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Abstract Kernel functions have become an extremely popular tool in machine learning,
with an attractive theory as well. This theory views a kernel as implicitly mapping data
points into a possibly very high dimensional space, and describes a kernel function as being
good for a given learning problem if data is separable by a large margin in that implicit space.
However, while quite elegant, this theory does not necessarily correspond to the intuition of
a good kernel as a good measure of similarity, and the underlying margin in the implicit
space usually is not apparent in “natural” representations of the data. Therefore, it may be
difficult for a domain expert to use the theory to help design an appropriate kernel for the
learning task at hand. Moreover, the requirement of positive semi-definiteness may rule out
the most natural pairwise similarity functions for the given problem domain.

In this work we develop an alternative, more general theory of learning with similarity
functions (i.e., sufficient conditions for a similarity function to allow one to learn well)
that does not require reference to implicit spaces, and does not require the function to be
positive semi-definite (or even symmetric). Instead, our theory talks in terms of more direct
properties of how the function behaves as a similarity measure. Our results also generalize
the standard theory in the sense that any good kernel function under the usual definition
can be shown to also be a good similarity function under our definition (though with some
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loss in the parameters). In this way, we provide the first steps towards a theory of kernels
and more general similarity functions that describes the effectiveness of a given function in
terms of natural similarity-based properties.

Keywords Kernel functions · Similarity functions · Margins

1 Introduction

Kernel functions have become an extremely popular tool in machine learning, with an attrac-
tive theory as well (http://www.kernel-machines.org/; Shawe-Taylor and Cristianini 2004;
Scholkopf et al. 2004; Herbrich 2002; Joachims 2002; Vapnik 1998). A kernel is a function
that takes in two data objects (which could be images, DNA sequences, or points in Rn) and
outputs a number, with the property that the function is symmetric and positive-semidefinite.
That is, for any kernel K , there must exist an (implicit) mapping φ, such that for all inputs
x, x ′ we have K(x,x ′) = 〈φ(x),φ(x ′)〉. The kernel is then used inside a “kernelized” learn-
ing algorithm such as SVM or kernel-perceptron in place of direct access to the data.

The theory behind kernel functions is based on the fact that many standard algorithms
for learning linear separators, such as SVMs (Vapnik 1998) and the Perceptron (Freund and
Schapire 1999) algorithm, can be written so that the only way they interact with their data
is via computing dot-products on pairs of examples. Thus, by replacing each invocation
of 〈φ(x),φ(x ′)〉 with a kernel computation K(x,x ′), the algorithm behaves exactly as if
we had explicitly performed the mapping φ(x), even though φ may be a mapping into a
very high-dimensional space. Furthermore, these algorithms have learning guarantees that
depend only on the margin of the best separator, and not on the dimension of the space in
which the data resides (Anthony and Bartlett 1999; Shawe-Taylor et al. 1998). Thus, kernel
functions are often viewed as providing much of the power of this implicit high-dimensional
space, without paying for it either computationally (because the φ mapping is only implicit)
or in terms of sample size (if data is indeed well-separated in that space).

While the above theory is quite elegant, it has a few limitations. When designing a ker-
nel function for some learning problem, the intuition employed typically does not involve
implicit high-dimensional spaces but rather that a good kernel would be one that serves as
a good measure of similarity for the given problem (Scholkopf et al. 2004). In-fact, many
generic kernels (e.g. Gaussian kernels), as well as very specific kernels (e.g. Fisher kernels,
Jaakkola and Haussler 1999, and kernels for specific structures such as Viswanathan and
Smola 2003), describe different notions of similarity between objects, which do not cor-
respond to any intuitive or easily interpretable high-dimensional representation. So, in this
sense the theory is not always helpful in providing intuition when selecting or designing a
kernel function for a particular learning problem. Additionally, it may be that the most nat-
ural similarity function for a given problem is not positive-semidefinite, and it could require
substantial work, possibly reducing the quality of the function, to coerce it into a “legal”
form. Finally, it is a bit unsatisfying for the explanation of the effectiveness of some algo-
rithm to depend on properties of an implicit high-dimensional mapping that one may not
even be able to calculate. In particular, the standard theory at first blush has a “something
for nothing” feel to it (all the power of the implicit high-dimensional space without having
to pay for it) and perhaps there is a more prosaic explanation of what it is that makes a kernel
useful for a given learning problem. For these reasons, it would be helpful to have a theory
that was in terms of more tangible quantities.

In this paper, we develop a theory of learning with similarity functions that addresses
a number of these issues. In particular, we define a notion of what it means for a pairwise

http://www.kernel-machines.org/
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function K(x,x ′) to be a “good similarity function” for a given learning problem that (a)
does not require the notion of an implicit space and allows for functions that are not positive
semi-definite, (b) we can show is sufficient to be used for learning, and (c) generalizes the
standard theory in that a good kernel in the usual sense (large margin in the implicit φ-space)
will also satisfy our definition of a good similarity function, though with some loss in the
parameters. In this way, we provide the first theory that describes the effectiveness of a given
kernel (or more general similarity function) in terms of natural similarity-based properties.

Our results Our main contribution is the development of a theory for what it means for
a pairwise function to be a “good similarity function” for a given learning problem, along
with theorems showing that our main definitions are sufficient to be able to learn well and
in addition generalize the standard notion of a good kernel function, though with some
bounded degradation of learning guarantees. We begin with a definition (Definition 4) that
is especially intuitive and allows for learning via a very simple algorithm, but is not broad
enough to include all kernel functions that induce large-margin separators. We then broaden
this notion to our main definition (Definition 8) that requires a more involved algorithm to
learn, but is now able to capture all functions satisfying the usual notion of a good kernel
function. Specifically, we show that if K is a similarity function satisfying Definition 8 then
one can algorithmically perform a simple, explicit transformation of the data under which
there is a low-error large-margin separator. We also consider variations on this definition
(e.g., Definition 9) that produce better guarantees on the quality of the final hypothesis when
combined with existing learning algorithms.

A similarity function K satisfying our definition, but that is not positive semi-definite, is
not necessarily guaranteed to work well when used directly in standard learning algorithms
such as SVM or the Perceptron algorithm.1 Instead, what we show is that such a similar-
ity function can be employed in the following two-stage algorithm. First, re-represent that
data by performing what might be called an “empirical similarity map”: selecting a subset
of data points as landmarks, and then representing each data point using the similarities to
those landmarks. Then, use standard methods to find a large-margin linear separator in the
new space. One property of this approach is that it allows for the use of a broader class
of learning algorithms since one does not need the algorithm used in the second step to be
“kernalizable”. In fact, this work is motivated by work on a re-representation method that al-
gorithmically transforms a kernel-based learning problem (with a valid positive-semidefinite
kernel) to an explicit low-dimensional learning problem (Balcan et al. 2006).

More generally, our framework provides a formal way to analyze properties of a similar-
ity function that make it sufficient for learning, as well as what algorithms are suited for a
given property. While our work is motivated by extending the standard large-margin notion
of a good kernel function, we expect one can use this framework to analyze other, not nec-
essarily comparable, properties that are sufficient for learning as well. In fact, recent work
along these lines is given in (Wang et al. 2007).

2 Background and notation

We consider a learning problem specified as follows. We are given access to labeled ex-
amples (x, y) drawn from some distribution P over X × {−1,1}, where X is an abstract

1However, as we will see in Sect. 4.2, if the function is positive semi-definite and if it is good in our sense,
then we can show it is good as a kernel as well.



92 Mach Learn (2008) 72: 89–112

instance space. The objective of a learning algorithm is to produce a classification function
g : X → {−1,1} whose error rate Pr(x,y)∼P [g(x) �= y] is low. We will consider learning algo-
rithms that only access the points x through a pairwise similarity function K(x,x ′) mapping
pairs of points to numbers in the range [−1,1]. Specifically,

Definition 1 A similarity function over X is any pairwise function K : X × X → [−1,1].
We say that K is a symmetric similarity function if K(x,x ′) = K(x ′, x) for all x, x ′.

Our goal is to describe “goodness” properties that are sufficient for a similarity function
to allow one to learn well that ideally are intuitive and subsume the usual notion of good
kernel function. Note that as with the theory of kernel functions (Scholkopf and Smola
2002), “goodness” is with respect to a given learning problem P , and not with respect to a
class of target functions as in the PAC framework (Valiant 1984; Kearns and Vazirani 1994).

A similarity function K is a valid kernel function if it is positive-semidefinite, i.e.
there exists a function φ from the instance space X into some (implicit) Hilbert “φ-space”
such that K(x,x ′) = 〈φ(x),φ(x ′)〉. See, e.g., Smola and Scholkopf (2002) for a discus-
sion on conditions for a mapping being a kernel function. Throughout this work, and
without loss of generality, we will only consider kernels such that K(x,x) ≤ 1 for all
x ∈ X (any kernel K can be converted into this form by, for instance, defining K̃(x, x ′) =
K(x,x ′)/

√
K(x,x)K(x ′, x ′)). We say that K is (ε, γ )-kernel good for a given learning

problem P if there exists a vector β in the φ-space that has error ε at margin γ ; for simplic-
ity we consider only separators through the origin. Specifically:

Definition 2 K is (ε, γ )-kernel good if there exists a vector β , ‖β‖ ≤ 1 such that

Pr
(x,y)∼P

[y〈φ(x),β〉 ≥ γ ] ≥ 1 − ε.

