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Abstract Dynamic Bayesian networks (DBN) are a class of graphical models that has be-
come a standard tool for modeling various stochastic time-varying phenomena. In many
applications, the primary goal is to infer the network structure from measurement data. Sev-
eral efficient learning methods have been introduced for the inference of DBNs from time
series measurements. Sometimes, however, it is either impossible or impractical to collect
time series data, in which case, a common practice is to model the non-time series observa-
tions using static Bayesian networks (BN). Such an approach is obviously sub-optimal if the
goal is to gain insight into the underlying dynamical model. Here, we introduce Bayesian
methods for the inference of DBNs from steady state measurements. We also consider learn-
ing the structure of DBNSs from a combination of time series and steady state measurements.
We introduce two different methods: one that is based on an approximation and another
one that provides exact computation. Simulation results demonstrate that dynamic network
structures can be learned to an extent from steady state measurements alone and that infer-
ence from a combination of steady state and time series data has the potential to improve
learning performance relative to the inference from time series data alone.

Keywords Dynamic Bayesian networks - Steady state analysis - Bayesian inference -
Markov chain Monte Carlo - Trans-dimensional Markov chain Monte Carlo

Communicated by Kevin P. Murphy.

H. Lahdesmaiki (X)) - I. Shmulevich
Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103, USA
e-mail: harri.lahdesmaki @tut.fi

1. Shmulevich
e-mail: ishmulevich@systemsbiology.org

H. Lihdesmiki
Department of Signal Processing, Tampere University of Technology, Tampere, Finland

@ Springer


http://dx.doi.org/10.1007/s10994-008-5053-y
mailto:harri.lahdesmaki@tut.fi
mailto:ishmulevich@systemsbiology.org

186 Mach Learn (2008) 71: 185-217

1 Introduction

Dynamic Bayesian networks (DBNs), also called dynamic probabilistic networks, are a gen-
eral and flexible model class that is capable of representing complex temporal stochastic
processes (Dean and Kanazawa 1989; Murphy 2002). DBNs and their non-temporal ver-
sions, i.e., static Bayesian networks (BN), have successfully been used in different modeling
problems, such as in speech recognition, target tracking and identification, genetics, proba-
bilistic expert systems, and medical diagnostic systems (see, e.g., Cowell et al. 1999, and the
references therein). Recently, BNs and DBNs have also been intensively studied in the con-
text of modeling genomic regulation, see, e.g., (Hartemink et al. 2001, 2002; Husmeier 2003;
Imoto et al. 2003; Friedman 2004; Pournara and Wernisch 2004; Sachs et al. 2005;
Bernard and Hartemink 2005; Werhli et al. 2006; Lahdesmaki et al. 2006).

In many applications, the underlying network structure is unknown. Therefore, the first
and often the most important problem is to infer the model structure from measurements.
There exists an extensive body of literature introducing efficient BN and DBN learning
methods. Different model inference methods can be divided into two categories: methods
that attempt to construct networks by estimating conditional independencies between nodes
in the network (Pearl 2000), and methods that search candidate models through the space
of network models using a statistical score combined with different search/estimation algo-
rithms, such as greedy search or powerful standard stochastic estimation methods (Cooper
and Herskovits 1992; Madigan and York 1995; Heckerman 1998). Here we follow the latter
approach.

Temporal models are best learned from temporal data. However, experimental settings
do not always permit collecting time series measurements, and may only capture so-called
steady state measurements.'! That is frequently the case in bioinformatics and computational
systems biology studies, where regulatory network models are inferred from gene expres-
sion or proteomics data. One has previously been left with two alternative approaches. First,
all the samples, both time series and steady state, can be used to infer static BNs. This
approach is inherently limited to learning non-dynamic network models and is therefore
sub-optimal if the underlying model is dynamic in nature. Second, one can use only the time
series measurements for the inference of dynamic models. While this approach is princi-
pled, it results in an inefficient procedure as it ignores part of the measurements, which can
contain a substantial amount of information about the dynamic behavior of the network. In
this work we describe a rigorous Bayesian method for learning the structure of DBNs from
steady state measurements. This is achieved in two different ways: either learning network
structures from steady state measurements alone, or learning network structures from a com-
bination of time series and steady state measurements. We introduce both approximate and
exact learning methods. Simulation results are presented to show that the proposed methods
provide an improved learning methodology.

To the best of our knowledge, no method capable of learning dynamic network models
from steady state measurements, at least for DBNs, has been proposed previously. Rele-
vant background material for our approach includes studies introducing BN and DBN in-
ference methods (Cooper and Herskovits 1992; Madigan and York 1995; Heckerman 1998;
Friedman et al. 1998; Husmeier 2003). Similar ideas of using steady state analysis in dy-
namic model inference have been developed for hidden Markov models (HMM) in (Robert
et al. 2000). The goal of Robert et al. was to develop a Bayesian estimation method for the

1Steady state measurements can be considered as snapshots of the long-run behavior of a system. A more
precise definition of steady state is given later in Sect. 3.
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number of components in an HMM from time series data, where the first observation was
assumed to be generated from the steady state distribution of the HMM. A modification of
the method was also proposed for i.i.d. data, essentially corresponding to steady state data,
but in that case the Bayesian inference was implemented using the steady state distribu-
tion directly, not the underlying dynamic HMM. In particular, here we consider learning the
structure of the underlying DBN, which generates the Markovian process, from steady state
measurements. In addition to structure learning from complete and incomplete time series
measurements, Friedman et al. (1998) also considered learning DBNs in a similar setting
as we do here. They assumed that data was sampled from an unknown time step. They also
augmented the dynamic network model with an additional switch variable that, once set,
freezes the state of the network. The structural expectation-maximization (EM) algorithm
was used to infer hidden states of the system back to the beginning of the time series (time
0) and to find a maximum a posteriori (MAP) network structure. Note that some related work
has also been reported by Nikovski (1998), who proposes a method for learning parameters
of DBNs from incomplete time series data by imposing a (slightly different) constraint on
stationarity. This approach is similar in spirit to what we propose here. The main differences
are that we build our methods on the standard Markovian assumption (P (X[z + 1]|X[z]),
inherent in the model) and on steady state analysis implied by this transition model. Most
importantly, we consider structural learning from steady state measurements.

Section 2 reviews the modeling framework. Steady state analysis of DBNs is described
in Sect. 3. The inference methods are introduced in Sect. 4. Simulations and results are
discussed in Sects. 5 and 6, respectively. Conclusions and discussion are given in Sect. 7.

2 Modeling framework
This section introduces background of BNs and DBNs necessary for further analysis.
2.1 Bayesian networks

A Bayesian network is defined by a graphical model structure M and a family of conditional
distributions F and their parameters 6. The model structure M consists of a set of nodes
V and a set of directed edges E connecting the nodes such that the resulting directed graph
is acyclic (DAG). The nodes represent random variables in the network whereas the edges
encode a set of conditional dependencies. In the parametric setting, the family of conditional
distributions F is assumed to be known and hence is fully described by its parameters.

Let X ={X;, X», ..., X, } denote a set of random variables that correspond to the nodes
V in the network. Lower-case letters x;, x», ..., x, are used to denote the value of the corre-
sponding variables. Let Pa(X;) denote the random variables corresponding to the parents of
node i in the DAG. Then, the network structure M and the parameters 6 of the conditional
distributions together define a joint distribution over the random variables X as

P(x1, %, .., %) = [ [ P(xilpa(X:)).

i=1

In the following, we assume that each random variable X; can take on r; values. Further-
more, we only focus on the family of (unconstrained) multinomial conditional distributions,
although other parametric families are also possible.
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Note that static BNs can be limiting in some applications because the network struc-
tures are acyclic. Although information flow in BNs is bi-directional relative to the directed
edges, static BNs do not allow one to explicitly model the direct or indirect feedback loops
explicitly that are frequently encountered in applications.

2.2 Dynamic Bayesian networks

DBNs, which are temporal extensions of BNs, extend the above concepts to stochastic
processes. Let X[t] = {X[¢], X»[t], ..., X,[#]} denote the random variables in X at time
t €{1,2,...}. We restrict our attention to homogeneous first-order Markov processes in X,
ire., PX[#]|X[t — 1],...,X[1]) = P(X[¢]|X[t — 1]) for all + > 1 and for all values of
X[1], X[2], ..., X[r]. We also assume that each node X;[7] has all of its parents among
variables X[t — 1]. Under these assumptions, the joint probability distribution of a finite
length time series can be written as

T
P(x[11,x[2], ..., x[T]) = P(x[1]) [ [ P(xle1ixlz — 11) o)
t=2
T n
= P [ [[ [ P@ilelipacX;ie)). ©)
=2 i=1

Note that the role of the first sample x[1] is slightly different, which is discussed more in the
following. Although (1) and (2) generalize easily to more than one time series, we will limit
our discussion to a single time series for notational simplicity.

Note that the above constraints guarantee the underlying “time unrolled” network still to
be acyclic but at the same time allow modeling feedback loops explicitly by directed edges.
Although only first order Markov processes are considered here, the following discussion
naturally extends to higher order Markov processes as well since the state space can always
be extended to accommodate higher-order processes. DBNs can also be defined to contain
edges within a time slice, i.e., Pa(X;[t]) € {X[¢], X[t — 1]} instead of Pa(X;[¢]) < {X[t —
1]}. While directed edges between consecutive time slices X[# — 1] and X[¢] represent causal
flow, within time slice connections can be interpreted as instantaneous causality. Although
we assume DBNSs to have only between slice edges, our learning methods work equally well
if we allow edges within a time slice, as long as the time unrolled network is a DAG (so that
the graphical model structure represents a DBN).

