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Abstract Estimating the partition function is a key but difficult computation in graphical
models. One approach is to estimate tractable upper and lower bounds. The piecewise upper
bound of Sutton et al. is computed by breaking the graphical model into pieces and approx-
imating the partition function as a product of local normalizing factors for these pieces. The
tree reweighted belief propagation algorithm (TRW-BP) by Wainwright et al. gives tighter
upper bounds. It optimizes an upper bound expressed in terms of convex combinations of
spanning trees of the graph. Recently, Globerson et al. gave a different, convergent iterative
dual optimization algorithm TRW-GP for the TRW objective. However, in many practical
applications, particularly those that train CRFs with many nodes, TRW-BP and TRW-GP are
too slow to be practical. Without changing the algorithm, we prove that TRW-BP converges
in a single iteration for associative potentials, and give a closed form for the solution it finds.
The closed-form solution obviates the need for complex optimization. We use this result to
develop new closed-form upper bounds for MRFs with arbitrary pairwise potentials. Be-
ing closed-form, they are much faster to compute than TRW-based bounds. We also prove
similar convergence results for loopy belief propagation (LBP) and use it to obtain closed-
form solutions to the LBP pseudomarginals and approximation to the partition function for
associative potentials. We then use recent results proved by Wainwright et al for binary
MREFs to obtain closed-form lower bounds on the partition function. We then develop novel
lower bounds for arbitrary associative networks. We report on experiments with synthetic
and real-world graphs. Our new upper bounds are considerably tighter than the piecewise
bounds in practice. Moreover, we can compute our bounds on several graphs where TRW-
BP does not converge. Our novel lower bound, in spite of being closed-form and much faster
to compute, outperforms more complicated popular algorithms for computing lower bounds
like mean-field on densely connected graphs by wide margins although it does worse on
sparsely connected graphs like chains.
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1 Introduction

Graphical models are indispensable tools for computer vision, information extraction, lan-
guage processing, bioinformatics, and other applications. The computation of the partition
function is a critical computation in graphical models, for evaluating marginal probabilities
and for training the parameters of the potential functions. Exact computation of the par-
tition function is computationally intractable except for trees and other restricted families
of graphs. Hence, developing tractable approximations to the partition function is a very
important problem.

Variational methods (Jordan and Wainwright 2003) are one of the most popular ways of
developing principled approximations to the partition function, and can be used to compute
rigorous lower and upper bounds on the partition function. The idea behind variational meth-
ods is to express the computation of the partition function as an optimization problem (albeit
computationally intractable) and relax this optimization problem in various ways to obtain
tractable optimization problems that can provide upper and lower bounds on the partition
function. The optimization is generally done by algorithms known as message passing algo-
rithms that solve the optimization problem by passing messages between nodes of the graph
till convergence is achieved. Two popular algorithms of this kind are loopy belief prop-
agation (LBP) and tree-reweighted belief propagation (TRW-BP). TRW-BP is a message
passing algorithm that optimizes an upper bound over convex decompositions of the para-
meter vector. However, it is not guaranteed to converge. Recently, Globerson and Jaakkola
(2007) have proposed a different message-passing algorithm TRW-GP that solves the same
optimization problem as TRW-BP and is guaranteed to converge. LBP is an algorithm that
is not guaranteed to give bounds on the partition function although it has been used very
successfully in practice and has some theoretical justification (Yedidia et al. 2000) on the
basis of the Bethe entropy approximation. However, even this algorithm is not guaranteed
to converge in general. In spite of being widely used, all these methods prove to be pro-
hibitively expensive for applications that required repeated inference over large graphs. A
recent technique proposed to provide approximations that remain tractable even for such
applications is the piecewise approximation (PW) (Sutton and McCallum 2005). The piece-
wise approximation simply breaks the graph into pieces and computes an upper bound on
the partition function by taking a product over locally normalizing factors for each edge,
thus avoiding any kind of message-passing altogether. Although this is a fairly loose bound
on the partition function, the authors in (Sutton and McCallum 2005) successfully apply it
to several common NLP tasks.

Our contributions In Sect. 3, we give a sufficient condition on the initialization of the
TRW-BP algorithm that guarantees convergence in one iteration for a class of poten-
tials(including associative potentials). As a result of this convergence proof, we obtain a
closed form expression for the TRW bound for MRFs with this class of potentials.

The closed form for associative potentials (and a generalization of them described in
Sect. 4) is important, because, given an arbitrary potential, we consider a decomposition of
it into a convex combination of an associative part, for which we use the closed-form TRW
bound and a non-associative residue for which we can use a PW bound, thus obtaining an
upper bound on the partition function using its convexity. We optimize over all such de-
compositions and show that this optimization problem has a closed-form solution as well.
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We also prove that our bound is a convex function of the model parameters and also prove
bounds on the gap between our new bounds and the piecewise bound. We present a similar
convergence result for LBP as well in Sect. 5. Using results from (Sudderth et al. 2008), we
obtain closed-form lower bounds on the log partition function for binary MRFs with attrac-
tive associative potentials. We then develop novel closed-form lower bounds for arbitrary
associative potentials by decomposing a potential into a convex combination of attractive
and non-attractive parts and using the closed-form LBP lower bounds on the attractive part
and the closed-form TRW bound on the non-attractive part.

In Sect. 6, we report on experiments with real and synthetic graphs: chain graphs used in
information extraction and statistical NLP, grid graphs commonly used in computer vision,
the social network of papers and authors extracted from CiteSeer (nodes represent papers or
authors, edges represent relations like author-wrote-paper and paper-cited-paper), and social
networks of actors and movies extracted from the Internet Movie Database (IMDB).

Our new upper bounds on the partition function are about as fast as piecewise, but tighten
the piecewise bound by 10-25% for different kinds of graphs across graph sizes. We can
quickly compute bounds on graphs on which TRW does not converge, or takes impractical
amounts of time.

