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Abstract We reduce ranking, as measured by the Area Under the Receiver Operating Char-
acteristic Curve (AUC), to binary classification. The core theorem shows that a binary clas-
sification regret of r on the induced binary problem implies an AUC regret of at most 2r .
This is a large improvement over approaches such as ordering according to regressed scores,
which have a regret transform of r �→ nr where n is the number of elements.
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1 Introduction

We consider the problem of ranking a set of instances. In the most basic version, we are
given a set of unlabeled instances belonging to two classes, 0 and 1, and the goal is to rank all
instances from class 0 before any instance from class 1. A common measure of success for
a ranking algorithm is the area under the ROC curve (AUC). The associated loss, 1 − AUC,
measures how many pairs of neighboring instances would have to be swapped to repair the
ranking, normalized by the number of 0s times the number of 1s. The loss is zero precisely
when all 0s precede all 1s; one when all 1s precede all 0s. It is greater for mistakes at the
beginning and the end of an ordering, which satisfies the intuition that an unwanted item
placed at the top of a recommendation list should have a higher associated loss than when
placed in the middle.

In binary classification, where the problem is simply to predict whether a label is 0 or 1,
the loss is measured by the error rate, i.e., the probability of a misclassification. Here any
misclassified instance incurs the same loss independently of how other instances are classi-
fied, while the AUC loss depends on the whole (ranked) sequence of instances.

It is natural to ask whether we need fundamentally different algorithms to optimize these
two loss functions. This paper shows that the answer is no, in the sense that the problem
of optimizing the AUC can be reduced to classification so that good performance on the
classification problem implies good performance on the AUC problem. The classification
problem is to predict, given a random pair of instances with different labels, whether the first
instance should be ordered before the second. We show that there is a robust mechanism for
translating any binary classifier learning algorithm into a ranking algorithm.

Relation to score-based ranking A common way to generate a ranking is to learn a scoring
function f : X → R, which assigns a real-valued score to each example in the instance space
X, and then rank test examples in the order of their scores.

If f is learned by minimizing some loss function that depends on individual examples,
this approach is not robust. The fundamental difficulty is exhibited by highly unbalanced
test sets. If we have one 1 and many 0s, a pointwise loss on the 1 with a perfect prediction
for the 0s can greatly harm the AUC while only slightly affecting the pointwise loss with
respect to the induced distribution. For concreteness, let f (x) be 1 if the predicted label is
1, and 0 otherwise. Then if n is the number of elements in the test set, f can induce an AUC
loss of 1 with classification loss of 1/n. Thus such schemes transform pointwise loss l to
AUC loss nl. The same observation holds for regrets in place of losses: pointwise regret r

translates into AUC regret nr . Regret here is the difference between the incurred loss and
the lowest achievable loss on the problem. The motivation for regret analysis is to separate
avoidable loss from noise intrinsic to the problem, so that bounds apply nontrivially even
for problems with large intrinsic noise.

To avoid the robustness problem, many score-based ranking algorithms optimize loss
functions that depend on pairs of examples, e.g., the probability that a pair of examples with
different labels is misranked (see Agarwal et al. 2005; Clémençon et al. 2005; Freund et al.
2003; Rudin et al. 2005).

Another approach, taken in (Cohen et al. 1999; Ailon and Mohri 2007) as well as here,
is to learn a preference function c : X × X → {0,1} on pairs of examples. If c(x, x ′) = 1
then c ranks x higher than x ′, and c(x, x ′) = 0 indicates the opposite preference. Notice
that while a scoring function imposes a total order on the entire instance space, a preference
function is not required to be transitive. If, for example, the underlying distribution is such
that an optimal preference function is non-transitive, then not imposing a total order on the
entire space may result in a better performance on limited subsets on which the algorithm
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is invoked. Since c is not necessarily consistent with a linear ordering on a test set U , there
is a need for a subsequent step which produces an ordering of U based on the learned c.
Because c is typically learned using a binary classification algorithm, we call it a classifier.

Relation to the feedback arc set problem Consider a set U with a hidden bipartition into
a set of winners and a set of losers. Imagine that every element (also called player) of U plays
all other elements, and the outcome of each play is determined by a classifier c. The tourna-
ment induced by c on U does not have to be consistent with any linear ordering. We want to
find the best way to rank the elements in U so that all winners are ordered before all losers.

A natural objective, dating back to Slater (1961), is to find an ordering which agrees
with the tournament on as many player pairs as possible, i.e., minimizes the number of
inconsistent pairs where a higher-ranked player (one ordered closer to the beginning of the
list) lost to a lower-ranked player. This is the NP-hard “minimum feedback arc set problem
in tournaments”. (Although the hardness was conjectured for a long time, it was proved only
recently; see (Alon 2006).)

A mistake is defined as a winner–loser pair where the loser beats (i.e., is preferred to) the
winner. Section 4 proves that a solution to the feedback arc set problem satisfies a basic guar-
antee: If the classifier c makes at most k mistakes on U , then the algorithm minimizing the
number of inconsistent pairs produces an ordering, or equivalently a transitive tournament,
with at most 2k mistakes on U . Section 5 shows that this bound is tight.

