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Abstract Standard pattern discovery techniques, such as association rules, suffer an ex-
treme risk of finding very large numbers of spurious patterns for many knowledge discovery
tasks. The direct-adjustment approach to controlling this risk applies a statistical test dur-
ing the discovery process, using a critical value adjusted to take account of the size of the
search space. However, a problem with the direct-adjustment strategy is that it may discard
numerous true patterns. This paper investigates the assignment of different critical values
to different areas of the search space as an approach to alleviating this problem, using a
variant of a technique originally developed for other purposes. This approach is shown to be
effective at increasing the number of discoveries while still maintaining strict control over
the risk of false discoveries.

Keywords Pattern discovery · Significant patterns · Significant rules · Layered critical
values · Association rules · Statistical procedures

1 Introduction

The current paper presents a technique that is demonstrated to often substantially increase
the power of the direct-adjustment approach to controlling the risk of false discoveries in
pattern discovery. Relative to the previous state-of-the-art, the new technique increases the
number of significant patterns discovered while still maintaining strict control over the risk
of false discoveries.

Pattern discovery finds collections of items that co-occur frequently in data. This class of
data mining techniques includes association rule discovery (Agrawal et al. 1993), k-optimal
or top-k pattern discovery (Webb 1995; Scheffer and Wrobel 2002; Han et al. 2002; Webb
and Zhang 2005), contrast or emerging pattern discovery (Bay and Pazzani 2001; Dong and
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Li 1999), subgroup discovery (Klösgen 1996), interesting itemset discovery (Jaroszewicz
and Simovici 2004) and impact or quantitative rule discovery (Aumann and Lindell 1999;
Webb 2001; Zhang et al. 2004).

For many applications, such patterns will only be interesting if they represent non-trivial
correlations between all constituent items. We will call such patterns significant patterns
and all remaining patterns false discoveries. Many techniques have been developed that
seek to avoid false discoveries (Agrawal et al. 1993; Bastide et al. 2000; Bay and Pazzani
2001; Bayardo et al. 2000; Brin et al. 1997; DuMouchel and Pregibon 2001; Gionis et al.
2006; International Business Machines 1996; Liu et al. 1999; Megiddo and Srikant 1998;
Možina et al. 2006; Piatetsky-Shapiro 1991; Scheffer 1995; Webb 2002, 2006, 2007; Zaki
2004; Zhang et al. 2004). Two of these, direct-adjustment and holdout evaluation, have the
desirable properties of allowing definitions of true and false discoveries to be specified in
terms of arbitrary statistical hypothesis tests, while providing strict control over the risk
of false discoveries. Previous research has shown that each of these two approaches has
relative strengths and weaknesses (Webb 2006, 2007). Of the two, only the direct-adjustment
approach is directly applicable to k-optimal pattern discovery.

This paper presents an improvement to the direct-adjustment approach. Section 2 de-
scribes the false discovery problem. This is an expanded version of the problem statement
in (Webb 2007), included here to make the paper self-contained. Section 3 describes the
direct-adjustment and holdout evaluation approaches. Section 4 describes the new Layered
Critical Values extension to the direct-adjustment approach. Section 5 describes a series of
experiments to assess the effect of the new technique on the power of the direct-adjustment
approach. We end with concluding remarks.

2 Problem statement

Pattern discovery seeks to identify patterns ρ ∈ P that satisfy constraints φ with respect
to distribution �. However, whether φ is satisfied is assessed by reference to sample data
D drawn from �. Although the principles extend directly to further contexts, the current
research limits consideration to two types of data, transactional data and attribute-value
data, and one type of pattern, rules.

For both data types, D is a multiset of n records and each record R ∈ D is a set of items
R ⊆ I . For transactional data, items are atomic terms. For attribute-value data, there exists
a set of a attributes A1 . . .Aa , each attribute Ai has a domain of #Ai values dom(Ai), each
item is an attribute-value pair denoted as Ai=v, where v ∈ dom(Ai), and each record R ∈ D

contains exactly one item for each attribute.
In the current work, rules take the form X → y, where X ⊆ I , |X| ≥ 1 and y ∈ I . X is

called the antecedent and y the consequent of the rule. For attribute-value data, X ∪{y} may
contain no more than one item for any one attribute. While some rule discovery systems
support multiple elements in the consequent of a rule, such rules can be represented by
multiple single-element consequent rules, and limiting the search space to the latter greatly
decreases its size. As limiting the size of the search space is important for the current work,
we limit rules to single-element consequents.

Association rule discovery finds all rules that satisfy constraints φ specified as a mini-
mum support (Agrawal et al. 1993), together with other constraints, if desired, such as min-
imum confidence (Agrawal et al. 1993). Support and confidence are defined with respect to
a rule X → y and dataset D as follows:

support(X → y) = |{R ∈ D : X ∪ {y} ⊆ R}|, (1)
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confidence(X → y) = support(X → y)/|{R ∈ D : X ⊆ R}|. (2)

Confidence can be viewed as a maximum likelihood estimate of the true confidence,
P�(y | X).

Each assessment of whether a given pattern ρ satisfies constraints φ is accompanied by
a risk that ρ will satisfy φ with respect to the sample data D but not with respect to �. Most
pattern discovery systems fail to effectively control this risk.