Our novel lower bound for associative binary MRFs also performs well, beating standard
methods like mean-field by large margins on densely connected graphs although it does
worse on sparser graphs like chains.

2 Preliminaries

In this section, we introduce notation and review relevant related work that motivate our new
analysis.

2.1 Graphical model basics

An undirected graphical model consists of an undirected graph G = (V, E) with potential
functions ¢¢(yc) (where C is a clique in G) that defines the following distribution over
variables associated with nodes of the graph:

1
Pr(y) = — [ [wewo
C

where y is a vector of length |V| giving the values of variables and yc denotes the subset
of variables associated with the clique C. Here, we shall consider only node and pairwise
potentials, that is, the cliques C consist only of nodes and edges of the graph. We shall as-
sume that for each s € V, the corresponding variable y, takes values in some discrete set
X, =1{0,1,2,...,mg; — 1}. We shall assume for convenience that m; = m for each s. We
denote the joint configuration space by [], X;. In this paper, for notational convenience, we
assume that X; = X'Vs so that the space becomes X" where n = |V|. These popular graph-
ical models are known as discrete Markov random fields (MRFs) with pairwise potential
functions. We shall use m = |X’| to denote the number of labels for each node.

The node potential W;(y,) depends on the state of a single node s. The edge potential
Y, (ys, yr) depends on the states of nodes (s, ¢) across an edge. These can be further para-
meterized as

lps (ys) = eXP(Z [[ys = i]]@';i)»
i,X
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Wi (Vs» 1) = exp( Z HYs = i]] Ib’t = j]]gst:i_/)

i,jeXx

where [y, =] is an indicator function that takes the value 1 if y; =i and O otherwise. In
general, node potentials can be absorbed into edge potentials (we present one way to do this
in Sect. 2.2) so in this paper we shall mostly consider models that have only edge potentials
(i.e. all node potentials are set to 0). The quantity

Yoo X oubi=il+ Y eusbo=ibi=i)

yexn seV.iex (s,1)€E i, jeX

is called the partition function (denoted by Z(®)) of the MRF and plays a central role in
parameter estimation in graphical models. We shall use A(®) to denote log(Z(®)) and it is
known that this is a convex function of ® (Jordan and Wainwright 2003).

2.2 Piecewise (PW) bound

In piecewise training we compute an approximation to the exact partition function by taking
a product over all locally normalized factors. For discrete MRFs with pairwise potential
functions and without node potentials,

Zw@) =[] <Z %(ys,y»). M

(s,1)€E “ys. )t

Even if there are single-node potentials, these can be absorbed into pairwise potentials
as follows: let s € V and let Nb(s) denote the set of neighbors of s in the graph. Then
we can modify the pairwise potentials containing s such that ¥/, (ys, y;) = %" (y;) and
> renpsy Wr = 1. We do this for each node and in this manner absorb all node poten-
tials into the pairwise potentials. Assume first that the graph is connected. Construct the
BES tree of any node in r in the graph. For each node s # r in the graph, we call e(s)
the edge through which it was discovered in the BFS and the node through which it was
discovered n(s). Note that this assigns a unique edge to each s # r. Let the set of all
these edges be called Egrg. We also pick any neighbor of r and call it n(r) and call
the edge between them e(r)(€ Egrs by definition) Let f;(y,) = Zyw) Yeois) Vss Yuis)) VS #
r,n(r).

Factl Z,, > Z.

Proof We have

z@) =Y [] %o

yeX” (s,1)eE
= Z ( 1_[ lpex (}’s, yn(s))> < l_[ lI/st (ys’ yt)>
yEX! NseV\rn(r) (s.)¢EBFsS

We now use ¥, (ys, y;) < Zys,y,EX W, (vs, V)V (s, 1) € Eprs so that these can be brought
out of the summation. Then we upper bound the terms left inside using We(s) (Vs. Yu(s)) <
Zyn(s) W,(s) (Vs> Yu(s))- This gives us the following upper bound:
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Z(®) < < Z Peiry O yn(r)) 1_[ <Z v, (s> Yn(s))>>

yex” seV\{r,n(r)} “Yn(s)

< 1 (Z %(ys,y[)>

(s.)¢EpFs “Ys:Yi€X

<Z lpg(r)(yrv yn(r))< l_[ fS(ys)>> l_[ < Z ‘I’n(}’n yr))

yex” seV\{r,n(r)} (s,0)¢EBFs Vs VI€X
~( X o) T Zroo)( TT (X wowm))
YrsYn(r) seV\{r,n(r)} ys (s,0)¢EBFs “Vs:VI€X

=1 ( > %(ys,yz)>~

(s,1)EE “ys.y1€X

O

This proof is much simpler than the one presented in (Sutton and McCallum 2005), where
they derive the bound using a convex decomposition of the parameter vector and taking the
limits as some weights in the convex combination tend to 1.

2.3 Loopy belief propagation (LBP)

Loopy belief propagation (Yedidia et al. 2000) is one of the most popular algorithms used
for obtaining approximations to the partition function and marginal probabilities. It is an
iterative algorithm that starts with a random initial set of messages {M’} and updates them
as follows:

M @D =) explfui; + 60} [ MLG).
J veNbD(t)\s

When convergence is achieved(that is, the messages remain unchanged after the above up-
dates), to say M*, an approximation to the marginals is given by

i ocexp@e) [ M),

teNb(s)

Wei; < expOyij + 0 +0i) [ M@ [ Mu0.
ueND(s)\t vEND(t)\s

W= [l i € Xs € VIU [igij 1, j € X(s,1) € E]
is called the set of pseudomarginals. . by definition belongs to the LOCAL(G), an outer

approximation to the set of marginals realizable from the graphical model, defined as fol-
lows:

Z,‘ Ts:i = 1»
LOCAL(G) =7 : 1 Y, Tsrsij = Tsuis (2)

Zj Tstsij = T;j-
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The LBP algorithm provides an approximation to the log partition function given by:

LBP(O) = (u*,0) + > H,(u) — 3 Lu(ul) 3)

seV (s,1)eE

where

Ho(is) == s 10g(1ts:1)

ieX

is the entropy function and

Mest;ij
Ist(ﬂst) = Z Mest;ij 10g<4>

ijex Ms:;i Mt j

is the mutual information between two random variables with marginals p,, 1, and joint
distribution x4, and (., .) denotes the inner product of two vectors.