Instead of solving feedback arc set, another natural way to break cycles is to rank in-
stances according to their number of wins in the tournament produced by c. The way ties
are broken is inessential; for definiteness, let us say they are broken against us. Coppersmith
et al. (2006) proved that this algorithm provides a 5-approximation for the feedback arc set
problem. An approximation, however, does not generally imply that the ratio of the number
of mistakes made by the approximation to the number of mistakes made by c is finite. For
example, c may make no mistakes (i.e., make correct predictions on all winner–loser pairs)
while inducing a non-transitive tournament on the winners or the losers, so an approxima-
tion that does not know the labeling can incur a non-zero number of mistakes. We prove,
however, that the algorithm that orders the elements by their number of wins, has the same
regret and loss transforms as an optimal solution to the NP-hard feedback arc set problem.
Again, Sect. 5 shows that solving feedback arc set does no better.

Results The core theorem (Theorem 1) says that a pairwise classifier with regret r implies
AUC regret at most 2r , for arbitrary distributions over instances. For example, if the binary
error rate is 20% due to inherent noise and 5% due to the errors made by the classifier, then
AUC regret is at most 10%, i.e., only the 5% are at most doubled. The same statement holds
for losses in place of regrets. As shown in (Ailon and Mohri 2007) (see Sect. 5), this is
best possible with any deterministic algorithm. Section 6 proves that Theorem 1 holds for
a natural generalization of AUC regret to multiple labels.

In a subsequent paper, Ailon and Mohri (2007) describe a randomized quick-sort reduc-
tion, which guarantees that AUC loss is bounded by binary loss, in expectation over the
randomness of the algorithm. They also define a generalization of AUC loss to multiple la-
bels, and show that the expected generalized AUC loss is bounded by twice the binary loss.
This generalization encodes the generalization we analyze in Sect. 6 as a special case. Using
the decomposition in Theorem 1, the argument in (Ailon and Mohri 2007) could potentially
be extended to bound AUC regret, rather than loss. The quick-sort algorithm is more effi-
cient, requiring only O(n logn) instead of Θ(n2) classifier evaluations at test time, which
makes it practical in larger settings. On the other hand, the guarantees in (Ailon and Mohri
2007) are in expectation over the algorithm’s randomness.
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Cohen et al. (1999) operate in a similar two-stage setting: They first learn a preference
function that takes a pair of instances and returns a score predicting how certain it is that
the first instance should be ranked before the second. The learned function is then evaluated
on all pairs of instances in the test set and the instances are ordered using the degree-based
algorithm used here. One of the results they show is that the agreement of an optimal feed-
back arc set ordering with the learned predictions is at most twice the agreement obtained
by their algorithm. To translate this result into the language of losses, let MFA be the AUC
loss of the minimum feedback arc set ordering and APPROX be the AUC loss of the approx-
imation. Then the result says that 1 − APPROX ≥ 1

2 (1 − MFA) or APPROX ≤ 1
2 + MFA/2.

The result is difficult to compare with the results given here, as the settings are different.
A rough comparison requires specializations and yields a bound that is weaker than ours:
As we show in Sect. 4, MFA ≤ 2 BIN, where BIN is the loss of the pairwise predictor, so
the result of (Cohen et al. 1999) roughly says that APPROX ≤ 1

2 + BIN (which is essentially
vacuous because a random ordering has expected AUC loss of 1/2), while we show that
APPROX ≤ 2 BIN, modulo the slight difference in the binary problem.

Curiously, the relationship of ranking to classification is functionally tighter than has
been proven for regression to binary classification (r �→ √

r) (Langford and Zadrozny 2005).

2 Preliminaries

Classification A binary classification problem is defined by a distribution P over X ×
{0,1}, where X is some observable feature space and {0,1} is the binary label space. (For
simplicity of presentation, assume that the spaces are finite.) The goal is to find a classifier
c : X → {0,1} minimizing the classification loss on P given by

e(c,P ) = Pr(x,y)∼P [c(x) 	= y].
The classification regret of c on P is defined as

r(c,P ) = e(c,P ) − min
c∗ e(c∗,P ),

where the minimum is taken over all classifiers c∗ : X → {0,1}.
Ranking Where U ⊆ X is an unlabeled set, and x, x ′ ∈ U , a preference function
π(x, x ′,U) = 1 if π “prefers” x to x ′, and 0 otherwise. For simplicity, let π(x, x ′,U) =
1 − π(x ′, x,U) for x 	= x ′. If π is consistent with some linear ordering of U , we
call π itself an ordering of U , and denote πU(x, x ′) = π(x, x ′,U). For a labeled set
S = {(x1, y1), . . . , (xn, yn)}, let US = {x1, . . . , xn} denote the unlabeled set corresponding
to S.

The AUC loss of an ordering πUS
on a set S = {(x1, y1), . . . , (xn, yn)} is defined as

l(πUS
, S) =

∑
i 	=j 1(yi > yj )πUS

(xi, xj )
∑

i<j 1(yi 	= yj )
.

Indices i and j in the summations range from 1 to n, and 1(·) is the indicator function which
is 1 if its argument is true, and 0 otherwise. By convention, 0s should be ordered ahead of
1s, so any pair where a 1 is ordered before a 0 contributes to the loss.

A pair of examples (x1, y1), (x2, y2) is called mixed if y1 	= y2.
An AUC problem is defined by a distribution D over (X × {0,1})∗. The goal is to find

an ordering π minimizing the expected AUC loss on D, given by

l(π,D) = ES∼Dl(πUS
, S).
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As an example, consider the Internet search problem, where there is some underlying distri-
bution of queries, each yielding a set of search results. This process generates a distribution
over subsets; whether or not the subsets have the same size is inessential for the analysis.
Note that D is allowed to encode arbitrary dependencies between examples.

