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Abstract Transfer learning seeks to leverage previously learned tasks to achieve faster
learning in a new task. In this paper, we consider transfer learning in the context of re-
lated but distinct Reinforcement Learning (RL) problems. In particular, our RL problems
are derived from Semi-Markov Decision Processes (SMDPs) that share the same transition
dynamics but have different reward functions that are linear in a set of reward features.
We formally define the transfer learning problem in the context of RL as learning an ef-
ficient algorithm to solve any SMDP drawn from a fixed distribution after experiencing a
finite number of them. Furthermore, we introduce an online algorithm to solve this problem,
Variable-Reward Reinforcement Learning (VRRL), that compactly stores the optimal value
functions for several SMDPs, and uses them to optimally initialize the value function for
a new SMDP. We generalize our method to a hierarchical RL setting where the different
SMDPs share the same task hierarchy. Our experimental results in a simplified real-time
strategy domain show that significant transfer learning occurs in both flat and hierarchical
settings. Transfer is especially effective in the hierarchical setting where the overall value
functions are decomposed into subtask value functions which are more widely amenable to
transfer across different SMDPs.
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1 Introduction

Most work in transfer learning is in the supervised setting where the goal is to improve the
classification performance by exploiting inter-class regularities. In this paper, we consider
transfer learning in the context of Reinforcement Learning (RL), i.e., learning to improve
performance over a family of Semi-Markov Decision Processes (SMDPs) that share some
structure. In particular, we introduce the problem of Variable-Reward Transfer Learning
where the objective is to speed up learning in a new SMDP by transferring experience from
previous MDPs that share the same dynamics but have different rewards. More specifically,
reward functions are weighted linear combinations of reward features, and only the reward
weights vary across different SMDPs. We formalize this problem as converging to a set of
policies which can solve any SMDP drawn from a fixed distribution in close to optimal
fashion after experiencing only a finite sample of SMDPs.

SMDPs that share the same dynamics but have different reward structures arise in many
contexts. For example, while driving, different agents might have different preferences al-
though they are all constrained by the same physics (Abbeel and Ng 2004). Even when the
reward function can be defined objectively, e.g., winning as many games as possible in chess,
usually the experimenter needs to provide other “shaping rewards”, such as the value of win-
ning a pawn, to encourage RL systems to do useful exploration. Any such shaping reward
function can be viewed as defining a different SMDP in the same family. Reward functions
can also be seen as goal specifications for agents such as robots and Internet search engines.
Alternatively, different reward functions may arise externally based on difficult-to-predict
changes in the world, e.g., rising gas prices or declining interest rates that warrant lifestyle
changes. There is a large literature on multi-criteria decision problems where each criteria
corresponds to an individual reward signal, and one of the standard ways of approaching
this problem is to solve these decision problems with respect to the single linear combi-
nation reward signal. An example of such a reward decomposition would be in a logistics
domain where there are trade-offs between fuel consumption, delivery time, and number
of drivers. Different companies might have different coefficients for these items and would
require different solutions. Another example is that of trading where the prices of different
commodities might change from day to day but the actions involved in trading them all have
the same dynamics.

In this work, we use the Average-reward RL (ARL) framework where the goal is to
optimize the average reward per step. However, our general approach can be easily adapted
to both the discounted and the total-reward settings. The key insight behind our method is
that the value function of a fixed policy is a linear function of the reward weights. Variable-
Reward Reinforcement Learning (VRRL) takes advantage of this fact by representing the
value function as a vector function whose components represent the expectations of the
corresponding reward features that occur during the execution of the policy. Given a new
set of reward weights and the vectored value function of a policy stored in a cache (value
function repository), it is easy to compute the value function and average reward of that
policy for the new weights. VRRL initializes the value function for the new weights by
comparing the average rewards of the stored policies and choosing the best among them. It
then uses a vectorized version of an ARL algorithm to further improve the policy for the
new weights. If the average reward of the policy is improved by more than a satisfaction
constant y via learning, then the new value function is stored permanently in the cache. We
derive an upper bound for the number of policies that will be stored in the worst case for a
given y and the maximum values of different reward weights.

Hierarchical Reinforcement Learning (HRL) makes it possible to scale RL to large tasks
by decomposing them into multiple smaller subtasks (Dietterich 2000; Sutton et al. 1999;
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Andre and Russell 2002). In the MAXQ framework of HRL, the overall value function is
additively decomposed into different task-specific value functions. We extend VRRL to the
MAXAQ setting where a single task hierarchy is used for all SMDPs. Vectored value functions
are stored for the subtasks, and represent the subtask policies. Given a new weight vector,
our method initializes the value functions for each subtask by comparing the overall average
rewards for the stored value functions and choosing the best. If the average reward improves
during learning, then every subtask whose value function changes significantly is cached. In
this hierarchical version, we expect the subtask policies to be optimal across a wide spectrum
of weights because the number of reward components affecting a particular subtask’s value
function is normally less than that affecting the non-hierarchical value function, and this
results in significant transfer.

We demonstrate our approach empirically in a simplified real-time strategy (RTS) game
domain. In this domain, a peasant must accumulate various resources (wood, gold, etc.) from
various locations (forests, gold mines, etc.), quell any enemies that appear inside its territory,
and avoid colliding into other peasants. The reward features are associated with bringing in
the resources, damaging the enemy, and collisions. The actual value of these features to the
agent is determined by the feature weights which are different in each SMDP. The goal is to
learn to optimize the average reward per time step. We show that there is significant transfer
in both flat and hierarchical settings. The transfer is much more prominent in the hierarchical
case mainly because the overall task is decomposed into smaller subtasks which are optimal
across a wide range of weights.

To cope with the huge state space (36.6 x 107 states), we employ value-function approx-
imation. The combination of hierarchical task decomposition and value function approxima-
tion allows our method to be applicable to a broad class of problems. Moreover, we show
that standard perceptron-style learning can be used to induce the weight vector from a scalar
reward function and the reward features.

The rest of the paper is organized as follows. In Sect. 2, we introduce the Variable Re-
ward Transfer Learning problem followed by our algorithm for it, its analysis, and some
experimental results in the RTS domain. Section 3 is a review of our version of hierarchical
reinforcement learning. In Sect. 4, we describe our Variable-Reward Hierarchical Reinforce-
ment Learning (VRHRL) algorithm, and present experimental results in a more complex
version of the RTS domain. The related work is discussed in Sect. 5, and conclusions and
future work in Sect. 6.

2 Variable-reward transfer learning

In this section, we start with some background on Average-reward Reinforcement Learning.
We then introduce the variable-reward transfer learning problem, and present an approach
to solve it in a non-hierarchical setting.