2.4 Tree reweighted belief propagation (TRW-BP)

The tree reweighted belief propagation algorithm (Wainwright et al. 2005) is very popular
for computing tractable upper bounds on the log partition function. It uses the convexity
of the partition function to derive upper bounds by decomposing the parameter vector over
spanning trees of the graph and optimizes bounds thus obtained over all possible decompo-
sitions. Let G be a graph underlying an MRF. Let ST (G) be the set of all spanning trees of
G. We use ®T to denote a parameter vector for the MRF that respects the structure of 7T,
thatis, ®F =0 V(s, ) ¢ E. The idea behind the TRW upper bound is to write the parameter
vector as a convex combination of parameters over trees and then use the convexity of the
log partition function. Let A(®) denote the log partition function of the MRF parameterized
by the vector ®. Suppose that we have a probability distribution g over the set of spanning
trees of the graph. Then the TRW upper bound on the log partition function is given by
solving the following optimization problem:

min > ptAE". )

. TOT—@
O resto) ' 01=0 1 ST

Since the number of spanning trees is exponentially large for several classes of graphs, the
optimization is done in the dual where the number of optimization variables is tractable.
Strong duality is shown to hold, and the dual is given by

TRW(, 5.) = _ max (7,0)+ ZV H,(z,) — (;5 Pt L (T5r). Q)

We observe that the optimal solution depends only on the set of edge appearance proba-
bilities (po5;) and not on the entire probability vector p. Let p, = {py : (s,t) € E} be the
vector of edge appearance probabilities. This vector must belong to the spanning tree poly-
tope T (G) of the graph (Wainwright et al. 2005). Thus, for any fixed p, € 7(G), we can
get a upper bound on the log partition function by solving the optimization problem (5).
It is possible to compute a valid p, efficiently using the matrix-tree theorem (Wainwright
2002). Given a fixed p,, it is possible to solve this using standard convex optimization tech-
niques (Boyd and Vandenberghe 2004) reasonably efficiently. However, for large graphs,
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even these techniques become prohibitively expensive and alternatives are required. Wain-
wright et al propose an iterative message-passing algorithm called Tree Reweighted Be-
lief Propagation (TRW-BP) to solve the convex optimization problem (5). The algorithm
iteratively updates messages at each node using information from its neighbors until con-
vergence is achieved. Wainwright et al show that any fixed point of this iterative scheme
can be used to compute a stationary point of the Lagrangian of (5), which is also a global
maximum due to the concavity of the objective function and convexity of the constraint
set. Thus, if and when the iterations converge, they can be used to compute the optimal
solution to the problem (5). However, convergence of the iterative scheme is not guaran-
teed and it is possible for the algorithm to get stuck in cycles. In (Wainwright et al. 2005),
the authors also propose a method to optimize the TRW bound with respect to p, as well,
using conditional gradient descent and alternating between steps of running the TRW-BP
algorithm and solving a maximum spanning tree problem. However, in this paper, we shall
assume that we are dealing with a fixed p, throughout. We denote the TRW upper bound
for a fixed p, as TRW (6, p.) although we might sometimes let the dependence on p, be
implicit.

2.5 Convergent alternatives to TRW-BP

In recent work, Globerson and Jaakkola (2007) propose provably convergent alternatives to
TRW-BP for solving the TRW optimization problem (4). Using oriented trees, they derive an
alternative dual to the TRW optimization problem that can be expressed as an unconstrained
instance of a generalized geometric program and derive a message passing algorithm to
optimize the dual. They prove convergence of this new message-passing algorithm, TRW-
GP, for arbitrary potentials. However, even TRW-GP does not have any guarantees on the
number of iterations required for convergence. Both TRW-BP and TRW-GP are likely to be
too expensive for applications involving training large CRFs that require repeated inference.

2.6 Certain special classes of potentials

In this section, we describe various classes of potential functions that will appear in the rest
of this paper. We first note that a pairwise potential on edge (s, ) € E can be conveniently
represented as an m x m matrix where the i jth entry is 6,.;;.

Associative potentials Pairwise Potentials are said to be associative if they only depend
on whether the labels of the neighboring nodes are the same or not. That is,

Oy ifi=J,
Ostsij = U
est;n lfl#.]'

An example of associative potentials is the homogeneous Ising model 6, , = 0, 0., =
—0V(s,t) e E.

Attractive potentials A binary pairwise potential is said to be attractive if 6511 + O51:00 >
051:01 + O5:10 Given this definition, an associative potential is an attractive associative po-
tential if Oy, , > Oss.-
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Generalized associative potentials We call a potential Generalized Associative if every
row and every column of the matrix representing it is a permutation of the same set of m
real numbers. An example of a generalized associative matrix is the matrix

9st;1 951;2 e Ost;m
9sr;2 051;3 oo gst;l
est;m gst;l oo Ost;mfl

In this paper, we shall use the above form as representative of generalized associative poten-
tials although other potentials that satisfy the condition would do as well. We call the above
form a cyclic potential.