3 Steady state analysis of DBNs

Equation (2) characterizes stochastic behavior of DBNs over a finite time interval. How-
ever, it is also important to consider the long-run behavior of DBNs. Since we focus on
homogeneous discrete-valued DBNs, we can study their dynamics using finite-state Markov
chains.

Let A denote the state transition matrix of a Markov chain corresponding to a DBN.
Using the state vectors of a DBN to index A, let A,y denote the probability that a DBN will
move to state v given that the current state is u, i.e.,

Ay = PX[t]=Vv|X[t —1]=1u)

=HP(Xi[l]=vi|Pa(Xi[t])=upa;)v (3)
i=1
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where v; is the ith element of v and wup,, denotes the elements of u that correspond to the
parents of the ith node. In the case of multinomial distributions, (3) can be rewritten in terms
of its parameters as

Auy = [ [ 0r.upa, 1 “
i=1

where Qi,upa‘.,v,- = P(X;[t] = v;|Pa(X;[t]) = upy,).

Let AY) = P(X[t + r]1 = v|X[t] = u) denote the r-step transition probability of the ho-
mogeneous Markov chain. A state v is said to be accessible from state u if there exists an
r > 0 such that A?) > 0. Two states u and v are said to communicate if v is accessible
from u and if u is accessible from v. The communication relation divides the states into
equivalence classes: states inside an equivalence class communicate which each other but
not with states outside the class. A Markov chain is said to be irreducible if the number of
equivalence classes generated by the communication relation is equal to one, i.e., all states
of the chain communicate. The period of a state u, d,, is the greatest common factor of
integers {r | AY) > 0}. A Markov chain is said to be aperiodic if d, = 1 for all the states u.

The Markov chain is said to possess a steady state distribution if there exists a probability
distribution 7 such that

Jim AL =
for all states u and v. The fundamental theorem of Markov chains says that every finite-
state homogeneous Markov chain that is irreducible and aperiodic (i.e., ergodic) possesses a
unique steady state distribution (see, e.g., Cinlar 1997). Moreover, for any initial distribution
7@ of u, the state probability after r steps ") approaches 7, when r — oo. Let us next
establish a useful result for DBNs.

Theorem 1 A sufficient condition for the Markov chain corresponding to a DBN to possess
a unique steady state distribution, independent of the initial distribution, is that 6, >0
Sor all possible values of i, Wy,,, and v;.

I, Upa; ,V;

Proof Consider any two state vectors u and v. It is clear that Af,'v) =PX[t]=v|X[t—1]=
w) =[], 0i,upa; i > 0. Hence all states communicate and the DBN is irreducible. Similarly,
A > 0 and therefore d,, = 1 for all the states u, which ensures aperiodicity. O

Note that Theorem 1 gives a sufficient (not necessary) condition for ergodic dynamics.
It is easy to construct DBNs where some 6, u,, ., = 0 but the corresponding Markov chain
is still both irreducible and aperiodic. Existence of ergodic dynamics for semi-deterministic
models, however, needs to be checked on a case-by-case basis. Also note that any semi-
deterministic model can be approximated as accurately as desired by requiring 6; >0
but letting ei,upal- v —> 0.

In the following, we assume that the underlying model possesses a unique steady state
distribution 7w from which the steady state measurements are also sampled. In most appli-
cations, this is a reasonable assumption. For example, the assumption of having a unique
steady state distribution is made implicitly in practically every biological application where,
e.g., static transcriptional regulatory network models, such as BNs, are learned from steady
state gene expression or protein level data (Pe’er et al. 2001; Hartemink et al. 2002;
Imoto et al. 2003; Dobra et al. 2004; Pournara and Wernisch 2004; Wille et al. 2004,
Sachs et al. 2005; Schifer and Strimmer 2005; Werhli et al. 2006). For a more complete list

>Upa; Vi
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of previous work, see (Markowetz 2007). Since the underlying (biological) system is known
to be dynamic, the data generating mechanism is then naturally modeled as the steady state
distribution of the dynamical system. Moreover, since steady state measurements are typ-
ically sampled infrequently, they are best described as being isolated and non-successive
samples from 7. It is also worth noting that our the methods proposed here are valid even
if the underlying system is not strictly ergodic. In particular, if a DBN is not irreducible but
each closed communicating sub-class has its own unique stationary distribution, then the
same methods (described below) can be applied sub-class wise.

It is important to note that the mapping from DBNs to steady state distributions is not
a bijection. To show a counterexample, consider, for example, two three-node networks
with particular network structures (E|,, E»3, E3;) and (Ey, Ex, Ej3), respectively, where
E;; denotes a directed edge from X;[t — 1] to X;[¢]. If all the nodes in both networks
are associated with the same conditional distribution, then the corresponding steady state
distributions are equivalent. Although this example is somewhat artificial, from the point
of view of network inference from steady state measurements this means that the inference
problem can have more than one optimal point estimate, i.e., it is ill-posed. This issue is
automatically taken care of by introducing (fully) Bayesian inference methods that simply
assign the same posterior probability to such score-equivalent networks, assuming equal
prior probabilities. This is exactly analogous to learning static BNs from non-interventional
measurements where only equivalence classes of BNs can be learned. The score-equivalence
problem disappears when DBNs are learned from a combination of time series and steady
state data.

In Sect. 4, we are also interested in solving for the steady state distribution 7. Note that
the row vector 7 can be obtained by solving m A = 7, i.e., the left eigenvector corresponding
to the eigenvalue A = 1. Also note that instead of solving the whole eigenproblem associated
with the stochastic matrix A, one only needs to solve for the eigenvector corresponding to
the largest eigenvalue. For that purpose, one can use a variety of methods (see, e.g., Stewart
1994). We use an algorithmic variant of the Arnoldi iteration called the implicitly restarted
Arnoldi method as implemented in ARPACK/Matlab (Lehoucq et al. 1998). Although ef-
ficient algorithms have been introduced for solving the dominant eigenvector, the problem
becomes computationally demanding for large state transition matrices. That also causes
the main computational bottleneck of the current implementation of the proposed inference
methods. For further discussion on this issue and recent improvements, see Sect. 7.

4 Bayesian learning methods

In the Bayesian context the most natural and most often used scoring metric is the posterior
probability of a network M given data D, P (M |D). According to Bayes’ rule, the posterior
probability can be written as
P(DIM)P(M
PM|D) = LPIMPM)
P(D)

where P (D) is a constant that does not depend on M. Consequently, both the marginal
likelihood P(D|M) and the network prior P(M) play a central role in the inference. In
a full Bayesian analysis the marginal likelihood involves marginalization over the whole
parameter space

P(DIM)=/P(D|M,9)P(9|M)d9. 5)
0
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Although the network prior is an important factor, especially in small sample settings, for the
purposes of this study, we assume an uninformative (uniform) prior over network models.
If prior knowledge of a particular problem domain exists, the priors can be used in the
proposed method the same way they are used in the traditional Bayesian inference.

Traditionally, DBNs have been learned from time series measurements only. In several
applications, especially those in computational biology, the collected data typically con-
tain steady state measurements. Our goal here is to use such steady state measurements,
either alone or together with time series measurements, to learn the structure of DBNs. In
the following, measured data are denoted collectively as D. To distinguish between differ-
ent types of measurements we write D = (D4, D, ), where Dy = (x[1],x[2], ..., x[T]) and
D, = (xy,X3,...,Xy) denote time series and steady state measurements, respectively. In
general, time series data can contain several, say R, instances each having length T;, i.e.,
Dy = (DY, DA, ..., DX), where D), = (x'[1],x'[2],...,X[T;]). We assume a single time
series for notational convenience. In the following, we also assume fully observed data. We
first start with a brief discussion on parameter priors, parameter learning, and traditional
time series based model inference.

4.1 Parameter priors

Recall that each random variable X; is assumed to have r; possible values. Let {i, i, ...,
i|pacx;)|} denote the indices of the parents of node i. The number of possible parent con-
figurations for node i is q; =r; rj, -+~ Fiipacx;)| - For notational convenience, let us rewrite the
parameters Gi,upa,-.v,- as 6;jx, wherei € {1,2,...,n}, j€{1,2,...,q;},andk € {1,2,..., ri}.2

Given a network structure M, one needs to define a prior probability model for the cor-
responding parameters. That may be a difficult task given the large number of different
network structures, 20 in the case of DBNs of the form we consider here. To simplify
things, we follow the common practice and assume the parameter priors to fulfill both
so-called global and local independence. The global parameter independence is defined
as P(GIM) = l_[?:] P(9,|P3(Xl)), where 0; = {O[jk | j S {1, 2,..., q,'}, k € {1, 2,... s r,‘}},
whereas the local independence means P (6;|Pa(X;)) = 3": | P(6;;Pa(X;)), where 6;; =
{Oijk 1 k€ {1,2,...,1}}.

It can be shown that the local and global parameter independence together with so-called
likelihood equivalence for static BNs imply the prior to be Dirichlet (Geiger and Hecker-
man 1997). Furthermore, and more importantly for DBNs, Dirichlet is the conjugate prior
for multinomials. Given the above assumptions, the Dirichlet prior for each 6;; with hyper-
parameters « is defined as

D) 1o et
P@jla) = —— 21— [670 ",
! k‘:l F(aijk) g ik

where 0, > 0, >/ 0k = 1, ajjx > 0, 05 = Y}, oy, and T'(+) is the Gamma function.
4.2 Inference from time series measurements
Given a network structure M, let N;j; denote the number of times variable configura-

tion (X;[t] = k, pa(X;[t]) = j) occurs in time series data D,. Since the Dirichlet distri-
bution is the conjugate prior for multinomials, the posterior distribution of 6;; given the data

2Any bijective mapping can be used for upa, and j and for v; and k.
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Dy, P(6ijla, Dy), also has a Dirichlet distribution, but with parameters «;;; + Njji, o2 +
Nij2, ..., jr, + Njjr,. This explicitly shows that the hyperparameters can be interpreted as
pseudo counts of cases (X;[t] =k, pa(X;[t]) = j).