We say that K is γ -kernel good if it is (ε, γ )-kernel good for ε = 0; i.e., it has zero error
at margin γ .

Given a kernel that is (ε, γ )-kernel-good for some learning problem P , a predictor
with error rate at most ε + εacc can be learned (with high probability) from a sample of2

Õ((ε + εacc)/(γ
2ε2

acc)) examples (drawn independently from the source distribution) by
minimizing the number of margin γ violations on the sample (McAllester 2003). How-
ever, minimizing the number of margin violations on the sample is a difficult optimization
problem (Anthony and Bartlett 1999; Arora et al. 1997). Instead, it is common to minimize
the so-called hinge loss relative to a margin.

Definition 3 We say that K is (ε, γ )-kernel good in hinge-loss if there exists a vector β ,
‖β‖ ≤ 1 such that

E(x,y)∼P [[1 − y〈β,φ(x)〉/γ ]+] ≤ ε,

where [1 − z]+ = max(1 − z,0) is the hinge loss.

Given a kernel that is (ε, γ )-kernel-good in hinge-loss, a predictor with error rate at most
ε + εacc can be efficiently learned (with high probability) from a sample of O(1/(γ 2ε2

acc))

2The Õ(·) notations hide logarithmic factors in the arguments, and in the failure probability.
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examples by minimizing the average hinge loss relative to margin γ on the sample (Bartlett
and Mendelson 2003).

Clearly, a general similarity function might not be a legal kernel. For example, suppose
we consider two documents to have similarity 1 if they have either an author in common or
a keyword in common, and similarity 0 otherwise. Then you could have three documents A,
B , and C, such that K(A,B) = 1 because A and B have an author in common, K(B,C) = 1
because B and C have a keyword in common, but K(A,C) = 0 because A and C have nei-
ther an author nor a keyword in common (and K(A,A) = K(B,B) = K(C,C) = 1). On the
other hand, a kernel requires that if φ(A) and φ(B) are of unit length and 〈φ(A),φ(B)〉 = 1,
then φ(A) = φ(B), so this could not happen if K was a valid kernel. Of course, one could
modify such a function to be positive semidefinite by, e.g., instead defining similarity to be
the number of authors and keywords in common, but perhaps that is not the most natural
similarity measure for the task at hand. Alternatively, one could make the similarity func-
tion positive semidefinite by blowing up the diagonal, but this can significantly decrease the
“dynamic range” of K and yield a very small margin.

Deterministic labels For simplicity in presentation of our framework, for most of this pa-
per we will consider only learning problems where the label y is a deterministic function
of x. For such learning problems, we can use y(x) to denote the label of point x, and we
will use x ∼ P as shorthand for (x, y(x)) ∼ P . We will return to learning problems where
the label y may be a probabilistic function of x in Sect. 5.

3 Sufficient conditions for learning with similarity functions

We now provide a series of sufficient conditions for a similarity function to be useful for
learning, leading to our main notions given in Definitions 8 and 9.

3.1 Simple sufficient conditions

We begin with our first and simplest notion of “good similarity function” that is intuitive and
yields an immediate learning algorithm, but which is not broad enough to capture all good
kernel functions. Nonetheless, it provides a convenient starting point. This definition says
that K is a good similarity function for a learning problem P if most examples x (at least a
1 − ε probability mass) are on average at least γ more similar to random examples x ′ of the
same label than they are to random examples x ′ of the opposite label. Formally,

Definition 4 K is a strongly (ε, γ )-good similarity function for a learning problem P if at
least a 1 − ε probability mass of examples x satisfy:

Ex′∼P [K(x,x ′)|y(x) = y(x ′)] ≥ Ex′∼P [K(x,x ′)|y(x) �= y(x ′)] + γ. (3.1)

For example, suppose all positive examples have similarity at least 0.2 with each other,
and all negative examples have similarity at least 0.2 with each other, but positive and nega-
tive examples have similarities distributed uniformly at random in [−1,1]. Then, this would
satisfy Definition 4 for γ = 0.2 and ε = 0. Note that with high probability this would not be
positive semidefinite.3

3In particular, if the domain is large enough, then with high probability there would exist negative example A

and positive examples B,C such that K(A,B) is close to 1 (so they are nearly identical as vectors), K(A,C)
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Definition 4 captures an intuitive notion of what one might want in a similarity function.
In addition, if a similarity function K satisfies Definition 4 then it suggests a simple, natural
learning algorithm: draw a sufficiently large set S+ of positive examples and set S− of
negative examples, and then output the prediction rule that classifies a new example x as
positive if it is on average more similar to points in S+ than to points in S−, and negative
otherwise. Formally:

Theorem 1 If K is strongly (ε, γ )-good, then (16/γ 2) ln(2/δ) positive examples S+ and
(16/γ 2) ln(2/δ) negative examples S− are sufficient so that with probability ≥ 1 − δ, the
above algorithm produces a classifier with error at most ε + δ.

Proof Let Good be the set of x satisfying Ex′∼P [K(x,x ′)|y(x) = y(x ′)] ≥ Ex′∼P [K(x,x ′)|
y(x) �= y(x ′)] + γ . So, by assumption, Prx∼P [x ∈ Good] ≥ 1 − ε. Now, fix x ∈ Good. Since
K(x,x ′) ∈ [−1,1], by Hoeffding bounds we have that over the random draw of the sample
S+, Pr(|Ex′∈S+[K(x,x ′)] − Ex′∼P [K(x,x ′)|y(x ′) = 1]| ≥ γ /2) ≤ 2e−2|S+|γ 2/16, and simi-
larly for S−. By our choice of |S+| and |S−|, each of these probabilities is at most δ2/2.

So, for any given x ∈ Good, there is at most a δ2 probability of error over the draw of
S+ and S−. Since this is true for any x ∈ Good, it implies that the expected error of this
procedure, over x ∈ Good, is at most δ2, which by Markov’s inequality implies that there
is at most a δ probability that the error rate over Good is more than δ. Adding in the ε

probability mass of points not in Good yields the theorem. �

Definition 4 requires that almost all of the points (at least a 1 − ε fraction) be on average
more similar to random points of the same label than to random points of the other label.
A weaker notion would be simply to require that two random points of the same label be
on average more similar than two random points of different labels. For instance, one could
consider the following generalization of Definition 4:

Definition 5 K is a weakly γ -good similarity function for a learning problem P if:

Ex,x′∼P [K(x,x ′)|y(x) = y(x ′)] ≥ Ex,x′∼P [K(x,x ′)|y(x) �= y(x ′)] + γ. (3.2)

While Definition 5 still captures a natural intuitive notion of what one might want in
a similarity function, it is not powerful enough to imply strong learning unless γ is quite
large. For example, suppose the instance space is R2 and that the similarity measure K we
are considering is just the product of the first coordinates (i.e., dot-product but ignoring the
second coordinate). Assume the distribution is half positive and half negative, and that 75%
of the positive examples are at position (1,1) and 25% are at position (−1,1), and 75% of
the negative examples are at position (−1,−1) and 25% are at position (1,−1). Then K

is a weakly γ -good similarity function for γ = 1/2, but the best accuracy one can hope for
using K is 75% because that is the accuracy of the Bayes-optimal predictor given only the
first coordinate.

We can however show that for any γ > 0, Definition 5 is enough to imply weak learn-
ing (Schapire 1990). In particular, the following simple algorithm is sufficient to weak learn.
First, determine if the distribution is noticeably skewed towards positive or negative ex-
amples: if so, weak-learning is immediate (output all-positive or all-negative respectively).

is close to −1 (so they are nearly opposite as vectors), and yet K(B,C) ≥ 0.2 (their vectors form an acute
angle).
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Fig. 1 Positives are split equally among upper-left and upper-right. Negatives are all in the lower-right. For
α = 30◦ (so γ = 1/2) a large fraction of the positive examples (namely the 50% in the upper-right) have a
higher dot-product with negative examples ( 1

2 ) than with a random positive example ( 1
2 · 1 + 1

2 (− 1
2 ) = 1

4 ).
However, if we assign the positives in the upper-left a weight of 0, those in the upper-right a weight of 1,
and assign negatives a weight of 1

2 , then all examples have higher average weighted similarity to those of the

same label than to those of the opposite label, by a gap of 1
4

Otherwise, draw a sufficiently large set S+ of positive examples and set S− of negative ex-
amples. Then, for each x, consider γ̃ (x) = 1

2 [Ex′∈S+[K(x,x ′)]− Ex′∈S−[K(x,x ′)]]. Finally,
to classify x, use the following probabilistic prediction rule: classify x as positive with prob-
ability 1+γ̃ (x)

2 and as negative with probability 1−γ̃ (x)

2 . (Notice that γ̃ (x) ∈ [−1,1] and so our
algorithm is well defined.) We can then prove the following result:

Theorem 2 If K is a weakly γ -good similarity function, then with probability at least 1− δ,
the above algorithm using sets S+, S− of size 64

γ 2 ln ( 64
γ δ

) yields a classifier with error at most
1
2 − 3γ

128 .