2.1 Average-reward reinforcement learning

In reinforcement learning, during each step of interaction with the environment, the agent
perceives the current state of the environment. The decisions are made as a function of the
state. A state signal that retains all the information relevant to future actions is said to satisfy
the Markov property. Thus, given the current state, all future states are independent of past
states.
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A semi-Markov Decision Process (SMDP) M, an extension of the Markov Decision
Process, is a tuple (S, A, P, R, T), where § is a set of states, A is a set of temporally ex-
tended actions, and the transition function P (s, a, s’) = Pr(s’|s, a) gives the probability of
entering state s” after taking action a in state s. The functions R(s,a) and T (s, a) are the
expected reward and the expected execution time respectively for taking action « in state s.
A policy 7 is a mapping from states S to actions A, specifying which action to execute in
every state. Given an SMDP, the gain p™ of a policy 7 is defined as the ratio of the expected
total reward to the expected total time for N steps of the policy from any state s as N goes to
infinity. In this work, we seek to learn policies that maximize the gain, and these are called
gain-optimal policies.

The intuition behind ARL is that if the agent moves from the state s to the next state s’ by
executing an action a, it has gained an immediate reward of R(s, @) instead of the average
reward p”" T (s, a). Given a single SMDP and a policy &, we define the average-adjusted
reward of taking an a in state s as R(s,a) — p" T (s,a), i.e., the difference between the
expected immediate reward for the state-action pair (s, a) and the expected total reward (on
average) for the policy 7 in the duration of a in s. The limit of the total expected average-
adjusted reward for 7 starting from state s and action a as the number of steps goes to
infinity is called its bias and denoted by A” (s)

N
W (s) = lim E[Z(n —p”z»}.

i=0

Under some reasonable conditions on the SMDP structure (Puterman 1994), there exist a
scalar p and a real-valued function 4 = A" that satisfy the following Bellman equation:

h(s) = r;lgj((R(s, a)—pT(s,a)+ Z Pr(s’|s, a)h(s/)), (1)

s'eS

The policy 7 * that selects actions to maximize the right-hand side of (1) attains the optimal
gain p™ > p” over all policies 7.

H-Learning (Tadepalli and Ok 1998) is a model-based reinforcement learning method
that solves for the optimal policy. It learns the action models P, R, and T, and uses them to
update the /-value of the current state s by applying the right-hand side of (1) at every step.
In SMDPs, where actions take a variable amount of time, the gain p is not learned directly.
Instead, we must learn the average reward p, a measure of the average reward acquired
during the execution of a temporally extended primitive action, and the average time p;,
a measure of the average duration of a primitive action, following policy 7:

pf — (1 —a)pf +a(R(s,a) + h(s") — h(s)), ()
pr—(1—a)p] +aT (s, a), 3)
o <—o/(1+a). “4)

The parameter p] is updated by the exponential moving average of the immediate rewards.
The immediate reward is adjusted by the difference in the & values of s and s to neutralize
the effect of exploratory actions on the states visited by the agent. This adjusted immediate
reward gives an unbiased sample of average reward of a single action of the SMDP. The
parameter p] is updated by the exponential moving average of the immediate durations.
These updates are only performed when a greedy action is taken in state s, resulting in an
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immediate reward R(s, a), taking time T (s, a), and transitioning to the next state s’. Since
gain is defined as the total reward obtained divided by the total time taken, p” is updated
with p[" /pJ. The learning rate « starts at 1 and decays down to an asymptotic value of 0
during the course of learning.

2.2 Variable-reward transfer learning problem

A family of variable-reward SMDPs is defined as (S, A, P,f, T), where S, A, P,and T are
the same as before, but f is an n-dimensional vector of binary reward feature components
(fi,.-., fu). Aweight vector w = (w, ..., w,) specifies a particular SMDP (S, A, P, R, T)
in the family where R = w - f. Hence, n denotes the size of the minimal specification of any
SMDRP in the family, and is called the dimension of the SMDP family. The binary feature
vector! indicates whether or not a particular component is active for (s, a); the weight vec-
tor’s components are arbitrary real numbers that indicate the importance of the correspond-
ing feature components. All the SMDPs in the variable reward family share the same states,
actions, state transition function, and the expected execution times of actions but may have
different reward functions based on the particular weight vector.

We now proceed with a formal definition of the Variable Reward Transfer Learning. We
begin with some preliminary definitions.

Definition 1 A variable-reward transfer learning problem is a pair (F, D) where F is a
variable-reward SMDP family, and D is an unknown distribution over weight vectors w.

Note that D defines a distribution over SMDPs in the family. The goal of the transfer
learner is to quickly find an optimal policy for SMDPs drawn from the family (based on
the weight vectors) given an opportunity to interact with it by taking actions and receiving
rewards. A simple strategy would be to treat each SMDP independently, and apply some
reinforcement learning algorithm to solve it. While this approach cannot be improved upon
if we need to solve only one SMDP in the family, it is inefficient when we are interested in
solving a sequence of SMDPs drawn from the distribution over the SMDP family.

After solving a sequence of SMDPs drawn from the distribution, it would seem that we
should be able to transfer the accumulated experience to a new SMDP drawn from the same
distribution. An obvious improvement to solving each SMDP separately is to learn models
for the state-transition function P and the execution times 7', collectively called the action
models, and share them across different SMDPs. Since all the SMDPs in the family share
the same P and T, their models can be incrementally learned from different SMDPs, and
hence speeding up learning from successive SMDPs. In the next section, we will see that
more efficient approaches are possible.

Definition 2 A y-optimal policy is any policy whose gain is at most y less than that of the
optimal policy.

Definition 3 An ¢, y-approximate cover for a variable-reward transfer learning problem
(F, D) is a set of policies C such that, given an SMDP M chosen from F according to D, C
contains a y-optimal policy for M with probability at least 1 — €.

IThe restriction to being a binary vector is for explanatory purposes only; in practice, this could be an arbitrary
real-valued vector.
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We refer to an €, y-approximate cover as an €, y-cover for short. This is an approxima-
tion in two senses. First, the policies in the cover might be up to y worse than the optimal.
Second, there is some probability € of it not containing a y-optimal policy for an SMDP in
the family F. Ideally, we would like a variable-reward transfer learner to produce an €, y-
cover for any problem (F, D) after learning from a small number of training SMDPs drawn
according to D. However, since the training SMDPs are randomly chosen, we allow the
learner to fail with a small probability §. This is similar to probably approximately correct
learning, where we only guarantee to find an approximately correct hypothesis with a high
probability.