Different (posterior) estimates of parameters 6;;; can be defined. Three of them are con-
sidered here: maximum likelihood (ML), maximum a posteriori (MAP) and posterior mean,
which can be written as (see, e.g., Murphy 2002)

A Nijk
Oijr = ——

for the ML,

~ o + N," —1

i = Fijk T Wik — © (6)
®j + Nij —ri

for the MAP and

(7

for the posterior mean, where N;; = Y /" Njj.

As we are also interested in the long-run behavior of DBNG, it is natural to study the
conditions under which the learned model (network structure is fixed, only parameters are
learned from time series data) possesses a unique steady state distribution. For small sam-
ples, ergodicity can be guaranteed by the hyperparameters of the prior distribution. A suffi-
cient condition is formulated in the following theorem.

Theorem 2 Given a network structure M and time series data set D 4, a sufficient condition
for the finite-state Markov chain corresponding to the network model (M, 0) (resp. (M, 0))
to possess a unique steady state distribution is that a;j, > 1 (resp. o > 0) for all i, j
and k.

Proof The result follows directly from Theorem 1 and (6) and (7). O

Note that the above result does not hold for the ML estimates.

Under the above assumptions on the parameter priors and complete data, computation of
the marginal likelihood is analytically tractable, and P(D4|M) can be written as (Cooper
and Herskovits 1992; Heckerman et al. 1995)

Ti

noqi
P(DA|/\/[):1—[1_[ F(ai.f) 1_[ F(aijk‘i‘Nijk)' (8)
i=1j=1

o Dleij +Ny) o Tlaije)
4.3 Inference from time series and steady state measurements

As discussed above, steady state measurements are modeled as isolated and non-successive
samples from . Thus, time series and steady state measurements are independent condi-
tional on a DBN (M, 6). Furthermore, steady state measurements are conditionally inde-
pendent as well. This latter independence assumption states that steady state measurements
are sampled infrequently enough so that the correlation (over time) between any x; and X
is negligible. Although we do not consider any correlation structure between steady state
measurements, such correlations could be easily taken into account via the r-step transition
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probabilities AY) (assuming r is known). Given both time series and steady state measure-
ments, the marginal likelihood can be written as

P(Ds, Dy| M) :/P(DA,D,TIM,Q)P(OIM)dO
9

:/P(DAlM,9)P(D,,|M,0)P(9|M)d9, ©)
0

where we have used the conditional independence between D, and D, given (M, 0). Un-
fortunately, the above integral is no longer analytically tractable in general. To elaborate, let
us use the independence between x; and X; (i # j) and write

M M
P(Dy|M,0) =] PxiIM, 0) =] [ ., (10)
i=1 i=1

where 7 is the steady state distribution of a DBN defined by M and 6. Note especially that
each P(x;| M, 0) depends on x; in a complicated manner via the steady state distribution.
Finally, if the first time series sample x[1] can be considered to be sampled from the steady
state distribution, then that can be accounted for by multiplying (10) by my(y;.

Below we introduce both approximate and “exact” inference methods in Sects. 4.4
and 4.6, respectively. Approximate methods are limited in that they can only be applied if
both time series and steady state measurements are available whereas the exact computation
has no such limitations.

4.4 Approximate inference methods

A commonly used approximation to (the logarithm of) the Bayesian score can be obtained
by using the Bayesian information criterion (BIC) (Schwarz 1978) or, equivalently, the min-
imum description length (MDL) principle (Rissanen 1978)

A~ d
BIC(D|M) =log P(D|M, 0) — 3 log N

where 6 denotes the ML parameters for M given D, d = >__, ¢;(r; — 1) is the number
of parameters in the model, and N =T + M is the sample size. Unfortunately, no closed-
form solution is available for the computation of 6 from a combination of time series and
steady state measurements and hence an iterative optimization routine is required. In order
to overcome that, we can alternatively consider another approximation where we replace 6
by the ML estimate, 6,4, that depends on the time series data only. Similar approximation
can also be constructed for the MAP and posterior mean estimates, respectively. The use
of the MAP or posterior mean instead of the ML estimate is also motivated by Theorem 2,
which guarantees that the optimal parameters provide ergodic dynamics.

The above reasoning leads us to consider another alternative, which is a type of semi-BIC
approximation and is defined as (when expressed without the logarithm)

SBIC, (DIM) = / P(DAIM, 0) P(Dy | M, 8.4)P (0| M)d6
6

= P(D,,IM,@A)/P(DAlM,Q)P(OlM)dO
0

= P(Dx|M,6,4) P(Dal M), an
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where 6 4 is the posterior mean estimate of 6 that depends only on the time series data, and
the last equality follows from (5) and (8). Again, a similar approximation can be considered
for the ML and MAP estimates as well. Note that plugging in the posterior mean estimates,
P(D,|M,8,), does not result in over-fitting since D, serves as an independent test data
set for 4. An important aspect of the above approximation is that it provides accurate
scoring for the time series measurements, which naturally contain more information about
the network dynamics than steady state measurements.

A potential problem with the above approximations, or with approximations in general,
is their accuracy, especially for small sample sizes. The SBIC-approximation, however, is
expected to behave well due to the above mentioned reasons. We also introduce an exact
method (exact up to an arbitrary simulation accuracy) later in Sect. 4.6 and compare the
exact method with the SBIC-approximation via simulations in Sects. 5 and 6.

4.5 Bayesian posterior estimation using MCMC

Given one of the above scoring criteria, either exact or an approximation, a common ap-
proach is to find the highest scoring network (or a set of high scoring networks), i.e.,

M= argmj\a}lx P(M|D).

Exhaustive search is prohibitive for all but the smallest networks due to the huge number
of network models. Therefore, one typically needs to rely on optimization or estimation
procedures. All the methods we propose rely on stochastic estimation methods, in particular,
Markov chain Monte Carlo (MCMC) (for a review, see Robert and Casella 2005).

The appropriateness of searching for only the highest scoring network may be question-
able, at least in a small sample setting, since the posterior is likely to be relatively flat, i.e.,
the highest scoring network does not stand out as sufficiently unique. Therefore, in many
applications, it is more relevant to consider the full posterior distribution over network mod-
els or, in practice, a set of high scoring networks. This can be done by sampling networks
directly from the posterior P(M|D) using MCMC methods. The idea of MCMC methods
for DBNS is to construct a Markov chain over network structures, {M},—1 2., such that
it converges in distribution to the posterior P(M|D). If the chain {M,} is again aperiodic
and irreducible, then it converges to a stationary distribution. Thus, the goal is to construct
a transition kernel for {M,} such that the stationary distribution is the desired posterior.

The Metropolis-Hastings (MH) algorithm for BNs was first introduced in (Madigan and
York 1995) and was called MC?, MCMC for model composition. In the MC? algorithm,
convergence to the desired posterior is obtained as follows. Given the current network M,
a new structure M’ is sampled from a proposal distribution Q(M’|M). For the traditional
time series based inference, the proposed structure is accepted with probability

P(M /
R:min{l, (MID) X Q(MIM)}. (12)
P(MID)  Q(M'IM)
For the SBIC-approximation the above equation can be written as
SBIC; ! !
R—minl1, aDIM) QMM . (13)
SBICz(DIM) — Q(M'|IM)

Note that in (12) D = D4 whereas in (13) D = (D4, D, ). The proposal distribution intro-
duced in (Madigan and York 1995) is based on the concept of neighborhood of a given
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1 Initialization: set M,
2 For=1toL+S—1
— Sample u ~ Ujo 1y
— Sample M’ ~ Q(:|My)
—Ifu <R (Equation (12) or (13))

o My =M
—Else
o My =M,

Fig.1 Pseudo-code of the MC3 algorithm

network M, N (M), which for DBNs consists of all networks that can be obtained from
M with a single edge removal or addition (Husmeier 2003). The proposal distribution then
assigns a uniform probability to all the networks in A'(M), i.e., Q(M'|M) = 1/|IN(M)]
for all M’ € N'(M) (otherwise zero). It is easy to see that for DBNs, |AV/(M)| = n?, regard-
less of M. Therefore, this choice of proposal distribution (and neighborhood) guarantees it
to be symmetric, Q(M'|M) = Q(M]|M’). Consequently, the MH algorithm reduces to the
Metropolis algorithm and e.g. (12) can be rewritten as

(14)

R :min{l PMID) }

" P(M|D)

To summarize, given an initial network M, new networks are sampled from Q(-| M)
and accepted with probability R. If the proposed network is accepted (resp., rejected), then
we set Mgy = M’ (resp., My = M,). After a proper burn-in period L, a dependent
sample {M 1, M42,..., M s} is collected from the chain. A pseudo-code of the MC?
algorithm is shown in Fig. 1.