The AUC regret of π on D is given by rAUC(π,D) = l(π,D) − minπ∗ l(π∗,D), where
the minimum is taken over all preference functions π∗ transitive on any subset in the support
of D.

Tournaments A tournament is a complete graph with no self-loops, in which each edge is
directed one way or the other, so that for every pair of vertices i 	= j , either i → j is an edge
or j → i is an edge, but not both. The edge i → j says that i beats j (“i is preferred to
j”). Since we adopt the convention that 0s should be ordered ahead of 1s, ideally 0s should
beat 1s. We write deg(i) for the outdegree of vertex i, so deg(i) = ∑

j 1(i → j), where the
indicator function 1(i → j) is 1 if i → j is an edge and 0 otherwise. Thus we generally
expect 0s to have large outdegree and 1s small outdegree; however, we allow and analyze
arbitrary tournaments.

3 Ordering by the number of wins

In this section, we describe the reduction and prove the main result.
The reduction consists of two components. The training part, AUC-TRAIN (Algorithm 1),

takes a set S of labeled examples of type X × {0,1} and transforms all mixed pairs in S into
binary examples for the oracle learning algorithm. The binary classification problem induced
by the reduction is to predict, given a random mixed pair of examples in a subset U ⊆ X

together with U itself, whether the first example should be ordered before the second in U .
The reason why the classifier has to depend on U is that a regret reduction cannot throw

away any information; otherwise the adversary could encode conflicting pairwise prefer-
ences based on the value of the subset. (An alternative is to introduce an assumption that
the optimal ordering of any pair of unlabeled instances is independent of the drawn subset,
whenever the instances are drawn together (Ailon and Mohri 2007).)

For any process D generating datasets S, we can define the induced distribution by first
drawing S from D, then drawing a random mixed pair (x1, y1), (x2, y2) from S, and gen-
erating (〈x1, x2,US〉,1(y1 < y2)). We denote this induced distribution by AUC-TRAIN(D),
admittedly overloading the notation.

The test part, DEGREE (Algorithm 2), uses the pairwise classifier c learned in Algo-
rithm 1 to run a tournament on a test set U , and then ranks the elements of U in decreasing
order of their number of wins in the tournament, breaking ties arbitrarily. Recall that we
expect 0s to beat 1s, and thus have larger outdegree. (In the algorithm and below, we omit
angle brackets from calls to c.)

For the analysis, it is best to think of the classifier c as an adversary playing against
the ranking algorithm DEGREE. The goal of c is to pay little in classification regret while
making DEGREE(·, c) pay a lot in AUC regret.

Algorithm 1 AUC-TRAIN (labeled set S, binary learning algorithm A)

1. Define the (multi)set US = {x : (x, y) ∈ S}.
2. Let S ′ = {(〈x1, x2,US〉,1(y1 < y2)) : (x1, y1), (x2, y2) ∈ S and y1 	= y2}.
3. return c = A(S ′).
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Algorithm 2 DEGREE (unlabeled set U , classifier c)

1. For x ∈ U , let deg(x) = |{x ′ : c(x, x ′,U) = 1, x ′ ∈ U}|.
2. Sort U in descending order of deg(x), breaking ties arbitrarily.

Theorem 1 below reduces the regret problem to the following combinatorial problem.
Given a set U with each element labeled either 0 or 1, the adversary c starts with a tourna-
ment of its choice where every 0 beats every 1. Then c can choose to invert the outcome of
any game between a 0 and a 1, and she is charged for each such “mistake”. Again, c can
choose any (not necessarily transitive) subtournaments on the 0s and on the 1s for free. The
resulting tournament is shown to the algorithm.

Without seeing the labels, the algorithm needs to approximate c’s tournament with a tran-
sitive tournament (or equivalently, a linear order). The goal of the algorithm is to minimize
the number of mistakes it makes (i.e., pairs where a 1 precedes a 0 in the order). If c were
itself consistent with a linear order, the algorithm could simply output that, at a cost in mis-
takes identical to the adversary’s. In general it is not, and we would expect the cost of the
more-constrained linear order to be higher. Our goal is to show that the reduction is robust
in the sense that c cannot cause DEGREE to make many mistakes without making many
mistakes itself. More precisely, DEGREE never makes more than twice as many mistakes
as c. This combinatorial result (Theorem 2) is invoked (n−1) times in the proof of the main
theorem below.

Theorem 1 For all distributions D and all pairwise classifiers c,

rAUC(DEGREE(·, c),D) ≤ 2r(c, AUC-TRAIN(D)). (1)

Note the quantification in the above theorem: it applies to all settings where Algorithms 1
and 2 are used; in particular, D may encode arbitrary dependences between examples.

Proof Given an unlabeled test set U ∈ Xn, the joint distribution D induces a conditional
distribution D(Y1, . . . , Yn|U) over the set of label sequences {0,1}n. In the remainder of the
paper, let Q denote this conditional distribution. We prove the theorem by fixing U , taking
the expectation over the draw of U at the end.

Let U be identified with {1, . . . , n}. The pairwise loss of ordering i before j in U is
defined as

lQ(i, j) = Eyn∼Q

1(yi > yj )
∑

u<v 1(yu 	= yv)
.