Definition 4 A learner A is a finite sample transfer learner if for any variable-reward
transfer learning problem (F, D) of dimension n, and any set of parameters €, y and 4§,
there exists a finite bound F (e, §, y, n) such that, with probability at least 1 — §, it finds an
€, y-cover for (F, D) after learning from F' (e, 8, y, n) SMDPs drawn according to D. In this
case, we say that the learner has sample complexity F (¢, 8, y, n). Further, if F(e,$, y,n) is
polynomial in n, %, é and %, we call A a sample-efficient transfer learner. If the run-time of

A, counting each call to the learner £ as O(1), is polynomial in #, % é % and the sample

size F (e, 48, y,n), then we say that A is a time-efficient transfer learner.

The above definition can be generalized to a variety of SMDP families that share different
kinds of structure. In this paper, we restrict ourselves to the variable-reward family.

2.3 Variable-reward reinforcement learning

Our approach to variable-reward reinforcement learning (VRRL) exploits the structure of
the variable-reward SMDP family by caching value functions and reusing them. We begin
with the following theorem which states that the value function for any fixed policy is linear
in its reward weights.

Theorem 1 Let M = (S, A, P,R,T) be an SMDP in the variable-reward SMDP family
with a reward weight vector w, and 7w be a policy. The gain p™ is w - p”, and the bias of
any state s is h™ (s) = w-h™ (s), where the i"" components of p™ and W (s) are the gain and
bias respectively with respect to the i'" reward feature for the policy 7.

Proof (sketch) The result follows directly from the fact that the immediate rewards for the
SMDP are linear in the reward weights, and the bias and the average rewards are based on
the sums of the immediate rewards. ]

Policies can be represented indirectly as a set of parameters of these linear functions,
i.e., the gain and the bias functions are learned in their vector forms, where the compo-
nents correspond to the expected value of reward features when all the weight components
are 1. In the following section, we show that the set of optimal policies for different weights
forms a convex and piecewise linear gain and bias functions. If a single policy is optimal for
different sets of weights, it suffices to store one set of parameters representing this policy.

2.3.1 Algorithm description

To understand the intuition behind our approach, consider a gain vector p for a particular
policy. Plotting w - p with respect to the weight components of w would result in a hyper-
plane. Every policy generates one such hyperplane in the weight space; Fig. 1 demonstrates
this in the case of a 2-component weight vector.
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Fig. 1 Every line in the above
plot represents a single policy
whose gain varies linearly with
the reward weights. The dark
lines represent the gain of the
optimal policy as a function of
weight

Gain

2

3
7r1 7rnew

WIIEW

Weight

The bold piecewise linear and convex function in the figure represents the best weighted
gain for each possible weight. Extended to multiple dimensions, this would correspond-
ingly be a convex piecewise planar surface.> Thus, when a new weight is considered, the
learner might start off with the policy that registers the highest weighted average-reward,
represented by a point in the highlighted convex function in Fig. 1. Initializing the value
function with that of the dominant policy for the current weight vector will assure that the
agent would learn a policy that is at least as good.

Let C represent the set of all optimal policies which are currently stored. Given a new
weight vector Wyey, we might expect the policy min = argmax,, .. (Wyew - p™) to provide a
good starting point for learning. Our transfer learning algorithm works by initializing the
bias and gain vectors to those of 7, and then further optimizing them via average-reward
reinforcement learning (ARL).

After convergence, the newly learned bias and gain vectors are only stored in C if the
gain of the new policy with respect to wy,, improves by more than a satisfaction threshold
y . With this approach, if the optimal polices are the same or similar for many weight vectors,
only a small number of policies are stored, and significant transfer can be achieved (Natara-
jan and Tadepalli 2005). The algorithm for Variable-reward Reinforcement Learning is pre-
sented in Algorithm 1.

Note that the counters i and ¢ updated and compared in the algorithm are primarily for
the purposes of theoretical analysis. In practice, we keep looping through the algorithm and
adding to the cache when necessary as long as new weight vectors are experienced.

We could use any vector-based average reward reinforcement learning algorithm in
step 12 of the algorithm. In this work, we employ the vectorized version of H-learning
algorithm. Recall that in H-learning, the action models are learned and used to update the
h-value of a state. In the vectorized version, the h-values, the reward models (the binary
feature values f(s, @)), and the gain p are all vectors. The greedy action a is now defined as

a < argmax(w- (f(s, b) — pT(s,b) + ZPr(s’Lv, b)h(s/))).
b >

2The reasoning here is exactly the same as in the POMDPs, where the value function is a convex piecewise
linear function over the belief states (Kaelbling et al. 1998).
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Algorithm 1 VRRL sketch
i<« 1
2. c<«0
3:C<«0
Tinit <= ¥
5: repeat
6:  Obtain the current weight vector w
7. if C # () then
8
9

»

Compute mjpi; <— argmax,..(w- p™)

Initialize the value function vectors of the states
10: Initialize the gain to p™init
11:  endif
12:  Learn the new policy 7’ through vector-based RL
13:  if (C=0) or (w- p”' — w - p”init > ) then

14: C«~CuUnm’
15: c<0

16: i<—i+1
17:  else

18: c<«<c+1
19:  end if

. 1)
20: until ¢ > éln%
21: return C

After the execution of a, the value of the state is then updated as

h(s) < max (f(s, b)—pT(s,b)+ ZPr(s’ls, b)h(s/)>.

s’

For the gain p, the only change from the non-vectorized version is in the update for the
average reward p7 which is done as

pr <~ (L —a)pT + a(f(s,a) —h(s) +h(s").

We can also apply this vectorizing trick to R-learning, the model-free average-reward
reinforcement learning algorithm (Schwartz 1993). Some experimental results based on this
are presented in (Natarajan and Tadepalli 2005).

Though we expound on the application of our variable-reward concepts to the average-
reward setting, we could easily extend the idea to using weighted total reward in a total-
reward setting, or the weighted discounted reward in a discounted-reward setting. In both
these settings, the value function of any fixed policy is a linear function of the reward
weights. Hence we could store the value function in a vectorized form just as in the average-
reward case. In the average-reward setting, the gain vector provides a convenient way to find
the best policy in the cache for a given set of reward weights. In the total-reward and the
discounted-reward settings, we need to keep track of the expected returns for the start state
distribution to serve a similar purpose. This is going to be in a vectorized form whose di-
mension is the number of the reward components. Its inner product with the reward weights
gives the expected returns of any policy, and can be used to determine the initial policy as in
step 8.
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Fig. 2 Two policies 71 and mp
learned for weights wy and wyp
respectively

Gain

Weight

It should be noted that the algorithm presented here transfers over seamlessly to any
representation of policies, including value-function approximation, as long as the repre-
sentation is the same during retrieval (step 8) and caching (step 14). This is simply be-
cause the algorithm caches the parameters of the representation as a proxy for the policy
itself.

2.3.2 Theoretical analysis

We now derive an upper bound on the number of policies stored by the VRRL algorithm
and use it to derive the sample complexity.

