

inf ZEr (h)< inf Zérs"(h,-).
i=l1

hpelh*] = py hpe[h?] <

By Theorem 2, with probability greater than (1 — §/2),

inf ZErS" (hi) < ErP ([R*]) + €1,
h1,..shy€[h®] -

and also,

n

. A Si

EFP ([h*]) < , nf ;Er (hi) + 1.

Combining these three inequalities, we get that with probability greater than (1 —§/2),
Er" ((h*]) < Er" ((h*]) + 261

Finally, the second stage of the MT-ERM algorithm is just a standard ERM algorithm yield-

ing, with probability greater than (1 — §/2), a hypothesis h° € [h*], whose P, error is within
2¢, of the best hypothesis there, namely of Erf ([h*]). O
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Recall, that the common (single task) ERM paradigm requires a sample of size
1S1| > (64/€>)[VC-dim(Hlog(12/€) + log(4/8)] 4.3)
to find a hypothesis 4° that with probability greater than (1 — §) has

Erfr(h°) < inf Erf1 (h) + 2e.
heH

It follows that the extent by which the samples from the extra P;’s help depends on the
gap between the parameters d,,,, and dy; and VC-dim(H).

Next we examine what the values of these parameters for the specific case of learning
axis-aligned rectangles in 9. Finally, in Sect. 6 we analyze these parameters for general
classes H and F.

5 Analysis of axis-aligned rectangles under Euclidean shifts

Let X = R?, and H be the set of characteristic functions of axis-aligned rectangles, i.e.,
functions that map to 1 all points within some fixed rectangle [a;, a; + b1] X -+ - X [ag, ag +
b,] and map to O to all other points. Let F be the set of Euclidean shifts, i.e., functions of
the form f(xy,...,x4) = (x; +vy,..., X5 + vg), Where vy, ..., vy € R. As above, we let H
denote H/ ~ ~. Note that indeed in this case F acts as a group over H.

Claim Ford > landn >d,dy(n) <d+ L%J.

Proof We will see in Theorem 5 below, that for H as above and n > d,

dy(n) = [rhr]lgt VC-dim([h]).

So, it suffices to show that for any [k] € H, VC-dim([k]) <d + %. We prove this as the
following lemma. O

Lemma 3 Let r be an axis-aligned rectangle in R?, and let F(r) be the class of all Euclid-
ean shifts of v. Then VC-dim(F (r)) <d + £.

Proof Suppose [h] shatters set U. (L.e., for any V C U, there exists 4’ € [h] such that for all
x€eU,h(x)=1 <= x € V. We say that such an 4’ obtains subset V of U.)

Then, in order to obtain the complements of each of the singleton subsets of U, each
point x € U must have some coordinate k, in which its value is either the greatest or the
least among the k,th coordinate of all points in U'.

For a given point, p € R™, let p(k) denote its kth coordinate.

Assume |U| > d + ‘5’. Then, there must exist at least d 4 1 points p € U for which &, is
unique, i.e., for every other coordinate k, there exist points y, z € U such that y(k) > p(k)
and z(k) < p(k). And since we are in R?, there exist two such points, p and ¢ such that
k, =k, and both k,, and k, are unique. Call this coordinate k.

Now, what we have is points p, g € U such that p(k) > x(k), and g (k) > x(k) for all
x € U —{p, q}, and for every k' # k there exist points y, z € S such that y(k) > p(k), g (k)
and z(k) < p(k), q(k).

We proceed to show that no &’ € [h] obtains the subset U — {p, g}.
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Since [1] must obtain the subset of S consisting of U itself, the length of the side in coor-
dinate j for any 4’ € [h] must be at least max, yep |x(j) — y(j)|. Without loss of generality,
let us say that & obtains U. Then, any subset of U obtained by any 4’ € [h] consists of those
points in U that remain after removing axis-parallel slices of & on up to d of its faces, with
no two opposing faces sliced.

However, the only slices that can remove p and g without removing any other points
from S are the two opposing slices in coordinate k, so, indeed, the subset U — {p, g} cannot
be obtained by any ' € [h]. O

Note that the VC-dimension of the class of axis-aligned rectangles in R is 2d. Compar-
ing (4.2) to the corresponding standard VC-dimension generalization error bound (Vapnik
and Chervonenkis 1971) (shown in (4.3)), we have the following.