Proof See Appendix. �

Returning to Definition 4, Theorem 1 implies that if K is a strongly (ε, γ )-good similarity
function for small ε and not-too-small γ , then it can be used in a natural way for learning.
However, Definition 4 is not sufficient to capture all good kernel functions. In particular,
Fig. 1 gives a simple example in R2 where the standard kernel K(x,x ′) = 〈x, x ′〉 has a large
margin separator (margin of 1/2) and yet does not satisfy Definition 4, even for γ = 0 and
ε = 0.49.

Notice, however, that if in Fig. 1 we simply ignored the positive examples in the upper-
left when choosing x ′, and down-weighted the negative examples a bit, then we would be
fine. This then motivates the following intermediate notion of a similarity function K be-
ing good under a weighting function w over the input space that can downweight certain
portions of that space.

Definition 6 A similarity function K together with a bounded weighting function w over X

(specifically, w(x ′) ∈ [0,1] for all x ′ ∈ X) is a strongly (ε, γ )-good weighted similarity
function for a learning problem P if at least a 1 − ε probability mass of examples x satisfy:

Ex′∼P [w(x ′)K(x, x ′)|y(x) = y(x ′)] ≥ Ex′∼P [w(x ′)K(x, x ′)|y(x) �= y(x ′)] + γ. (3.3)
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We can view Definition 6 intuitively as saying that we only require most examples be
substantially more similar on average to reasonable points of the same class than to rea-
sonable points of the opposite class, where “reasonableness” is a score in [0,1] given by
the weighting function w. A pair (K,w) satisfying Definition 6 can be used in exactly the
same way as a similarity function K satisfying Definition 4, with the exact same proof used
in Theorem 1 (except now we view w(y)K(x, x ′) as the bounded random variable we plug
into Hoeffding bounds).

Unfortunately, Definition 6 requires the designer to construct both K and w, rather than
just K . We now weaken the requirement to ask only that such a w exist, in Definition 7
below:

Definition 7 (Provisional) A similarity function K is an (ε, γ )-good similarity function for
a learning problem P if there exists a bounded weighting function w over X (w(x ′) ∈ [0,1]
for all x ′ ∈ X) such that at least a 1 − ε probability mass of examples x satisfy:

Ex′∼P [w(x ′)K(x, x ′)|y(x) = y(x ′)] ≥ Ex′∼P [w(x ′)K(x, x ′)|y(x) �= y(x ′)] + γ. (3.4)

As mentioned above, the key difference is that whereas in Definition 6 one needs the
designer to construct both the similarity function K and the weighting function w, in Defin-
ition 7 we only require that such a w exist, but it need not be known a-priori. That is, we ask
only that there exist a large probability mass of “reasonable” points (a weighting scheme)
satisfying Definition 6, but the designer need not know in advance what that weighting
scheme should be.

Definition 7, which was the main definition analyzed by Balcan and Blum (2006), can
also be stated as requiring that, for at least 1 − ε of the examples, the classification margin

Ex′∼P [w(x ′)y(x ′)K(x, x ′)|y(x) = y(x ′)] − Ex′∼P [w(x ′)y(x ′)K(x, x ′)|y(x) �= y(x ′)]
= y(x)Ex′∼P [w(x ′)y(x ′)K(x, x ′)/P (y(x ′))] (3.5)

be at least γ , where P (y(x ′)) is the marginal probability under P , i.e. the prior, of the
label associated with x ′. We will find it more convenient in the following to analyze instead
a slight variant, dropping the factor 1/P (y(x ′)) from the classification margin (3.5)—see
Definition 8 in the next Section. For a balanced distribution of positives and negatives (each
with 50% probability mass), these two notions are identical, except for a factor of two.

3.2 Main conditions

We are now ready to present our main sufficient condition for learning with similarity func-
tions. This is essentially a restatement of Definition 7, dropping the normalization by the
label “priors” as discussed at the end of the preceding Section.

Definition 8 (Main, margin violations) A similarity function K is an (ε, γ )-good similarity
function for a learning problem P if there exists a bounded weighting function w over X

(w(x ′) ∈ [0,1] for all x ′ ∈ X) such that at least a 1 − ε probability mass of examples x

satisfy:

Ex′∼P [y(x)y(x ′)w(x ′)K(x, x ′)] ≥ γ. (3.6)
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We would like to establish that the above condition is indeed sufficient for learning.
I.e. that given an (ε, γ )-good similarity function K for some learning problem P , and a
sufficiently large labeled sample drawn from P , one can obtain (with high probability) a
predictor with error rate arbitrarily close to ε. To do so, we will show how to use an (ε, γ )-
good similarity function K , and a sample S drawn from P , in order to construct (with high
probability) an explicit mapping φS : X → R

d for all points in X (not only points in the
sample S), such that the mapped data (φS(x), y(x)), where x ∼ P , is separated with error
close to ε (and in fact also large margin) in the low-dimensional linear space R

d (Theorem
3 below). We thereby convert the learning problem into a standard problem of learning a
linear separator, and can use standard results on learnability of linear separators to establish
learnability of our original learning problem, and even provide learning guarantees.

What we are doing is actually showing how to use a good similarity function K (that is
not necessarily a valid kernel) and a sample S drawn from P to construct a valid kernel K̃S ,
given by K̃S(x, x ′) = 〈φS(x),φS(x ′)〉, that is kernel-good and can thus be used for learning
(in Sect. 4 we show that if K is already a valid kernel, a transformation is not necessary as
K itself is kernel-good). We are therefore leveraging here the established theory of linear,
or kernel, learning in order to obtain learning guarantees for similarity measures that are not
valid kernels.

Interestingly, in Sect. 4 we also show that any kernel that is kernel-good is also a good
similarity function (though with some degradation of parameters). The suggested notion of
“goodness” (Definition 8) thus encompasses the standard notion of kernel-goodness, and
extends it also to non-positive-definite similarity functions.

Theorem 3 Let K be an (ε, γ )-good similarity function for a learning problem P . For
any δ > 0, let S = {x̃1, x̃2, . . . , x̃d} be a sample of size d = 8 log(1/δ)/γ 2 drawn from P .
Consider the mapping φS : X → R

d defined as follows: φS
i(x) = K(x,x̃i )√

d
, i ∈ {1, . . . , d}.

With probability at least 1 − δ over the random sample S, the induced distribution φS(P ) in
Rd has a separator of error at most ε + δ at margin at least γ /2.

Proof Let w : X → [0,1] be the weighting function achieving (3.6) of Definition 8. Con-
sider the linear separator β ∈ R

d , given by βi = y(x̃i )w(x̃i )√
d

; note that ‖β‖ ≤ 1. We have, for
any x, y(x):

y(x)〈β,φS(x)〉 = 1

d

d∑

i=1

y(x)y(x̃i)w(x̃i)K(x, x̃i). (3.7)

The right hand side of the (3.7) is an empirical average of −1 ≤ y(x)y(x ′)w(x ′)K(x, x ′) ≤
1, and so by Hoeffding’s inequality, for any x, and with probability at least 1 − δ2 over the
choice of S, we have:

1

d

d∑

i=1

y(x)y(x̃i)w(x̃i)K(x, x̃i) ≥ Ex′∼P [y(x)y(x ′)w(x ′)K(x, x ′)] −
√

2 log( 1
δ2 )

d
. (3.8)

Since the above holds for any x with probability at least 1 − δ2 over the choice of S, it also
holds with probability at least 1 − δ2 over the choice of x and S. We can write this as:

ES∼Pd

[
Pr

x∼P
(violation)

]
≤ δ2, (3.9)
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where “violation” refers to violating (3.8). Applying Markov’s inequality we get that with
probability at least 1 − δ over the choice of S, at most δ fraction of points violate (3.8).
Recalling Definition 8, at most an additional ε fraction of the points violate (3.6). But for
the remaining 1 − ε − δ fraction of the points, for which both (3.8) and (3.6) hold, we

have: y(x)〈β,φS(x)〉 ≥ γ −
√

2 log( 1
δ2 )

d
= γ /2, where to get the last inequality we use d =

8 log(1/δ)/γ 2. �

In order to learn a predictor with error rate at most ε + εacc we can set δ = εacc/2,
draw a sample of size d = (4/γ )2 ln(4/εacc) and construct φS as in Theorem 3. We can
now draw a new, fresh, sample, map it into the transformed space using φS , and then
learn a linear separator in the new space. The number of landmarks is dominated by the
Õ((ε + εacc)d/ε2

acc)) = Õ((ε + εacc)/(γ
2ε2

acc)) sample complexity of the linear learning,
yielding the same order sample complexity as in the kernel-case for achieving error at most
ε + εacc: Õ((ε + εacc)/(γ

2ε2
acc)).