TRW closed-form potentials In Sect. 3, we shall prove that TRW(#, p) has a closed-form
expression for potentials satisfying the following condition:

> exp(Z)exp(@,) Y, exp(PL) exp(dy;i)
Yiexp@n) 2 exp(By)
=const;, V(s,t)eE (6)

where const, is a constant that depends only on the edge (s, ) and not on the labels i, j.

LBP closed-form potentials In Sect. 5, we shall prove that LBP(9) has a closed-form ex-
pression for potentials satisfying the following condition:
Zj eXP(er:ij + 9t;j) _ Z,- exp(ss.ij + O5.1)
Z_/ exp(6;:) > exp(0y;i)
=const;; V(s,t)eE 7

where const,, is a constant that depends only on the edge (s, ¢) and not on the labels i, j.

Observe that any model that has associative potentials and no node potentials satisfies
both the above conditions. More generally, any Generalized Associative potential satisfies
these conditions.

3 New analysis of TRW

In this section, we present quick convergence results for the TRW-BP algorithm for certain
classes of potentials and using these results we give a closed-form expression for the TRW
upper bound for this class of potentials.

3.1 Convergence of TRW

The TRW-BP algorithm (Wainwright et al. 2005) starts with an arbitrary set of initial mes-
sages {M?} and updates them as follows:

(M3, ()1 Ostsij
M,,‘+1 D=« veNh(t)\s vt ex |: stiij +0, i|
ts @) Z (M%) (1 prs) P Dst nJ
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where the constant « is a normalizing factor chosen such that the messages sum to one and
Nb(t) is the set of neighbors of node ¢ in the graph G. In this section, we shall assume
that the initial messages Mf, are uniform, that is, Mf,), (i) = % = M,OS (j)Vi,je X, (s,t) e E.

Now, suppose the potentials satisfy condition (6). Then

cerpons MDY T,
My =y e (e exp[ "’+0,;j]

. 1—prs
A0 Pst

1 (XCveNb(s) Pui—1D 0. .
= — SLILT A4S
a;(") eXp[ o "’}

1 (ZUENb(s) pur—1) evt'ij
=af — exp| — + 6 )
(m) Xj: < Pst "

1 (Zvezvh(s) put—1)
= a(n—1> (Z exp(@,;j)>consts,,

J

where the final expression was derived using the condition on the potentials (6). The final
expression is independent of i, hence the messages are still uniform. Thus, we have shown
that TRW converges in one iteration if we start with uniform messages.

Fact 2 For MRFs with potentials satisfying the condition (6), the TRW-BP algorithm con-
verges in a single iteration.

3.2 Closed-form TRW upper bound

Once the messages converge, say, to {MS’;}, the optimal solution to (5) is given by (Jordan
and Wainwright 2003)

Put

o\ 1 Pvs
nver(s)\t [M,fs 2]
o4 (I=p1s)
ML

l_[UENb([)\S [Ml{t (.])]
FAe)

Ost;ij
Tsr;ij X €Xp + 05 + 6,

Pst

Tei ocexp() [ [ [Mus @)1

vel'(s)

where the proportionality constants are determined by the constraint that € LOCAL(G).
In our case, since the final messages are uniform, the solutions 7 are

Gst;ij

Torsij X exp( ~+ 65, + 9,;1-) and 7,; < exp(by.;).

Pst
Thus, from the constraints T € LOCAL(G), we can determine that the optimal pseudomar-
ginals for the optimization problem (5) are given by

exp(2L + 0 +6,.5)
COnStS,(Z,- CXP(Qs;i))(Zj exp(et;j)) ’

Tst;ij =
(3)
exp(ex;i)
Toi = -
i exp(Bs:i)

@ Springer



214 Mach Learn (2008) 72: 205-229

The value of the dual objective function (5) at this set of pseudomarginals gives the value
of the TRW bound (since strong duality holds (Wainwright et al. 2005)). This fact can be
used to obtain a closed-form expression for TRW (@, p,).

Fact 3 For MRF's with potentials satisfying (6), the TRW bound is given by

TRW (@, p.) = (Z log<z exp(@»u,-))) + < Z Pst log(consts,)) )
(s,t)eE

seV ieX

It can be easily seen that models that have associative potentials and no node potentials
(65.; = 0) satisfy (6). Using the notation in Sect. 2, we can write the TRW upper bound in

this case as
Ost;p gsr;n
log(m) + Z pstlog| exp| —= | + (m — Dexp| — .
(.0eE Pst Pst

3.3 Accuracy of TRW pseudomarginals

In this section, we observe using an example that the TRW pseudomarginals can be an
arbitrarily bad approximation to the true marginals. Consider for example the case of a
complete graph with 3 binary-valued nodes s, 1, vand associative potentials on each edge.
Let 0. p = Os0.p = B, Osusn = Osv:n = —B, Ouv:p = ¥ Ouv:n = —y . Then, a direct calculation
shows that

P(xuzl,xuzl)= exp(y + 8+ B) +texp(y — B —B)
Px,=1,x,=0) exp(—=y+B—pB)+exp(—y —B+B)

=exp(2y) cosh(28).

We exclude Z from the above expressions since it cancels out in the ratio. Assuming a
uniform distribution over spanning trees, we get p,; = 2/3 for all edges. The TRW estimate
of the ratio £&=1-%=D jq thep (from (8))

P(xs=1,x;=0)
exp(i - —)/) =exp(3y).
Pst Pst

The factor cosh(28) exp(—y) can be arbitrarily large or small and hence the TRW approx-
imation can be arbitrarily skewed on either side of the true estimate. This shows that the
pseudomarginals obtained from TRW cannot be taken as reliable estimates of the true prob-
abilities in general.