Claim For the purpose of learning the rectangle side lengths, VC-dimension considerations
provide better accuracy guarantees for n shifted samples each of size m than for a single
sample of size n(ls—lm —¢), where c is a constant depending on the desired accuracy and the
Euclidean dimension. Furthermore, c is small enough so that each sample may be smaller
than that needed to obtain the same guarantees for a single data set of size m.

Previously, (Ben-David et al. 2002) considered the PAC setting, that is, the setting in
which the learner is guaranteed that there exists a hypothesis / € H that achieves zero error
under the data generating distribution (in our case, P;). For that setting, they showed that for
the H and F of the example above, n shifted samples each of size m provide better accuracy
guarantees than a single sample of size n(m — ¢’), where ¢’ is a constant depending on the
desired accuracy and the Euclidean dimension. Our analysis here provides nearly as strong
a result for the more realistic ‘agnostic’ setting, where the assumption of the existence of a
zero error h is waived.

6 Analysis of d(n)

In this section we investigate the parameters d,, that, along with d,,,,, , determines the sample
complexity (or, equivalently, the generalization error bounds) of multi-task learning in our
setting of F-related learning tasks derived in Theorem 3.

By Proposition 1, dy(n + 1) < dy(n) for any n. Thus, we see from (4.2) that once we
have committed ourselves to the multitask approach, extra tasks can only be beneficial.

Note that since our collection, H, is made of the equivalence classes [2]+ (formed by the
functions of F) over an initial hypotheses space, H, the union of all these classes, | J{H :
H € H}, equals H. Therefore, by Proposition 1, d,,,, < dy(n) < VC-dim(H) (where, as
above, d,qx = max;,cg VC-dim([A])). Thus, the best we can hope for is dy (n) = dypar- We
conjecture that for any H of finite VC-dimension and any F, this lower bound is attained
for all sufficiently large n. The following two theorems support this conjecture.

Notation Let |1| denote the cardinality of the support of 4, i.e., || denotes |{x € X' : h(x) =
1}|. Also, for a function /& and a vector X = (xy, ..., x,)), let h(x7) = (h(xy), ..., h(x,)).

Theorem 4 [f there exists M such that |h| < M for all h € H, then there exists ng such that
forall n > ny,

dy(n) = hezgl;VC—dim([h]Nf).

(Recall that H denotes H/ ~ £.)
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Proof Assume dy(n) > m, and let Xy, ..., X, be such that
ho fi(x1)
: firfn€F, heH | =2""
ho fu(xy)
Consider hg € H and fi, ..., f, such that

hoofl(ﬂ) 1 1

hoofn(ﬁ) 1 1

Note that for each i, there exists S; C ko such that X; is some permutation of {fl-_1 (2):
Z€ S,}

Say |ho| = K. Thenif n > ((X) — 1)2", then there exists S € &g and i1, ..., ipn such that
S,-j =Sforl <j<2" Letoy,...,opm be the corresponding permutations.
Finally, letting vy, ..., vo» be an enumeration of all vectors of length m over {0, 1}, letting
N be any m x n matrix over {0, 1} whose i;h row is o; (vi;), and letting s, and fi,..., f,
be such that
hy o fl/(x_l)
L=
hio [ (%)

we see that [h,]. . shatters S, so m < VC-dim([/,]~ ).
To eliminate the dependence on |ho| = K, we set ng = ((M”jz) — 1)2™, noting that

no > ((X) = 1)2" forall K,m < M. 0

So, we see that for any class of hypotheses bounded in size (i.e., the size of their support),
for sufficiently large n, d;;(n) obtains it’s minimum possible value of d,,,,. However, many
natural hypothesis spaces consist of hypotheses that are not only unbounded, but infinite
in size. In the following theorem, we show that this conjecture also holds for a natural
hypothesis space consisting of infinite hypotheses.