Unfortunately, the above sample complexity refers to learning by finding a linear sep-
arator minimizing the error over the training sample. This minimization problem is NP-
hard (Anthony and Bartlett 1999), and even NP-hard to approximate (Arora et al. 1997). In
certain special cases, such as if the induced distribution φS(P ) happens to be log-concave,
efficient learning algorithms exist (Kalai et al. 2005). However, as discussed earlier, in the
more typical case, one minimizes the hinge-loss instead of the number of errors. We there-
fore consider also a modification of our definition that captures the notion of good similarity
functions for the SVM and Perceptron algorithms as follows:

Definition 9 (Main, hinge loss) A similarity function K is an (ε, γ )-good similarity function
in hinge loss for a learning problem P if there exists a weighting function w(x ′) ∈ [0,1] for
all x ′ ∈ X such that

Ex[[1 − y(x)g(x)/γ ]+] ≤ ε, (3.10)

where g(x) = Ex′∼P [y(x ′)w(x ′)K(x, x ′)] is the similarity-based prediction made using w(),
and recall that [1 − z]+ = max(0,1 − z) is the hinge-loss.

In other words, we are asking: on average, by how much, in units of γ , would a ran-
dom example x fail to satisfy the desired γ separation between the weighted similarity to
examples of its own label and the weighted similarity to examples of the other label.

Similarly to Theorem 3, we have:

Theorem 4 Let K be an (ε, γ )-good similarity function in hinge loss for a learning prob-
lem P . For any ε1 > 0 and 0 < δ < γ ε1/4 let S = {x̃1, x̃2, . . . , x̃d} be a sample of size
d = 16 log(1/δ)/(ε1γ )2 drawn from P . With probability at least 1− δ over the random sam-
ple S, the induced distribution φS(P ) in Rd , for φS as defined in Theorem 3, has a separator
achieving hinge-loss at most ε + ε1 at margin γ .

Proof Let w : X → [0,1] be the weighting function achieving an expected hinge loss of
at most ε at margin γ , and denote g(x) = Ex′∼P [y(x ′)w(x ′)K(x, x ′)]. Defining β as in
Theorem 3 and following the same arguments we have that with probability at least 1 − δ

over the choice of S, at most δ fraction of the points x violate (3.8). We will only consider
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such samples S. For those points that do not violate (3.8) we have:

[1 − y(x)〈β,φS(x)〉/γ ]+ ≤ [1 − y(x)g(x)/γ ]+ 1

γ

√
2 log( 1

δ2 )

d

≤ [1 − y(x)g(x)/γ ]+ + ε1/2. (3.11)

For points that do violate (3.8), we will just bound the hinge loss by the maximum possible
hinge-loss:

[1 − y(x)〈β,φS(x)〉/γ ]+ ≤ 1 + max
x

|y(x)‖β‖‖φS(x)‖|/γ ≤ 1 + 1/γ ≤ 2/γ. (3.12)

Combining these two cases we can bound the expected hinge-loss at margin γ :

Ex∼P [[1 − y(x)〈β,φS(x)〉/γ ]+]
≤ Ex∼P [[1 − y(x)g(x)/γ ]+] + ε1/2 + Pr (violation) · (2/γ )

≤ Ex∼P [[1 − y(x)g(x)/γ ]+] + ε1/2 + 2δ/γ

≤ Ex∼P [[1 − y(x)g(x)/γ ]+] + ε1, (3.13)

where the last inequality follows from δ < ε1γ /4. �

Following the same approach as that suggested following Theorem 3, and noticing that
the dimensionality d of the linear space created by φS is polynomial in 1/γ , 1/ε1 and
log(1/δ), if a similarity function K is a (ε, γ )-good similarity function in hinge loss, one
can apply Theorem 4 and then use an SVM solver in the φS -space to obtain (with probabil-
ity at least 1 − δ) a predictor with error rate ε + ε1 using Õ(1/(γ 2ε2

acc)) examples, and time
polynomial in 1/γ ,1/ε1 and log(1/δ).

3.3 Extensions

Combining multiple similarity functions Suppose that rather than having a single similarity
function, we were instead given n functions K1, . . . ,Kn, and our hope is that some convex
combination of them will satisfy Definition 8. Is this sufficient to be able to learn well?
(Note that a convex combination of similarity functions is guaranteed to have range [−1,1]
and so be a legal similarity function.) The following generalization of Theorem 3 shows that
this is indeed the case, though the margin parameter drops by a factor of

√
n. This result can

be viewed as analogous to the idea of learning a kernel matrix studied by (Lanckriet et al.
2004) except that rather than explicitly learning the best convex combination, we are simply
folding the learning process into the second stage of the algorithm.

Theorem 5 Suppose K1, . . . ,Kn are similarity functions such that some (unknown) con-
vex combination of them is (ε, γ )-good. If one draws a set S = {x̃1, x̃2, . . . , x̃d} from P

containing d = 8 log(1/δ)/γ 2 examples, then with probability at least 1 − δ, the mapping

φS : X → Rnd defined as φS(x) = ρS(x)√
nd

,

ρS(x) = (K1(x, x̃1), . . . ,K1(x, x̃d), . . . ,Kn(x, x̃1), . . . ,Kn(x, yd))

has the property that the induced distribution φS(P ) in Rnd has a separator of error at most
ε + δ at margin at least γ /(2

√
n).
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Proof Let K = α1K1 + · · · + αnKn be an (ε, γ )-good convex-combination of the Ki . By

Theorem 3, had we instead performed the mapping: φ̂S : X → Rd defined as φ̂S(x) = ρ̂S (x)√
d

,

ρ̂S(x) = (K(x, x̃1), . . . ,K(x, x̃d))

then with probability 1 − δ, the induced distribution φ̂S(P ) in Rd would have a separator
of error at most ε + δ at margin at least γ /2. Let β̂ be the vector corresponding to such
a separator in that space. Now, let us convert β̂ into a vector in Rnd by replacing each
coordinate β̂j with the n values (α1β̂j , . . . , αnβ̂j ). Call the resulting vector β̃ . Notice that
by design, for any x we have 〈β̃, φS(x)〉 = 1√

n
〈β̂, φ̂S(x)〉. Furthermore, ‖β̃‖ ≤ ‖β̂‖ ≤ 1 (the

worst case is when exactly one of the αi is equal to 1 and the rest are 0). Thus, the vector β̃

under distribution φS(P ) has the similar properties as the vector β̂ under φ̂S(P ); so, using
the proof of Theorem 3 we obtain that the induced distribution φS(P ) in Rnd has a separator
of error at most ε + δ at margin at least γ /(2

√
n). �

Note that the above argument actually shows something a bit stronger than Theorem 5.
In particular, if we define α = (α1, . . . , αn) to be the mixture vector for the optimal K , then
we can replace the margin bound γ /(2

√
n) with γ /(2‖α‖√

n). For example, if α is the
uniform mixture, then we just get the bound in Theorem 3 of γ /2.

Multi-class classification We can naturally extend all our results to multi-class classifi-
cation. Assume for concreteness that there are r possible labels, and denote the space of
possible labels by Y = {1, . . . , r}; thus, by a multi-class learning problem we mean a distri-
bution P over labeled examples (x, y(x)), where x ∈ X and y(x) ∈ Y .

For this multi-class setting, Definition 7 seems most natural to extend. Specifically:

Definition 10 (Main, multi-class) A similarity function K is an (ε, γ )-good similarity func-
tion for a multi-class learning problem P if there exists a bounded weighting function w over
X (w(x ′) ∈ [0,1] for all x ′ ∈ X) such that at least a 1 − ε probability mass of examples x

satisfy:

Ex′∼P [w(x ′)K(x, x ′)|y(x) = y(x ′)] ≥ Ex′∼P [w(x ′)K(x, x ′)|y(x) = i] + γ

for all i ∈ Y, i �= y(x).

We can then extend the argument in Theorem 3 and learn using standard adaptations of
linear-separator algorithms to the multiclass case (see, e.g., Freund and Schapire 1999).

4 Relationship between kernels and similarity measures

As discussed earlier, the similarity-based theory of learning is more general than the tra-
ditional kernel-based theory, since a good similarity function need not be a valid kernel.
However, for a similarity function K that is a valid kernel, it is interesting to understand
the relationship between the learning results guaranteed by the two theories. Similar learn-
ing guarantees and sample complexity bounds can be obtained if K is either an (ε, γ )-good
similarity function, or a valid kernel and (ε, γ )-kernel-good. In fact, as we saw in Sect. 3.2,
the similarity-based guarantees are obtained by transforming (using a sample) the problem
of learning with an (ε, γ )-good similarity function to learning with a kernel with essentially
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the same goodness parameters. This is made more explicit in Sect. 4.1. Understanding the
relationship between the learning guarantees then boils down to understanding the relation-
ship between the two notions of goodness.