4 Upper bounds for arbitrary pairwise MRFs

In this section, we derive an upper bound for MRFs with arbitrary potentials by decompos-
ing the pairwise potentials into a part that satisfies equation (6) and a part that does not. In
order to obtain closed-form solutions, we consider decompositions into convex combina-
tions of cyclic and non-cyclic parts. We consider cyclic potentials for concreteness although
we could use any form that is a Generalized Associative potential as well. The closed-form
TRW bound for models where all potentials are of this form is given (9) by:

log(m) + Z psflog<Zexp<6”;i)>. (10)

(.DeE Pst
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We then use the TRW bound for the cyclic part and the piecewise bound for the non-
cyclic part to get an upper bound on the partition function. We can optimize over all such
decompositions (keeping the ratio in the convex combination fixed) and show that this opti-
mized bound has a closed-form expression. This gives a tractable upper bound while requir-
ing no extra computation time. We also prove tightness results showing that our bound is
not more than log(m) greater than the piecewise bound, and experimental results show that
in practice our bound is almost always tighter. In this section, for notational simplicity, we
consider MRFs with only pairwise and no node potentials. In general, node potentials can
be absorbed into pairwise potentials so this does not lead to any loss in generality.

Let ® be the parameter vector associated with the graphical model. We write this as a
convex combination of an cyclic and a non-cyclic part as follows:

O=pB+(1-py

where 8 is cyclic, y is non-cyclic and p (0 < p < 1) is fixed. Now, by the convexity of the
log-partition function, we get

A(@) = pAB) + (1 - p)A(y)

Now, to get a closed form upper bound from this, we use the closed form tree-reweighted
upper bound on A(f) and the piecewise bound on A(y). Thus we get

ﬁAt;i
A(®) < p( Z Pst log<%> +nlogm>
(s,1)€E
+( —p)( > 10g<26>&p(yst;i,~)>>. (11
(s.1)eE ij

Please note that for now we are only optimizing over B, y keeping p € (0, 1) fixed. From the
constraint ® = pf + (1 — p)y, we can express y in terms of 8 and ® and convert this into
an unconstrained optimization problem over . This is a convex optimization problem and
hence setting gradients with respect to § to 0, we can get the optimal upper bound. Since
the bound decomposes additively over edges, we can optimize each S, separately. We can
optimize each S, easily by setting derivatives to zero and solving the resulting equations.
Doing this gives us the following optimal upper bound over all decompositions:

Fact 4 The overall optimal upper bound on the log partition function is given by

1
TRWPW(, p.. p) = Z (1 + pose — p) IOg(Zaé‘, ,”*""") + plog(m)  (12)

(s,H)eE

where

Ay —ZCX ( st; /(l+(1+/ 2)modm)> (13)

—-p

We call this the TRWPW bound.
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4.1 Convexity of TRWPW
By an argument similar to the one in (Rennie 2005), ay,.; (65,) is a log-convex function of

0, Vi. Since log-convex functions are closed under positive exponentiation, scaling and
addition (Lange 2004),

1-p
<Z Ayt (Qst) +ppse=p )
is log convex as well. Thus, from (12), we get that
Fact 5 TRWPW(0, p., p) is a convex function of © for fixed p,, p.

4.2 Tightness of TRWPW

TRWPW vs PW Let vy = [al_p :i € X]. Then, by the standard inequality between norms,

Sty

ol 1 < vlly < m oy 1. The TRWPW is given by 3, cp log(lvll ) +
plog(m). By the above inequality, this is less than Y log(||lv,ll;) + plog(m). Let
Wyrii = [€XPOss: j(14+G+j—2modm)) © J € X1. Then [lugll; = >, ”th;i”ﬁ~ Thus [vg|l; <
> llwill, = Zi,j exp(#;.;). Combining all the above inequalities, we get

TRWPW (6, p., p) < plog(m) + Z log(Z CXP(QH;U)> < plog(m) +PW(0).

(s.)eE iJ

Equality is achieved above in the limit when all 6;,.,;; — —o0 for all except one pair of
(i, j), V(s,1). so that all the vectors used above have at most one non-zero component and
all norms become equal then. Similarly, using the corresponding lower bounds, we get

TRWPW (6, p., p) = PW(0) — (IE| — p|V)log(m)

with equality being achieved when 6,,.;; = 6,,Vi, j, which corresponds to the uniform dis-
tribution over all configurations.

Fact 6 PW(0) — (|E| — p|V|)log(m) < TRWPW(0, p., p) <PW(0) + plog(m) and there
exist potentials for which equality is achieved on both sides.

TRWPW vs TRW TRWPW is a continuous and convex (Sect. 4.1) function of 6 and in this
section, we denote it as TRWPW(6) making the dependence on p,, p implicit. Hence, it
can be represented in terms of its convex conjugate (Borwein and Lewis 2006). Its convex
conjugate is given by

TRWPW* (1) = sup{u, ) — TRWPW(0).
)
The above optimization problem can be solved easily by taking derivatives with respect to
O:,ij» setting them to 0 and solving the resulting equations to obtain expressions for ;.

Substituting these back into the expression gives us the following formula for the convex
conjugate:

TRWPW* () = Y —((1 = p)Hy(ttsr) — ppss Het () — plog(m) (14)

(s,t)EE
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if Zi,j Wse:ij = 1, pgrij = OV (s, 1) € E and oo otherwise.
Using this, we obtain a representation of TRWPW as follows:

sup (n, ©) + Z ((1 = p)Hy; (i) + ppsi Hy (18,)) + plog(m) — (15)
IUZi,j Msriij=1s;ij =0 (s.t)€E
where H, (v) = — Zi v; log(v;) represents the entropy function and