Theorem 2 Assuming that the vector-based RL finds optimal policies for each weight, the
number of policies learned by VRRL is upper-bounded by 0((%)”), where n is the number
of components of the weight vector, W is the maximum range of the weight components, and
y is the satisfaction parameter.

Proof Let m; and m, be any two policies learned by our algorithm. Recall that the average
rewards of the policies are linear functions of the reward weights as shown in Fig. 2). Let the
gain vectors of the two policies be p™ and p™ respectively. Let w; and w, be the weights
at which the policies 7 and m, were learned. Since m; and 7, are optimal for w; and w,,
we know that

wi-p" —wi - p™ >0,

Wy - p"2 — W, - p" >0.

If 7, was learned before 7, then 7, must have been judged better than ; at w, by our
algorithm or else it would not have been stored. Hence,

Wy p" =Wy p" >y (%)
Similarly, if 7r; was learned after 7, we will have
b

Wi p =Wy p™ >y (6)

@ Springer



298 Mach Learn (2008) 73: 289-312

Since at least one of (5) and (6) are true, adding the two left-hand sides gives us

(Wo—wp)- (2 —p™) >y
=  |Wa—w[p?—p >y
4

= W —wil> ———
lp™2 — p1]

14 _a
max; ;(|p™ — p™i|) = /n

= |wy—w|>

The above equation implies that the weight vectors for which distinct policies are stored
should be at least at a distance of - from each other.’ Let the maximum range of the
weight space, i.e., the difference between the highest and the lowest weight for any reward
component be W. Hence, the maximum number of stored policies N is bounded by the
number of points that can be packed in a hypercube of side W, where the distance between
any two points is > %

We estimate an upper bound on this quantity as follows: Suppose there are N such points
in the hypercube. We fill the volume of the hypercube by surrounding each point by a hy-
persphere of radius 7 No two such hyperspheres will overlap since the centers of the
hyperspheres are at least at a distance of f from each other. Hence, the volume of the

hypercube divided by the volume of the hypersphere will upper -bound the number of hyper-

spheres. Since the volume of hypersphere of radius r is =~ (Weeks 1985),

LHJ‘

nngy n
()
(#)nﬂljJ y O

Corollary 1 The VRRL algorithm has a sample complexity bounded by O(% In %) where
N is the upper-bound in the previous theorem.

Proof Algorithm 1 is a rough sketch of the VRRL algorithm. Notice that for the learner
to terminate in stage i, it should have passed through m; = é(Zln(i +1)+1In %) randomly
chosen test weight vectors without learning a new policy. We first bound the probability of
the learner terminating with a non-€, y-cover in stage i. Note that a new policy is not learned
only when the current policy cache produces a y -optimal policy. A non-¢, y-cover produces
a y-optimal policy on a random SMDP with probability at most 1 — €. The probablllty that
all m; weight vectors lead to y-optimal policies is at most (1 — €)™ < e = el W =
8

G+n2-
The probability that the learner terminates with some non-¢, y-cover in some stage is

therefore bounded by 32, 27 < /15, e di < 8-

From Theorem 2, we know that the learner learns at most N policies. The value of i is
upper-bounded by N. Each time i is incremented, m; = 0(% In %) SMDPs are tested.
Thus, we have a sample complexity of O (X 1n §). O

3Every component (dimension) of p is between 0 and 1 because it represents a feature expectation. The
maximum distance between two such n-dimensional points is /7.
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Note that VRRL is not sample-efficient since N is exponential in n, the natural parameter
of the SMDP family. However, it is easy to see that VRRL runs in time linear in the sam-
ple size and polynomial in n (not counting the cost of solving the SMDPs, and assuming
that the policy cache is indexed efficiently for a constant-time retrieval). Thus, according to
Definition 4, VRRL is a time-efficient transfer learner.

This worst-case sample complexity bound suggests that the algorithm scales poorly in the
number of reward components. While we may be able to improve our bounds with a tighter
analysis, we argue that in many practical domains the number of reward components is
small. VRRL is highly effective in such domains in transferring knowledge across different
SMDPs. We provide empirical evidence for these claims in the later sections.

In light of this worst-case result, it is interesting to consider whether the algorithm can
achieve better sample complexity for problems (F, D) where there exists a small set of
policies that are sufficient to cover the problem. It turns out that even if a problem (F, D)
has a small €, y-cover, the algorithm may require an arbitrarily large number of samples
to find such a cover. To see this, consider a distribution D that places a probability mass of
1 — € — €’ on weight vector w, a probability mass of €’ on w,, and the remaining probability
mass of €/K on each of K weight vectors w/, ..., wy. It is possible to construct a variable-
reward SMDP family F such that, given any pair of weight vectors generated according
to D, the optimal policy for one is not y-optimal for the other. Hence, the €, y-cover of
such a problem (F, D) consists of the optimal policies for w; and w; (all the remaining
weight vectors together have a probability mass of €), and is of size 2. However, making ¢’
arbitrarily small and K arbitrarily large will cause the algorithm to require arbitrarily many
samples to generate an €, y -cover for this problem.

The above example shows that a small cover does not necessarily guarantee a small sam-
ple complexity. This result does not seem to be specific to our algorithm but is a consequence
of the fact that certain problem distributions are not exploitable in a transfer context. In the
above example, there are many inherently different MDPs, each generated with a very small
probability—this is a pathological scenario for any transfer learner.

If we place additional constraints on a policy cover, it is possible to show that our algo-
rithm is efficient when there exists a small cover.

Definition 5 An €, y-cover for (F, D) is p-constrained if for each policy in the cover, with
at least probability p, it is y -optimal for a randomly drawn weight vector from D.

With this definition in hand, we can show the following result.

Theorem 3 Let (F, D) be a variable-reward transfer learning problem. If there exists a
p-constrained €, y /2-cover for (F, D) with M policies, then with probability at least 1 — 8,
the above algorithm will store an €, y -cover after at most % In % samples.

Proof Let C be the €, y /2-cover assumed in the theorem. Consider a policy 7 in the cover
and a weight vector w for which 7 is y/2-optimal. If 7’ is the optimal policy for w, it
follows that 7" is y-optimal for any weight vector for which 7 is y/2-optimal. Thus, if
we can guarantee that for each 7 in the cover, we sample a weight vector for which it is
y/2-optimal then the set of policies stored for those weights will effectively cover all of
the weight vectors that C covers. Hence the set of learned policies will be an €, y cover for
(F. D).