Statistical hypothesis tests are applicable to such a scenario. To apply such a test it is
necessary to specify a null hypothesis, in our context the hypothesis that the negation of φ

is true. The test returns a value p, an upper bound on the probability that the sample data,
or sample data with a more extreme distribution, would be observed if the null hypothesis
were true. The value p is compared to a significance-level α, a user-specified upper limit on
the allowed risk of rejecting a null hypothesis if it is false. If p ≤ α the null hypothesis is
rejected and the alternate hypothesis accepted. In the case of pattern discovery, this means
accepting the pattern as valid and hence “discovering” it.

While the generic techniques examined support arbitrary statistical hypothesis tests, the
current research considers only tests for productive rules. A rule is productive if it has higher
confidence than all of its generalizations:

productive(X → y) = ∀Z ⊂ X, confidence(X → y) > confidence(Z → y). (3)

We use a Fisher exact test for productive rules, as described in Appendix 1 of (Webb 2007).
As this seeks to assess whether the patterns are productive with respect to � rather than
simply with respect to D, the null hypothesis is

∀Z ⊂ X, P (y | X) ≤ P (y | Z). (4)

If the discovery process “discovers” a pattern ρ that in actuality satisfies the null hypoth-
esis, ρ is considered to be a false discovery or equivalently, a type-1 error. Any pattern ρ

that is not “discovered” and does not satisfy the null hypothesis is called a type-2 error.
The techniques presented herein allow arbitrary statistical hypothesis tests to be applied

in a manner that allows the user to place a strict upper bound on the experimentwise risk
of false discoveries. In the context of pattern discovery, this is the risk of any pattern from
those found in a single session being a false discovery.

3 The direct-adjustment and holdout approaches

A standard statistical solution to the multiple tests problem is to use an adjustment such
as the well-known Bonferroni adjustment. These control the experimentwise risk of false
discoveries (Holland and Copenhaver 1988) by adjusting the critical value employed with
the statistical test to allow for the number of hypotheses tested.

The Bonferroni adjustment replaces α in the hypothesis tests with α′ = α/r , where r is
the number of tests performed. This ensures that the experimentwise risk of false discov-
eries is no more than α. This adjustment strictly controls the experimentwise risk of false
discoveries, even if the hypothesis tests are correlated with one another, as is often the case
in the context of pattern discovery.

The direct-adjustment approach applies the appropriate Bonferroni adjustment directly
to any statistical test employed during the search process. This requires an upper bound on
the number of hypothesis tests in the search space. Webb (2007) describes how this may be
calculated in a context where there is an upper limit on the size of the antecedent.
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Rather than applying statistical tests during the pattern discovery process, the holdout
approach partitions the available data into exploratory and holdout sets; discovers candidate
patterns using the exploratory data; and then tests those patterns using the holdout data. It
accepts only those patterns that pass relevant statistical tests for significance. It is necessary
to correct for multiple tests, but only with respect to the number of patterns found in the
exploratory stage, not the full size of the search space considered. As the former is likely to
be many magnitudes smaller than the latter, the adjustment will be substantially smaller.

Holdout evaluation can be applied as a simple wrapper to any existing pattern discovery
system. In contrast, the direct-adjustment approach may require substantial re-engineering
of a system. The holdout approach is less susceptible to decreases in its power as a result
of increases in the size of the search space, can utilize more powerful corrections for mul-
tiple tests such as the Holm procedure (Holm 1979), and can support procedures to control
the false discovery rate (Benjamini and Hochberg 1995) as well as the experimentwise er-
ror rate. Further, the actual number of tests that must be applied will often be orders of
magnitude lower than under the direct-adjustment approach, providing a considerable com-
putational advantage when employing computationally demanding statistical tests. On the
other hand, only the direct-adjustment approach directly supports k-optimal (also known as
top-k) pattern discovery and it also utilizes all available data for both pattern detection and
pattern evaluation.

4 Layered critical values

It is desirable to increase the power of these techniques, the probability that each will dis-
cover valid patterns. Webb (2007) identified two competing forces that affect the power of
the direct-adjustment approach as the size of the search space is altered. As the search space
is increased there is an upwards pressure on power. When more patterns are considered,
more potentially valid patterns are available to be discovered. On the other hand, as the
search space increases, the size of the adjustment r increases proportionally, decreasing the
critical value α′ employed in the statistical test. This requires patterns to be stronger in order
to be discovered. As a result there is a downward pressure on power, as weaker patterns that
would be discovered in a smaller search space will no longer pass the statistical test at the
lower critical value.

In practice, the two counteracting pressures on power result in the number of patterns
discovered initially increasing as the size of the allowed antecedent is increased, reaching
a peak and then declining as the numbers of patterns discovered at lower antecedent sizes
but no longer accepted with a lower critical value exceeds the number of additional valid
patterns encountered that can pass the low critical value.

In the existing direct-adjustment techniques, the size of the search space is altered by
changing the number of items allowed in the antecedent of a rule. This is illustrated in
Table 1, which shows the rules in the search space given that there are four items. At each of
antecedent sizes 1 and 2 there are twelve rules and at antecedent size 3 there are four rules.
With larger numbers of items, the size is initially relatively small for antecedents of size 1
and rapidly grows to very large numbers. For example, with 50 items there are 2,450 rules
with one element in the antecedent, 58,800 with two elements, 921,200 with three elements
and over 10 million with four elements.