If lQ(i, j) < lQ(j, i), the regret rQ(i, j) of ordering i before j is 0; otherwise, rQ(i, j) =
lQ(i, j) − lQ(j, i) and rQ(i, j) is called proper. Thus if rQ(i, j) is proper, then rQ(j, i) = 0.

Lemma 1 presented below this proof, establishes a basic property of pairwise regrets. It
says that for any i, j , and k, if rQ(i, j) and rQ(j, k) are proper, rQ(i, k) = rQ(i, j)+rQ(j, k).

We can assume without loss of generality that the ordering minimizing the AUC loss
(thus having zero AUC regret) on U is 〈1,2, . . . , n〉. It is easy to see that all regret-zero
pairwise predictions must be consistent with the ordering, i.e., rQ(i, j) = 0 for all 1 ≤ i <

j ≤ n. Indeed, all rQ(i, i + 1) must be 0; otherwise swapping i and i + 1 decreases the
overall regret, contradicting the assumption that 〈1,2, . . . , n〉 is regret minimizing. Thus all
rQ(i + 1, i) are proper and repeated application of Lemma 1 implies that, for any j > i,
rQ(j, i) is proper, which in turn implies that rQ(i, j) = 0.
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Applied repeatedly, Lemma 1 says that for any pair i < j , the regret rQ(j, i) can be
decomposed as rQ(j, i) = ∑j−1

k=i rQ(k + 1, k). Since U is fixed throughout the proof, we
omit the subscript U from the produced ordering πU and the optimal ordering π∗

U . Thus the
AUC regret of π = πU on Q can be decomposed as a sum of pairwise regrets (where 〈U,yn〉
denotes the unlabeled sample U labeled with yn):

rAUC(π,Q) = l(π,Q) − min
π∗ l(π∗,Q)

= Eyn∼Q[l(π, 〈U,yn〉)] − min
π∗ Eyn∼Q[l(π∗, 〈U,yn〉)]

= Eyn∼Q

∑
i,j 1(yi > yj )π(i, j)
∑

u<v 1(yu 	= yv)
− min

π∗ Eyn∼Q

∑
i,j 1(yi > yj )π

∗(i, j)
∑

u<v 1(yu 	= yv)

= max
π∗ Eyn∼Q

∑
i,j [1(yi > yj )π(i, j) − 1(yi > yj )π

∗(i, j)]
∑

u<v 1(yu 	= yv)

=
∑

i<j :π(j,i)=1

rQ(j, i) =
n−1∑

k=1

|{i ≤ k < j : π(j, i) = 1}| · rQ(k + 1, k).

The last equality follows by repeated application of Lemma 1. Note that

min
π∗ EU [l(π∗

U ,Q)] = EU [min
π∗

U

l(π∗
U ,Q)],

because for any U , the minimizer π∗
U of l(π∗

U ,Q) is the minimizer π∗ of EU [l(π∗
U ,Q)]

(restricted to U in the last argument).
The classification regret can also be written in terms of pairwise regrets:

r(c, AUC-TRAIN(Q))

= e(c, AUC-TRAIN(Q)) − min
c∗ e(c∗, AUC-TRAIN(Q))

= max
c∗ Eyn∼Q

[∑
i,j [1(yi > yj )c(i, j,U) − 1(yi > yj )c

∗(i, j,U)]
∑

u<v 1(yu 	= yv)

]

=
∑

i<j :c(j,i,U)=1

rQ(j, i) =
n−1∑

k=1

|{i ≤ k < j : c(j, i,U) = 1}| · rQ(k + 1, k).

Let gk and fk denote the coefficients with which the term rQ(k + 1, k) appears in the
above decompositions of rAUC(π,Q) and r(c, AUC-TRAIN(Q)) respectively. To complete
the proof it suffices to show that gk ≤ 2fk for each k.

Fix k and consider a bipartition of U into a set {1, . . . , k} of “winners” and a set {k +
1, . . . , n} of “losers”. In this terminology, gk is the number of winner–loser pairs where the
loser has at least as many wins as the winner, and fk is the number of winner–loser pairs
where the loser beats the winner (in the tournament induced by c on U ). Theorem 2 below
shows that gk ≤ 2fk , completing this proof. �

We prove the lemma used in the proof above.

Lemma 1 For any i, j , and k in {1, . . . , n}, if rQ(i, j) and rQ(j, k) are proper,

rQ(i, k) = rQ(i, j) + rQ(j, k).
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Proof We have

rQ(i, j) + rQ(j, k) = Eyn∼Q

I (yn)
∑

u<v 1(yu 	= yv)
,

where

I (yn) = 1(yi = 1, yj = 0) − 1(yi = 0, yj = 1)

+ 1(yj = 1, yk = 0) − 1(yj = 0, yk = 1)

= 1(yi = 1, yj = 0, yk = 0) + 1(yi = 1, yj = 0, yk = 1)

− 1(yi = 0, yj = 1, yk = 0) − 1(yi = 0, yj = 1, yk = 1)

+ 1(yi = 0, yj = 1, yk = 0) + 1(yi = 1, yj = 1, yk = 0)

− 1(yi = 0, yj = 0, yk = 1) − 1(yi = 1, yj = 0, yk = 1)

= 1(yi = 1, yk = 0) − 1(yi = 0, yk = 1).