In order to score steady state measurements in the SBIC-approximation, one needs to
solve for the posterior mean parameter estimates 64 as well as the steady state distribution
corresponding to (M’, 8 4) during each MCMC iteration. Note, however, that the consec-
utive networks in a chain differ only by at most one edge and that allows a more efficient
way of computing the Bayes factors in (12) and (13) (Madigan and York 1995) (see also (4)

and (8)). Also note that the intractable term P (D) and the uniform prior over networks

.3 PM' D) _ P(DIM)
cancel out; i.e., POAID) = POIM)

The chain {M,} allows us to estimate the full posterior P (M|D) over all M. It is typ-
ically of interest to look at the marginal posterior probabilities of network edges P (E;;|D)
=Y Lij(M)P(M|D), where I;;(-) is the indicator function for the edge from node

X; to node X ;. These quantities can be directly estimated using a chain as ﬁ(E,-.,-|D) =
1 \L+S

5 2i—r+1 Lij(My), which converges to the true posterior edge probability almost surely.

4.6 Exact model inference using trans-dimensional MCMC

The previous section introduced approximations to the marginal likelihood. An alternative
approach attempts to solve the intractable integral directly without any approximations.
A naive solution would try to go through all DBN network structures and apply a sepa-
rate MCMC estimation (or numerical integration) procedure to (9). This is computationally
intractable, given the enormous number of different network structures. Alternatively, one
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could use the MC? algorithm (over M) discussed in the previous section and combine that
with another MCMC estimation (over 6). In other words, given the current model M, one
could construct another chain over its parameters 6 to compute the marginal likelihood.
However, this would result in an inefficient computation where chains {M,} and {6,} were
run independently in a nested fashion.

A standard solution is to construct a trans-dimensional MCMC sampler that exploits rela-
tionships between model parameters in different models. For this purpose, we propose to ap-
ply a so-called reversible jump MCMC (RIMCMC) method introduced in (Green 1995). For
a review, see (Andrieu et al. 2001; Robert and Casella 2005). Instead of sampling network
models and their parameters independently, a RIMCMC samples in the “product space” of
{M, 6}, more precisely in

s={JaM) x 000, (15)
M

where the union is over all 2") DBN model structures and 0 1 denotes the parameters of a
specific model structure M.

The method developed by Green (1995) is extremely flexible. Here we consider a partic-
ular implementation that suffices to address our problem. See also (Dellaportas and Forster
1999; Giudici et al. 2000; Pournara 2004) for related sampling approaches to undirected and
directed decomposable network models. Assume that the current state of the chain is {M, 6}
and that a proposed new state is {M’, 8’} where the dimensionality of 6’, dim(6"), is higher
than that of 6. Further, assume that 6’ is obtained from 6 and a variable g ' Via a bijec-
tive mapping 0’ = faq (0, @1 ar), dim(0") = dim(0) + dim(@aq ar), and @ g ag itself
is proposed from a distribution g v (-|@). The acceptance probability for the proposed
move that satisfies the detailed balance conditions is (Green 1995)

R =min{1, R,}, (16)
where
o P(M',0'|D) Q(M|M) fmom 0, o) 17
P(M,0|D) QM IM)Gp p (@r i 10) | 38, @ a0, 1)
and | - | denotes the determinant. The corresponding move from {M’, 0’} to {M, 0} is ac-

cepted with probability
R =min{l, R;}, (18)

where R; = 1/R, and ¢ Ay is obtained from the inverse transformation (6, o\ ar) =
f;Al’M,(G’). Note that P(M',60'|D) = P(D|M',6")P(M',6")/P(D) and P(D|M',0") =
P(D4|M',0")P(Dy| M, 0") due to the assumption of conditional independence of D, and
D, given a DBN.

We consider the same symmetric proposal distribution for network structures as in
Sect. 4.5 that proposes to either add or delete one edge at a time. Hence, the Q terms can-
cel out from (16). Assume first that a move from {M, 6} to {M’, 0’} involves adding the
edge E,;, i.e., edge from X, [t — 1] to X;[¢]. In the case of binary networks, which are also
considered in Sects. 5 and 6, we sample @ o from the uniform distribution over con-
tinuous volume (0, 1)%, where g; denotes the number of parent configurations for the ith
node in M. Since the volume of the unit hypercube is 1, we have g v (@ a]0) = 1.
The uniform proposal distribution provides a general approach, especially if no prior knowl-
edge of parameters is available, as is typically the case. Note that each 6;; has only one free
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parameter because 6;j, = 1 — 6;;;. The previous conditional probabilities 6; and proposed
values @, o are transformed into new conditional probabilities 6/ directly using the iden-
tity function such that the previous (resp., proposed) conditional probabilities are used for
those input configurations for which the newly added parent node takes on value one (resp.,
two). Conditional probabilities of other nodes remain the same, i.e., 9} =0, for j #i. Thus,
the determinant of the Jacobian matrix is 1. Consequently, (16—17) reduce to

19)

P(M',0'|D
R:min{l,i(M | )}.

P(M,6|D)

Again, the reverse move from {M’, 6’} to {M, 6} is defined automatically by the bijective
mapping faq '

A similar construction can also be defined for networks with r; > 2 but now modified
to satisfy the constraints 6;;; > 0 and Z;":, 0ijx = 1. Assume again that the proposal move
involves adding the edge E,;. As above, let g; denote the number of parent configurations
for node X; in the current network M. The number of parent configurations for X; in the
proposed network M’ is g/ = r,q;. One can proceed, e.g., as above and use the previous
conditional probabilities for those input configurations for which the newly added parent
node X, takes on value one. For the ¢/ — ¢; “new” parent configurations we can propose
new conditional probabilities (¢4, a¢) uniformly randomly from the r;-dimensional unit
simplex (but excluding boundary of the simplex to avoid zero probabilities). This is equiva-
lent to drawing g/ — ¢; independent samples from the r;-dimensional Dirichlet distribution
with all hyperparameters equal to one. Note that this proposal procedure for r; > 2 is a gen-
eralization of the binary case. The determinant of the Jacobian matrix is again 1 but now
gm . (@ a10) # 1 and so it cannot be ignored.

In addition to reversible jumps between different network structures and their parameters,
RIMCMC can also propose a so-called null move where the network structure remains the
same but the parameters are updated using the standard MH step. Given the current state
{M, 6}, new parameters in the standard MH step are sampled from a proposal distribution
gm.m(+|0) and a null move from { M, 6} to {M, 0} is accepted with probability

R— min{l P (M, 0'|D)gr.m(010") } 20)

" P(M,01D)g i m(8'16)

In our implementation, the proposal distribution g a¢(-|0) first selects a node uniformly
randomly and proposes new parameter values for the selected node. Given that the ith node
is selected by gaq, a1, then new values for all 6,51, j € {1,...,q;}, are proposed indepen-
dently from the (0, 1) truncated normal distribution with mean 6;;; and standard deviation
o =0.1. Note again that 6;;, = 1 — 6;;;. Finally, a reversible jump and null move are pro-
posed with probability 8 =1/2 and 1 — g = 1/2, respectively.

A similar construction can again be obtained for networks with r; > 2. For example,
new conditional probabilities 6;; can be proposed sequentially such that 6, (fork=2,...,
r; — 1) is proposed from (Gi/j 1> 0ijk+1)) truncated normal distribution. For k = 1 and k =r;
left and right limits of the truncated normal distribution need to be 0 and 1, respectively.

To summarize, given an initial model M, and the corresponding initial parameters 6, the
RIMCMC proceeds with a reversible jump (resp., null) move with probability g (resp., 1 —
B). The proposed reversible jump (resp., null) move is accepted with the probability shown
in (16) or (18) (resp., (20)). If the proposed reversible jump (resp., null) move is accepted,
then we set (M1, Opy1) = (M, 0") (resp., (M1, 0er1) = (M, 0")). If the proposed move
is rejected, then we set (M1, O¢+1) = (M, 8). After a proper burn-in period L, a dependent
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1 Initialization: set (M, 6)
2 Forée=1toL+S—1
— Sample u ~ Ujo, 17 and v ~ Ujo, 1
-Ifu<p (“jump”)
e Sample M’ ~ Q(-|M,)
o If dim(M') > dim(M,) (add an edge)
© Sample @, A ~ Gt (-10¢) and set 0" = fig, v Oe, Patp. 100)
o If v < R=min{l, R,} (Equation (16))
o (Mys1,0p41) = (M, 0"
¢ Else
o (Myt1, Oe41) = (M, 0p)
e Else  (remove an edge)
O 0, ort i) = Fgrpa, 00)
o If v < R=min{l, R;} (Equation (18) with variables
corresponding to a move from (M,, 6,) to (M’,0"))
o (Mgy1,0e41) = (M, 0"
¢ Else
o (Myy1, Opp1) = (Mg, 0y)
—Else (“null”)
o Sample 0" ~ g, a1, (+102)
eIfv <R (Equation (20))
O (Myg1, 0py1) = (M, 0
o Else
O (Myyt, 1) = (Mg, 0y)

Fig. 2 Pseudo-code of the RIMCMC algorithm

sample {(M11,0141), (Mpi2,6142), ..., (Mpris,0115)} is collected. A pseudo-code of
the RIMCMC algorithm is shown in Fig. 2.

As in the case of the SBIC-approximation algorithm, one needs to solve for the steady
state distribution corresponding to a proposed network during each RIMCMC iteration.
However, the consecutive networks in a chain again differ only by at most one edge and
that allows a more efficient computation of (16-20). Finally, note that the above RIMCMC
method provides us a way to estimate the full posterior P (M, 8|D) over S (see (15)) as well
as the marginal posterior probability P(M|D) = fa P(M,6|D)do for all M without any
approximations.