It remains to bound the number of samples required to guarantee that, with high prob-
ability, we get a set of weights such that each policy in C is y/2-optimal for at least one
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weight. Given m samples, the probability that a single policy is not y /2-optimal for any
of the m samples is no more than (1 — p)”. Using the union bound, the probability that
at least one policy is not y /2-optimal for any sample is bounded by M (1 — p)™. We want
this probability to be less than §, i.e. M (1 — p)™ < §. Solving for m gives the bound of the
theorem. O

Note that although this bound may look like it is only logarithmic in M, it will in fact
at least scale as M In M. To see this, note that we must have pM < 1 which means that
1/p is at least as large as M. This result shows that if there is a small cover such that the
probability of each policy being optimal for a problem is not too small then we can get
an efficient sample complexity. This agrees with the intuition that transfer learning is most
useful in situations with a small number of inherently distinct SMDP types, each of which
is not too unlikely to be experienced.

2.4 Experimental results

We present results of the performance of the VRRL system within the simplified RTS do-
main shown in Fig. 3. It is a map with a fixed number of peasants, the peasants’ home
base, multiple resource sites where the peasants can harvest resources, and an enemy base
which can be attacked when it appears. The state variables in this domain are the locations
of the peasants, what they are currently carrying (gold, wood, ... , nothing), the availability
of resources at each of the resource locations, and the enemy’s status (present or absent).
The peasants can move one cell to the north, south, east, and west, pick a resource from a
resource site, put a resource at the home base, attack the enemy base, and idle (no-op); the
probability of failure for an action is 0.05. Resources are generated stochastically at the sites
with a probability of 0.5. The probability of the appearance of an enemy base is 107, and it
persists until it is attacked. Due to the lack of scalability of non-hierarchical learning, these
performance curves are based on a 25 x 25 RTS map with 1 peasant, 5 fixed resource sites
(2 resources), a home base, and an enemy base. The rate of e-greedy exploration is 0.1.
The reward feature vector has components associated with dropping off each of the re-
sources, enemy elimination, and a time-step penalty that provides shaping to the flat learner.
Theoretically, each of the weight components w; € (—o00, 00). Empirically, we defined a
set of seed values that we shuffle to generate the training and testing weights. These seed
values are chosen to make one component dominate, and this is consequently reflected in

Fig. 3 The RTS domain with 5
peasants, multiple resources W E
(W, G, ...), ahome base H, and e

an enemy base E
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Fig. 4 Performance of VRRL on a test weight after seeing 0, 1, and 10 training weight vectors (averaged
across 10 trials)

the policies learned. For a concrete illustration of how the reward feature and weight vectors
generate the scalar reward, consider that the peasant is at its home base carrying gold (state
s1), it is executing put, and the immediate reward feature vector (s, put) = (0, 1,0, 1).
If the current weight vector w = (10, 50, 30, —10), then the immediate scalar reward
R(sy, put) = w - (51, put) = 40.

Figure 4 shows the learning curves for the VRRL learner. All curves are averaged across
10 trials. The experiments are designed to show the performance of the learner on a partic-
ular test weight after having seen 0 through 10 training weights. Curve i represents the per-
formance on the test weight having already seen i training weights; for the sake of clarity,
the plots only show the learning curves for i =0, 1, 10. Since the variable-reward frame-
work is designed principally to deal with dynamically changing weights, we evaluate the
performance on the test weight vector by incrementally introducing training weight vectors.
Curve 0 measures the performance of the algorithm on the test weight, given no prior ex-
perience. Next, one training weight is introduced, and the optimal policy for this weight is
learned and cached. Curve 1 now measures the performance on the test weight vector given
the single training weight. When the second training weight is introduced, a cached policy is
retrieved for initialization, and a new policy is learned; this new policy is cached if it is sub-
stantially better than the initializing policy. It is important to note that none of the learning
done during performance evaluation (on the test weight vector) spills over into the training
phases; the policy learned for the test weight is never cached.

From the results, we can observe that the learning curve for the test weight given no
prior training weights (i.e., an empty policy cache) is the slowest to converge in both figures.
However, after accumulating the 10 training weight vectors, the VRRL agent demonstrates a
high jump-start* and quicker convergence for the test weight. With only one training weight
vector, VRRL exhibits some negative transfer, that is, the initialization to the policy learned

4] ump-start is defined as the immediate benefit via transfer without any learning in the new setting.
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Fig. 5 Performance of the flat learner without the VRRL policy-caching mechanism on a test weight after
seeing 0, 1, and 10 training weight vectors (averaged across 10 trials)

for the first training weight hurts the convergence for the test weight. This is unsurprising
given that currently we always attempt to transfer past experience even when the experience
is limited.

Since the MDPs have the same dynamics, the flat learner does not need to relearn the
transition model from scratch when the reward weights change. Figure 5 shows the results
of repeating the VRRL experimental setup with one crucial difference—no policy is ever
cached. Instead, the only transfer here is due to the transfer of transition models. In this
case, we do observe a slight speed-up in convergence but no jump-start.

3 Hierarchical reinforcement learning

The MAXQ value function decomposition is an elegant approach to exploit the hierarchi-
cal task structure typically present in large MDPs (Dietterich 2000). It facilitates learning
separate value functions for subtasks which are composed to compute the value function
for the supertask. The MAXQ approach has been simplified and adapted to a hierarchical
average-reward reinforcement learning (HARL) setting (Seri and Tadepalli 2000).

In HARL, the original SMDP M is split into sub-SMDPs {M,, M, ..., M,}, where
each sub-SMDP represents a subtask. Subtasks that represent the actions of the original
SMDP are called primitive; every other subtask is called composite. Solving the composite
root task M, solves the entire SMDP M. The task hierarchy is represented as a directed
acyclic graph known as the task graph that represents the subtask relationships.

We will explain the HRL concepts in the context of the RTS domain shown in Fig. 3.
In the case of multiple peasants, only one peasant can occupy a cell. Although there are
multiple peasants in the world, there is only a single learning peasant; all other peasants
execute fixed policies. In what follows, “the peasant” refers to this learning peasant.

The task hierarchy for this domain is shown in Fig. 6. The leaf nodes correspond to the
primitive actions. Formally, each composite subtask M; is defined by the tuple (B;, A;, G;):
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Fig. 6 The task hierarchy for the

RTS domain Root
|Harvest(l)|  [Deposit| Attack
put attack
[north|” [south| [east] [west] ~idle]

e State abstraction B;: A projection function that maps a world state to an abstract state
defined by a subset of the state variables. If the abstraction function is safe, it will only
coalesce the world states that have the same value function and optimal policy into an
abstracted state. For example, Goto(/)’s abstracted state space ignores every state variable
but the location of the peasant.

e Actions A;: The set of subtasks that can be called by M;. For example, Root can call
either Harvest(/), Deposit, Attack, or idle.

e Termination predicate G;: The predicate that partitions the subtask’s abstracted state
space into active and terminated states. When M; is terminated, control returns back to
the calling parent task. The probability of the eventual termination of a subtask (other than
Root) is 1. For example, Deposit is terminated when the peasant is not carrying anything.