Recall that

Eyn∼Q

1(yi = 1, yk = 0)
∑

u<v 1(yu 	= yv)
= lQ(i, k), Eyn∼Q

1(yi = 0, yk = 1)
∑

u<v 1(yu 	= yv)
= lQ(k, i).

Thus rQ(i, j) + rQ(j, k) = lQ(i, k) − lQ(k, i) = rQ(i, k). (Since rQ(i, j) + rQ(j, k) > 0, we
have lQ(i, k) > lQ(k, i) and rQ(i, k) is proper.) �

Let T be a tournament and let the vertices of T be arbitrarily partitioned into a set W

of “winners” and a set L of “losers”. Call the triple (T ,W,L) a winner–loser partitioned
tournament, and denote it by T. We show that for any T, the number of winner–loser pairs
where the loser’s degree is larger than or equal to the winner’s, is at most twice the number
of winner–loser pairs where the loser beats the winner. Formally, define two measures:

g(T) =
∑

�∈L

∑

w∈W

1(deg(�) ≥ deg(w)),

f (T) =
∑

�∈L

∑

w∈W

1(� → w).

Theorem 2 For any winner–loser partitioned tournament T, g(T) ≤ 2f (T).

Since the number of edges from L to W is equal to the total number of edges out of L

minus the number of edges from L to L, we can rewrite

f (T) =
∑

�∈L

∑

w∈W

1(� → w) =
∑

�∈L

deg(�) −
(|L|

2

)

.

Both f (T) and g(T) depend only on the degrees of the vertices of T , so rather than work-
ing with a (labeled) tournament, a relatively complex object, we can work with a (labeled)
degree sequence.
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Landau’s theorem (Landau 1953) says that there exists a tournament with outdegree se-
quence d1 ≤ d2 ≤ · · · ≤ dn if and only if, for all 1 ≤ i ≤ n,

∑i

j=1 dj ≥ ∑i

j=1(j − 1), with
equality for i = n.

Recall that a sequence 〈a1, . . . , an〉 is majorized by 〈b1, . . . , bn〉 if the two sums are equal
and if, when each sequence is sorted in non-increasing order, the prefix sums of the b se-
quence are at least as large as (dominate) those of the a sequence. (For a comprehensive
treatment of majorization, see (Marshall and Olkin 1979).) Landau’s condition is precisely
that 〈d1, . . . , dn〉 is majorized by 〈0, . . . , n − 1〉. (With the sequences sorted in increasing
order, Landau’s condition is that prefix sums of the degree sequence dominate those of the
progression, which is the same as saying that the suffix sums of the degree sequence are
dominated by the suffix sums of the progression.) This allows us to take advantage of well-
known properties of majorization, notably that if A′ is obtained by averaging together any
elements of A, then A majorizes A′.

This allows us to restate Theorem 2 in terms of a sequence and majorization, rather than
a tournament, but first we relax the constraints. First, where the original statement requires
elements of the degree sequence to be non-negative integers, we allow them to be non-
negative reals. Second, the original statement requires that we attach a winner/loser label
to each element of the degree sequence. Instead, we aggregate equal elements of the degree
sequence, and for a degree di of (integral) multiplicity mi , assign arbitrary non-negative (but
not necessarily integral) portions to winners and losers: wi + �i = mi .

Let D = (D,W,L) be such a generalized “winner–loser labeled compressed sequence”.
Note that the majorization condition applies only to the values {di,mi}, not the labeling.
The definitions of f and g above are easily extended to this broader domain: g(D) =∑

i

∑
j≤i liwj , f (D) = ∑

i lidi − (∑
i li
2

)
, where we define

(
x

2

) = x(x − 1)/2 for all x (not
just integers). If we prove g ≤ 2f over this larger domain, the inequality holds in particular
for plain winner–loser labeled degree sequences (the case where all weights happen to be
integral). That is, Theorem 3, below, implies Theorem 2.

Theorem 3 For any winner–loser labeled compressed sequence D = (D,W,L) where D is
majorized by 〈0, . . . , n − 1〉, g(D) ≤ 2f (D).

Proof We begin with an outline of the proof. Define a compressed sequence D as being
canonical if it consists of at most three degrees: a smallest degree d1 having only losers
(w1 = 0), a middle degree d2 potentially with both winners and losers (w2, �2 ≥ 0), and
a largest degree d3 having only winners (�3 = 0). We first establish that any canonical se-
quence has g(D) − 2f (D) ≤ 0. We then show how to transform any degree sequence to
a canonical one with a larger (or equal) value of g − 2f , which completes the argument.

We first show that a canonical sequence D has g − 2f ≤ 0. For the canonical configura-
tion, g = w2�2 and f = �1d1 + �2d2 − (

�1+�2
2

)
, and hence our goal is to show that

�1d1 + �2d2 ≥ (�1 + �2)(�1 + �2 − 1)/2 + w2�2/2. (2)

By Landau’s condition applied to �1 and �1 + w2 + �2, we have the following two rela-
tions:

�1d1 ≥
(

�1

2

)

(3)

and

�1d1 + (�2 + w2)d2 ≥
(

�1 + w2 + �2

2

)

. (4)
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Multiplying (3) by w2/(�2 + w2) and (4) by �2/(�2 + w2) and adding them, we obtain
that

�1d1 + �2d2 ≥ 1

�2 + w2

(

w2

(
�1

2

)

+ �2

(
�1 + �2 + w2

2

))

. (5)

A simple calculation shows that the right side of inequality (5) is exactly equal to the right
hand side of (2). This proves that g ≤ 2f for a canonical sequence.