Assuming the current DBN { M, 6} satisfies the sufficient condition of Theorem 1, then
the above RIMCMC construction guarantees that so does the proposed network. First, the
detailed balance condition is satisfied by construction of Green’s RIMCMC method. Sec-
ond, aperiodicity and irreducibility of the chain are seen using the same reasoning as, e.g.,
in (Robert et al. 2000; Richardson and Green 1997). Aperiodicity follows from the fact
that for any arbitrarily small neighborhood of the current state { M, 6} there is a positive
probability that the state is in that neighborhood after one step of the RIMCMC procedure.
Irreducibility of the chain follows from the fact that any model structure M’ can be ob-
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tained from M by repeatedly adding or deleting one edge at a time and the parameters 6 are
sampled from continuous distributions whose supports are the whole parameter spaces.

The above discussion assumes a model where time series and steady state measurements
are generated by exactly the same model (M, 6). In some applications, it might be realistic
to assume a different model where D4 and D,, are associated with the same network struc-
ture but with different parameters 6,4 and 6, i.e., parameters are not coupled. This modifica-
tion can be accounted for with minor changes. Assuming an independent prior for 64 and 6,
as in Sect. 4.1, the marginal likelihood factorizes as P (D4, Dy | M) = P(D4|M) P (D, | M)
(see (9)). Consequently, it also follows that the posterior probability factorizes similarly
P(M|Dy,Dy) x P(M|Dy)P(M|Dy)/P(M). Note that these factorizations only apply
when D4 and D, are associated with separate parameters and parameters are a priori inde-
pendent. When this factorization is true, posterior probabilities of a network can be obtained
separately for the two data sets D, and D, and, thus, parameter coupling is not needed in
the RIMCMC method. Because P(M|D,) can be computed in closed-form the posterior
P(M|D,) can be sampled efficiently with the MC? algorithm. Sampling from P(M|D;),
however, requires the RIMCMC method, but now without the parameter coupling. Note that
the model parameters remain coupled also in the case where D4 and D,, are associated with
different parameters but if there is prior knowledge of relationships between 64 and 6., i.e.,
priors for 64 and 6, are dependent. The question of whether the two data sources D4 and
D, should be modeled as being generated by the same or separate parameters is problem
dependent. A general class of problems where parameters can be considered to be different
is one where time series and steady state measurements have different noise levels. Even
in this case, however, one might have prior knowledge of 6, and 6, that could be reflected
using a dependent prior for 84 and 6,, hence requiring the coupled approach. We consider
both the coupled and uncoupled cases in our simulations.

4.7 Computational complexity

Each iteration of the standard time series based MCMC algorithm requires computing the
acceptance probability shown in (12). Because M and M’ (or M, and M’ in pseudo-code
in Fig. 2) differ only by one edge and the score factorizes over nodes, the Bayes factor
needs to be computed only for a single node, X; say, that has different parents in M and
M. From (8) we see that computation of the marginal likelihood for a single node requires
counting instances N; j; (time complexity proportional to the length of the time series, O (T))
and computing a product of ¢; x r; terms.

Each MCMC step of the SBIC-approximation requires computing the same node-wise
Bayes factor as in the standard time series based analysis. In addition, the posterior mean es-
timate 6 4 that depends on time series data only is needed, which has the same time complex-
ity as the node-wise Bayes factor. Scoring of the steady state measurements requires solving
for the steady state vector 7 of the transition matrix A corresponding to the proposed net-
work M’ and parameters 6 4. Let s denote the size of the state space, i.e., s = [[/_, r;. Each
element of A is a product of n terms but n — 1 of those terms remain the same between con-
secutive networks and thus updating A from M, to M’ has complexity O (s?). The standard
exact solution for the eigenvector problem, such as the one based on the QR factorization,
has complexity O (s®). Advanced algorithms for the eigenvector problem are more efficient
but they are typically based on iterative optimization approaches. Thus, (average) asymptotic
time complexity depends on particular problem at hand (e.g. properties/sparseness of A) as
well as the convergence criterion. We found that ARPACK routine (Lehoucq et al. 1998) is
remarkably more efficient than the standard approach. Overall, computational complexity
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of the proposed SBIC-approximation is about the same as that of the standard Bayesian in-
ference from time series data, except that the approximate method needs to solve the steady
state distribution of a DBN during each step of the MCMC. The cost of solving for the
steady state distribution is relatively small for small networks but becomes substantial for
larger networks.

The computational complexity of the proposed RIMCMC method, in turn, is similar to
that of the SBIC-approximation. Instead of computing the node-wise Bayes factor, time
series based node-wise likelihood term P (Dy| M, 0") or P(D4|M, 0’) is needed that can
again be computed in time O(T). Scoring of the steady state measurements, which is the
most time consuming operation (asymptotically) of each step, is comparable with that of the
approximate method. However, the approximate and the standard Bayesian methods sample
in the space of network structures whereas the proposed exact method samples both network
structures and their parameters. Therefore, to guarantee sufficient convergence and thereby
accurate estimation, the higher dimensional parameter space of the exact RIMCMC method
typically requires approximately an order of magnitude longer chain than the less complex
MCMC algorithm. See Sect. 7 for a discussion on improving the computational complexity.

As discussed above, exact algorithmic time complexity depends on several problem de-
pendent parameters. The most important parameter is the length of the (parallel) chains
which, in turn, needs to be chosen such that the chosen convergence criteria are met and
posterior estimates are sufficiently accurate. Running times (per simulation) on a single stan-
dard desktop of our non-optimized Matlab routines for the type of simulations performed in
this work are approximately as follows: hour(s) for the standard time series based analysis,
“less than a day” for the approximate method, and “a couple of days” for the RIMCMC
method.

4.8 Convergence assessments

MCMC methods provide powerful tools for simulating from complex target distributions.
Moreover, the resulting chains are proven to converge to the desired densities under fairly
mild conditions. Convergence results, however, are only guaranteed when the number of
iterations approaches infinity. Therefore, for any application of MCMC, convergence of
the resulting finite chains needs to be carefully assessed, and this represents one of the
main difficulties for the application of MCMC methods. Convergence assessment is even
more difficult for the MCMC-based model selection methods, such as the one explained
above, since the number of different models can be prohibitively high and the length of the
parameter vector varies from iteration to iteration.

It is commonly observed that no single convergence diagnostic is capable of providing
sufficiently reliable convergence assessment. Therefore, it is suggested that two or more
diagnostics are applied together. In this study we use a non-parametric convergence assess-
ment method that has been developed particularly for model selection problems (Brooks et
al. 2003) and a general purpose method that compares the estimated posterior probabilities
of the network connections from two independent simulations (see, e.g., Husmeier 2005).
Both Brooks et al.’s and Husmeier’s diagnostics assume that one has several (J > 2) inde-
pendent chains, which we also assume here. Let us briefly describe the method of Brooks et
al. first.

The underlying idea is to compare the posterior probabilities of network models as esti-
mated from J independent chains. In the case of DBNS, the cardinality of different network
models is 2" and thus, unless n is very small, it is impossible to monitor the posterior
probability of all of them. A way around is to combine similar models and monitor the be-
havior of groups of models. As suggested by Brooks et al. (2003), each model M; is labeled
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by the number of edges, v(M;), that it possesses and models with the same number of edges
are grouped. This model indicator should reflect the complexity of the model.

In order to define a statistical test for the convergence (or rather divergence), the indi-
vidual chains are subsampled to obtain approximately independent samples. Following the
reasoning in (Brooks et al. 2003), an estimate of the thinning parameter for sub-sampling
the jth chain is obtained as A/ = 11,0: ppj, where p is the accepted error level (of indepen-
dency) and p/ is an estimate of the convergence rate. In the following, we use p = 0.01.
An estimate of the convergence rate, in turn, can be obtained as follows. For each chain
j=1,...,J, compute the state transition matrix between model groups {M;|v(M;) = k}
and {M;[v(M;) =1} as ij} = N{,/Z;’io N,{,, where N,{, denotes the number of times a
move from model group k to model group / is observed in the jth chain. The convergence
rate p/ can be estimated by the second largest eigenvalue of P/ (with possible null rows
removed). The final A is then obtained by averaging the individual A/s and the sub-sampling
keeps only every Ath sample of the original chains.

The actual convergence diagnostic is implemented using a goodness of fit test. Of the
two alternative methods introduced in (Brooks et al. 2003) we choose to use the chi-squared
test since that generally provides a more conservative diagnostic than the corresponding
Kolmogorov-Smirnov test. Let N/ denote the number of times model group v is observed in
the jth sub-sampled chain. Assuming the individual chains are homogeneous, i.e., P(N!) =
P(N/)forall v, i and j, the expected number of counts can be defined as E, = ZLI Ni/J.
The goodness of test diagnostic is then based on the following statistic '

nr J i
(N] — E,)?
=3y MEE

v=0 j=1

which, under the homogeneity assumption, is asymptotically chi-squared distributed with
(J — 1)n? degrees of freedom. The above x? statistic can be computed for different values
of {=L,L+ X, L+2A,...,L+ S (assuming for simplicity that S is a multiple of A).
If the significance values corresponding to the above test get below a certain threshold,
say, o = 0.1 to be fairly stringent, then there is statistical evidence that the null hypothesis
does not hold and the chains have not converged. Otherwise the test shows no significant
evidence against the null hypothesis and the chains are considered to be homogeneous. We
take a similar approach as in (Brooks et al. 2003) in that a drop below the threshold « for
a few iterations in the beginning or middle of the chain does not cause the chain pair to
get rejected. Rejection requires the significance value to be below « for a larger number of
consecutive iterations (see Sect. 6 for illustrative examples).