Wy = [Z Most; j(14+G+j—2modm) * i € X]
J

We could augment the vector p with node marginals w, : s € V and enforce the con-
straint that ), pg:i; = iy and ) j Mstsij = My without making any difference to the
above optimization problem. Once we do this, we are optimizing over the same con-
straint as the TRW dual (5), that is, LOCAL(G). We now show the following inequality:
Y rer (= PYH () + o H () + pur Lt (i) = X oy Hopty) < 21 = p)(|E| = V] +
1) log(m) +(1V | ~2) log(m) Letting p, = 3, c () Por and using Hy (11),) < Hy (ptr) (which
follows from the basic properties of entropy) we can manipulate the LHS to get LHS <
(1 - P) Z(S,I)EE(I - pst)Hst(/'Lst) + erv(,os - I)Hs(,us) Now l,lSiIlg Hst(ﬂst) = 210g(m)
and H(u,) <log(m) and the fact that Z(weE pst =|V|—1,weget LHS <2(1 - p)(|E| —
[V 4+ 1)log(m) + (|V| — 2)log(m) Thus, we have

TRWPW(O) = plog(m) +  sup (1, ©)+ D (1= p)Hy (i) + pps Hy (18,)
neLOCAL(G) (s,H)eE

< sup (L O)+ ) Hi)— Y paliing)

weLOCAL(G) (DeE
+2( = p)(E| = V]| + Dlog(m) + (|V| — 2) log(m) + plog(m)
=TRW(®) +2(1 — p)(|E| —|V|+ 1)]log(m) + (|V| — 2+ p) log(m).

Fact 7 The difference between TRWPW and TRW is bounded above by
21 = p)(EI = [VI+ Dlog(m) + (V| —2)log(m) + plog(m).

Given these bounds, it does appear that p close to 1 is likely to give us tighter upper bounds
and we have observed this experimentally as well. However, taking p — 1 requires taking
a limit that results in a non-differentiable expression involving max functions. This limits
the utility of the bound when used as an approximation while training CRFs (one of the key
applications of the piecewise bound). Also, there are cases where p = 1 does not give us the
optimal upper bound (although these are rare).

5 Closed-form lower bounds on the partition function

In this section, we observe that LBP converges in a single iteration for potentials satisfying
(7). We have seen in Sect. 2.6 that Generalized Associative potentials always satisfy this
condition. We then use this to obtain closed-form solutions to the LBP approximation to the
partition function and the LBP pseudomarginals. In (Sudderth et al. 2008), the authors prove
that LBP gives a lower bound on the log partition function for binary MRFs with attractive

@ Springer



218 Mach Learn (2008) 72: 205-229

potentials under certain conditions. We use the above results to obtain a closed-form lower
bound for attractive associative potentials. We then use a decomposition approach similar
to the previous section to obtain closed-form lower bounds for arbitrary potentials. We also
use the new lower bounds to obtain error bounds on the accuracy of the TRW and LBP
approximation to the partition function in these cases.

5.1 Convergence of belief propagation

In this section, we observe that loopy belief propagation converges in a single iteration for
MRFs with potentials that satisfy the following condition (7). The proof closely parallels
the proof of convergence of TRW-BP. If we start with uniform initial messages, it is easy to
show(using the form of the belief propagation updates) that after updates the messages still
remain uniform and hence convergence is achieved. The final marginals are given as:

exp(e.vt;ij + Qs;i + Qt;j)
consty, (3, exp(6;,1)) (X ; exp(6;;))’

exp(6y;)
‘[.41- =
v Zi CXP(Qs;i)

Tsriij =

Using the above equations and (3), we obtain

Fact 8 The LBP approximation to the partition function for MRF's with potentials satisfying
(7) is given by

LBP(@®) = <Z log(z exp(Gs;,-))> + ( Z Pst log(constst)). (16)

seV iex (s,t)eE

5.2 Closed-form Bethe variational bounds for attractive associative MRFs

In (Sudderth et al. 2008), Wainwright et al prove that loopy belief propagation gives a lower
bound on the partition function for binary MRFs with attractive potentials. In this section,
we use this result and the convergence result proved above to derive closed form lower
bounds for binary random fields with associative potentials satisfying the following condi-
tion: Oy, > 6;;., and when the final node marginals produced by LBP satisfy 7,,; < 1/2Vs.
Using the above result, we can see that for the case of associative potentials, belief propaga-
tion converges to the following marginals:

exp O p)
Tst;00 = es)‘;ll = s
2(exp(Ysr;p) + exp(Os:n))
o exp(Osr.n)
st;10 — Ust;01 — s
’ T 2(exp(Oup) + exp(Bsrin))
1
Tg:i = <.
v 2

Thus, if all the potentials satisfy 0y;,, > 0y;.,, all conditions required in (Sudderth et al. 2008)
are satisfied and we get a closed-form lower bound on the partition function.
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Fact 9 The log partition function of an attractive associative binary pairwise MRF is
bounded below by:

LBP(@) > Z 10g<exp(93t217) ‘;QXP(Qsz;n)> + |V|10g(2) (17)
(s,t)eE

5.3 Upper bounds on the error for TRW and Bethe variational bounds

Since we now have both upper and lower bounds on the partition function for the case of
attractive associative potentials, we can derive bounds on the error introduced by using these
as approximations to the true partition function. | TRW(®, p,) — A(®)| < TRW(O, p,.) —
LBP(®). Manipulating the RHS, we can show that it is equal to

9?' _er'n e‘r' _03 n
(E|—=1V|+1)log2) + Z Pst 10g(cosh(‘t’p—‘t'>> — log<cosh(%)>.