It is useful to consider candidate patterns. These are patterns that pass standard selec-
tion criteria, such as minimum support, that may result in patterns being discarded before
being subjected to a statistical test. It is notable that, for real-world data and standard pat-
tern selection criteria, the proportion of the search space that consists of candidate patterns
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Table 1 Search space at each
level given four items Antecedent size

1 2 3

a → b a, b → c a, b, c → d

a → c a, b → d a, b, d → c

a → d a, c → b a, c, d → b

b → a a, c → d b, c, d → a

b → c b, c → a

b → d b, c → d

c → a a, d → b

c → b a, d → c

c → d b, d → a

d → a b, d → c

d → b c, d → a

d → c c, d → b

tends to decrease as the size of the antecedent increases. One reason for this is that support
is anti-monotone on antecedent size. Most selection criteria will discard patterns with zero
support and the proportion of zero support patterns cannot decrease as the antecedent size
increases. Table 2 illustrates this phenomena with respect to the experiments on real-world
data in (Webb 2007). In these experiments the minimum even-valued setting of minimum
support was found that resulted in fewer than 10,000 productive rules with antecedent sizes
of no more than six. Table 2 shows for each dataset—the size of the search space at each an-
tecedent size n; the number of productive rules that satisfy the minimum support constraint
for the dataset; the density of candidates within the search space at the level (cand/size); the
adjusted critical value that is employed when the search space allows antecedents of size no
more then n; and the change in the number of patterns discovered relative to a search limited
to antecedents of size no more than n − 1.

For all of these data sets, as the antecedent size increases the density decreases and the
critical value increases rapidly. In some sense, the higher levels of the search space are the
richest, containing the highest density of candidates. They also have the smallest search
spaces and hence receive the least strict critical values. As the search space is increased to
include ever less dense levels, the critical value applied to the denser higher levels increases
exponentially, depleting the proportion of candidates that can be ‘discovered.’

These observations lead to the insight that it would be desirable to protect the discoveries
that can be made in the denser smaller search spaces whenever the search space is enlarged
to allow larger antecedents.

Bay and Pazzani (2001) developed a direct-adjustment technique that could apply a
Bonferroni-like adjustment without knowing the size of the search space in advance. As
they noted, the underlying theoretical basis for the Bonferroni correction is that the sum of
all critical values be no more than the desired upper bound on the risk of any false discov-
ery, α. It is not necessary that the critical values employed across multiple tests be identical.
To create a Bonferroni-like adjustment that could be used without knowing in advance the
depth to which the search would extend, they developed a scheme whereby the critical value
employed at a level of the search space was no more than

α′
L = α/(2L × HL) (5)
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Table 2 The density of candidate patterns at each level of the search space