In this section we study the relationship between a kernel function being good in the
similarity sense and good in the kernel sense. We show that a valid kernel function that
is good for one notion, is in fact good also for the other notion. The qualitative notions of
being “good” are therefore equivalent for valid kernels, and so in this sense the more general
similarity-based notion subsumes the familiar kernel-based notion.

However, as we will see, the similarity-based margin of a valid kernel might be lower than
the kernel-based margin, yielding a possible increase in the sample complexity guarantees if
a kernel is used as a similarity measure. Since we will show that for a valid kernel, the kernel-
based margin is never smaller than the similarity-based margin, we see that the similarity-
based notion, despite being more general, is strictly less powerful quantitatively on those
similarity functions for which the kernel theory applies. We provide a tight bound on this
possible deterioration of the margin when switching to the similarity-based notion.

Specifically, we show that if a valid kernel function is good in the similarity sense, it is
also good in the standard kernel sense, both for the margin violation error rate and for the
hinge loss:

Theorem 6 (A kernel good as a similarity function is also good as a kernel) If K is a valid
kernel function, and is (ε, γ )-good similarity for some learning problem, then it is also
(ε, γ )-kernel-good for the learning problem. If K is (ε, γ )-good similarity in hinge loss,
then it is also (ε, γ )-kernel-good in hinge loss.

We also show the converse—If a kernel function is good in the kernel sense, it is also
good in the similarity sense, though with some degradation of the margin:

Theorem 7 (A good kernel is also a good similarity function—margin violations) If K is
(ε0, γ )-kernel-good for some learning problem (with deterministic labels), then it is also
(ε0 + ε1,

1
2 (1 − ε0)ε1γ

2)-good similarity for the learning problem, for any ε1 > 0.

Note that in any useful situation ε0 < 1
2 , and so the guaranteed margin is at least 1

4ε1γ
2.

A similar guarantee holds also for the hinge loss:

Theorem 8 (A good kernel is also a good similarity function—hinge loss) If K is (ε0, γ )-
kernel-good in hinge loss for learning problem (with deterministic labels), then it is also
(ε0 + ε1,2ε1γ

2)-good similarity in hinge loss for the learning problem, for any ε1 > 0.

These results establish that treating a kernel as a similarity function would still enable
learning, although with a somewhat increased sample complexity. Unfortunately, the deteri-
oration of the margin in the above results, which yields an increase in the sample complexity
guarantees, is unavoidable:

Theorem 9 (Tightness, margin violations) For any 0 < γ <

√
1
2 and any 0 < ε1 < 1

2 , there

exists a learning problem and a kernel function K , which is (0, γ )-kernel-good for the learn-
ing problem, but which is only (ε1,4ε1γ

2)-good similarity. That is, it is not (ε1, γ
′)-good

similarity for any γ ′ > 4ε1γ
2.
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Theorem 10 (Tightness, hinge loss) For any 0 < γ <

√
1
2 and any 0 < ε1 < 1

2 , there exists

a learning problem and a kernel function K , which is (0, γ )-kernel-good in hinge loss for
the learning problem, but which is only (ε1,32ε1γ

2)-good similarity in hinge loss.

To prove Theorem 6 we will show, for any weight function, an explicit low-norm linear
predictor β (in the implied Hilbert space), with equivalent behavior (Sect. 4.2). To prove
Theorems 7 and 8, we will consider a kernel function that is (ε0, γ )-kernel-good and show
that it is also good as a similarity function. We will first treat goodness in hinge-loss and
prove Theorem 8 (Sect. 4.3), which can be viewed as a more general result. This will be
done using the representation of the optimal SVM solution in terms of the dual optimal
solution. Then, in Sect. 4.4, we prove Theorem 7 in terms of the margin violation error rate,
by using the hinge-loss as a bound on the error rate. To prove Theorems 9 and 10, we present
an explicit learning problem and kernel (Sect. 4.5).

4.1 Transforming a good similarity function to a good kernel

Before proving the above Theorems, we briefly return to the mapping of Theorem 3 and
explicitly present it as a mapping between a good similarity function and a good kernel:

Corollary 11 (A good similarity function can be transformed to a good kernel) If K is an
(ε, γ )-good similarity function for some learning problem P , then for any 0 < δ < 1, given
a sample of S size (8/γ 2) log(1/δ) drawn from P , we can construct, with probability at least
1 − δ over the draw of S, a valid kernel K̃S that is (ε + δ, γ /2)-kernel good for P .

If K is a (ε, γ )-good similarity function in hinge-loss for some learning problem P , then
for any ε1 > 0 and 0 < δ < γ ε1/4, given a sample of S size 16 log(1/δ)/(ε1γ )2 drawn from
P , we can construct, with probability at least 1 − δ over the draw of S, a valid kernel K̃S

that is (ε + ε1, γ )-kernel good for P .

Proof Let K̃S(x, x ′) = 〈φS(x),φS(x ′)〉 where φS is the transformation of Theorems 3
and 4. �

From this statement, it is clear that kernel-based learning guarantees apply also to learn-
ing with a good similarity function, essentially with the same parameters.

It is important to understand that the result of Corollary 11 is of a very different nature
than the results of Theorems 6–10. The claim here is not that a good similarity function
is a good kernel—it can’t be if it is not positive semi-definite. But, given a good similarity
function we can create a good kernel. This transformation is distribution-dependent, and can
be calculated using a sample S.

4.2 Proof of Theorem 6

Consider a similarity function K that is a valid kernel, i.e. K(x,x ′) = 〈φ(x),φ(x ′)〉 for
some mapping φ of x to a Hilbert space H. For any input distribution and any valid weight-
ing w(x) of the inputs (i.e. 0 ≤ w(x) ≤ 1), we will construct a linear predictor βw ∈ H,
with ‖βw‖ ≤ 1, such that similarity-based predictions using w are the same as the linear
predictions made with βw

Define the following linear predictor βw ∈ H:

βw = Ex′ [y(x ′)w(x ′)φ(x ′)]. (4.1)
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The predictor βw has norm at most:

‖βw‖ = ‖Ex′ [y(x ′)w(x ′)φ(x ′)]‖ ≤ max
x′ ‖y(x ′)w(x ′)φ(x ′)‖ ≤ max‖φ(x ′)‖

= max
√

K(x ′, x ′) ≤ 1, (4.2)

where the second inequality follows from |w(x ′)|, |y(x ′)| ≤ 1.
The predictions made by βw are:

〈βw,φ(x)〉 = 〈Ex′ [y(x ′)w(x ′)φ(x ′)], φ(x)〉 = Ex′ [y(x ′)w(x ′)〈φ(x ′),φ(x)〉]
= Ex′ [y(x ′)w(x ′)K(x, x ′)]. (4.3)

That is, using βw is the same as using similarity-based prediction with w. In particular, if
the margin violation rate, as well as the hinge loss, with respect to any margin γ , is the
same for predictions made using either w or βw . This is enough to establish Theorem 6: If
K is (ε, γ )-good (perhaps for to the hinge-loss), there exists some valid weighting w the
yields margin violation error rate (resp. hinge loss) at most ε with respect to margin γ , and
so βw yields the same margin violation (resp. hinge loss) with respect to the same margin,
establishing K is (ε, γ )-kernel-good (resp. for the hinge loss).

4.3 Proof of Theorem 8: guarantee on the hinge loss

Recall that we are considering only learning problems where the label y is a deterministic
function of x. For simplicity of presentation, we first consider finite discrete distributions,
where:

Pr (xi, yi) = pi (4.4)

for i = 1, . . . , n, with
∑n

i=1 pi = 1 and xi �= xj for i �= j .
Let K be any kernel function that is (ε0, γ )-kernel good in hinge loss. Let φ be the

implied feature mapping and denote φi = φ(xi). Consider the following weighted-SVM
quadratic optimization problem with regularization parameter C:

minimize
1

2
‖β‖2 + C

n∑

i=1

pi[1 − yi〈β,φi〉]+. (4.5)

The dual of this problem, with dual variables αi , is:

maximize
∑

i

αi − 1

2

∑

ij

yiyjαiαjK(xi, xj )

(4.6)
subject to 0 ≤ αi ≤ Cpi.

There is no duality gap, and furthermore the primal optimum β∗ can be expressed in terms
of the dual optimum α∗: β∗ = ∑

i α
∗
i yixi .