The additional diagnostic we consider here (see Friedman and Koller 2003) plots the
estimated posterior probabilities of the network edges from two independent simulations
with different initial values and random number seeds. As above, by assuming that the two
chains have converged to the same stationary distribution, marginal probabilities of network
edges are also equivalent, and the scatter plot of the estimated posterior probabilities should
lie tightly around the diagonal. Note that this test is similar with the method of Brooks et al.
except that it is based on the full dependent sample and marginal probabilities of individual
network connections (instead of model groups). No formal test has been developed for this
diagnostic but one can employ, as a heuristic, an error threshold below which each pair of
probabilities must be.

The aforementioned two diagnostics are used to assess the convergence of pairs of chains.
Once a chain pair that does not get rejected by either of the tests is found, the mean of the
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estimated posterior edge probabilities, P(E; i|D), from those two chains is used as the final
estimate. Note that although the chains are subsampled in one of the diagnostics, the final
estimates are computed based on the full (dependent) sample.

5 Simulations

We assess the performance of the proposed methods and compare it to that of the stan-
dard state-of-the-art Bayesian inference method (see (8)) that can only handle time series
measurements. Note that previously no principled method has been introduced that can
infer dynamic networks from steady state measurements, either alone or in combination
with time series measurements. In particular, we consider the SBIC-approximation shown
in (11) with the posterior mean parameter estimates and the RIMCMC method introduced
in Sect. 4.6. The standard Bayesian inference method is applied to time series data alone
whereas the SBIC;-method is applied to a combination of time series and steady state data.
For the RIMCMC-based exact method we consider two scenarios: a combination of time
series and steady state data, and steady state data alone. The same hyperparameter values
are used in all the methods and they are set such that Theorem 2 holds for the approximate
method, in particular ;j;x = 1. This choice of pseudo counts also gives a non-informative
parameter prior. As above, we assume a non-informative structure prior. The MCMC estima-
tion procedure is used for both the traditional and proposed approximate methods whereas
the RIMCMC estimation is used for the exact model inference. Burn-in and sampling period
lengths are L =5 x 10° and S =5 x 10° (resp., L = 10° and S = 10°) for smaller (resp.,
larger) network sizes. Convergence is assessed using the methods described in Sect. 4.8.
In a more sophisticated approach, one would monitor the convergence (of multiple parallel
chains) during the simulation and determine the sufficient number of MCMC iterations on-
line. The simple approach of running each chain a predetermined number of times works
well in our case.

All the performance comparisons are based on simulated data. Different network models
are considered. The considered network sizes are n = 6 or n = 8 and binary-valued nodes
are used throughout the simulations. The structure of a DBN is chosen uniformly randomly
from the space of n-variable DBNs that contain a certain number of edges: 12 for n = 6, and
18 for n = 8. Parameters of the conditional distributions are chosen randomly such that for
each i and j one of the 6;;;s is set to 0.9, and the remaining entries have equal probability,
i.e., 0.1. Similar parameter values are used, e.g., in (Husmeier 2003). If smaller values of
conditional probabilities, say 0.7 and 0.3, are used, then the networks behave “more ran-
domly” and performance of all the inference methods decreases, though they retain their
relative performance and order. In a simulation that is motivated by computational biology
studies, we also vary the value of 6;s in order to produce a biologically more realistic set-
ting. In the same way as a variable in a deterministic function can be fictitious, some of the
parent variables in a random DBN may have no effect on the local conditional probabilities.
Edges corresponding to such parent nodes are not considered when analyzing the inference
results. There are on average about 1-2 (resp., 2-3) such edges in n = 6 (resp., n = 8) net-
works. The size of the time series and steady state samples are set to 7 = 25 and M = 50.
The initial state of the time series, x[1], is chosen randomly from the steady state distrib-
ution of the corresponding DBN. Each simulation is repeated in a Monte Carlo fashion 20
times. For each iteration, a random DBN is chosen from which random data sets, D4 and
D, , are drawn. For each MCMC and RIMCMC run separately, the initial DBN structure
is chosen uniformly randomly from DBNs where each node has exactly one parent. The
corresponding parameters are chosen uniformly randomly.
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Results are summarized using receiver operating characteristics (ROC) curves (see, e.g.,
Fawcett 2006). Let £2(€) = {Ej; | P (E;j|D) > €} denote the set of edges whose estimated
posterior probability is above a threshold e € [0, 1]. For each simulation (for which we
also know the underlying true network), we can use £2(¢€) to compute the specificity and
sensitivity for different values of ¢ and form the ROC curve. The ROC curves are aver-
aged over the independent Monte Carlo repetitions using vertical averaging (Fawcett 2006).
We also compute the area under the ROC curve in order to get a single number that mea-
sures the performance. In all the figures and tables below, the traditional method is de-
noted by “MCMC: D = (D,),” and the new methods are denoted by “MCMC (appr.):
D = (Ds, D), “RIMCMC: D = (Dy, Dy),” and “RIMCMC: D = (D,),” corresponding
to the SBICx-approximation, and the RIMCMC method when applied to both time series
and steady state data sets, and to steady state data set alone, respectively.

All the methods have been implemented in Matlab by making use of the Bayes net
toolbox written by Murphy (2001) and an additional Markov chain Monte Carlo software
by Husmeier (2003).3 Software implementing the proposed methods will be made publicly
available.

6 Results

Before presenting the actual inference results, let us take a look at representative steady state
distributions of DBNs. Figure 3 shows two illustrative steady state distributions along with
the corresponding DBN network structures that correspond to the two cases n = 6 (a—b) and
n = 8 (c—d), respectively. For each (random) DBN, the steady state distribution can be solved
as explained in Sect. 3 and the steady state measurements are sampled directly from the
corresponding distributions. In Fig. 3(b), for example, there are four states (corresponding
to integer representations 24, 30, 31, and 32) at which the dynamic network spends most
of its time in the long-run. Those four states capture approximately 45% of the mass of the
steady state distribution.

6.1 Inference results

Figures 4(a) and (b) show the ROC curves for different learning methods and for the two
different cases, n = 6 and n = 8§, respectively. Both subplots show the results for the tradi-
tional method (dashed blue), the proposed approximate method (dotted green), and for the
RIMCMC method when applied to a combination of time series and steady state data (solid
red) and to steady state data alone (dash-dotted cyan).

First, the results show that dynamic network models can be learned to an extent from
steady state measurements alone. By comparing inference results that are based on steady
state data alone to those that (also) incorporate time series data, one can conclude that the
amount of dynamic information in steady state measurements is smaller than that in time
series measurements, as expected. However, the proposed RIMCMC method provides a
statistically rigorous method for inferring dynamic network models from steady state data
alone.

Second, ROC curves in the upper left corner (dashed blue, dotted green, and solid red
graphs) illustrate the performance of the different MCMC and RIMCMC methods when

3The latter software is also publicly available at: http://www.bioss.sari.ac.uk/~dirk/software/DBmcmc.
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Fig. 3 Two illustrative (random) DBN network structures and the corresponding steady state distributions:
(a-b) n =6, and (c—d) n = 8. Horizontal axis in subplots (b) and (d) corresponds to the value of the state
vector and is encoded as an integer

applied to either time series data alone or to both time series and steady state measure-
ments. For small values of the complementary specificity (x-axis), the proposed approx-
imate method seems to provide similar or only slightly better results than the traditional
Bayesian inference. However, performance of the approximate method clearly exceeds that
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Fig. 4 The ROC curves for the DBN structure learning: (a) case n = 6, and (b) case n = 8. Different graphs
are coded as follows: the traditional method (dashed blue), the proposed approximate method (dotted green),
and the RIMCMC method when applied to both time series and steady state data (solid red) and to steady
state data alone (dash-dotted cyan)

Table 1 The area under the

curve (AUC) for the detection Method \ simulation Casen =06 Casen =28
of network edges
MCMC: D = (Dy) 0.843 0.833
MCMC (appr.): D = (Dy, D) 0.865 0.848
RIMCMC: D = (D4, Dr) 0.884 0.866
RIMCMC: D = (Dy) 0.639 0.609

of the traditional Bayesian method for larger values of the complementary specificity. The
RIMCMC method, in turn, which computes the analytically intractable integral in marginal
likelihood directly, consistently outperforms the traditional Bayesian inference as well as
the proposed approximate method. A benefit of the approximate method over the RIMCMC
method is that the additional complexity of sampling in the product space is avoided. How-
ever, decreased computational complexity comes with decreased accuracy.

Overall, the ROC curves show that the proposed methods provide improved inference
results. The amount of improvement is moderate which, again, reflects the fact that the
amount of (dynamic) information in steady state measurements is smaller than that in time
series. However, Figs. 4(a) and (b) clearly show that using the proposed RIMCMC method
with both time series and steady state measurements provides more accurate results.

The ROC curves can be summarized and represented as a single number by computing
the area under the curve (AUC). AUC provides an intuitive scalar measure that is indepen-
dent of the shape of the curve. AUCs are computed from the averaged ROC curves using the
standard trapezoidal integration method. AUC measures for different methods and different
scenarios are listed in Table 1. These performance scores are in good agreement with the
ROC curves presented in Figs. 4(a) and (b).