Dataset Xmax Size Cand. Density α′ �disc

BMS-WebView-1 1 2.46 × 1005 3126 0.012707 2.03 × 10−07 +3,010

2 6.10 × 1007 4422 7.25 × 10−05 8.17 × 10−10 +2,985

3 1.00 × 1010 1963 1.96 × 10−07 4.95 × 10−12 −555

4 1.24 × 1012 254 2.05 × 10−10 4.00 × 10−14 −487

5 1.22 × 1014 7 5.75 × 10−14 4.07 × 10−16 −450

6 9.98 × 1015 0 0 4.95 × 10−18 −430

Covtype 1 1.78 × 1004 74 0.004148 2.80 × 10−06 +68

2 1.15 × 1006 216 0.000188 4.28 × 10−08 +177

3 4.86 × 1007 745 1.53 × 10−05 1.00 × 10−09 +501

4 1.50 × 1009 1794 1.2 × 10−06 3.23 × 10−11 +944

5 3.65 × 1010 3138 8.61 × 10−08 1.32 × 10−12 +1,158

6 7.18 × 1011 4028 5.61 × 10−09 6.61 × 10−14 +1,045

IPUMS LA 99 1 3.08 × 1006 526 0.000171 1.62 × 10−08 +440

2 2.23 × 1009 1626 7.3 × 10−07 2.24 × 10−11 +1,029

3 9.58 × 1011 3172 3.31 × 10−09 5.21 × 10−14 +1,279

4 2.76 × 1014 3058 1.11 × 10−11 1.81 × 10−16 +735

5 5.70 × 1016 1381 2.42 × 10−14 8.73 × 10−19 +39

6 8.87 × 1018 235 2.65 × 10−17 5.60 × 10−21 −96

KDDCup98 1 1.50 × 1008 402 2.69 × 10−06 3.34 × 10−10 +78

2 4.39 × 1011 1483 3.38 × 10−09 1.14 × 10−13 +15

3 7.49 × 1014 2753 3.68 × 10−12 6.68 × 10−17 −10

4 8.75 × 1017 2963 3.39 × 10−15 5.71 × 10−20 −8

5 7.65 × 1020 1783 2.33 × 10−18 6.53 × 10−23 −2

6 5.27 × 1023 604 1.15 × 10−21 9.47 × 10−26 0

Letter recognition 1 4.66 × 1003 854 0.183262 1.07 × 10−05 +606

2 1.30 × 1005 3149 0.024285 3.72 × 10−07 +1,433

3 2.16 × 1006 3531 0.001636 2.18 × 10−08 +705

4 2.45 × 1007 1909 7.79 × 10−05 1.87 × 10−09 −47

5 2.00 × 1008 496 2.48 × 10−06 2.20 × 10−10 −123

6 1.24 × 1009 25 2.01 × 10−08 3.40 × 10−11 −126

Mush 1 1.52 × 1004 778 0.051117 3.29 × 10−06 +686

2 8.59 × 1005 2723 0.003169 5.72 × 10−08 +1,908

3 3.03 × 1007 3578 0.000118 1.60 × 10−09 +2,250

4 7.54 × 1008 2150 2.85 × 10−06 6.37 × 10−11 +1,041

5 1.40 × 1010 656 4.68 × 10−08 3.38 × 10−12 +87

6 2.01 × 1011 113 5.62 × 10−10 2.31 × 10−13 −127

Retail 1 2.72 × 1008 5250 1.93 × 10−05 1.84 × 10−10 +882

2 2.23 × 1012 3693 1.66 × 10−09 2.24 × 10−14 −234

3 1.23 × 1016 904 7.35 × 10−14 4.07 × 10−18 −120

4 5.05 × 1019 62 1.23 × 10−18 9.90 × 10−22 −73



Mach Learn (2008) 71: 307–323 313

Table 2 (Continued)

Dataset Xmax Size Cand. Density α′ �disc

Retail 5 1.66 × 1023 0 0 3.01 × 10−25 −42

6 4.56 × 1026 0 0 1.10 × 10−28 −30

Shuttle 1 1.03 × 1003 380 0.37037 4.87 × 10−05 +322

2 1.36 × 1004 2046 0.150585 3.42 × 10−06 +1,263

3 1.04 × 1005 4206 0.040481 4.22 × 10−07 +1,291

4 5.11 × 1005 2788 0.005456 7.94 × 10−08 +237

5 1.65 × 1006 550 0.000333 2.19 × 10−08 −94

6 3.55 × 1006 23 6.48 × 10−06 8.58 × 10−09 −89

Splice Junction 1 5.80 × 1004 6846 0.118034 8.62 × 10−07 +578

2 6.82 × 1006 2265 0.000332 7.27 × 10−09 −60

3 5.25 × 1008 586 1.12 × 10−06 9.40 × 10−11 −136

4 2.99 × 1010 46 1.54 × 10−09 1.64 × 10−12 −102

5 1.33 × 1012 1 7.52 × 10−13 3.68 × 10−14 −38

6 4.86 × 1013 0 0 1.00 × 10−15 −38

TICDATA 2000 1 4.68 × 1005 454 0.00097 1.07 × 10−07 +78

2 1.56 × 1008 1880 1.21 × 10−05 3.20 × 10−10 −8

3 3.40 × 1010 3328 9.78 × 10−08 1.46 × 10−12 −2

4 5.50 × 1012 3008 5.47 × 10−10 9.04 × 10−15 −16

5 6.96 × 1014 1024 1.47 × 10−12 7.12 × 10−17 −16

6 7.25 × 1016 0 0 6.83 × 10−19 0

where L is the level of the search space and HL is the number of hypotheses evaluated at L.
Unfortunately, however, as HL did not include the entire search space of patterns from which
those to be evaluated were selected, this approach did not enforce the desired upper bound
of α on the risk of any false discovery (Webb 2007).

Nonetheless, we can adopt this general idea, but using the size of the search space at
each level instead of the number of hypotheses evaluated, thereby ensuring strict control
over the risk of any false discovery. The Bay and Pazzani scheme used a schedule of ad-
justments structured so that it was not necessary to cap the maximum size of a pattern. Our
approaches assume that such a cap exists, as is often the case in real-world pattern discovery
applications. Further, because the search space size is usually so much smaller at the lower
pattern sizes, we do not want to disproportionately weight the available critical value mass
toward the smaller sizes. In consequence we use

α′
L = α/(Lmax × SL) (6)

where L is the level of the search space, Lmax is the maximum value of L for the current
search, and SL is the size of the search space at L. In rule discovery applications that do not
utilize an upper limit on L, the following variant of the Bay and Pazzani scheme might be
used in place of (6):

α′
L = α/(2L × SL). (7)

The underlying basis for these formulae is to ensure that α ≥ ∑Lmax
L=1 α′

L × SL.
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Table 3 Layered vs. uniform adjustments for BMS-WebView-1 at different antecedent sizes

Lvl 1 2 3 4 5 6

Space 2.46 × 105 6.10 × 107 1.00 × 1010 1.24 × 1012 1.22 × 1014 9.98 × 1015

Uniform 2.03 × 10−7 8.16 × 10−10 4.95 × 10−12 4.01 × 10−14 4.06 × 10−16 4.95 × 10−18

Layered to lvl 1 2.03 × 10−7

Layered to lvl 2 1.01 × 10−7 4.10 × 10−10

Layered to lvl 3 6.76 × 10−8 2.73 × 10−10 1.66 × 10−12

Layered to lvl 4 5.07 × 10−8 2.05 × 10−10 1.24 × 10−12 1.01 × 10−14

Layered to lvl 5 4.06 × 10−8 1.64 × 10−10 9.95 × 10−13 8.08 × 10−15 8.21 × 10−17

Layered to lvl 6 3.38 × 10−8 1.37 × 10−10 8.29 × 10−13 6.73 × 10−15 6.84 × 10−17 8.36 × 10−19