If a sequence is not canonical then there are two consecutive degrees di and dj (j = i +1)
such that one of the cases 1a, 1b, or 2 (described below) holds. In each case we apply
a transformation producing from the degree sequence D a new degree sequence D′, where:

– the total weight of winners in D′ is equal to that of D; similarly for losers, and thus for
the total weight; furthermore, the total weight on each degree remains integral;

– D′ maintains the majorization needed for Landau’s theorem;
– the value of g − 2f is at least as large for D′ as for D; and
– either the number of nonzero values wi and �i or the number of distinct degrees di is

strictly smaller for D′ than for D, and the other is no larger for D′ than for D.

We first sketch the cases and then detail the transformations.

Case 1a di has only winners (li = 0).
Apply Transformation 1a, combining the two degrees into one.

Case 1b dj has only losers (wj = 0).
Apply Transformation 1b, combining the two degrees into one.

Case 2 All of wi , li , wj and lj are nonzero.
Apply Transformation 2, leaving the degrees the same but transforming the weights so
that one of them is equal to 0 and one of the preceding cases applies, or the weights obey
an equality allowing application of Transformation 3, which combines the two degrees into
one.

Either there is some pair i, j to which one of the cases applies, or the sequence is canon-
ical. We argue this by showing that if there is no pair i, j for which Cases 1a or 1b apply,
then either the sequence is canonical, or there is a pair to which Case 2 applies. First, note
that for any i 	= n, li > 0 (else Case 1a applies to i, i + 1) and for any i 	= 1, wi > 0 (else
Case 1b applies to i − 1, i). In particular, for any 1 < i < n, both li ,wi > 0. If n ≥ 4 this im-
plies immediately that Case 2 applies to the pair 2,3. If n = 1, D is automatically canonical.
If n = 2 and l2 = 0 or w1 = 0 then D is canonical, while if both l2,w1 > 0 we may apply
Case 2 (since, as we first argued, l1,w2 > 0). Finally, if n = 3, we know l1, l2,w2,w3 > 0.
If w1 = l3 = 0 then D is canonical, and otherwise Case 2 applies.

Transformation 1a: In Case 1a, where di has only winners, change D to a new sequence D′
by replacing the pair (di,wi,0), (dj ,wj , lj ) by their “average”: the single degree (d ′,w′, l′),
where

w′ = wi + wj , l′ = lj , d ′ = widi + (wj + lj )dj

wi + wj + lj
.

The stated conditions on a transformation are easily checked. The total weight of win-
ners is clearly preserved, as is the total weight of losers and the total degree (out-edges).
Summing weights preserves integrability. The number of distinct degrees is reduced by one,
and the number of nonzero weights may be decreased by one or may remain unchanged.
The Landau majorization condition holds because D′, as an averaging of D, is majorized
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by it, and majorization is transitive. The only non-trivial condition is the non-decrease in
g − 2f . The number of loser–winner pairs where the loser outranks the winner remains
the same, so g(D) = g(D′). Also, f depends only on the total weight of losers (which is
unchanged) and on the average degree of losers. This average degree would be unchanged
if wi were 0; since wi ≥ 0, the average degree may decrease. Thus f (D) ≥ f (D′), and
(g − 2f )(D) ≤ (g − 2f )(D′), as desired.

Transformation 1b: Symmetrically to Transformation 1a, obtain D′ by replacing the pair
of labeled weighted degrees (di,wi, li) and (dj ,0, lj ) with a single one (d ′,w′, l′), where
w′ = wi , l′ = li + lj , and d ′ = [(li + wi)di + lj dj ]/(li + wi + lj ).

Transformation 2: Where wi , li , wj and lj are all nonzero, we begin with one case, which
leads to one other. In the usual case, we transform D to D′ by replacing the pair (di,wi, li ),
(dj ,wj , lj ) with (di,wi + x, li − x), (dj ,wj − x, lj + x), for some value of x (positive or
negative) to be determined. This affects only the labeling, not the weighted degree sequence
itself, and is therefore legitimate as long as the four quantities wi + x, li − x, wj − x and
lj + x are all non-negative.

Defining Δ = (g − 2f )(D′) − (g − 2f )(D), we wish to choose x to make Δ > 0.

Δ =
{[

(lj + x)(wi + x + wj − x) + (li − x)(wi + x)
] − [

lj (wi + wj) + liwi

]}

− 2
{[

(li − x)di + (lj + x)dj

] − [
lidi + lj dj

]}

= x(wj + li − 2(dj − di) − x) = x(a − x),

where a = wj + li − 2(dj − di). This is a simple quadratic expression with negative coef-
ficient on x2, so its value increases monotonically as x is varied from 0 to a/2, where the
maximum is obtained. (Note that a may be negative.) If a = 0 then we do not use this trans-
formation but Transformation 3, below. Otherwise, vary x from 0 to a/2 stopping when x

reaches a/2 or when any of wi + x, li − x, wj − x and lj + x becomes 0. Call this value x�,
and use it to define the transformation.