While AUC measures in Table 1 provide useful information about average performance
of different methods, it is also useful to assess their variability. To address this, we compute
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Table 2 Paired difference and standard deviation in AUC measures for different methods

Mean Standard deviation
Simulation: case n =6
MCMC (appr.): D = (D g, Dy) —~MCMC: D = (Dy) 0.021 0.054
RIMCMC: D = (Dy,Dy) —MCMC: D = (Dy) 0.041 0.044
Simulation: case n = 8
MCMC (appr.): D = (D4, Dy) —~MCMC: D = (Dy4) 0.015 0.046
RIMCMC: D = (D4, Dz) —MCMC: D = (Dy) 0.033 0.040

AUC:s for individual experiments (i.e., before averaging the ROC curves) and compute their
mean and standard deviation. However, since we are comparing over different experiments,
variability in AUC measure includes not only the variance of different learning methods
but also variability due to different experiments. Thus, a better comparison between dif-
ferent methods is obtained by comparing the (paired) differences between AUC measures
of different methods in individual experiments (i.e., this is analogous to using the paired
t-test instead of the standard ¢-test). We compare the difference between the proposed ap-
proximate method and the traditional Bayesian inference and between the proposed exact
RIMCMC method and the traditional Bayesian inference. Table 2 summarizes these results
by showing estimates of the mean and standard deviation. Mean (resp. standard deviation)
is estimated using the sample average (resp. 1.483 - mad, where mad stands for the median
absolute deviation from the median and the scaling term 1.483 makes the estimator approxi-
mately unbiased for normally distributed data).* In light of the estimated means and standard
deviations, the performance difference between the approximate method and the traditional
Bayesian inference is only marginal. The difference between the exact RIMCMC method
and the traditional Bayesian inference, however, is more significant as the mean paired dif-
ference is about one standard deviation away from zero. Under Gaussian approximation,
statistics shown in Table 2 can be used to compute significance values that assess the prob-
ability of observing this large differences in AUC scores given the null hypothesis that dif-
ferent methods indeed perform similarly (i.e., traditional hypothesis testing). Significance
values (one-tailed) are p = 0.347, 0.177, 0.373, and 0.205 corresponding to the different
cases in Table 2. (Meaning of these significance values is discussed more below.) Although
performance differences are consistent as seen in Fig. 4, p-values do not satisfy the com-
monly used significance level of 0.05. Performance differences between different methods
depend on the relative size of time series and steady state measurements and also on the
underlying conditional probabilities 6. For example, as we will see shortly, by decreasing
the length of the time series as well as the value of the underlying 6 that is used to generate
time series data makes even steady state inference to perform better than the standard time
series inference.

In addition to the above simulations, we also ran other tests. First, in order to gain in-
sight into behavior of RIMCMC methods relative to the standard MCMC, we applied the
proposed exact (RIMCMC) inference method to time series data alone and compared the
inference results to those of the standard Bayesian inference (MCMC). Inference results for

4Robust variance estimates are, on average, slightly smaller than the standard sample variance estimates.
A robust estimator is less sensitive to deviations from a normal distribution and possible outliers due to poor
convergence, which are still possible even after careful convergence diagnostics.
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Fig. 5 The ROC curves for the two additional DBN structure learning tests. (a) the traditional method
(dashed blue) and the RIMCMC method when applied to time series data alone (solid magenta). The curves
are consistent with each other. (b) The RIMCMC method when applied to steady state data alone. Sample
sizes of M = 50 (dashed cyan) and M = 250 (solid black) are considered

n = 6 networks in Fig. 5(a) show that the RIMCMC method when only time series data are
available (solid magenta) produces practically identical results with the traditional method
that is inherently limited to time series data only (dashed blue). This further confirms that
the trans-dimensional MCMC method mixes and converges sufficiently well despite the ad-
ditional complexity of sampling in the “product space” (see also details of the convergence
assessment below). The same good agreement is also seen in terms of AUC measures, which
are 0.8430 and 0.8453 for the MCMC and RIMCMC, respectively.

Second, to study the effect of steady state sample size, we also applied the RIMCMC
method to a steady state data set having size M = 250. Figure 5(b) shows the results for
the proposed RIMCMC method when applied to steady state data alone, M = 50 (dashed
cyan) and M = 250 (solid black). For the larger steady state sample size we use slightly
larger burn-in and sampling period lengths to ensure convergence, i.e., L = 2.5 x 10 and
S = 2.5 x 10%. The performance improves as the sample size increases from M = 50 to
M = 250 although the improvement appears relatively small. The corresponding AUC mea-
sure improves from 0.6391 to 0.6688. The relatively small improvement again reflects the
fact that steady state measurements contain less dynamic information than time series mea-
surements. The above finding is also likely to reflect the non-unique nature of the network
inference from steady state measurements. In other words, even infinite sample size, i.e., full
knowledge of the underlying steady state distribution, does not in general guarantee that the
corresponding ROC curve would be ‘ideal.’

Next we consider a biologically more realistic simulation setting by decreasing the length
of the time series as well as the value of 6 that is used to generate time series data. This sce-
nario is motivated by the problem of learning gene regulatory networks from gene expres-
sion time series and/or steady state protein level data. Because transcriptional regulation is
largely carried out by proteins, gene expression measurements are considered to be noisier
than protein level measurements (at least from gene regulatory network inference point of
view). The amount of steady state protein level data is also typically higher than that of gene
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expression time series. However, protein levels can currently be measured only for a hand-
ful of proteins simultaneously whereas gene expression measurements typically cover all the
genes. With these aspects in mind, we now generated short (7 = 15) and noisy (6;;x = 0.6
or 6;;x = 0.7) time series while parameters of the steady state data were the same as before
(M =50 or M =250 and 6;;; = 0.9). Structure of the underlying network is the same for
both time series and steady state data and parameters are kept consistent in that if 6;;;, = 0.7
(resp. 8;jx = 0.3) in time series then 6;j; = 0.9 (resp. 6;jx = 0.1) in the steady state. We
again consider learning the structure of the underlying DBN using time series data, steady
state data, and a combination of time series and steady state data. This simulation is again
repeated for 20 randomly generated networks of size n = 6 and n = 8 as above.

Note that the above data set does not fit into our RIMCMC inference method directly
because time series and steady state data are generated with different parameter values. We
could modify our method (using a dependent parameter prior) such that the difference in
parameter values for time series and steady state is fixed, say, 0.2 or 0.3. Such an approach
can be somewhat unrealistic because that requires accurate knowledge of the underlying
data generating mechanisms which might not be available in practical applications. Instead,
we propose to use the approach where parameters are not coupled (discussed at the end of
Sect. 4.6). That is, we apply the time series (standard MCMC) and steady state (RIMCMC)
methods separately to D4 and D, respectively. The posterior probability estimates are com-
bined as IS(E,-J-|D) [0 IS(E,-j|DA)13(E,-J-|Dﬂ), where Ej; again denotes the edge from node
X, tonode X;.

Figure 6 shows the ROC curves for different structure learning methods. Interestingly,
when time series data are shorter and noisier, then even the RIMCMC estimation from
steady state data alone (dash-dotted cyan) performs on average better than the state-of-the-
art time series inference (dashed blue). Moreover, performance is improved even further
when network structures are inferred from a combination of time series and steady state
data (solid red). For the network size n = 6 we try two scenarios: ;j; = 0.7 and M =
50, and 6;jx = 0.7 and M = 250. As above, larger steady state sample size improves the
performance. For the network size n = 8 we try two scenarios 6;;; = 0.6 and M = 50, and
ijx = 0.7 and M = 50, where the behavior is again as what one would expect: noisy and
short time series provides less accurate inference results than a combination of noisy and
short time series and higher quality steady state measurements. Similar significance value
computation based on Gaussian approximation as above gives the following significance
values 0.2849, 0.2138, 0.1602, and 0.1992 corresponding to the cases in Figs. 6(a)—(d).
Significance levels are again only moderate.

To better understand the outcome of these significance tests, we also compared the
performance of the standard state-of-the-art MCMC method to the random choice (i.e.,
the diagonal line in ROC curves). Using the noisy and short time series data sets from
Figs. 6(a)—(d) results in similar significance values, i.e., 0.1992, 0.2946, and 0.1719. In
other words, although performance of the standard MCMC method on noisy and short time
series (6;jx = 0.6 or 6;jx = 0.7 and T = 15) is not statistically significant (using the com-
mon level o = 0.05 as a criterion), it consistently outperforms the random choice. Similar
arguments apply for our proposed method when compared with previous methods.

6.2 Convergence assessment results
A critical step of MCMC-based stochastic estimation methods is convergence assessment.

We used the diagnostics described in Sect. 4.8 and only accepted those chains that passed the
two convergence tests. Figures 7(a) and (b) show illustrative convergence diagnostic plots
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Fig. 6 The ROC curves for the biologically motivated structure learning simulations. The first row: the
number of nodes is n = 6. The second row: the number of nodes is n = 8. The traditional method (dashed
blue), the RIMCMC method when applied to steady state data alone (dash-dotted cyan), and a combination of
time series and steady state data (solid red). (a) 0;j; = 0.7, M = 50, (b) 6;j; = 0.7, M = 250, (¢) 6; jx = 0.6,
M =50, and (d) 6;j% = 0.7, M =50

using the non-parametric method of Brooks et al. (2003) for cases n = 6 and n = 8, respec-
tively. After the burn-in, we plot the significance value (p-value) of the convergence test
for different values of the MCMC/RIMCMC iteration index £ in increments of the average
sub-sampling parameter A. Different methods are color-coded as in Fig. 4. As a threshold
value we use o = 0.1 that is shown with the dashed red line. In Fig. 7 the significance
values of the test statistic are all close to one, indicating no evidence against the null hy-
pothesis of homogeneity. That is commonly the case for these simulations and only a few
MCMC runs are rejected. Note that the significance values in Fig. 7(b) are practically equal
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Fig. 7 The significance value (p-value) of the convergence test for different values of £: (a) case n =6,
and (b) case n = 8. Different methods are color-coded as in Fig. 4. Horizontal axis shows (a) hundreds of
thousands (b) millions of iterations

to one. This suggests that the increased number of (RI)MCMC iterations for n = 8 networks
(L + S =2 x 10° instead of L + § = 10°%) might not be necessary.