Un/L6 6.00 5.98 5.96 5.95 5.94 5.93

U6/L6 1.47 × 10−10 3.63 × 10−8 5.97 × 10−6 7.36 × 10−4 7.24 × 10−2 5.93 × 100

Using (6), the critical value employed at a level n of the search space will be no less than
1/Lmax of the value it would be if the search space were capped at L. Thus, increasing the
search space an extra level from n to n + 1 can be expected to have only modest impact
on the number of patterns discovered at levels 1 to n while opening up the possibility of
discovering additional patterns at level n+1. Table 3 illustrates this effect with respect to the
BMS-WebView-1 dataset. The first row lists the levels. The second row shows the size of the
search space at the level. This is the number of rules with the specified number of items in the
antecedent. The third row lists the uniform critical value that is applied at all levels if search
is capped at the specified level. The rows labeled Layered to lvl 1–6 show the critical value
employed at the level with which the column is labeled when search is capped at the level
with which the row is labeled. The row labeled Un/L6 shows the uniform critical value if the
search is capped at the level for the column divided by the value in the row headed Layered
to lvl 6. This demonstrates that when the search is increased to allow antecedents containing
up to six items, in no case does the critical value employed at a level n decrease more than
six-fold relative to the critical value that would be employed under a uniform critical value
if the search space were capped at n. In other words, under the layered approach the critical
value employed at a level is never greatly reduced from the minimum critical value under the
uniform approach that is capable of including rules from that level. The row headed U6/L6

shows the critical value employed under the uniform approach if the search space is capped
at level 6 divided by the value in the row headed Layered to lvl 6. This shows that when
the search space is capped at level 6, the critical values employed at all lower levels of the
search space are substantially lower if uniform critical values are used, some times by as
much as a factor of 1010.

We call this strategy for setting critical values within the direct adjustment approach
Layered Critical Values. For the reasons outlined above, we expect it in general to find more
patterns than the standard direct adjustment approach, which utilizes a uniform critical value
for all patterns.

5 Experiments

To evaluate whether Layered Critical Values do indeed increase the statistical power of our
techniques, we replicate the key experiments in (Webb 2007), using Layered Critical Values
in place of the uniform critical value employed by the initial direct-adjustment technique.
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Three such experiments were performed. Two, with synthetic data, evaluated performance in
a context where the actual true and false patterns were known. Such synthetic experiments
provide a means of examining the false discovery rates of alternative techniques, as the
complete set of true patterns is usually not known in the context of real-world data. One
experiment, with real-world data, evaluated the relative power of the techniques in real-
world contexts. A fourth experiment, for which there is no equivalent in the earlier research,
compares the two techniques in the context of k-optimal pattern discovery. For all four
experiments we used the Fisher exact test for productive rules, described in Appendix 1 of
(Webb 2007).

The original versions of the first three experiments compared a number of techniques
including a number of variants of the holdout evaluation approach as well as the direct ad-
justment approach. For the holdout treatments, half of each dataset was used for exploration
and the remaining half for statistical evaluation. A number of alternative approaches to find-
ing patterns at the exploratory stage were compared. We reproduce here only the approach
that proved most effective, and only for the experiment on real-world data.

Note that when the size of the antecedent is limited to no more than 1 item, the use of
either layered or uniform critical values will be equivalent and hence have identical results.

5.1 Experiment 1

The first experiment explored the effect of increases to the size of the search space that
do not increase the number of true patterns available to be found. The original experiment
generated random data for ten pairs of binary variables x0 and y0 through to x9 and y9. Each
xi was generated at random with each value being equiprobable. The probability of yi = 1
was 1.0 − i × 0.05 if xi = 1, i × 0.05 otherwise. This gave rise to forty valid (productive)
rules of the forms xi = 0 → yi = 0, xi = 1 → yi = 1, yi = 0 → xi = 0 and yi = 1 → xi = 1.
The rules for x0 and y0 represent very strong correlations and were straightforward to detect.
The strength of correlation declines for successive indexes with the rules for x9 and y9

representing relatively weak correlations. Thus there is considerable variety in the ease with
which the rules may be detected. As all valid rules had only one item in the antecedent, any
increase in the maximum allowed size of the antecedent served to increase the search space
without increasing the number of valid rules in the search space. The maximum allowed
antecedent size was varied through every size from 1 to 5.

The quantity of data was varied by generating datasets of the following sizes: 250, 500,
1,000, 2,000, 4,000, 8,000 and 16,000. These sizes were selected by experimentation as
those providing the most interesting variations in performance. 100 random datasets were
generated at each of these sizes. Each larger dataset was generated by adding additional data
to the immediately smaller dataset.

Table 4 presents results for experiment 1 for direct adjustment using alternatively a uni-
form critical value and layered critical values. For each treatment it lists the total number of
true and false discoveries over all 100 runs, together with the number of runs for which any
false discoveries occurred. Note that it is the latter that the experimentwise significance test
seeks to control. If we have successfully controlled this risk at the 0.05 level then the average
number of runs for which any false discoveries occur should be no more than 0.05×100 = 5.
Cells with value zero have been left blank to enhance readability.