If any of wi + x, li − x, wj − x and lj + x is 0 then the number of nonzero weights is
decreased (while the number of distinct degrees is unchanged). Otherwise, x� = a/2. In that
case, the new D′ has a = 0 (the optimal “weight shift” has already been performed). With
a = 0 we apply Transformation 3, which reduces the number of nonzero weights.

Transformation 3: Similar to Cases 1a and 1b, transform D to D′ by replacing the pair
(di,wi, li), (dj ,wj , lj ) with a single degree (d ′,w′, l′) that is their weighted average,

w′ = wi + wj , l′ = li + lj , d ′ = (wi + li )di + (wj + lj )dj

wi + li + wj + lj
.

This gives

Δ = (g − 2f )(D′) − (g − 2f )(D) = (liwj ) − 2(lid
′ + lj d

′ − lidi − lj dj )

= liwj + 2(dj − di)(wilj − wj li)

wi + li + wj + lj
.

We apply this transformation only in the case where Transformation 2 fails to give any
improvement because its “a” expression is equal to 0, i.e., dj − di = (wj + li )/2. Making
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the corresponding substitution gives

Δ = liwj + (wj + li )(wilj − wj li)

wi + li + wj + lj

= (liwj )(lj + wi) + (ljwi)(li + wj)

wi + li + wj + lj
> 0.

This reduces the number of distinct degrees by one, without increasing the number of
nonzero weights.

Concluding the argument, we have shown that any non-canonical configuration D can
be replaced by a configuration with a strictly smaller total of distinct degrees and nonzero
weights, and at least as large a value of g − 2f . Since D had at most n distinct degrees and
2n nonzero weights originally, a canonical configuration D� is reached after at most 3n − 1
transformations. (All that is important is that the number of transformations is finite: that
a canonical configuration is eventually reached.) Then, (g −2f )(D) ≤ (g −2f )(D�) ≤ 0. �

A further generalization of Theorem 3 may be found in (Bansal et al. 2006).

4 An upper bound for minimum feedback arc set

This section shows an analog of Theorem 2 for an optimal solution to the feedback arc set
problem. (The decomposition argument in Theorem 1 is algorithm-independent and applies
here as well.) For a tournament T and an ordering π , a back edge is an edge i → j in T such
that j is ordered before i in π . Let back(T ,π) denote the number of back edges induced by
π in T .

For a winner–loser partitioned tournament T = (T ,W,L) and any minimum feedback
arc set ordering π of T , let g′(T,π) be the number of winner–loser pairs where the loser
comes before the winner in π , and as before let

f (T) =
∑

�∈L

∑

w∈W

1(� → w)

be the number of winner–loser pairs where the loser beats the winner.

Theorem 4 For any winner–loser partitioned tournament T = (T ,W,L) and any minimum
feedback arc set ordering π of T, g′(T,π) ≤ 2f (T).

Proof Let kw be the smallest possible number of back edges in the subtournament induced
by W . Define kl similarly for the subtournament induced by L. Let kπ

w and kπ
l be the number

of back edges in π that go from W to W and from L to L, respectively. Denote the number
of remaining (i.e., winner–loser or loser–winner) back edges in π by kπ

o .
Consider another ordering σ where all winners are ordered before all losers, and both the

winners and the losers are ordered optimally among themselves, i.e., with kw and kl back
edges respectively. The number of back edges in σ is back(T, σ ) = kw + kl + f (T). But we
also have back(T, σ ) ≥ back(T,π) since π minimizes the number of back edges, and thus
kw + kl + f (T) ≥ kπ

w + kπ
l + kπ

o . Since kw ≤ kπ
w and kl ≤ kπ

l by definition of kw and kl , we
have f (T) ≥ kπ

o .
Consider any winner–loser pair with the loser ordered before the winner. If w → l is the

edge, it is a back edge in π and thus is counted by kπ
o . If l → w is the edge instead, it is
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counted by f (T). Thus g′(T,π) is at most kπ
o + f (T). Since f (T) ≥ kπ

o , this number is
never more than 2f (T), which implies g′(T,π) ≤ 2f (T). �

The proof above immediately shows that for any T and any ordering πα of T with at
most (1 + α) · opt(T) back edges, g′(T,πα) ≤ (2 + α)f (T) + α(kw + kl), where opt(T) is
the minimum number of back edges in T, and kw and kl are as in the proof above. Thus,
a FAS approximation does not generally guarantee that if f is 0, then so is g′ (a guarantee
provided by DEGREE and FAS). For example, T may make correct statements about all
winner–loser pairs while inducing a non-transitive tournament on the winners or the losers,
so an approximation that does not know the winner–loser labeling can incur a non-zero
number of mistakes.

5 Lower bounds

We first show that Theorem 2 is best possible: the DEGREE ranking really can make twice
as many mistakes as the adversary. Recall that f denotes the number of winner–loser pairs
where the loser beats the winner, and g the number of winner–loser pairs where the loser
outranks the winner. The example below generates an infinite family of tournaments with
g = 2f .

Example 1 With n odd, let every vertex have degree (n−1)/2; note that the degree sequence
〈 n−1

2 , . . . , n−1
2 〉 does indeed respect Landau’s condition, so it is realizable as a tournament.

Label (n − 1)/2 of the vertices as winners and (n + 1)/2 as losers. With ties broken against
us, all winners are ordered after all losers. This gives f = n+1

2 · n−1
2 − (

(n+1)/2
2

) = (n+1)(n−
1)/8, while g = n+1

2 · n−1
2 = (n+1)(n−1)/4 = 2f . (A similar example gives a lower bound

of 2 − O(1/n) with ties broken optimally for the algorithm.)