Since K is (ε0, γ )-kernel-good in hinge-loss, there exists a predictor ‖β0‖ = 1 with
average-hinge loss ε0 relative to margin γ . The primal optimum β∗ of (4.5), being the opti-
mum solution, then satisfies:

1

2
‖β∗‖2 + C

∑

i

pi[1 − yi〈β∗, φi〉]+
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≤ 1

2

∥∥∥∥
1

γ
β0

∥∥∥∥
2

+ C
∑

i

pi

[
1 − yi

〈
1

γ
β0, φi

〉]

+

= 1

2γ 2
+ CE

[[
1 − y

〈
1

γ
β0, φ(x)

〉]

+

]
= 1

2γ 2
+ Cε0. (4.7)

Since both terms on the left hand side are non-negative, each of them is bounded by the right
hand side, and in particular:

C
∑

i

pi[1 − yi〈β∗, φi〉]+ ≤ 1

2γ 2
+ Cε0. (4.8)

Dividing by C we get a bound on the average hinge-loss of the predictor β∗, relative to a
margin of one:

E[[1 − y〈β∗, φ(x)〉]+] ≤ 1

2Cγ 2
+ ε0. (4.9)

We now use the fact that β∗ can be written as β∗ = ∑
i α

∗
i yiφi with 0 ≤ α∗

i ≤ Cpi . Using
the weights

wi = w(xi) = α∗
i /(Cpi) ≤ 1 (4.10)

we have for every x, y:

yEdanx′,y′
[
w(x ′)y ′K(x,x ′)

] = y
∑

i

piw(xi)yiK(x, xi)

= y
∑

i

piα
∗
i yiK(x, xi)/(Cpi)

= y
∑

i

α∗
i yi〈φi,φ(x)〉/C = y

〈
β∗, φ(x)

〉
/C. (4.11)

Multiplying by C and using (4.9):

Ex,y[[1 − CyEx′,y′ [w(x ′)y ′K(x,x ′)]]+] = Ex,y[[1 − y〈β∗, φ(x)〉]+] ≤ 1

2Cγ 2
+ ε0. (4.12)

This holds for any C, and describes the average hinge-loss relative to margin 1/C. To get
an average hinge-loss of ε0 + ε1, we set C = 1/(2ε1γ

2) and get:

Ex,y[[1 − yEx′,y′ [w(x ′)y ′K(x,x ′)]/(2ε1γ
2)]+] ≤ ε0 + ε1. (4.13)

This establishes that K is (ε0 + ε1,2ε1γ
2)-good similarity in hinge-loss.

Non-discrete distributions The same arguments apply also in the general (not necessarily
discrete) case, except that this time, instead of a fairly standard (weighted) SVM problem,
we must deal with a variational optimization problem, where the optimization variable is a
random variable (a function from the sample space to the reals). We will present the dual-
ization in detail.

We consider the primal objective

minimize
1

2
‖β‖2 + CEy,φ[[1 − y〈β,φ〉]+] (4.14)
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where the expectation is w.r.t. the distribution P , with φ = φ(x) here and throughout the rest
of this section. We will rewrite this objective using explicit slack, in the form of a random
variable ξ , which will be a variational optimization variable:

minimize
1

2
‖β‖2 + CE [ξ ]

subject to Pr (1 − y〈β,φ〉 − ξ ≤ 0) = 1, (4.15)

Pr (ξ ≥ 0) = 1.

In the rest of this section all our constraints will implicitly be required to hold with probabil-
ity one. We will now introduce the dual variational optimization variable α, also a random
variable over the same sample space, and write the problem as a saddle problem:

minβ,ξ maxα

1

2
‖β‖2 + CE [ξ ] + E[α(1 − y〈β,φ〉 − ξ)]

(4.16)
subject to ξ ≥ 0, α ≥ 0.

Note that this choice of Lagrangian is a bit different than the more standard Lagrangian
leading to (4.6). Convexity and the existence of a feasible point in the dual interior allows
us to change the order of maximization and minimization without changing the value of
the problem, even in the infinite case (Hettich and Kortanek 1993). Rearranging terms we
obtaining the equivalent problem:

maxαminβ,ξ

1

2
‖β‖2 − 〈E[αyφ], β〉 + E [ξ(C − α)] + E [α]

(4.17)
subject to ξ ≥ 0, α ≥ 0.

Similarly to the finite case, we see that the minimum of the minimization problem is obtained
when β = E[αyφ] and that it is finite when α ≤ C almost surely, yielding the dual:

maximize E [α] − 1

2
E[αyα′yK(x, x ′)]

(4.18)
subject to 0 ≤ α ≤ C,

where (x, y,α) and (x ′, y ′, α′) are two independent draws from the same distribution. The
primal optimum can be expressed as β∗ = E[α∗yφ], where α∗ is the dual optimum. We can
now apply the same arguments as in (4.7), (4.8) to get (4.9). Using the weight mapping

w(x) = E[α∗|x]/C ≤ 1 (4.19)

we have for every x, y:

yEx′,y′ [w(x ′)y ′K(x,x ′)] = y〈Ex′,y′,α′ [α′y ′x ′], x〉/C = y〈β∗, φ(x)〉/C. (4.20)

From here we can already get (4.12) and setting C = 1/(2ε1γ
2) we get (4.13), which estab-

lishes Theorem 8 for any learning problem (with deterministic labels).
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4.4 Proof of Theorem 7: guarantee on margin violations

We will now turn to guarantees on similarity-goodness with respect to the margin violation
error-rate. We base these on the results for goodness in hinge loss, using the hinge loss as a
bound on the margin violation error-rate. In particular, a violation of margin γ /2 implies a
hinge-loss at margin γ of at least 1

2 . Therefore, twice the average hinge-loss at margin γ is
an upper bound on the margin violation error rate at margin γ /2.

The kernel-separable case, i.e. ε0 = 0, is simpler, and we consider it first. Having no
margin violations implies zero hinge loss. And so if a kernel K is (0, γ )-kernel-good, it
is also (0, γ )-kernel-good in hinge loss, and by Theorem 8 it is (ε1/2,2(ε1/2)γ 2)-good
similarity in hinge loss. Now, for any ε1 > 0, by bounding the margin 1

2 ε1γ
2 error-rate by

the ε1γ
2 average hinge loss, K is (ε1,

1
2ε1γ

2)-good similarity, establishing Theorem 7 for
the case ε0 = 0.

We now return to the non-separable case, and consider a kernel K that is (ε0, γ )-kernel-
good, with some non-zero error-rate ε0. Since we cannot bound the hinge loss in terms of
the margin-violations, we will instead consider a modified distribution where the margin-
violations are removed.

Let β∗ be the linear classifier achieving ε0 margin violation error-rate with respect to
margin γ , i.e. such that Pr (y〈β∗, x〉 ≥ γ ) > 1 − ε0. We will consider a distribution which is
conditioned on y〈β∗, x〉 ≥ γ . We denote this event as OK(x) (recall that y is a deterministic
function of x). The kernel K is obviously (0, γ )-kernel-good, and so by the arguments
above also (ε1,

1
2ε1γ

2)-good similarity, on the conditional distribution. Let w be the weight
mapping achieving

Pr
x,y

(yEx′,y′ [w(x ′)y ′K(x,x ′)|OK(x ′)] < γ1|OK(x)) ≤ ε1, (4.21)

where γ1 = 1
2ε1γ

2, and set w(x) = 0 when OK(x) does not hold. We have:

Pr
x,y

(yEx′,y′ [w(x ′)y ′K(x,x ′)] < (1 − ε0)γ1)

≤ Pr (not OK(x)) + Pr (OK(x))Pr
x,y

(yEx′,y′ [w(x ′)y ′K(x,x ′)] < (1 − ε0)γ1|OK(x))

= ε0 + (1 − ε0)Pr
x,y

(y(1 − ε0)Ex′,y′ [w(x ′)y ′K(x,x ′)|OK(x)] < (1 − ε0)γ1|OK(x))

= ε0 + (1 − ε0)Pr
x,y

(yEx′,y′ [w(x ′)y ′K(x,x ′)|OK(x)] < γ1|OK(x))

≤ ε0 + (1 − ε0)ε1 ≤ ε0 + ε1 (4.22)

establishing that K is (ε0 + ε1, γ1)-good similarity for the original (unconditioned) distribu-
tion, thus yielding Theorem 7.

4.5 Tightness

We now turn to proving of Theorems 9 and 10. This is done by presenting a specific distri-
bution P and kernel in which the guarantees hold tightly.
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Consider the standard Euclidean inner-product and a distribution on four labeled points
in R

3, given by:

x1 = (γ, γ,
√

1 − 2γ 2), y1 = 1, p1 = 1

2
− ε.

x2 = (γ,−γ,
√

1 − 2γ 2), y2 = 1, p2 = ε,

x3 = (−γ, γ,
√

1 − 2γ 2), y3 = −1, p3 = ε,

x4 = (−γ,−γ,
√

1 − 2γ 2), y4 = −1, p4 = 1

2
− ε

for some (small) 0 < γ <

√
1
2 and (small) probability 0 < ε < 1

2 . The four points are all

on the unit sphere (i.e. ‖xi‖ = 1 and so K(xi, xj ) = 〈
xi, xj

〉 ≤ 1), and are clearly separated
by β = (1,0,0) with a margin of γ . The standard inner-product kernel is therefore (0, γ )-
kernel-good on this distribution.