As can be seen, at all but the largest dataset sizes, for which direct adjustment with a
uniform critical value is able to find all 40 rules at all search space sizes, layered critical
values suffers less than the uniform critical value from the effect of decreasing numbers of
discoveries as the size of the search space increases. This improved power is obtained at
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Table 4 Results for experiment 1

Data Total true discoveries Total false Experiment

discoveries false discoveries

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Direct 250 3128 2972 2876 2800 2720

500 3520 3376 3268 3200 3144 4 1

1000 3688 3612 3584 3528 3476

2000 3856 3752 3680 3656 3636 12 3

4000 3996 3984 3924 3904 3876

8000 4000 4000 4000 4000 4000 8 1

16000 4000 4000 4000 4000 4000

Layered 250 3128 3096 3056 3052 3044

500 3520 3484 3484 3480 3472 4 1

1000 3688 3680 3664 3656 3652

2000 3856 3836 3800 3796 3788 12 8 8 3 2 2

4000 3996 3996 3992 3992 3992

8000 4000 4000 4000 4000 4000 8 8 8 8 4 1 1 1 1 1

16000 4000 4000 4000 4000 4000

a cost of a modest increase in the frequency of false discoveries, but in no case do more
than 0.05 of runs result in any false discoveries, illustrating how the experimentwise false
discovery rate is still strictly controlled. While the magnitude of the benefit to the layered
approach is small in this experiment, this is only because the artificial domain includes small
numbers of weaker rules. The significance of the result is to show that the layered approach
is better able to discover weaker correlations in the data.

5.2 Experiment 2

For the second experiment the values of 15 binary variables a, b, c, d, e and x0, x1, . . . x9

were randomly generated independently of one another, with each value equiprobable, ex-
cept for e for which the probability of value 1 was 0.80 if all of a, b, c and d were 1 and
0.48 otherwise.

This generates a total of 83 productive rules, those with:

• one or more of a = 1, b = 1, c = 1 and d = 1 in the antecedent and e = 1 in the conse-
quent

• e = 1 and zero or more of a = 1, b = 1, c = 1 and d = 1 in the antecedent and one of
a = 1, b = 1, c = 1 and d = 1 in the consequent,

• exactly one of a = 0, b = 0, c = 0 and d = 0 in the antecedent and e = 0 in the conse-
quent, and

• e = 0 and zero or more of a = 1, b = 1, c = 1 and d = 1 in the antecedent and one of
a = 0, b = 0, c = 0 and d = 0 in the consequent.

Note that this meant that each increase in the size of the search space but the last increased
the number of productive rules that could be found. There are 16 productive rules with 1 item
in the antecedent, 30 rules with 2 items, 28 rules with 3 items and 9 rules with 4 items.
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Table 5 Results for experiment 2

Total false Experiment

Data Total true discoveries discoveries false discoveries

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Direct 1000 4 12 3

2000 36 8 11 22 14

4000 128 96 184 270 192 8 4 2 1

8000 592 673 876 1109 941 1 1

16000 1396 2131 3110 3229 2742 4 1

32000 1600 3922 6192 6668 6302

64000 1600 4588 7360 8206 8158 4 1

Layered 1000 4 12 4 3 1

2000 36 28 28 40 32

4000 128 139 237 347 329 8 4 4 4 4 2 1 1 1 1

8000 592 866 1220 1568 1517

16000 1396 2270 3493 4047 3963 4 4 4 1 1 1

32000 1600 3822 6400 7236 7172

64000 1600 4584 7380 8280 8276 4 4 1 1

Identical treatments were applied to those for Experiment 1 except that datasets sizes
were varied from 1,000 to 64,000, as larger datasets were required in order to find the more
subtle patterns.

Table 5 presents results for experiment 2. Like Table 4, it lists for each treatment the total
number of true and false discoveries over all 100 runs, together with the number of runs for
which any false discoveries occurred.

At the two largest dataset sizes with antecedents of size up to 2, Layered Critical Values
finds very slightly fewer rules than uniform critical values. This is because the reduced
critical value at level 2 finds slightly fewer of the larger number of rules at this antecedent
size, and this is not offset by as many retentions of the fewer rules from antecedent size 1.
At most other data set sizes and antecedent sizes Layered Critical Values finds substantially
more rules. Again there is a modest increase in the false discovery rate, but in no case does it
approach, let alone exceed a total of 5 runs, which corresponds to the significance level 0.05.

5.3 Experiment 3

The third experiment evaluates the performance of Layered Critical Values on real-world
data. The respective approaches were applied to eight of the largest attribute-value datasets
from the UCI machine learning (Newman and Hettich 2007) and KDD (Hettich and Bay
2007) repositories together with the BMS-WebView-1 (Zheng et al. 2001) and Retail (Brijs
et al. 1999) datasets. These datasets are described in Table 6.

The original study (Webb 2007) first found for each dataset the minimum even value
for minimum-support that produced fewer than 10,000 productive rules when applied with
respect to the dataset as a whole with antecedents of size up to six. These values are listed
in the min sup column of Table 6. Each treatment was then applied to each dataset six times,
once with each maximum limit on the size of the antecedent Lmax from 1 to 6. All runs used
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Table 6 Datasets

Dataset Records Items Min sup Description

BMS-WebView-1 59,602 497 60 E-commerce clickstream data

Covtype 581,012 125 359,866 Geographic forest vegetation data

IPUMS LA 99 88,443 1,883 42,098 Census data

KDDCup98 52,256 4,244 43,668 Mailing list profitability data

Letter recognition 20,000 74 1,304 Image recognition data

Mush 8,124 127 1,018 Biological data

Retail 88,162 16,470 96 Retail market-basket data

Shuttle 58,000 34 878 Space shuttle mission data

Splice Junction 3,177 243 244 Gene sequence data

TICDATA 2000 5,822 709 5,612 Insurance policy holder data

the minimum-support specified, except for the holdout treatments which only use half the
data for rule discovery and for which the minimum-support was therefore halved.