(s.1)eE 205t

Fact 10 The error between the TRW upper bound/Bethe Variational lower bound and the
true log partition function for the case of binary pairwise MRF's with attractive associative
potentials is bounded above by

(E|—1V[+1)log(2) + Z Dst log<cosh<9 )) — log(cosh(by,))
(s.)eE Pst

Byr: p—Bsy:
where 65 = —“25—=1

5.4 Closed-form lower-bounds for binary MRFs with arbitrary associative potentials

In the last section, we obtained closed-form lower bounds for binary MRFs with attractive
associative potentials. In this section, we use the above result to obtain new closed-form
lower bound with arbitrary associative potentials. By the convexity of the partition function,
PA(®) + (1 — p)A(y) = A(B) where p® + (1 — p)y = B. We now restrict 8 to be an
attractive associative potential so that we can use the closed form LBP lower bound on
A(B). Since O itself is associative, B becomes the difference of two associative potentials
and hence is associative and we can use the TRW upper bound on A (). We can then obtain
a lower bound on the partition function as follows: A(®) > W . We then
maximize this bound with respect to 8, y subject to the constraint § = p@ + (1 — p)y and
B is attractive. This optimization problem can be written as follows:

1
Lavi-1EI- prog + D~ 1og(exp(By:p) + exp(Byin))

BByt ]}>ﬁ_i[ n\"/(Y neE p (s,t)eE

Stip 95 . ot — 95 .
— (1= p)py lOg(exp<w) +exp(u))_
a- p)pst

(I = p)py
It is easy to see that the optimization can be done independently for each edge. Doing so (by
setting derivatives to zero and solving the resulting equations) results in the following lower
bound:

1
BPTRW (0, p., p) = ;(IVI —|El = p)log@) + Y [0u:p = 6s n]] (I = pul=p))

(s,t)EE
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peS[;[) pOSl;n
x log| exp Tl +exp| ———————
— pu(1—=p) I —p(1=p)

1
+ [[est;p < 93't;n]] ; log(2)

) ree( )
— (1= p)py] P%er P ))).
(1=pe °g<eXp<ps,(1—p> L P

(18)

6 Experiments

We compare our upper bounds to PW and TRW bounds using synthetic and two types of
real-world graphs. We use the implementation of TRW-BP made available by Talya Meltzer
at http://www.cs.huji.ac.il/~talyam/inference.html. The edge potentials are generated inde-
pendently from a uniform distribution on the interval [—5, 5] for all the graphs. Unless ex-
plicitly stated otherwise, all experiments are performed on graphs with binary-valued nodes.
For the experiments involving TRWPW or BPTRW, we choose p by performing a coarse
grid search with step 0.1 over the interval [0.1, 0.9].

For TRW, TRWPW and BPTRW, we use as p the uniform distribution over spanning
trees. It is possible to optimize g over all possible distributions using, e.g., conditional gradi-
ent descent (Wainwright et al. 2005). However, it does not appear that there is a closed-form
solution for this optimization problem in general.

In most experiments, we report the value of the given bound minus the mean-field bound
for the same graphical model so that the quantity reported is scale-free(invariant to multipli-
cation of potential functions by a constant).

6.1 Arbitrary pairwise potentials
In this section, we report on experiments with arbitrary pairwise potentials.

Effect of p We do not consider the problem of optimizing over the TRWPW wrt p in this
paper: It does not appear that this problem has a closed-form solution and the problem is
probably not even convex. The dependence of the TRWPW bound is complicated and does
not seem amenable to standard optimization techniques. However, we observe empirically
(Fig. 1) that we get better bounds with larger ps most of the time in accordance with the
error bounds in fact 7. However, there are cases when this is not true. Also, at p = 1 we need
to take a limit, and the resulting expression is not differentiable in general, which limits its
utility for training. So we limit ourselves to p = 0.9.

Chains These are cycle-less graphs used very frequently in natural language processing
and information extraction. TRW is exact on these graphs, so this tells us how close TRWPW
is to the exact answer. We present results comparing TRWPW and PW with TRW on these
graphs in Fig. 2. TRWPW does not do much better than the piecewise although the bounds
get better as the number of nodes increase.

Grid graphs These graphs occur naturally in modeling physical systems, and are also ex-
tensively used in computer vision to model images and interactions between neighboring
pixels. The typical computer vision task is region segmentation. We consider n x n square
lattices with n ranging from 3 to 45. The results are plotted in Fig. 3. TRWPW reduces the
gap between TRW and PW by about 15-20%.
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Fig. 1 Effect of p on bounds
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Fig. 2 TRWPW vs. TRW and PW on chain graphs

@ Springer



222 Mach Learn (2008) 72: 205-229

nxn Grid graphs
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Fig. 3 TRWPW vs. TRW and PW on grid graphs

Complete graphs For stress-testing we also tried complete graphs. On complete graphs
TRW has considerable trouble, often not converging after 2000 iterations. At the time of
writing, an implementation of the convergent alternative to TRW (Globerson and Jaakkola
2007) was not available. Therefore we can present comparisons of our bounds with only
PW. The results are plotted in Fig. 4.

Citation networks  Starting from author and paper seed nodes, we performed breadth-first
traversals to collect several neighborhood graphs from CITESEER. Probabilistic graphical
models have been frequently used to label nodes in social networks (Lu and Getoor 2003).
In CITESEER, for examples, one may wish to use a probabilistic graphical model for labeling
papers about object-oriented databases apart from relational databases. Another motivation
from Web search is to label host nodes as spam-prone or not, given the Web’s link graph.
These are both associative Markov networks. Our sample CITESEER subgraphs had 150—
200 nodes and 400-500 edges.

Another important parameter to vary while testing bounds is the number of possible node
labels m. In case of Web spam, there may be only two labels, but if labels represent topics
of papers, there can be many. In Fig. 5 we varied the number of labels and measured the gap
between PW and TRWPW. For these graphs, TRW again frequently failed to converge in
2000 iterations. TRWPW levels off quickly with increasing m, while PW continues to rise,
with some slowdown. The number of terms in the piecewise bound increases quadratically
and since we are using independent and randomly generated potentials, it is reasonable to
expect the PW bound to grow approximately quadratically. Thus, when we take the log of
this, we get a function with decreasing slope.