Proof of Theorem 9: tightness for margin-violations We will show that when this kernel
(the standard inner product kernel in R

3) is used as a similarity function, the best margin
that can be obtained on all four points, i.e. on at least 1 − ε probability mass of examples, is
8εγ 2.

Consider the classification margin on point x2 with weights w (denote wi = w(xi)):

E[w(x)yK(x2, x)]

=
(

1

2
− ε

)
w1(γ

2 − γ 2 + (1 − 2γ 2)) + εw2(2γ 2 + (1 − 2γ 2))

− εw3(−2γ 2 + (1 − 2γ 2)) −
(

1

2
− ε

)
w4(−γ 2 + γ 2 + (1 − 2γ 2))

=
((

1

2
− ε

)
(w1 − w4) + ε(w2 − w3)

)
(1 − 2γ 2) + 2ε(w2 + w3)γ

2. (4.23)

If the first term is positive, we can consider the symmetric calculation

−E[w(x)yK(x3, x)] = −
((

1

2
− ε

)
(w1 −w4)+ ε(w2 −w3)

)
(1−2γ 2)r +2ε(w2 +w3)γ

2

in which the first term is negated. One of the above margins must therefore be at most

2ε(w2 + w3)γ
2 ≤ 4εγ 2. (4.24)

This establishes Theorem 9.

4.6 Proof of Theorem 10: tightness for the hinge loss

In the above example, suppose we would like to get an average hinge-loss relative to margin
γ1 of at most ε1:

Ex,y[[1 − yEx′,y′ [w(x ′)y ′K(x,x ′)]/γ1]+] ≤ ε1. (4.25)
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Following the arguments above, (4.24) can be used to bound the hinge-loss on at least one
of the points x2 or x3, which, multiplied by the probability ε of the point, is a bound on the
average hinge loss:

Ex,y[[1 − yEx′,y′ [w(x ′)y ′K(x,x ′)]/γ1]+] ≥ ε(1 − 4εγ 2/γ1) (4.26)

and so to get an average hinge-loss of at most ε1 we must have:

γ1 ≤ 4εγ 2

1 − ε1/ε
. (4.27)

For any target hinge-loss ε1, consider a distribution with ε = 2ε1, in which case we get that
the maximum margin attaining average hinge-loss ε1 is γ1 = 16ε1γ

2, even though we can
get a hinge loss of zero at margin γ using a kernel. This establishes Theorem 10.

Note One might object that the example used in Theorems 9 and 10 is a bit artificial,
since K has margin O(γ 2) in the similarity sense just because 1 − 4γ 2 ≤ K(xi, xj ) ≤ 1.
Normalizing K to [−1,1] we would obtain a similarity function that has margin O(1).
However, this “problem” can be simply fixed by adding the symmetric points on the lower
semi-sphere:

x5 = (γ, γ,−
√

1 − 2γ 2), y5 = 1, p5 = 1

4
− ε,

x6 = (γ,−γ,−
√

1 − 2γ 2), y6 = 1, p6 = ε,

x7 = (−γ, γ,−
√

1 − 2γ 2), y7 = −1, p7 = ε,

x8 = (−γ,−γ,−
√

1 − 2γ 2), y8 = −1, p8 = 1

4
− ε

and by changing p1 = 1
4 − ε and p4 = 1

4 − ε. The classification margins on x2 and x3 are
now (compare with (4.23)):

E[w(x)yK(x2, x)] =
((

1

4
− ε

)
(w1 − w4 − w5 + w8)

+ ε(w2 − w3 − w6 + w7)

)
(1 − 2γ 2)

+ 2ε(w2 + w3 + w6 + w7)γ
2,

−E[w(x)yK(x3, x)] = −
((

1

4
− ε

)
(w1 − w4 − w5 + w8)

+ ε(w2 − w3 − w6 + w7)

)
(1 − 2γ 2)

+ 2ε(w2 + w3 + w6 + w7)γ
2.

One of the above classification margins must therefore be at most 2ε(w2 + w3 + w6 +
w7)γ

2 ≤ 8εγ 2. Thus, even though the similarity is “normalized” and (0, γ )-kernel-good, it



Mach Learn (2008) 72: 89–112 109

is only (ε,8εγ 2)-good as a similarity function. Proceeding as in the proof of Theorem 10
establishes the modified example is also only (ε,64εγ 2)-good in hinge loss.4

5 Probabilistic labels

So far, we have considered only learning problems where the label y is a deterministic
function of x. Here, we discuss the necessary modifications to extend our theory also to
noisy learning problems, where the same point x might be associated with both positive and
negative labels with positive probabilities.

Although the learning guarantees of Sect. 3 are valid also for noisy learning problems,
a kernel that is kernel-good for a noisy learning problem might not be good as a similarity
function for this learning problem. To amend this, the definition of a good similarity function
must be corrected, allowing the weights to depend not only on the point x but also on the
label y:

Definition 11 (Main, Margin Violations, Corrected for Noisy Problems) A similarity func-
tion K is an (ε, γ )-good similarity function for a learning problem P if there exists a
bounded weighting function w over X × {−1,+1} (w(x ′, y ′) ∈ [0,1] for all x ′ ∈ X,y ′ ∈
{−1,+1}) such that at least a 1 − ε probability mass of examples x, y satisfy:

Ex′,y′∼P [yy ′w(x ′, y ′)K(x, x ′)] ≥ γ. (5.1)

It is easy to verify that Theorem 3 can be extended also to this corrected definition.
The same mapping φS can be used, with βi = ỹiw(x̃i , ỹi ), where ỹi is the training label of
example i. Definition 9 and Theorem 4 can be extended in a similar way.

With these modified definitions, Theorems 7 and 8 extend also to noisy learning prob-
lems. In the proof of Theorem 8, two of the points xi, xj might be identical, but have differ-
ent labels yi = 1, yj = −1 associated with them. This might lead to two different weights
wi,wj for the same point. But since w is now allowed to depend also on the label, this does
not pose a problem. In the non-discrete case, this corresponds to defining the weight as:

w(x,y) = E[α∗|x, y]/C. (5.2)

6 Conclusions

The main contribution of this work is to develop a theory of learning with similarity
functions—namely, of when a similarity function is good for a given learning problem—
that is more general and in terms of more tangible quantities than the standard theory of
kernel functions. We provide a definition that we show is both sufficient for learning and
satisfied by the usual large-margin notion of a good kernel. Moreover, the similarity prop-
erties we consider do not require reference to implicit high-dimensional spaces nor do they
require that the similarity function be positive semi-definite. In this way, we provide the first
rigorous explanation showing why a kernel function that is good in the large-margin sense
can also formally be viewed as a good similarity function, thereby giving formal justification
to the standard intuition about kernels.

4We thank the anonymous referee for suggesting this strengthening of the lower bound.
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It would be interesting to analyze alternative sufficient conditions for learning via pair-
wise functions. Although in this work we established guarantees for learning with a good
similarity function by transforming the problem to learning a linear separator, we would
like to emphasize that this transformation was used as a convenient tool. For other notions
of “goodness” of pairwise functions, it might well be more convenient to establish learnabil-
ity without reference to linear separation.

From a practical perspective, the results of Sect. 4 suggest that if K is in fact a valid
kernel, we are probably better off using it as a kernel, e.g. in an SVM or Perceptron al-
gorithm, rather than going through the transformation of Sect. 3.2. However, faced with a
non-positive-semidefinite similarity function (coming from domain experts), the transfor-
mation of Theorem 3 might well be useful. In fact, Liao and Noble have used an algorithm
similar to the one we propose in the context of protein classification (Liao and Noble 2003).
Furthermore, a direct implication of Theorem 6 is that we can indeed think (in the design
process) of the usefulness of a kernel function in terms of more intuitive, direct properties
of the data in the original representation, without need to refer to implicit spaces.

Finally, our algorithms (much like those of Balcan et al. 2006) suggest a natural way to
use kernels or other similarity functions in learning problems for which one also wishes to
use the native features of the examples. For instance, consider the problem of classifying a
stream of documents arriving one at a time. Rather than running a kernelized learning algo-
rithm, one can simply take the native features (say the words in the document) and augment
them with additional features representing the similarity of the current example with each
of a pre-selected set of initial documents. One can then feed the augmented example into a
standard unkernelized online learning algorithm. It would be interesting to explore this idea
further.

Subsequent work Inspired by our work, Wang et al. (2007) have recently analyzed differ-
ent, alternative sufficient conditions for learning via pairwise functions. In particular, Wang
et al. (2007) analyze unbounded dissimilarity functions which are invariant to order pre-
serving transformations. They provide conditions that they prove are sufficient for learning,
though they may not include all good kernel functions.