Table 7 presents the results of these experiments. Each row presents results for a specified
dataset and setting of Lmax. The meanings of the columns are as follows:

• Dataset: The dataset.
• Lmax: The maximum number of items in the antecedent.
• Prod: The number of productive rules ‘discovered.’ This shows the number of candidates

from which the final discoveries are being winnowed under the two direct adjustment
approaches. Note that the number of candidates for the holdout approach may differ from
this as we apply a smaller minimum support with respect to a smaller dataset.

• Holdout: The number of rules found using holdout evaluation. Where holdout discovers
more rules than either of the direct-adjustment approaches, this value is underlined.

• Search space: The number of rules in the search space. Note that this number is the sum
of the number of rules at each level of the search space up to and including Lmax. The
uniform direct-adjustment technique used a critical value of 0.05 divided by this value.

• Uniform: The number of rules ‘discovered’ that passed a significance test with a uniform
direct adjustment. Where uniform discovers more rules than layered, this value is set in
boldface.

• Layered: The number of rules ‘discovered’ that passed a significance test with a layered
direct adjustment. Where layered discovers more rules than direct, this value is set in
boldface.

For three of the ten datasets, uniform critical values found slightly more rules than the
layered approach at Lmax = 2, and in one case at Lmax = 3, for the same reasons as this
effect was apparent in experiment 2. For most other combinations of dataset and maximum
antecedent size the layered approach found more rules than did a uniform adjustment. In
many cases the layered approach found substantially more rules than the uniform approach.
At the higher values of Lmax the layered approach exhibited a consistent clear advantage.
For Splice Junction layered finds more than three times as many rules and for TICDATA
2000 and Retail it finds more than twice as many rules.

For Splice Junction and TICDATA 2000, the number of rules found with a uniform ad-
justment peaked at antecedent size 1, and increasing the search space resulted in a decrease
in the number of rules found. In contrast, layered adjustments found more rules when the
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Table 7 Number of rules found in the experiments on real-world data

Dataset Lmax Prod Holdout Search space Uniform Layered

BMS-WebView-1 1 3126 3316 2.46 × 1005 3010 3010

2 7548 7386 6.12 × 1007 5995 5985

3 9511 7206 1.01 × 1010 5440 5932

4 9765 7200 1.25 × 1012 4953 5907

5 9772 7200 1.23 × 1014 4503 5886

6 9772 7200 1.01 × 1016 4073 5867

Covtype 1 74 68 1.78 × 1004 68 68

2 290 247 1.17 × 1006 245 245

3 1035 755 4.98 × 1007 746 750

4 2829 1752 1.55 × 1009 1690 1702

5 5967 3116 3.80 × 1010 2848 2914

6 9995 4390 7.56 × 1011 3893 4032

IPUMS LA 99 1 526 452 3.08 × 1006 440 440

2 2152 1508 2.23 × 1009 1469 1464

3 5324 3017 9.60 × 1011 2748 2764

4 8382 4103 2.77 × 1014 3483 3593

5 9763 4398 5.73 × 1016 3522 3769

6 9998 4400 8.93 × 1018 3426 3760

KDDCup98 1 402 88 1.50 × 1008 78 78

2 1885 112 4.39 × 1011 93 95

3 4638 116 7.49 × 1014 83 93

4 7601 116 8.76 × 1017 75 91

5 9384 116 7.66 × 1020 73 91

6 9988 116 5.28 × 1023 73 91

Letter recognition 1 854 574 4.66 × 1003 606 606

2 4003 1905 1.34 × 1005 2039 2040

3 7534 2581 2.29 × 1006 2744 2808

4 9443 2702 2.68 × 1007 2697 2952

5 9939 2703 2.27 × 1008 2574 2942

6 9964 2703 1.47 × 1009 2448 2911

Mush 1 778 690 1.52 × 1004 686 686

2 3501 2567 8.75 × 1005 2594 2599

3 7079 4838 3.12 × 1007 4844 4893

4 9229 6039 7.85 × 1008 5885 6049

5 9885 6346 1.48 × 1010 5972 6336

6 9998 6412 2.16 × 1011 5845 6377

Retail 1 5250 1036 2.72 × 1008 882 882

2 8943 1099 2.23 × 1012 648 877

3 9847 1099 1.23 × 1016 528 856

4 9909 1099 5.05 × 1019 455 846

5 9909 1099 1.66 × 1023 413 840

6 9909 1099 4.56 × 1026 383 838
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Table 7 (Continued)

Dataset Lmax Prod Holdout Search space Uniform Layered

Shuttle 1 380 316 1.03 × 1003 322 322

2 2426 1446 1.46 × 1004 1585 1565

3 6632 2507 1.19 × 1005 2876 2868

4 9420 2768 6.30 × 1005 3113 3200

5 9970 2785 2.28 × 1006 3019 3189

6 9993 2785 5.83 × 1006 2930 3169

Splice Junction 1 6846 308 5.80 × 1004 578 578

2 9111 430 6.88 × 1006 518 678

3 9697 485 5.32 × 1008 382 689

4 9743 488 3.04 × 1010 280 684

5 9744 488 1.36 × 1012 242 667

6 9744 488 5.00 × 1013 204 654

TICDATA 2000 1 454 86 4.68 × 1005 78 78

2 2334 78 1.56 × 1008 70 86

3 5662 78 3.42 × 1010 68 86

4 8670 78 5.53 × 1012 52 86

5 9694 78 7.02 × 1014 36 86

6 9694 78 7.32 × 1016 36 86

search space was increased, retaining the majority of the discoveries at antecedent size 1
while added further discoveries at larger antecedent sizes.