The mechanism of state abstraction is critical to HRL. The individual tasks only see
abstracted states (states comprised of a subset of the world state variables), and this helps
compact the value functions significantly. Since a task only performs value function updates
in states for which its child subtasks terminate, this funneling by the child tasks leads to a
much smaller number of values being stored in the parent task. Since the Root task solves the
entire SMDP, it sees the entire world state. However, it also benefits most from funneling.
The Harvest tasks see an abstract state space based on the location of the peasant, what it is
carrying, and the resource present at the resource locations. The Deposit task only sees the
location of the peasant, and what it is carrying. The Attack task keeps track of the location of
the peasant, and the status of the enemy. The Goto tasks only see the location of the peasant.
The primitive movement actions, pick, and idle only store one value each. put needs to keep
track of the location and the resource being toted. Finally, attack looks at the location of the
peasant.

A subtask is applicable iff it is not terminated. The root task’s termination predicate is al-
ways false (an unending subtask). Primitive subtasks have no explicit termination condition
(they are always applicable), and control returns to the parent task immediately after their
execution.

A local policy 7; for the subtask M; is a mapping from the states abstracted by B; to the
child tasks of M;. A hierarchical policy 7 for the overall task is an assignment of a local
policy m; to each sub-SMDP M;. A hierarchically optimal policy is a hierarchical policy
that has the best possible gain, i.e., average reward per time step for the original SMDP. Un-
fortunately, hierarchically optimal policies tend to be context-sensitive and transfer-resistant
in that the best policy for the lower level subtasks depend on the higher level tasks. For ex-
ample, the best way to exit the building might depend on where one wants to go. To enable
subtask optimization without regard to the supertasks, Dietterich introduced the notion of
recursive optimality (Dietterich 2000).

In the context of HARL, recursive optimality is best defined as maximizing the average-
adjusted total reward during each task assuming that all its subtasks are in turn recursively
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optimized with respect to the same global gain. Under this definition, recursive optimality
coincides with hierarchical optimality when the task hierarchy satisfies a condition called
result distribution invariance (RDI) i.e. the terminal state distribution of a task does not
depend on the policy employed to accomplish it (Seri and Tadepalli 2000). (A sufficient
condition for RDI is when every subtask has a unique terminal state.) Often, the tasks in the
hierarchy can be designed in such a way that RDI is satisfied.> In the RTS domain, we have
designed the hierarchy to include a parameterized Harvest subtask. Since the set of terminal
states of this subtask depends solely on the binding value of the parameter, RDI holds, and
this subtask can be called optimally based on the external context. On the other hand, the
terminal states of an unparameterized Harvest subtask depends on the local policy, and RDI
no longer holds.

3.1 Average-reward HRL

In this work, we adapt the model-based HARL algorithm as follows. At each non-root task
node i, the algorithm maintains two functions. The first is a value function V;(s) that repre-
sents the total expected reward during task i starting from state s. The second function 7; (s)
represents the expected duration of task i starting from s. Given these two functions and an
estimate of the global gain p, we can easily compute the bias h;(s) for task i and state s as
follows:

hi(s) = Vi(s) — pT;(s). @)

The recursively optimal value function V; for task i satisfies the following Bellman equa-
tions:®

Vi(s) = R(s,i) ifi is a primitive subtask (8)
=0 if s is a terminal/goal state for i )
=V;(s) + Z Pr(s’|s, j) Vi(s") otherwise, (10)

s'eS
where j = argmax, (ha (s) + Z P(s'|s,a)h; (s’)). (11)
s'eS

The value functions at the primitive subtasks just keep track of the reward received (see
(8)). For the composite tasks, the value of every terminal state is O (see (9)). The value of a
non-terminal state in a composite task is the sum of the total reward achieved by the child
task from that state followed by the total reward till the completion of the parent task. In
our version of the HARL algorithm, V;(s) is updated by the right hand side of (10) after
selecting a subtask. Unless the action is exploratory, the child task is chosen to maximize
the average-adjusted total reward during the task, where the adjustment is with respect to
the current global gain p (see (11)) (Seri and Tadepalli 2000).

SWe are currently exploring the issue of whether RDI can always be enforced through appropriate hierarchy
design.

6The value functions and models are in fact based on the abstracted states, i.e., to B;(s) rather than s. We
ignore this extra notation to improve readability.
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In order to compute the bias values, h,(s) and &, (s), we need the durations 7,(s) and
T; (s). These are computed by updates based on the following Bellman equations, which are
similar to (8)—(10)

T:(s) =T(s,i) ifi isa primitive subtask (12)
=0 if s is a terminal/goal state for i (13)
=T;(s)+ ZPr(s/|s, HTi(s") otherwise, (14)

s'eS

where j is chosen according to (11). Since the root node represents a never-ending task, it
does not have a finite V; or 7;. Hence we store its bias value %, directly, which is calculated
using the following Bellman equation:

hioot(s) = mjgix(hj (s)+ ZPr(s/|s, j)hroo‘(s/)>. (15)

s'eS

When the root task selects its child a greedily, the average reward p and average time
ol are updated (analogous to (2) and (3)) as follows:

P < (1= ) +a(Va(s) + hroor(s) = hroon(5)), (16)
P (1 —a)pf +aT,(s). (17)

The ratio of pJ to p;’ gives the gain p, which is used in (7).

4 Variable-reward hierarchical reinforcement learning

VRRL exploits the decomposition of reward into reward components, whereas HRL is based
on the idea of decomposing the tasks into subtasks. In this section, we explicate the variable-
reward hierarchical reinforcement learning (VRHRL) algorithm that synergistically com-
bines the two ideas. We seek to incorporate the variable-reward transfer mechanism into a
hierarchical framework to benefit from value-function decomposition.

In non-hierarchical learning, the optimal policy is represented by a monolithic value func-
tion. This means that changes in the reward function will often result in non-local changes to
this value function. Storing a new value function for every new weight would consequently
result in a larger policy cache. Moreover, besides taking a longer time to converge, a mono-
lithic value function is also more prone to lead to negative transfer especially when only
a small number of policies are stored. Instead, a hierarchical value function is less prone
to negative transfer especially when the hierarchical decomposition is closely aligned with
the reward decomposition. Every subtask has a local value function, and local changes in
rewards can be better managed. For instance, if none of the reward variations affect naviga-
tion, the Goto subtask only needs to learn its local value function once; perfect transfer is
achievable for this subtask across the family of MDPs (and consequently every task below
it in the task hierarchy). In the case of the RTS domain with multiple colliding peasants,
the Goto subtask is only affected by the collision component of the reward, and transfers
over perfectly to all MDPs for which the corresponding reward weight is identical. Thus,
negative transfer can be significantly reduced with good hierarchy design.
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4.1 Bellman equations for VRHRL

Variable-Reward HRL (VRHRL) extends our hierarchical RL approach by turning the value-
functions over states into vectors of the same dimension as the reward components. Every
subtask i (but the root) stores the total expected reward vector V; during that subtask, and
the expected duration 7; of the subtask for every state.