On a different line of inquiry, Balcan et al. (2008) use our approach for analyzing similar-
ity functions in the context of clustering (i.e. learning from purely unlabeled data). Specif-
ically, Balcan et al. (2008) asks what (stronger) properties would be sufficient to allow one
to produce an accurate hypothesis without any label information at all. Balcan et al. (2008)
show that if one relaxes the objective (for example, allows the algorithm to produce a hi-
erarchical clustering such that some pruning is close to the correct answer), then one can
define a number of interesting graph-theoretic and game-theoretic properties of similarity
functions that are sufficient to cluster well.

Acknowledgements We would like to thank the anonymous referees for their insightful and helpful com-
ments. This work was supported in part by the National Science Foundation under grants CCF-0514922,
CCR-0122581, and IIS-0121678, as well as by a Google Research Grant and an IBM Graduate Fellowship.
Part of this work was done while NS was visiting IBM Haifa Research Labs.

Appendix: Weakly good similarity functions

We show here that for any γ > 0, Definition 5 is enough to imply weak learning. In par-
ticular, first, determine if the distribution is noticeably skewed towards positive or negative
examples: if so, weak-learning is immediate (output all-positive or all-negative respectively).
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Otherwise, draw a sufficiently large set S+ of positive examples and set S− of negative ex-
amples. Then, for each x, consider γ̃ (x) = 1

2 [Ex′∈S+[K(x,x ′)]− Ex′∈S−[K(x,x ′)]]. Finally,
to classify x, use the following probabilistic prediction rule: classify x as positive with prob-
ability 1+γ̃ (x)

2 and as negative with probability 1−γ̃ (x)

2 . (Notice that γ̃ (x) ∈ [−1,1] and so our
algorithm is well defined.) We can then prove the following result:

Theorem 2 If K is a weakly γ -good similarity function, then with probability at least 1−δ,
the above algorithm using sets S+, S− of size 64

γ 2 ln ( 64
γ δ

) yields a classifier with error at most
1
2 − 3γ

128 .

Proof First, we assume the algorithm initially draws a sufficiently large sample such that if
the distribution is skewed with probability mass greater than 1

2 +α on positives or negatives
for α = γ

32 , then with probability at least 1 − δ/2 the algorithm notices the bias and weak-
learns immediately (and if the distribution is less skewed than 1

2 ± 3γ

128 , with probability
1 − δ/2 it does not incorrectly halt in this step). In the following, then, we may assume
the distribution P is less than ( 1

2 + α)-skewed, and let us define P ′ to be P reweighted to
have probability mass exactly 1/2 on positive and negative examples. Thus, Definition 5 is
satisfied for P ′ with margin at least γ − 4α.

For each x define γ (x) as 1
2 Ex′ [K(x,x ′)|y(x ′) = 1] − 1

2 Ex′ [K(x,x ′)|y(x ′) = −1] and
notice that Definition 5 implies that Ex∼P ′ [y(x)γ (x)] ≥ γ /2 − 2α. Consider now the prob-
abilistic prediction function g defined as g(x) = 1 with probability 1+γ (x)

2 and g(x) = −1
with probability 1−γ (x)

2 . We clearly have that for a fixed x,

Pr
g
(g(x) �= y(x)) = y(x)(y(x) − γ (x))

2
,

which then implies that Prx∼P ′,g(g(x) �= y(x)) ≤ 1
2 − 1

4γ − α. Now notice that in our
algorithm we do not use γ (x) but an estimate of it γ̃ (x), and so the last step of the
proof is to argue that this is good enough. To see this, notice first that d is large enough
so that for any fixed x we have PrS+,S− (|γ (x) − γ̃ (x)| ≥ γ

4 − 2α) ≤ γ δ

32 . This implies
Prx∼P ′ (PrS+,S− (|γ (x) − γ̃ (x)| ≥ γ

4 − 2α)) ≤ γ δ

32 , so

Pr
S+,S−

(
Pr

x∼P

(
|γ (x) − γ̃ (x)| ≥ γ

4
− 2α

)
≥ γ

16

)
≤ δ/2.

This further implies that with probability at least 1 − δ/2 we have Ex∼P ′ [y(x)γ̃ (x)] ≥
(1 − γ

16 )
γ

4 − 2 γ

16 ≥ 7γ

64 . Finally using a reasoning similar to the one above (concerning the
probabilistic prediction function based on γ (x)), we obtain that with probability at least
1 − δ/2 the error of the probabilistic classifier based on γ̃ (x) is at most 1

2 − 7γ

128 on P ′,
which implies the error over P is at most 1

2 − 7γ

128 + α = 1
2 − 3γ

128 . �

References

Anthony, M., & Bartlett, P. (1999). Neural network learning: theoretical foundations. Cambridge: Cambridge
University Press.

Arora, S., Babai, L., Stern, J., & Sweedyk, Z. (1997). The hardness of approximate optima in lattices, codes,
and systems of linear equations. Journal of Computer and System Sciences, 54, 317–331.

Balcan, M.-F., & Blum, A. (2006). On a theory of learning with similarity functions. In International confer-
ence on machine learning.



112 Mach Learn (2008) 72: 89–112

Balcan, M.-F., Blum, A., & Vempala, S. (2006). Kernels as features: on kernels, margins, and low-dimensional
mappings. Machine Learning, 65(1), 79–94.

Balcan, M.-F., Blum, A., & Vempala, S. (2008). A discriminative framework for clustering via similarity
functions. In Proceedings of the 40th ACM symposium on theory of computing.

Bartlett, P. L., & Mendelson, S. (2003). Rademacher and Gaussian complexities: risk bounds and structural
results. Journal of Machine Learning Research, 3, 463–482.

Freund, Y., & Schapire, R. E. (1999). Large margin classification using the perceptron algorithm. Machine
Learning, 37(3), 277–296.

Herbrich, R. (2002). Learning kernel classifiers. Cambridge: MIT Press.
Hettich, R., & Kortanek, K. O. (1993). Semi-infinite programming: theory, methods, and applications. SIAM

Review, 35(3), 380–429.
Jaakkola, T. S., & Haussler, D. (1999). Exploiting generative models in discriminative classifiers. In Advances

in neural information processing systems (Vol. 11). Cambridge: MIT Press.
Joachims, T. (2002). Learning to classify text using support vector machines: methods, theory, and algo-

rithms. Dordrecht: Kluwer.
Kalai, A., Klivans, A., Mansour, Y., & Servedio, R. (2005). Agnostically learning half spaces. In Proceedings

of the 46th annual symposium on the foundations of computer science.
Kearns, M., & Vazirani, U. (1994). An introduction to computational learning theory. Cambridge: MIT Press.
Lanckriet, G. R. G., Cristianini, N., Bartlett, P. L., El Ghaoui, L., & Jordan, M. I. (2004). Learning the kernel

matrix with semidefinite programming. Journal of Machine Learning Research, 5, 27–72.
Liao, L., & Noble, W. S. (2003). Combining pairwise sequence similarity and support vector machines for

detecting remote protein evolutionary and structural relationships. Journal of Computational Biology,
10(6), 857–868.

McAllester, D. (2003). Simplified Pac-Bayesian margin bounds. In Proceedings of the 16th conference on
computational learning theory.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227.
Scholkopf, B., & Smola, A. J. (2002). Learning with kernels. Support vector machines, regularization, opti-

mization, and beyond. Cambridge: MIT University Press.
Scholkopf, B., Tsuda, K., & Vert, J.-P. (2004). Kernel methods in computational biology. Cambridge: MIT

Press.
Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C., & Anthony, M. (1998). Structural risk minimization over

data-dependent hierarchies. IEEE Transactions on Information Theory, 44(5), 1926–1940.
Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge: Cambridge

University Press.
Smola, A. J., & Scholkopf, B. (2002). Learning with kernels. Cambridge: MIT Press.
Srebro, N. (2007). How good is a kernel as a similarity function. In COLT.
Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134–1142.
Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.
Viswanathan, S. V. N., & Smola, A. J. (2003). Fast kernels for string and tree matching. In Advances in neural

information processing systems (Vol. 15). Cambridge: MIT Press.
Wang, L., Yang, C., & Feng, J. (2007). On learning with dissimilarity functions. In Proceedings of the 24th

international conference on machine learning (pp. 991–998).


	A theory of learning with similarity functions
	Abstract
	Introduction
	Our results

	Background and notation
	Deterministic labels

	Sufficient conditions for learning with similarity functions
	Simple sufficient conditions
	Main conditions
	Extensions
	Combining multiple similarity functions
	Multi-class classification


	Relationship between kernels and similarity measures
	Transforming a good similarity function to a good kernel
	Proof of Theorem 6
	Proof of Theorem 8: guarantee on the hinge loss
	Non-discrete distributions

	Proof of Theorem 7: guarantee on margin violations
	Tightness
	Proof of Theorem 9: tightness for margin-violations

	Proof of Theorem 10: tightness for the hinge loss
	Note


	Probabilistic labels
	Conclusions
	Subsequent work

	Acknowledgements
	Appendix: Weakly good similarity functions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