Theorem 5 Let X', H, and F be the rectangles with shifts as in Sect. 5, and let H denote
H/ ~ £ as usual. For n > d,

dy(n) = max VC-dim([h]~ ).

Proof letxy, ..., %, € (R?)"” be such that

ho fi(x1)
fiofa€F, heH | =2"",

ho fu(xy)
For y € R4, and 1 < k < d, we will denote by y(k) the kth coordinate of y.
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Fork=1,...,d, let w, = max{|y(k) —z(k)|: y,z € x; forsome 1 <i <n}. wy,..., wy
is the sequence of minimal possible side lengths for any rectangle 4 such that

ho f,(%) 1...1
Without loss of generality, let us assume that X7, ..., X, are ordered such that these max-
ima are attained within X7, ..., X;.
Now, for any binary sequence b = (b4, ..., b,,), there exists some %, € H such that
. 1...1
hy o f1(x1)
TS
hb o fn (X,,) bl

m

Clearly, no such &, can have its kth side length less than w;. Furthermore, there is no
advantage in having any kth side length greater than wy. Thus, we see that if 4 = [0, w;] X
-+« x [0, wg], then [A]~ . shatters X,;, so VC-dim([h]~ ) > m. O

So, we see that it is not uncommon for dy,(n) to attain its minimum possible value, d,;,, -
As that value can be significantly less than VC-dim(H), it is reasonable to expect that, in
many cases, the MT-ERM bound of Theorem 3 is significantly less than the standard ERM
bound (see (4.3)). Thus our bounds can guarantee generalization on the basis of smaller size
than the standard VC-dimension considerations for the single-task approach.

Ben-David, et al. (2002) provide the following further results on dy, ().

Theorem 6 If F is finite and logﬁ > VC-dim(H), then

dy(n) < 2log(|F)).

Note that this result leads us to scenarios under which dy,(n) is arbitrarily smaller than
VC-dim(H). Indeed, as long as F is finite, no matter how complex H is, dy;(n) remains
bounded by 2log(|F|). Furthermore, in practice, the requirement that F be finite is not an
unreasonable one, since real world problems come with bounded domains and real world
computations have limited numerical accuracy.

Furthermore, (Ben-David et al. 2002) provides the following generalization of this result.

Theorem 7 If ~ 5 is of finite index,’ k, and n > logh

Z logh’ then

log k
dr(n) < 25 4 4plogh,
n

where

b:max( max Vc-dim(H),3).
HeH/~F

3The index of an equivalence relation is the number of equivalence classes into which it partitions its domain.
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This shows that even if F is infinite, dy,(n) cannot grow arbitrarily with increasing com-
plexity of H.

7 Conclusions and future work

We have presented a useful notion of relatedness between tasks for multiple task learning.
This notion of relatedness provides a natural model for a variety of real world learning
scenarios. We have derived generalization error bounds for learning of multiple tasks related
in this manner. These bounds depend on a generalized VC-dimension parameter, which can
be significantly less than the ordinary VC-dimension, thus improving on the usual bounds
for the single task approach. We have provided analysis of this parameter and its relationship
to the usual VC-dimension, and we have given precise conditions under which our multitask
approach provides generalization guarantees based on smaller sample size than the single
task approach.

This work is a significant step towards the goal of a full theory of multiple task learning.
With the restriction to a special type of relatedness of tasks, we have been able to obtain
sample size bounds which are significantly better than previously proven bounds for the
learning to learn scenario.

Hopefully, this work will stimulate future work in several directions. There is room for
a more thorough understanding of the conditions under which multi-task learning is advan-
tageous over the single task approach in our scenario; in particular, a greater understanding
of the generalized VC-dimension parameter would provide such insight. It would also be
fruitful to relax the requirements on the set of transformations through which the tasks are
related, allowing these transformations to be arbitrary rather than bijections, and perhaps
even allowing the actual transformations between the tasks to be merely approximated by
the set of known transformations. Finally, the quest for further applicable notions of related-
ness between tasks remains the key to a thorough understanding of multiple task learning.

We believe that this work provides convincing evidence that a theoretical understanding
of multiple task learning and its advantage over the single task approach is a promising
research endeavor worth pursuing.
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