More formally, the value function vector V;(s) for a non-root subtask i represents the
vector of total expected reward components during task i starting from state s following
a recursively optimal policy . Hence, the value function decomposition for a non-root
subtask satisfies the following equations, analogous to the scalar equations (8)—(11)

V.(s) =1(s,i) ifi is a primitive subtask (18)
=0 ifs is a terminal/goal state for i (19)
=V;(s)+ Y _Pr(s'ls, j) - Vi(s) otherwise, (20)
s'es
where
j = argmax (w . <ha (s)+ Z Pr(s'|s, a)h; (s/)>>. 21)
“ s'eS

Storing the bias vector indirectly in a form that is independent of the gain gives a limited
form of reusability in that the value function for a subtree of the task hierarchy may be
transferred across MDPs with different global gain vectors as long as the optimal policy for
the subtree remains the same. Storing the value functions as vectors facilitates transfer across
different MDPs in the variable-reward family just as in the non-hierarchical variable-reward
RL.

In addition to the vectorization, one important difference from the previous set of equa-
tions is that the recursively optimal child task selection maximizes the weighted bias
(see (21)). This is because the objective of action selection is to maximize the weighted
gain (the dot product of the weight vector with the gain vector). In analogy to the scalar
case, we compute the bias vector as

hi(s) = Vi(s) — pT;(s).

The Bellman equations for the task durations 7; remain the same as before (see (12)—
(14)). As in the scalar case, we keep track of the bias values of the root task directly since
the root represents a recurrent task.

hroot(s) = m/ax(hj (s) + Z PI'(S/|S, ]) . hroot(s,)>

s'eS
4.2 Transfer mechanism in VRHRL

The VRHRL agent has three components: the task hierarchy with the current subtask value
functions and the associated global gain, the task stack, and a cache of previously learned
optimal policies C that comprise the convex piecewise function. Note that the policies in the
cache are indirectly represented by the subtask value and duration functions, and the global
gain. The policy cache C is specific to the hierarchical transfer mechanism while the other
components are part of a basic hierarchical agent.
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Initially, the agent starts out with an empty policy cache. The agent proceeds to learn a
recursively optimal policy m; for the first weight w;. When the agent receives a new weight
w,, it first caches m; (the subtask functions and the global gain achieved for w;) in the
policy cache C. Next, it determines i = argmax_, .. (W - p™), which in this case is 7, and
initializes its subtask functions and global gain based on mi,;. It then improves the value
functions using vectorized version of model-based hierarchical RL, which works as follows.

At any level of the task hierarchy, the algorithm either chooses an exploratory subtask
based on e-greedy exploration, or a greedy one according to (21). It learns the transition
model Pr(s’|s, a) for each subtask by counting the number of resulting states for each state-
subtask pair to estimate the transition probabilities. In doing so, the states are abstracted
using the abstraction function defined at that subtask so that the transition probabilities can
be represented compactly. Every time a subtask terminates in state s’, (18)—(20) are used to
update the total expected reward vector V;(s) of task i, and (12)—(14) are used to update the
scalar duration function T;(s).

For the global gain, the vector equivalent of (16) is

piT <~ (l - O[)pf + a(Va (S) + hmot(s,) - hroot(s)) (22)

where « is the learning rate, and s and s’ are the states before and after executing the highest
level subtask a of the root task; (17) can be used unchanged. The updates in (22) and (17)
are performed only when a is selected greedily. Finally, p™ is set to p7 / pf".

On sensing a new weight w3, the agent only caches the learned hierarchical policy m, for
wy if wy - (p™2 — pTinit) > y_If this condition is not satisfied, then the newly learned policy
is not sufficiently better than the cached version.

When adding m; to the policy cache, we could just store the value function of every
subtask in the task hierarchy. However, although the hierarchical policy has changed, many
of the local subtask policies could still be the same. To leverage this fact, for every subtask
being stored, we check the policy cache to see if any of the previously stored versions of
the subtask are similar to the current one; if so, then we need only store a reference to that
previously stored version. Two versions of a subtask are similar if none of the values for the
vector components of the value and duration functions for any state differ by more than a
similarity constant o .

Once caching is complete, the policy that maximizes the weighted gain w.r.t. w3 is chosen
from the policy cache for initialization. This process is repeated for every new weight en-
countered by the system. Thus, every weight change is accompanied by the internal process
of caching and value function initialization for the agent.

Just as in the VRRL framework, VRHRL is also applicable when using value-function
approximation. In the experiments described in the next section, we employ a linear value
function over a set of predefined features for every task in the hierarchy. Instead of updating
the value function for each possible value of the abstracted feature vector, the weights of
the linear value function are updated in proportion to the gradient of the temporal difference
error.

4.3 Experimental results
The performance results for the hierarchical agent are based on a 25 x 25 RTS map (dis-
cussed in Sect. 2.4) with 5 peasants, 5 fixed resource sites (5 resource types), a home base,

and an enemy base. Since this is a huge state space, in addition to the hierarchical decompo-
sition, we also employ linear value-function approximation. For a vectored value function,
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Fig. 7 Performance of VRHRL on a test weight after seeing 0, 1, and 10 training weight vectors (averaged
across 10 trials)

this entails maintaining a set of parameters for each vector component; for a hierarchical
value function, we maintain such a set of parameters for each subtask. The state features
used are distances to sites, indicators for what the peasant is carrying, indicators for what
resource is present at the sites, and an indicator for the appearance of the enemy base, etc.
The learning rate for updating the weights of the linear function approximation is 107*. The
rate of e-greedy exploration is set to 0.1. The reward feature vector has 7 components that
are associated with 5 resources, peasant collisions, and enemy elimination.

The experiments are designed exactly as in Sect. 2.4. Two important parameters that
govern the learning behavior of the VRHRL algorithm are the satisfaction constant y =
0.01, and the similarity constant o = 0.01; these parameters are fixed for all experiments.
Just as the learning rate and the rate of exploration are key parameters in regular RL, the
satisfaction and similarity constants trade-off speedup in learning against the size of the
policy cache. For instance, the smaller the satisfaction, the more the number of policies
stored in the cache. When a new weight is detected, the algorithm is more likely to find a
policy that is very close to optimal from this heavily-filled cache. The smaller the similarity,
the more new subtask data is stored by the algorithm instead of maintaining references to
previously stored subtask information.