IMDB actor-movie graphs Explicit social networks are increasingly common out-
side academic citation. We collected a graph-structured version of the IMDB database
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IMDB graphs
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Fig. 6 TRWPW vs. PW on network communities around actor nodes in the IMDB movie database

(http://imdb.com) with nodes representing movies and actors, and bipartite edges represent-
ing the relation “actor acted-in movie”. Then, as with CITESEER, we started breadth-first
traversals from popular seed nodes like Sean Connery to collect other actors and movies in
their social network neighborhood. We observe that TRWPW is tighter by 25-50% for these
graphs.

Figure 6 compares PW and TRWPW for one such graph. The results are very similar to
CITESEER.

Effect of associativity Another factor that clearly influences TRWPW is the extent of as-
sociativity of the potential. To study this effect, we took a fixed associative potential 8 and
a fixed non-associative potential y (each generated with entries randomly chosen from the
interval [—5, 5]), and built different convex combinations of the form ® = af + (1 — )y,
for different values of «. We keep p, B, y fixed in this experiment in order to observe just
the effect of associativity on the quality of bounds. As expected, as we make the overall
potential closer to associative (by increasing o), TRWPW gets better than PW relative to
TRW. The results are plotted in Fig. 7.

TRW convergence In contrast to our one-shot bound computation, Fig. 8 shows that TRW
can need a large number of iterations to converge. The ratio of TRW to our running times
is the same order as the number of iterations needed by TRW (i.e., often two orders of
magnitude or more).

6.2 Associative potentials

In this section, we present results comparing the BPTRW lower bound with the standard
mean-field lower bound on various kinds of graphs with binary nodes and associative poten-
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Effect of Associativity
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Fig. 8 Iterations needed for TRW convergence on a grid graph
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Chain graphs
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Fig. 9 TRW, BPTRW and mean-field on chain graphs

tials. We plot the values of TRW-MF as well on each graph in order to give an idea of how
far these bounds are from the actual partition function (since TRW is an upper bound, the
gap between it and a lower bound is an upper bound on the gap between the lower bound
and the true partition function). The experiments show that BPTRW outperforms mean-field
by fairly large margins on densely connected graphs although it does worse on sparse graphs
like chains.

Chain graphs On these graphs, mean-field does much better than BPTRW and BPTRW in
fact gets worse as the number of nodes in the graph increase. Since TRW is exact on these
graphs, the bounds show that both mean-field and BPTRW are fairly poor approximations
in this case (Fig. 9).

Grid graphs  On grid graphs, mean-field and BPTRW perform comparably with BPTRW
doing slightly better most of the time (Fig. 10).

Complete graphs On complete graphs, BPTRWdoes much better than mean-field and gets
better relative to mean-field as the number of nodes increases (Fig. 11).

Variance of potentials  In this experiment, we generate potentials for a non-uniform Potts
MREF of the following form:

P(x) x exp( Z Os,xsx,>
(s,))€E
where x; € {—1, 1} Vs € V. Such a model is both binary and associative and hence we can

use all the bounds on the partition function: BPTRW, TRWPW, TRW, PW and mean-field.
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Fig. 10 TRW, BPTRW and mean-field on grid graphs
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Fig. 11 TRW, BPTRW and mean-field on complete graphs

@ Springer



228 Mach Learn (2008) 72: 205-229

Effect of variance of potentials
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Each 6, is generated independently from a Gaussian distribution with mean zero. We use
a complete graph of 100 nodes and examine the effect of the variance of the potential-
generating Gaussian on the quality of the bounds. As the variance increases, we observe
that BPTRW does better than mean-field. We also observe that TRWPW gets closer to PW
than TRW as the variance increases from 1 to 10 (Fig. 12).

7 Conclusion

In this paper, we have proved convergence of the TRW-BP algorithm in one iteration for
the case of Generalized Associative potentials. We have also developed closed-form upper
bounds on the partition function for general pairwise MRFs. There are several important
implications of these results: For the case of Generalized Associative potentials, we have
seen that the pseudomarginals produced by the TRW-BP algorithm can be a bad approxima-
tion to the true marginals (Sect. 3). The closed-form of marginals can help to characterize
when the TRW pseudomarginals are accurate. We have also observed that similar conver-
gence results can be shown for loopy belief propagation (Sect. 5) and these results could
again help in characterizing when loopy belief propagation gives good results. We have also
developed closed-form lower bounds for the binary case: this may help in analyzing when
the Bethe-variational bounds (Sudderth et al. 2008) outperforms other popular lower bounds
like mean-field for the case of attractive associative potentials. We have developed the BP-
TRW bounds as closed-form lower bounds for associative binary potentials: in doing this
we utilized the closed-form solutions to TRW and the Bethe variational bound. It may be
possible to generalize this approach to arbitrary pairwise binary fields by using a similar
decomposition technique with a more complex optimization procedure. Another interesting
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area of possible further work is on computing bounds on the marginals and event probabili-
ties. Ravikumar and Lafferty (2004) propose a framework through which variational bounds
on the log partition function can be used to obtain bounds on marginal probabilities and
general event probabilities. The closed-form bounds we have developed here (particularly
for associative potentials) could be used to significantly speed up the complex optimization
procedures currently required for computing these bounds (Ravikumar and Lafferty 2004)
and perhaps even obtain closed-form bounds on event probabilities for some special cases.
The closed-form bounds may also have implications on the optimization procedures for the
tree edge appearance probabilities in TRW: it might be possible to exploit the existence of
a closed-form function for a fixed p to develop better optimization procedures for obtaining
the optimal upper bound. These closed-form bounds may also have significant impacts on
problems arising in Bayesian inference: The form of the functions could be used to obtain
fast(perhaps even closed-form) approximations/bounds on posterior likelihoods(using both
upper and lower bounds) and outperform currently popular methods like variational Bayes.
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