Holdout evaluation found more patterns than direct-adjustment with a uniform critical
value for 46 treatments while uniform found more for just 13. The introduction of layered
critical values greatly increases the number of treatments for which direct-adjustment finds
the most patterns. Holdout evaluation still finds the most patterns more often, doing so for
33 treatments, but the number for which direct-adjustment finds the most doubles to 26.
The introduction of layered critical values makes the direct adjustment strategy much more
competitive with the holdout strategy.

5.4 Experiment 4

K-optimal (also known as top-k) pattern discovery finds the k patterns that optimize a metric
of interest within any user-specified constraints (Webb 1995; Scheffer and Wrobel 2002;
Han et al. 2002; Webb and Zhang 2005). This approach is attractive when the user can
specify an upper-limit on the number of patterns that it might be useful to consider. In
particular, the top-k constraint often removes the need for a minimum support constraint.
However, the holdout evaluation strategy does not integrate well into this approach as it is not
possible to determine how many patterns will be accepted, thus undermining the rationale for
the approach. In contrast, the direct-adjustment strategy can be implemented as a constraint
within the k-optimal approach, the result being that the k significant patterns are found that
optimize the measure of interest. In this context it is desirable to maximize the power of the
statistical test, so that high-value patterns will not be excluded from the results.

In this experiment, the Magnum Opus software was run on each of the ten datasets used
in Experiment 3, seeking the 1000 rules that maximize support within the constraints that the
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Table 8 Results for experiment 4

Dataset Strategy Num. rules Min Max Mean

BMS-WebView-1 layered 1000 0.002 0.020 0.003

uniform 1000 0.002 0.020 0.003

Covtype layered 1000 0.882 0.949 0.906

uniform 1000 0.879 0.949 0.905

IPUMS LA 99 layered 1000 0.565 0.981 0.613

uniform 1000 0.562 0.981 0.610

KDDCup98 layered 1000 0.717 0.997 0.769

uniform 1000 0.700 0.997 0.754

Letter recognition layered 1000 0.111 0.487 0.168

uniform 1000 0.104 0.487 0.159

Mush layered 1000 0.251 0.973 0.334

uniform 1000 0.248 0.973 0.326

Retail layered 1000 0.001 0.331 0.006

uniform 1000 <0.001 0.331 0.004

Shuttle layered 1000 0.076 0.656 0.137

uniform 1000 0.074 0.656 0.135

Splice Junction layered 1000 0.034 0.401 0.102

uniform 247 0.032 0.401 0.142

TICDATA 2000 layered 1000 0.142 0.999 0.329

uniform 1000 0.102 0.998 0.238

rule must be statistically significant and the antecedent contain no more than six elements.
Table 8 presents the number of rules found by each approach, and the minimum, maximum
and mean values of support for those rules. Note that fewer than k (1000) rules will only
be found if there are not sufficient rules that pass the specified constraints. This was only
the case with respect to the uniform approach on the Splice Junction data for which uniform
could find only 247 rules while layered could still find the requested 1000.

For many of the datasets there is little difference between the minimum, maximum and
mean values, layered never being worse off and usually enjoying a slight advantage. The
reason that the advantage is often small is because strong patterns will have high support
and so for a dataset with many strong patterns the significant patterns with high support
are likely to have very low p-values. For datasets with few strong patterns a more obvious
difference in performance is more likely. This is apparent with the Splice Junction data for
which the uniform approach fails to find many rules found by layered. It is also apparent
with the Retail data. While both approaches find 1000 rules, the average value of those
found by uniform is only 66% of that found by layered. Likewise, for TICDATA 2000 there
is a substantial difference in the minimum and mean support of the rules found by the two
approaches.

6 Conclusions

False discoveries are a serious problem for pattern discovery. In many cases the majority
of patterns discovered by standard techniques can be spurious artifacts of the sample data.



322 Mach Learn (2008) 71: 307–323

The direct adjustment and holdout evaluation approaches bring the power of statistical hy-
pothesis testing to bear upon this problem. Both approaches allow any applicable hypothesis
test to be used to screen the discovered patterns while strictly bounding the risk of any false
discoveries at a user specified rate. Each approach has relative strengths and weaknesses.
The holdout approach can be applied as a simple wrapper to any existing pattern discovery
system, enabling statistically sound pattern discovery to be easily retrofitted to any existing
software. It is also suffers less from decreases in the numbers of discoveries as a result of
increases in the size of the search space. It can employ the more powerful Holm procedure in
place of the Bonferroni adjustment. In addition to controlling the experimentwise error rate,
it can also control the false discovery rate. However, only the direct-adjustment approach
integrates directly with the k-optimal (also known as k-top) pattern discovery paradigm. It
also uses all available data for both detection and evaluation of patterns.

While it is important to strictly control the risk of false discoveries, it is also important
to maximize the number of discoveries that can be made while such control is enforced.
This research has demonstrated substantial improvement can be obtained in the numbers of
patterns found within the direct adjustment strategy by using the layered critical values
approach, notwithstanding that it was developed for the different purpose of enabling a
Bonferroni-like adjustment without knowing in advance the maximum depth of the search.
Indeed, while previous research had suggested that holdout evaluation was generally more
powerful than direct adjustment (Webb 2007), the layered critical values approach lifts the
performance of direct adjustment to be in many cases competitive with holdout evaluation,
with the additional advantage that it is directly applicable to k-optimal pattern discovery
techniques.
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