Figures 8(a) and (b) show the same convergence diagnostic plots for the two additional
simulations. Although a larger steady state sample size makes the posterior distribution over
network structures more “peaky,” it also makes it more difficult for the RIMCMC to sample
from the full search space. Consequently, the convergence is typically a bit more difficult
to obtain for larger sample sizes and, therefore, the chain is run for a longer time (L + S =
5 x 10° instead of L 4+ S = 10°). Figure 8(b) shows an illustrative plot when the size of the
steady state sample is M = 250. It is also worth noting that, in general, the ease or difficulty
of obtaining sufficiently converged chain pairs is sample data dependent. That is, for most of
the sample data sets the first two chains pass the convergence diagnostics but there are also
a few problematic ones for which additional chains are needed in order to obtain a chain
pair that passes the tests. An illustrative diagnostic plot of a chain pair that is rejected as not
having converged is shown in Fig. 11(a).

As an additional diagnostic, we also use a simple method that plots the estimated poste-
rior probabilities of the network connections from two independent simulations (Husmeier
2005). Figures 9(a—d) and (e—h) show illustrative scatter plots for cases n = 6 and n = 8,
respectively. Note that all the scatter plots are very close to the diagonal, indicating good
convergence. The scatter plot in graphs (a) and (e) (and often (b) and (f) as well) show
the least deviation from the diagonal line. This is expected since the estimation is based
on MCMC rather than on RIMCMC and thus the additional complexity of sampling in
the product space {M, 6} is avoided. Graphs (a—b) and (e—f) suggest that even a shorter
chain could suffice for the MCMC-based methods. Running the chains for the same number
of steps, however, allows a straightforward and fair comparison of different methods. The
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Fig. 8 The significance value (p-value) of the convergence test for the two additional tests. (a) the RIMCMC
method when applied to time series data alone. (b) The RIMCMC method when applied to time series data
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Fig. 9 Representative scatter plots of the estimated posterior probabilities of the network connections from
two independent simulations: (a—d) case n = 6, and (e-h) case n = 8. Subplots (a) and (e) the traditional
method, (b) and (f) the proposed approximate method, (¢) and (g) the RIMCMC method when applied to

both time series and steady state data, and (d) and (h) the proposed RIMCMC method when applied to steady
state data alone
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Fig. 11 TIllustrative diagnostic plots of chain pairs that are rejected as not having converged. (a) The signifi-
cance value (p-value) of the convergence test. (b) and (c) Scatter plots of the estimated posterior probabilities
of the network connections. Graphs (a) and (b) correspond to the same chain pair

lower information content of the steady state measurements is also apparent in graphs (d)
and (h), i.e., all the estimated posterior probabilities are below 0.6. Figures 10(a) and (b)
show the same scatter plot convergence diagnostics for the two additional simulations. Illus-
trative scatter plots corresponding to chain pairs that are rejected as not having converged
are shown in Figs. 11(b) and (c).

All of the above diagnostic tests show evidence for convergence. As a cautionary note
for stochastic simulations, however, it is worth mentioning that the above tests are only
necessary, not sufficient (Husmeier 2005), for convergence.

In order to gain additional insight into the different MCMC and RIMCMC chains,
Figs. 12(a) and (b) show illustrative examples of the cumulative acceptance rates of
MCMC/RIJMCMC proposal moves for cases n = 6 and n = §, respectively. Curves are again
color-coded in the same way as in Figs. 4 and 5. Note that the cumulative acceptance rates
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Fig. 12 Representative cumulative acceptance rates of MCMC/RIMCMC proposal moves for different
methods. (a) Case n =6 and (b) case n =8

of the two additional simulations are included in Fig. 12(a). Also note that the first half of
the samples are ignored as the burn-in period and only the last half are used in the estima-
tion. A commonly used rule of thumb (Gelman et al. 1996) recommends acceptance rate of
around 0.25 for ‘high dimensional’ models and around 0.5 for ‘smaller dimensional” mod-
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els, which are in concordance with the obtained acceptance rates. Recall that the RIMCMC
methods also have the null move where only the parameters are updated.

7 Discussion and conclusions

The proposed exact inference method is implemented using RIMCMC which provides an
extremely flexible framework for model selection problems. (Similar RIMCMC strate-
gies have been discussed e.g. in (Dellaportas and Forster 1999; Giudici et al. 2000;
Pournara 2004).) RIMCMC also allows various extensions to the methods described in this
manuscript. For example, as the RIMCMC methods are not based on conjugate prior analy-
sis, one can equally well consider other than the Dirichlet prior distributions. A more sophis-
ticated approach can be constructed using, for example, hierarchical priors. It is worth noting
that the posterior distribution of the conditional probabilities 6;; can be estimated as well.
Furthermore, the proposed methodology can also be extended to handle hidden variables
(e.g., more general state space models) and missing data. For that purpose, an approach
that combines the proposed methods with, e.g., ideas from (Robert et al. 2000) for learn-
ing HMMs might be potentially valuable. An interesting future research problem will be to
study modifications of the proposed methods to other, completely different, model classes
as well. Also note that although the proposed inference methods are combined with MCMC
and RIMCMC procedures, one can equally well adapt them to be used together with other
search methods, such the greedy hill climbing.

The flexibility of the RIMCMC does not come without drawbacks. The “unlimited” free-
dom of choosing numerous proposal distributions makes their choice more demanding from
the convergence point of view. Although RIMCMC, as well as MCMC, is guaranteed to
converge under fairly mild conditions in the limit of infinite iterations, an unsophisticated
choice of the proposal distributions can lead to situations where convergence is unreachable
within a reasonable number of iterations (see, e.g., Robert and Casella 2005). This empha-
sizes the need for reliable convergence diagnostics. In order to further improve convergence
and mixing of the chain, it could also be possible to use an adaptive MCMC scheme to
adjust average cumulative acceptance rates. For example, some parameters of the proposal
distribution(s), such as 8 and o, could be adapted during the burn-in period so as to optimize
convergence. If reliable prior information is available, it might also be beneficial to sample
parameters from priors directly. A related problem is that the implicitly restarted Arnoldi
method (as implemented in ARPACK/MATLAB) occasionally reported an error, indicating
that the eigenvector (i.e., the steady state distribution) cannot be solved reliably. Such pre-
sumably numerical problems involved in solving for the eigenvector might be alleviated by
a different choice of proposal distributions.

The current implementation of the proposed methods is limited to fairly small networks
due to computational complexity involved in solving for the steady state distribution. For
example, it can be too time consuming to apply the proposed methods (using the current
implementation) to the cases n > 12 (depending on the values of r;). Thus, an important
future research direction will be to study more efficient ways of solving for the steady state
distribution. That has recently attracted attention with regard to Google’s PageRank appli-
cation. A specific feature of the eigenvector problem in that application is that one knows
the steady state distribution 7 of the current stochastic matrix A and the goal is to obtain
the steady state distribution 77’ of another stochastic matrix A’ that has been obtained from
A by slightly changing some of its transition probabilities. Exactly the same problem is also
met in the proposed network inference methods where minor changes are proposed to the
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network, and thereby to the transition probabilities, at each iteration of (RI)MCMC. The
goal is then to develop a method for computing " given 7, A and A’ that is computation-
ally more efficient than a standard approach that solves 7’ directly from A’. Langville and
Meyer (2006) have recently introduced an efficient iterative method to solve this problem,
which is directly applicable to our problem as well.

Many of the efficient eigenvector solvers can also be parallelized and general purpose
software packages are available for that purpose. Although parallelization does not change
the asymptotic time complexity apart from (possible) linear time improvement that can make
the range of applications just sufficiently wider. Parallelization might indeed prove useful in
our case.

Alternatively, the inference methods only require the steady state probabilities for those
states that are among the observed steady states D, . In other words, instead of solving the
steady state probabilities for all []/_, r; states one could do that only for (a maximum of) M
states. More generally, the special structure of the state transition matrix A (each element of
A is a product of n conditional probabilities, see e.g. (4)) can carry over to the steady state
distribution as well and provide an efficient way of solving for the steady state probabilities
analytically. Even if no analytical solution can be found it will be interesting to study ap-
proximations as well. That was the approach taken in (Ching et al. 2007) who developed an
approximation method for solving the steady-state probability distribution of probabilistic
Boolean networks (PBN). Although the method was developed for PBNs, the idea of Ching
et al. was essentially to ignore small conditional probabilities from the computation of the
state transition matrix and the corresponding steady state distribution. In addition, Ching
et al. also developed an expected error bound for their approximation. Given the close re-
lationship between DBNs and PBNs (Ldhdesmiki et al. 2006), this method can be directly
used in the context of DBNs as well. Assessment of possible advantages of the approxi-
mate method and error bound of Ching et al. (2007) in our application will be left for future
studies.

In this article we introduced a novel, rigorous Bayesian method for learning the structure
of DBNs from steady state measurements. The major advantage of the proposed method is
that it is able to learn dynamic network models even if only non-time series measurements
are available. Moreover, the proposed method can also be applied to a combination of time
series and steady state data on which its performance is improved relative to the standard
state-of-the-art Bayesian inference using time series data alone, although this improvement
when measured in terms of the AUC score was not found to be statistically significant. Re-
sults reported in this manuscript confirm the expected fact that time series measurements
contain more information about network dynamics than steady state measurements. How-
ever, steady state measurements do contain a substantial amount of information about net-
work dynamics and, if properly used in the inference, their use can result in an improved
learning algorithm.
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