In a subsequent paper, Ailon and Mohri (2007) give a simple algorithm-independent ex-
ample showing that no deterministic algorithm can achieve a constant factor of less than 2
on the regret ratio. The example puts all the probability mass on a single three element sub-
set. The induced tournament is a directed 3-cycle, and the bipartition is chosen adversarily
depending on the ordering output by the algorithm. By symmetry, there are only two differ-
ent orderings (clockwise and counterclockwise). In both cases, the adversary can make the
algorithm pay for both mixed pairs while paying for only one misordering. This example
implies that Theorem 4 is also best possible.

6 Generalization to multipartite ranking

The result in Sect. 3 can be extended to the case when examples belong to more than two
classes. In the extreme case, all examples can have different labels. The labels typically form
an ordered set, arising naturally in applications where labels represent discretized ratings
(e.g., survey results can be graded from ‘strongly agree’ to ‘strongly disagree’, search results
can be graded from ‘most relevant’ to ‘least relevant’).

A natural way of extending the definition of ranking loss to account for the order in the
values, is to weigh the loss of putting an example with label yj before an example with label
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yi < yj by the difference yj − yi . Formally, the generalized AUC loss of an ordering π on
a set S = (1, y1), . . . , (n, yn) is defined as

l(π,S) =
∑

i 	=j π(i, j, {1, . . . , n})(yi − yj )+
∑

i<j |yi − yj | ,

where we use the operator (A)+ = A · 1(A > 0).
As in the bipartite case, let Q denote the distribution of label sequences of the set

{1, . . . , n}. Then the generalized loss of ordering i before j is

lQ(i, j) = Eyn∼Q

(yi − yj )+
∑

u<v |yu − yv| .

Regrets are defined as before. Recall that rQ(i, j) is proper if lQ(i, j) − lQ(j, i) ≥ 0.
The lemma below extends Lemma 1 to multiple labels.

Lemma 2 For any i, j , and k in {1, . . . , n}, if rQ(i, j) and rQ(j, k) are proper,

rQ(i, j) + rQ(j, k) = rQ(i, k).

Proof Consider any label assignment yn = y1 . . . yn and let Z(yn) = Q(yn)∑
u<v |yu−yv | .

A simple case analysis shows that yn contributes equally to both sides of the lemma
statement. Indeed, if yi ≤ yj ≤ yk , the contribution is zero to either side. If yi ≥ yj ≥ yk ,
it contributes Z(yn)((yi − yj ) + (yj − yk)) to rQ(i, j) + rQ(j, k) and Z(yn)(yi − yk) to
rQ(i, k), so the contributions are equal. It remains to consider two cases.

Case 1. yi ≤ yj and yj ≥ yk . The contribution of yn to the left side is Z(yn)[−(yj − yi) +
(yj −yk)]. If yi ≤ yk , it adds Z(yn)(yk −yi) to lQ(k, i); otherwise, it adds Z(yn)(yi −yk) to
lQ(i, k). In both cases, its contribution to the right side, lQ(i, k)− lQ(k, i), is Z(yn)(yi −yk),
and so the contributions are equal.

Case 2. yi ≥ yj and yj ≤ yk . Similarly to Case 1, yn donates Z(yn)[(yi − yj ) − (yk − yj )]
to the left side, and Z(yn)(yi − yk) to the right side, completing the proof. �

The proof of Theorem 1 carries through without modifications, using the generalized
definition of losses and regrets and Lemma 2 in place of Lemma 1.

7 Relation to generalization bounds and other work

A number of papers analyze generalization properties of ranking algorithms (see, e.g., Fre-
und et al. 2003; Agarwal et al. 2005; Agarwal and Niyogi 2005; Clémençon et al. 2005;
Rudin et al. 2005). These papers analyze ranking directly by estimating the rate of conver-
gence of empirical estimates of the ranking loss to its expectation. The bounds typically
involve some complexity parameter of the class of functions searched by the algorithms
(which serves as a regularizer), and some additional quantities considered relevant for the
analysis. The examples are assumed to be drawn independently from some fixed distribu-
tion.

The type of results in this paper is different. We bound the realized AUC performance
in terms of the realized classification performance, thus transferring performance from clas-
sification to ranking. Since the analysis is relative, it does not have to rely on any assump-
tions about the way the world produces data. In particular, the bounds apply when there
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are arbitrary high-order dependencies between examples, which is important in a number of
applications where ranking is of interest.

A generalization result for the induced classification problem implies, via the reduction,
a generalization result for the AUC problem. In situations where rankings are drawn iid
from some base distribution D, the induced independent sample from AUC-TRAIN(D) can
be formed by first drawing a ranking from D and then picking a mixed pair at random.
Repeating this process many times produces an iid sample set for which standard rate of
convergence analysis bounds hypothesis class regret.

Cortes and Mohri (2004) analyzed the relationship between the AUC and the error rate
on the same classification problem, treating the two as different loss functions. They derived
expressions for the expected value and the standard deviation of the AUC over all classifi-
cations with a fixed number of errors, under the assumption that all such classifications are
equiprobable (i.e., the classifier is as likely to err on any one example as on any other). There
is no connection with the present work.
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