Figure 7 shows the learning curves for VRHRL. The learning curve for the test weight
given no prior training weights (i.e., an empty policy cache) is the slowest to converge.
However, the jump-start and speed of convergence for the test weight improves as more
training weight vectors are experienced.

We have previously noted that the flat learner does not need to relearn the transition
model from scratch when the reward weights change. In the hierarchical learner, the transi-
tion models at the composite tasks (and the models at the primitive subtasks) do not need to
be relearned when RDI holds because then the state transitions at every subtask are invariant
to the changes in the policies of the child tasks. Figure 8 shows the results of repeating the
VRHRL experiment without the policy-caching mechanism. Here, reusing the learned mod-
els is only slightly beneficial to the hierarchical learner, leading to a small initial speed-up in
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Fig. 8 Performance of the hierarchical learner without the VRHRL policy-caching mechanism (averaged
across 10 trials)
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Fig. 9 Performance of the hierarchical learner when caching only Goto tasks (averaged across 10 trials)

learning but without any jump-start or faster convergence. A complete trial of the VRHRL
experiment (10 training weights, 1 test weight) takes 7266.1 secs on average, while that of
the experiment without caching takes 7204.3 secs on average—the caching mechanism adds
an overhead of only 0.85% to the overall running time of the experiment.

We have mentioned that VRHRL benefits from having certain subtasks like Goto transfer
over significantly because they are affected by only a small number of reward components.

@ Springer



310 Mach Learn (2008) 73: 289-312

Figure 9 demonstrates that with caching only the Goto tasks (and reinitializing all other tasks
to zero), the learner sees a jump-start that is smaller than that for complete policy caching,
but the performance is still better than when not caching at all.

We have also conducted experiments in which the weight vector w is induced from the
scalar reward signal R using perceptron-style incremental learning:

W<« w+a(R—w-DHf

where f is the reward feature vector. The agent is allowed to take random actions for a certain
number of steps in order to sense the scalar reward and the corresponding reward features.
The number of steps can be tailored to allow the agent to get a good estimate of the true
weight vector—the less likely it is to see a certain reward component, the more time the
agent needs to estimate the weight for that component. In our experiments, we allow the
agent to learn an extremely good estimate of the weight vector, and the resulting learning
curves look exactly like in the plots shown for VRRL and VRHRL except that they are
shifted to the right by the number of sensing steps.

5 Related work

Taylor et al. (2005) propose a value-function mapping approach for transfer between source
and target reinforcement learning tasks. In their approach, a hand-coded similarity func-
tion is used for transferring the Q-value functions. In particular, hand-coded functions are
used to specify similar state spaces, action spaces, and representation mappings between the
source and target tasks. This work has been extended to automate the determination of the
similarity mappings (Liu and Stone 2006). More specifically, qualitative dynamic Bayesian
nets (QDBNG5s) are used to represent the structural information in the source and target tasks;
these QDBNs are assumed to be designed by the domain expert. An algorithm based on
structure mapping is designed to discover the similarities between the QDBNSs of the source
and target tasks to facilitate the transfer of value functions. Since our work assumes that
the dynamics are exactly the same in the source and target tasks, it would be interesting to
combine the two methods to handle both varying dynamics and reward functions.

Torrey et al. (2007) use Inductive Logic Programming (ILP) techniques to learn macros
that are used for transferring Q-functions across different problems. Their method, applied
to the problem of m-on-n breakaway in Robo-cup soccer, proceeds as follows: the learner
collects the training examples while playing a few source games. ILP is then used to learn
relational macros that describe a successful strategy (policy) in the source task. The macros
are then used as default policies in the target task for a fixed number of iterations. Q-learning
is then used to obtain a better policy. In effect, the relational macros are used as an explo-
ration method in the target domain. While their approach generalizes over several source
games to learn the ILP rules, we consider each source task for caching incrementally. This
greedy approach could result in a larger policy cache, and increase negative transfer in the
pathological case where successive weights are radically different from one another.

Guestrin et al. (2003) use linear programming techniques to solve relational MDPs to
compute a set of value functions from one MDP that can be directly used in another. An
alternative approach of converting the relational MDPs into several propositional MDPs
and solving the propositional MDPs has also been studied (Mausam 2003). Here, the value
functions are represented using first-order regression trees and are then used to determine
a policy for a new MDP. In both these methods, the relational structure is exploited for
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learning the value functions for similar classes of MDPs. Researchers have also looked at
the problem of transferring knowledge from one learner to another as imitation (Price and
Boutilier 2003). The observer extracts information about its capabilities by observing the
state transitions of the agent. Our goal is chiefly to facilitate transfer in the presence of
time-varying rewards.

Our approach to variable-reward transfer learning borrows ideas from multi-criteria re-
inforcement learning (Gabor et al. 1998). These ideas are related to earlier work on solving
multi-criteria MDPs where weights are used to indicate the importance of different reward
components. For example, in the work by White (1982), vector-based generalizations of
successive approximation techniques are used to solved the MDP. Feinberg and Schwartz
(1995) formulate the problem as optimizing a weighted sum of the total discounted rewards
for the different components of the reward function. Russell and Zimdars (2003) consider
the additive decomposition of rewards to solve the MDP. Guestrin et al. (2001) used re-
ward decomposition to make multi-agent coordination tractable. The work by Parr (1998)
decomposes the problem of solving a big MDP into one of solving smaller weakly-coupled
sub-MDPs. The fact that the value function of a fixed policy over the sub-MDP is linear in
the values of its exit states is effectively exploited to speed up the solution of the overall
MDP. In contrast to all of the work mentioned in this paragraph, our approach to reward
decomposition is motivated by transfer across MDPs that share the same dynamics with
different reward structure.

6 Conclusions and future work

In this paper, we showed that vector-based value function learning and caching of policies
can lead to effective variable-reward transfer learning. We also showed that hierarchical
reinforcement learning can accelerate transfer across variable-reward MDPs more so than in
the non-hierarchical setting. Our results are in the model-based setting and have the added
advantage that the models need not be relearned from scratch when the rewards change. We
have also shown that it is easy to learn them from non-decomposed scalar rewards since the
scalar reward is linear in the reward weights.

Possible future directions include extensions to shared subtasks in the multi-agent setting
(Mehta and Tadepalli 2005), and to MDP families that share only part of the dynamics.
In RTS games, we could consider MDPs that contain different objects such as peasants,
footmen, and archers in different proportions and locations. Although the dynamics of local
interaction for each peasant may be the same, the changes in the peasants’ locations and their
numbers mean that, technically, the different MDPs have different dynamics. Nevertheless,
people seem to be able to effectively transfer their strategies from one such RTS game to
another. Duplicating this ability in machines would be a big advance for the field of machine
learning.
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